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We consider service systems with a finite number of customer arrivals, where customer interarrival times and
service times are both stochastic and heterogeneous. Applications of such systems are numerous and include

systems where arrivals are driven by events or service completions in serial processes as well as systems where
servers are subject to learning or fatigue. Using an embedded Markov chain approach, we characterize the waiting
time distribution for each customer, from which we obtain various performance measures of interest, including
the expected waiting time of a specific customer, the expected waiting time of an arbitrary customer, and the
expected completion time of all customers. We carry out extensive numerical experiments to examine the effect of
heterogeneity in interarrival and service times. In particular, we examine cases where interarrival and service times
increase with each subsequent arrival or service completion, decrease, increase and then decrease, or decrease and
then increase. We derive several managerial insights and discuss implications for settings where such features can
be induced. We validate the numerical results using a fluid approximation that yields closed-form expressions.
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1. Introduction
This paper is motivated by systems where a finite
number of customer arrivals occur over a period of time
followed by few or no arrivals for an extended period
thereafter. During the period over which arrivals take
place, interarrival times between consecutive customers
can be different, as can their service times. Examples
of such systems are numerous.

Consider, for example, settings where arrivals are
triggered by the start of an event or a service (e.g., pas-
sengers arriving to check in for or to board a flight) and
the total number of arrivals is finite (and determined
by the number of tickets sold). Passengers may belong
to different classes (e.g., early, on time, and late) or are
assigned to different groups (e.g., priority boarding
zones), so arrivals occur in waves with each wave
drawing from the population of the corresponding
class or group.

Another example is one where a finite number of
jobs go through a sequence of production stages. The
arrival process for each stage (other than the first
one) corresponds to the departure process from the
preceding one. Because production times at a particular
stage are stochastic and can vary in distribution from

job to job, the interarrival times to the subsequent stage
are also stochastic and vary from job to job.

A third example is one where arrivals are driven by
appointments (e.g., patient appointments at a health
clinic). Assuming customers are punctual (or nearly
punctual), interarrival times coincide with the time
between appointments. Depending on how appoint-
ments are scheduled, the interarrival times between
customers can vary. For example, spacing appointments
equally leads to uniform interarrival times, while other
rules, such as those that schedule more appointments
at the beginning and at the end, with fewer in between,
lead to increasing and then decreasing interarrival
times.

All the above examples share four common charac-
teristics: (1) a finite number of customers, (2) hetero-
geneous (and possibly stochastic) interarrival times,
(3) heterogeneous (and possibly stochastic) service
times, and (4) interarrival and service times that depend
on the position of the customers in the arrival process.

Accounting for heterogeneity in arrival and service
times is important in settings where interarrival and
service times exhibit distinctive features that make it
difficult to justify the common assumption of identically
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distributed interarrival and service times. Such features
include (1) arrivals that decrease in intensity with each
subsequent arrival, (2) arrivals that increase in intensity
with each subsequent arrival, and (3) arrivals that
exhibit the combinations of both the increasing and
decreasing features. They also include (1) service times
that increase with each subsequent service completion,
typical of settings where servers are subject to fatigue;
(2) service times that decrease with each subsequent
service completion, typical of systems where learning
takes place; and (3) service times that exhibit the
combinations of both the increasing and decreasing
features (e.g., initial learning by the servers that is
followed by eventual fatigue).

The modeling and analysis of systems with finite
arrivals and varying interarrival and service times raise
several important questions: (1) What is the impact
of different interarrival and service time features on
system performance? (For example, does system per-
formance deteriorate with increased heterogeneity in
interarrival or service times?) (2) For a fixed number of
arrivals, are there features that lead to better perfor-
mance than others? (For example, given a target time
window for arrivals, is it best to have more arrivals
in the beginning, in the middle, or at the end of the
arrival time window?) (3) How are the answers to the
above questions affected by other problem parame-
ters such as the overall arrival intensity and the total
number of arrivals? (For example, do higher levels
of the parameters favor certain arrival features over
others?) (4) Does the heterogeneity in service times
affect performance the same way that the heterogeneity
in interarrival times does, or are there fundamental
differences between these two?

In this paper, we address these and other related
questions. In particular, we consider a system with a
finite number of arrivals, where the interarrival time
between the mth and 4m+15th customer is described by
a random variable that has a general distribution that
can be different from the distributions that describe the
interarrival times between other consecutive customers.
Customer service times are described by exponen-
tial distributions; however, the mean service times
(or service rates) of different customers can be different.
We consider systems with both single and multiple
servers. Using an embedded Markov chain approach,
in each case, we are able to characterize analytically
the probability distribution of the number of customers
seen by each arrival. This allows us to characterize
the waiting time distribution for each customer, from
which we obtain various performance measures of
interest, including the expected waiting time of a spe-
cific customer, the expected waiting time of an arbitrary
customer, and the expected completion time of all
customers (makespan). These characterizations further
simplify for several special cases of interest, including

systems with exponential and deterministic interarrival
times.

We carry out extensive numerical experiments to
examine the effects of heterogeneity in interarrival and
service times. In particular, we examine cases where,
with each subsequent arrival or service completion,
interarrival and service times (1) increase, (2) decrease,
(3) increase and then decrease, or (4) decrease and then
increase. We derive several managerial insights and
discuss implications for settings where such features
can be induced. We validate the numerical results
using a fluid approximation that yields closed-form
expressions. Some of our key findings are highlighted
below:

• Arrival processes with different features can lead
to significantly different expected waiting times. There
is a considerable difference in performance between
systems with homogeneous interarrival times and
those with heterogeneous interarrival times. Therefore,
ignoring the heterogeneity in arrival process can lead
to significant errors in performance evaluation.

• Arrival processes with homogeneous interarrival
times may not lead to the shortest waiting time. In fact,
for a wide range of parameter values, systems with
homogeneous interarrival times perform poorly.

• Although there is no strict ordering in terms of
performance among the arrival processes considered,
for systems with homogeneous service times, arrival
processes where interarrival times decrease, or increase
and then decrease, lead to lower waiting time than
those where interarrival times increase, or decrease
and then increase, suggesting that it is generally better
to postpone the busy (or peak) period.

• When interarrival times are homogeneous, systems
in which customers with short service times arrive
early (at the beginning of the arrival period) have
lower waiting time than those in which such customers
arrive later. This is perhaps consistent with results
about the optimality of processing customers with
shorter processing times first. However, this is not true
when interarrival times are heterogeneous.

• Interarrival and service time features that lead to
lower waiting time may not lead to lower makespan.

These insights show that there might be opportunities
for system managers to improve system performance
by inducing certain arrival features and by differ-
entiating between customers or jobs with different
service requirements. We illustrate how arrivals could
be affected using two examples. The first one involves
the sequencing of a finite number of jobs through two
production stages in series. The second one involves the
grouping of passengers into multiple boarding zones.
For systems where arrivals cannot be controlled, we
examine how arrival processes with different features
affect the capacity needed to guarantee a specified level
of performance (e.g., a maximum expected waiting
time or makespan).
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2. Related Literature
Although systems with a finite number of arrivals and
distinct features in interarrival or service times are
prevalent and perhaps even pervasive in practice, they
have received relatively little attention in the service
operations management literature (and more generally
in the broader queueing literature). This appears to be,
in part, due to the difficulty of analyzing these systems
using standard queueing methodology, which relies
on steady state analysis (and therefore assumes an
infinite number of arrivals) or requires homogeneous
interarrival and service times (see, e.g., Kleinrock 1975,
Hall 1991).

There is extensive literature that deals with finite
population systems (see, e.g., Takagi 1993, Haque and
Armstrong 2007). However, in that case, the finite
population of customers cycles indefinitely through
two phases of not needing service and needing service
(e.g., machines that require repairs). The analysis typi-
cally assumes homogeneity in both arrival and service
processes. Hence, this literature does not capture the
essential features of the problem we consider here.

There is also extensive literature on systems with
time-dependent/state-dependent arrival or service
processes (see, e.g., Courtois and Georges 1971, Ross
1978, Green et al. 1991) where the arrival or service rates
may depend on either time, the number of customers
in the system, or the evolution of certain exogenous
stochastic processes. This literature does not capture
the settings we describe here when interarrival and
service times depend on the order in which a particular
customer arrives to the system and when the number
of customers is finite.

The literature that is most related to ours is on tran-
sient analysis of queueing systems (see, e.g., Kelton
and Law 1985, Parthasarathy and Moosa 1989, Griffiths
et al. 2006). However, this literature typically assumes
homogeneous interarrival and service time distribu-
tions, and the existing results are for systems with
Markovian arrivals. Other related papers include Hu
and Benjaafar (2009), which treats a special case of our
problem where all customers arrive at once (they refer
to this as the rush hour regime). Parlar and Moosa
(2008) also consider a special case of our problem
where the arrivals are Markovian and determined by a
pure death process so that the arrival rates are linearly
decreasing. In our case, we allow for non-Markovian
arrivals and arbitrary arrival rates. Hassin and Mendel
(2008) consider a system with a single server and
finite arrivals, but customer arrivals are determined
by appointment times. Customers are assumed to be
punctual, and therefore there is no uncertainty regard-
ing arrival times. The service times are exponentially
and identically distributed.

There is an extensive body of literature in the area
of scheduling that shares features of the problem we
consider in this paper: namely, a finite number of

customers (or jobs) that are processed through one or
more machines. The jobs are available for processing at
specified release times. Jobs may vary in their process-
ing times, delay costs, and due dates. In some cases
the release and service times are stochastic. The focus
of much of this literature is on developing efficient
algorithms for generating optimal job sequences or on
identifying structural properties of optimal sequences;
see Pinedo (2012) and Emmons and Vairaktarakis (2013)
for a discussion of important results and a review of
relevant literature. Some of the literature treats the
online version of the problem where jobs arrive over
time and a decision on which job to process next is
made with each job arrival and job completion (in the
case where preemption is allowed); see, for example,
Chou et al. (2006), Chen and Shen (2007), and Ouelhadj
and Petrovic (2009). This literature is generally not
concerned with developing performance evaluation
models, as we are in this paper.

Finally, there is a growing body of literature that deals
with scheduling appointments, particularly in healthcare
settings. A review of this literature can be found in
Preater (2001) and Cayirli and Veral (2003). We also refer
the reader to Mondschein and Weintraub (2003), Gupta
and Denton (2008), and Jouini et al. (2014). Most of this
literature assumes that customers are punctual, and the
objective is to identify the optimal spacing between
appointments where the optimality is determined by
a weighted measure of patient’s delay, physician’s
idleness, and tardiness. Note that when customers
are punctual and service times are exponential, the
performance of a specified schedule can be evaluated
using the approach described in this paper.

Some of the literature considers no-shows, which
introduces a particular form of stochasticity in patients’
interarrival times. For example, Kaandorp and Koole
(2007) develop a local search algorithm to identify opti-
mal schedules in the presence of no-shows and show
that a so-called dome-shaped form where more appoint-
ments are scheduled at the beginning and at the end
of the schedule, is particularly effective. (See related
discussion in §7.) Zeng et al. (2010) extend Kaandorp
and Koole (2007) to include heterogeneous no-show
rates. Koeleman and Koole (2012) also generalize the
model by considering both scheduled and emergency
arrivals. Some recent papers consider patient schedul-
ing based on an open access model with same day
appointments; see Robinson and Chen (2010) and the
references therein.

The rest of this paper is organized as follows. In §3,
we describe the model and provide analysis for the
single-server system. In §4, we extend the analysis
to the multiserver case. In §5, we present numeri-
cal results and discuss insights. In §6, we describe
the fluid approximation. In §7, we discuss example
applications. In §8, we provide a summary and con-
cluding comments.
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3. Problem Description and Analysis
We consider a queueing system with a single server
and a finite number of customers arriving randomly
over time. The total number of customers is M . We
index customers by the order of their arrivals so that
customer m for m= 11 0 0 0 1M , is the mth customer to
arrive. The interarrival time between customer m− 1
and customer m has a general distribution with a finite
mean 1/�m for m= 21 0 0 0 1M . No other specific assump-
tions are made concerning interarrival times except
that they are independent. Customer service times
are independent and exponentially distributed with a
strictly positive and finite mean 1/�m for customer m.
We make the exponential assumption regarding the
distribution of service times for mathematical tractabil-
ity because it allows us to formulate the problem
as an embedded Markov chain. This assumption is
also useful in approximating the behavior of systems
where service time variability is high. Doing away with
this assumption without losing tractability is difficult,
given the generality of the model otherwise (i.e., the
heterogeneity in interarrival and service times). Upon
arrival, a customer goes immediately into service if the
server is available. If not, the customer joins the queue
and waits. Customers waiting in the queue are served
on a first-come, first-served (FCFS) basis.

Note that the interarrival and service times are
indexed by the position of the customer in the arrival
sequence (m= 11 0 0 0 1M) and not by time, as in a time-
dependent process. This is because we are interested
in settings, such as the ones we describe in §1, where
the characteristics of the arrival and service processes
are affected by the number of customers that have
already arrived and not by the amount of time that has
already elapsed. This is apparent, for example, when
customers, who are drawn from a finite population,
arrive independently from each other, when arrivals
correspond to service completions from a preceding
process, or when service times are affected by the num-
ber of customers previously processed, as in situations
in which learning and fatigue can take place.

We are interested in characterizing customer waiting
time. Our approach consists of first computing the
probabilities of the system states seen by a new arrival.
We then compute the conditional waiting time, given
the system state. Finally, we characterize the uncondi-
tional waiting time by averaging over all possibilities.
We denote Am as the random variable that describes
the arrival time of customer m and Rm as the random
variable that describes the number of customers found
in the system by customer m, upon her arrival at Am.
This means that the total number of customers in
the system immediately after Am is Rm + 1. We let
pm1 i = Pr8Rm = i9 refer to the probability that the mth
customer finds, upon arrival, i customers already in
the system (in queue or in service) for i = 01 0 0 0 1m− 1
and m= 11 0 0 0 1M .

In what follows, we first characterize the probabili-
ties pm1 i. Let Tm be the random variable describing the
interarrival time between customers m− 1 and m, and
let fm4 · 5 be its probability density function. We have
Tm =Am −Am−1 for m= 21 0 0 0 1M . Without loss of gen-
erality, we assume the first customer arrives at time
0 (T1 = 0). For m = 1, we have p110 = 1 and p11 i = 0
for i 6= 0 because the first customer always finds the
system empty. For 2 ≤m≤M , we separate the two cases,
1 ≤ i ≤m− 1 and i = 0. Let us first consider the case
1 ≤ i ≤m− 1. Conditioning on the number of customers
found, upon arrival, by customer m− 1, we obtain

pm1 i =

m−2
∑

j=i−1

pm−11 j Pr8Rm = i �Rm−1 = j9 (1)

for 2 ≤m≤M . Note that we must have i−1 ≤ j ≤m−2.
Let us now characterize the probability Pr8Rm = i �

Rm−1 = j9 for 1 ≤ i ≤m− 1 and i− 1 ≤ j ≤m− 2. We
again separate the analysis into two cases, i ≤ j ≤m− 2
and j = i− 1. First, when i ≤ j ≤ m− 2, in order for
customer m to find i customers given that customer
m−1 finds j , there must be exactly j − i+1 service com-
pletions during the time period 4Am−11Am7. It is easy to
see that the j − i+ 1 customers who have finished their
service are customers m− j − 11m− j1 0 0 0 1m− i− 1,
and the one under service at time Am is customer
m − i. Let us define Bm1 i1 j as the random variable
describing the total duration of those j − i + 1 ser-
vice completions, and let fBm1 i1 j

4 · 5 and FBm1 i1 j
4 · 5 be its

probability density function and cumulative distri-
bution function, respectively. Noting that the under-
lying process is a pure death process, we can see
that Bm1 i1 j is equal to the summation of exponential
random variables, and thus, it is hypoexponentially
distributed with parameters �m−j−11�m−j1 0 0 0 1�m−i−1.
From Ross (2009), we have (in the case where all
the rates are distinct) fBm1 i1 j

4t5=
∑m−i−1

l=m−j−1 �lom1 i1 j1 le
−�lt

and FBm1 i1 j
4t5= 1 −

∑m−i−1
l=m−j−1 om1 i1 j1 le

−�lt for t ≥ 0, where
om1 i1 j1 l =

∏m−i−1
n=m−j−11n6=l�n/4�n −�l5. (By convention, an

empty product equals 1.) By �m−i, we denote the expo-
nential random variable that describes the service time
of the 4m− i5th (yet to complete service) customer, and
let f�m−i

4 · 5 be its probability density function. Then we
have f�m−i

4t5=�m−ie
−�m−it for t ≥ 0. Let us now define

the random variable Cm1 i1 j by Cm1 i1 j = Bm1 i1 j +�m−i. One
may easily see that Pr8Rm = i �Rm−1 = j9= Pr8Bm1 i1 j <
Tm <Cm1 i1 j9. Because of the independence between Tm,
Bm1 i1 j , and �m−i, we have

Pr8Rm = i �Rm−1 = j9

=�m−i

m−i−1
∑

l=m−j−1

�lom1 i1 j1 l

·

∫ �

0

∫ �

0

∫ y+z

y
fm4x5e

−�ly−�m−iz dx dy dz
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for i ≤ j ≤m− 2. Similarly, for j = i− 1, we have

Pr8Rm= i �Rm−1 = i−19=�m−i

∫ �

0

∫ z

0
fm4x5e

−�m−izdxdz1

which leads to

pm1 i = �m−i

m−2
∑

j=i

m−i−1
∑

l=m−j−1

�lpm−11 jom1 i1 j1 l

·

∫ �

0

∫ �

0

∫ y+z

y
fm4x5e

−�ly−�m−iz dx dy dz

+ pm−11 i−1�m−i

∫ �

0

∫ z

0
fm4x5e

−�m−iz dx dz (2)

for 1 ≤ i ≤m− 1. As for the quantity pm10, it is simply
given by

pm10 = 1 −

m−1
∑

i=1

pm1 i (3)

for 2 ≤m≤M . Using Equations (2) and (3), the prob-
abilities pm1 i for 1 ≤m≤M and 0 ≤ i ≤m− 1 can be
recursively computed starting with m= 1.

Next we show how the above probabilities can be
used to characterize various performance measures.
Let Xm, a random variable, denote the waiting time in
queue of customer m, and let E4Xk

m5 be the correspond-
ing kth moment for k≥ 1. (For the rest of the paper,
we use E4Zk5 to denote the kth moment of a random
variable Z for k ≥ 1.) Note that X1 = 0 with probability
1 because it corresponds to the waiting time of the first
customer. For 2 ≤m≤M , we have

E4Xk
m5=

m−1
∑

i=1

pm1 iE4X
k
m1 i51

where Xm1 i is the conditional random variable denot-
ing the waiting time in queue for customer m, given
that customer m finds, upon arrival, i customers in
the system. Obviously, Xm10 = 0 with probability 1.
For 1 ≤ i ≤ m− 1, the i customers seen by the mth
arrival are customers m− 11m− 21 0 0 0 1m− i. For the
4m− i5th customer currently in service, the remaining
service time is still exponentially distributed with rate
�m−i. Because their service times are independent and
exponentially distributed, Xm1 i has a hypoexponen-
tial distribution with parameters �m−11�m−21 0 0 0 1�m−i.
Hence, the quantities E4Xk

m1 i5 for k≥ 1 can be easily
computed. For example, we have E4Xm1 i5=

∑m−1
l=m−i 1/�l

and E4X2
m1 i5=

∑m−1
l=m−i 1/�2

l + 4
∑m−1

l=m−i 1/�l5
2.

Let the random variable X denote the waiting time
in queue of an arbitrary customer among all M cus-
tomers. Then, we obtain E4Xk5= 41/M5

∑M
m=2 E4X

k
m5=

41/M5
∑M

m=2
∑m−1

i=1 pm1 iE4X
k
m1 i5 for k ≥ 1. In particular, we

have

E4X5=
1
M

M
∑

m=2

m−1
∑

i=1

m−1
∑

l=m−i

pm1 i

�l

and

Var4X5 =
1
M

M
∑

m=2

m−1
∑

i=1

pm1 i

[ m−1
∑

l=m−i

1
�2

l

+

( m−1
∑

l=m−i

1
�l

)2]

−
1
M2

( M
∑

m=2

m−1
∑

i=1

m−1
∑

l=m−i

pm1 i

�l

)2

0

From the probabilities pm1 i, we can also character-
ize the distribution of X. Specifically, Pr8X ≤ t9 =

41/M541+
∑M

m=2 Pr8Xm ≤ t95= 1/M + 41/M5
∑M

m=24pm10 +
∑m−1

i=1 pm1 i Pr8Xm1 i ≤ t95 for t ≥ 0. When all the rates are
distinct, we have

Pr8X ≤ t9= 1 −
1
M

M
∑

m=2

m−1
∑

i=1

m−1
∑

l=m−i

pm1 iom101 i−11 le
−�lt0

In addition to waiting time, an important perfor-
mance measure for systems with finite arrivals is
makespan, namely, the time it takes the system to com-
plete serving all customers. Because the server starts
working at time zero, makespan can be computed as the
departure time of the last customer (customer M). We
define Dm as the random variable describing the depar-
ture time of customer m. Then, DM =AM +XM + �M ,
which leads to

E4DM 5 = E4AM 5+E4XM 5+E4�M 5

=

M
∑

m=2

1
�m

+

M−1
∑

i=1

M−1
∑

l=M−i

pM1i

�l

+
1
�M

0

Other measures of interest, such as those dis-
cussed in Cayirli and Veral (2003), can also be eas-
ily obtained. For example, the expected total time
in the system (waiting time + service time) for an
arbitrary customer is given by 41/M54

∑M
m=1 E4Xm5+

1/�m5, or equivalently 41/M5
∑M

m=141/�m5 + 41/M5 ·
∑M

m=2
∑m−1

i=1
∑m−1

l=m−i pm1 i/�l; the expected server idle
time is given by E4DM 5 −

∑M
m=1 1/�m, or equiva-

lently
∑M

m=2 1/�m +
∑M−1

i=1
∑M−1

l=M−i pM1i/�l −
∑M−1

m=1 1/�m;
and the expected server utilization is given by
4
∑M

m=1 1/�m5/E4DM 5, which can also be rewritten
as 4

∑M
m=1 1/�m54

∑M
m=2 1/�m +

∑M−1
i=1

∑M−1
l=M−i pM1i/�l +

1/�M 5
−1. Various service level measures can also be

obtained, including the probability that a customer
waits more than a specified threshold or that makespan
exceeds a certain threshold.

In some applications where the arrival process can
be controlled, another useful performance measure is
the amount of time, starting from time zero, until a
customer arrives. This can be viewed as the indirect or
offline waiting time. The expected arrival time of an
arbitrary customer is given by 4

∑M
m=2

∑m
i=2 E4Ti55/M .

Next, we consider three special cases for which the
analysis simplifies further.

The Case of Exponential Interarrival Times: In this case,
computing the probability pm1 i is simplified by noting
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that the probability Pr8Rm = i �Rm−1 = j9 for 1 ≤ i ≤m−1
and i− 1 ≤ j ≤m− 2 can now be expressed as

Pr8Rm= i �Rm−1 = j9=

( j+1
∏

l=i+1

�m−l

�m−l+�m

)

�m

�m−i+�m

0 (4)

The Case of Deterministic Interarrival Times: In this case,
Tm is constant and equal to 1/�m for 2 ≤m≤M . The
probability density function fm4t5 is now a Dirac delta
function at 1/�m, which leads to Pr8Rm= i �Rm−1 = j9=
e−4�m−i/�m5

∑m−i−1
l=m−j−1om1i1j1l4�l/4�m−i−�l554e

4�m−i−�l5/�m −15
for i≤ j≤m−2 and Pr8Rm= i �Rm−1 = i−19=e−4�m−i/�m5.

The case of deterministic interarrival times is of
interest in applications where arrivals are determined
by appointments and customers are punctual. In
this case, arrival times correspond to appointment
times. Note that the above allows for heterogeneous
service time distributions and generalizes earlier treat-
ments that consider service times with homogeneous
rates (see, e.g., Kaandorp and Koole 2007, Hassin and
Mendel 2008).

The Case of Instantaneous Arrivals: An extreme case of
the arrival process is one where customers arrive all
at once. In this case, the expected waiting time of the
mth customer corresponds to the sum of the expected
service times of customers 11210001m−1, i.e., E4Xm5=
∑m−1

i=1 1/�i. This leads to E4X5=41/M5
∑M

m=2
∑m−1

l=1 1/�l

and E4DM 5=
∑M

m=1 1/�m.

4. The Multiserver Case
In this section, we consider the case of a queueing
system with multiple servers. We assume that there
are s parallel and identical servers. For tractability, we
focus on the case where service times are independent
and exponentially distributed with rate �. An arriving
customer immediately begins service if there is an
available server. Otherwise, she waits in queue and
will be served by the first available server. All other
assumptions are the same as those for the single-server
case in §3, and we continue to use similar notations.

As in the single-server case, let us first characterize
the probability Pr8Rm= i �Rm−1 = j9 for 2≤m≤M , 1≤

i≤m−1, and i≤ j≤m−2. For customer m to find i
customers given that customer m−1 finds j customers,
there must be exactly j − i+1 service completions
during the time period 4Am−11Am7. We distinguish the
following three cases.

Case 1: s≤ i≤ j+1. Once customer m−1 arrives, she
joins the queue (if j+1>s) or occupies the last available
server (if j+1= s). In both cases, customer m joins the
queue once she arrives, and all the servers are busy
during the time period 4Am−11Am7. When all servers
are busy, the departure process is Poisson with rate s�.
The probability Pr8Rm= i �Rm−1 = j9 corresponds to the

probability that j−i+1 customers finish their service
during Tm. So we may write

Pr8Rm= i �Rm−1 = j9=
∫ �

0

4s�x5j−i+1

4j−i+15!
e−s�xfm4x5dx0

Case 2: 1≤ i≤ j+1<s. In this case, there is no queue.
Both customer m−1 and m immediately enter service
once they arrive, and Pr8Rm= i �Rm−1 = j9 corresponds
to the probability that exactly j− i+1 among j+1
customers finish their service during Tm. Noting that
(

j+1
j−i+1

)

=
(

j+1
i

)

, this leads to

Pr8Rm= i �Rm−1 = j9

=

∫ �

0

(

j+1
i

)

41−e−�x5j−i+1e−�xifm4x5dx0

Case 3: 1≤ i<s≤ j+1. In this case, the system starts
busy with j− s+1 queued customers immediately
after Am−1. The probability Pr8Rm = i �Rm−1 = j9 cor-
responds to the probability that, within Tm, the first
j−s+1 queued customers leave the queue and enter
service (which implies that j−s+1 customers finish
their service) and then s−i customers finish their ser-
vice afterward, i.e., j−i+1 service completions in total.
By I , we denote the random variable that describes the
time needed to complete those j−s+1 services, so I has
an Erlang distribution with j−s+1 stages and parame-
ter s�. Thus, the probability density function of I , say
fI 4t5, is given by fI 4t5= 44s�5j−s+1tj−se−s�t5/44j−s5!5 for
t≥0. This leads to

Pr8Rm= i �Rm−1 = j9 =

∫ �

0

∫ x

0

(

s

i

)

41−e−�4x−t55s−ie−�4x−t5i

·
4s�5j−s+1tj−se−s�t

4j−s5!
fm4x5dt dx0

As for the single-server case, using Equations (1) and (3),
we can obtain pm1i for 2 ≤m≤M and 1 ≤ i≤m−1
recursively.

Having the probabilities pm1i on hand, we can now
compute various performance measures. In particular,
we have

E4Xk
m5=

m−1
∑

i=s

pm1iE4X
k
m1i5

for 1≤m≤M . Obviously, Xm1i =0 with probability 1 for
i≤s−1. For i≥s, Xm1i is Erlang distributed with i−s+1
stages and parameter s�. Consequently, we have

E4Xm5=
m−1
∑

i=s

pm1i

i−s+1
s�

(5)

and E4X2
m5=

∑m−1
i=s pm1i44i−s+154i−s+255/4s2�25. Higher

moments can be similarly computed. Because E4Xm5=0
for m≤s, we have

E4Xk5=
1
M

M
∑

m=s+1

E4Xk
m50
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From the cumulative distribution function of
Erlang distribution, we obtain Pr8Xm1i ≤ t9 =

1 −
∑i−s

l=044s�t5
l/l!5e−s�t and then Pr8Xm ≤ t9 = 1 −

∑m−1
i=s

∑i−s
l=0pm1i44s�t5

l/l!5e−s�t . This leads to

Pr8X≤ t9=1−
1
M

M
∑

m=s+1

m−1
∑

i=s

i−s
∑

l=0

pm1i

4s�t5l

l!
e−s�t0

As in §3, we can also characterize the makespan.
However, in contrast to the single-server case,
makespan in the multiserver system no longer neces-
sarily coincides with the departure time of customer
M . The reason is that, if there are other customers
under service at the time when customer M enters
service, because service times are random, customer M
may finish service and leave the system earlier than
someone else. However, note that, although customer
M may not be the last one to leave the system, she is
still the last one to enter service by assumption (FCFS).
Therefore, makespan equals the sum of the time it
takes customer M to enter service and the time it takes
to empty the system after she enters service. When
customer M arrives, seeing i customers in system, there
are two possibilities. The first possibility is i≤ s−1,
which implies that there is at least one idle server,
and customer M immediately enters service without
waiting. In this case, the time to empty the system
corresponds to the longest completion time among
the i+1 services. This time has the hypoexponential
distribution with parameters 4i+15�1i�10001�. Thus,
if customer M finds i customers in the system upon
her arrival and i≤ s−1, then the expected makespan is
given by

∑M
m=2 1/�m+

∑i+1
l=1 1/4l�5.

The second possibility is i≥ s, which implies that
customer M has to wait in queue before being served.
In this case, the waiting time of customer M is Erlang
distributed with i−s+1 stages and parameter s�, and
the time to empty the system has the hypoexponen-
tial distribution with rates s�14s−15�10001�. Thus, if
customer M finds i customers in system upon her
arrival and i≥ s, then the expected makespan is given
by

∑M
m=2 1/�m+4i−s+15/4s�5+

∑s
l=1 1/4l�5.

Putting it all together, the unconditional expected
makespan can be obtained as

E6Makespan7 =

M
∑

m=2

1
�m

+

s−1
∑

i=0

(

pM1i

i+1
∑

l=1

1
l�

)

+

M−1
∑

i=s

pM1i

(

i−s+1
s�

+

s
∑

l=1

1
l�

)

0

Other performance measures can be similarly obtained,
and we omit the details for the sake of brevity.

The Case of Exponential Interarrival Times: Using similar
arguments as in the single-server case and noting that,

when there are l customers in the system, the service
rate is �min4l1s5, we obtain

Pr8Rm= i �Rm−1 = j9

=

( j+1
∏

l=i+1

�min4l1s5
�min4l1s5+�m

)

�m

�min4i1s5+�m

0

The Case of Deterministic Interarrival Times: This also
follows the approach used for the single-server case by
setting fm4t5 as a Dirac delta function at 1/�m and then
computing Pr8Rm= i �Rm−1 = j9 using the corresponding
equations.

The Case of Instantaneous Arrivals: In this case, the first
s customers have zero waiting time, and customer s+i
(1≤ i≤M−s) waits for i service completions to start
service. This leads to E4X5=44M−s52+4M−s55/42s�M5
and E4DM 5= 4M−s5/4s�5+

∑s
l=1 1/4l�5.

5. Numerical Experiments
In this section, we describe results from the numerical
experiments we carried out to examine the impact of
features that are unique to the systems we consider: the
finite number of arrivals, the heterogeneity in interar-
rival times, and the heterogeneity in service times. Our
objective is three-fold: (1) to draw insights into how
these specific features affect system performance, (2) to
show that models that do not explicitly account for
these features can lead to significant errors in perfor-
mance evaluation, and (3) to illustrate how the models
we present in this paper can be used to support opera-
tional decision making, particularly as it pertains to
capacity planning. (See §7 for discussions on additional
applications.) In §§5.1 and 5.2, we consider the impact
of heterogeneity in interarrival times and service times
on various performance measures, respectively. In §5.3,
we discuss the impact of heterogeneity on capacity
levels. Throughout this section, we focus on the single-
server setting. We also studied the multiserver setting
and obtained similar results; we omit the details for
the sake of brevity.

5.1. The Impact of Heterogeneity in
Interarrival Times

To examine the impact of heterogeneity in interarrival
times, we investigate five arrival processes with differ-
ent interarrival time features that may arise naturally in
practice. (See our earlier discussion in the introduction
section.) These five processes are described in Table 1.
To allow for a fair comparison between different pro-
cesses, we maintain the same number of customers and
the same average expected interarrival time (equals
1/�) across processes. The first process corresponds
to a setting where the expected interarrival times
decrease with each subsequent arrival. Specifically,
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Table 1 Interarrival Time Features

Interarrival
time features Expected interarrival times

Decreasing E4Tm5=
M−m+1

M

2
�

for m=210001M

Increasing E4Tm5=
m−1
M

2
�

for m=210001M

Decreasing/increasing E4Tm5=
M−2m+3

M

2
�

for m=210001
M+2
2

E4Tm5=
2m−M−2

M

2
�

for m=
M+4
2

10001M

Increasing/decreasing E4Tm5=
2m−2
M

2
�

for m=210001
M

2

E4Tm5=
2M−2m+1

M

2
�

for m=
M+2
2

10001M

Constant E4Tm5=
1
�

for m=210001M

we let E4Tm5=44M−m+15/M542/�5 for m=210001M .
The other processes correspond similarly to settings
where expected interarrival times (1) increase with
each subsequent arrival, (2) decrease and then increase,
(3) increase and then decrease, and (4) are constant.
Note that 8E4Tm5 �m=210001M9 in the four heterogeneous
processes are indeed four specific permutations of the
sequence 841/M542/�51000144M−15/M542/�59.

Figure 1 Impact of Interarrival Time Features on Expected Waiting Time
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A representative sample from an extensive set of
numerical results on expected waiting time is shown
in Figure 1. (Additional results are available from
the authors upon request.) The results are shown for
systems where interarrival times are exponentially
distributed and service times are independently, identi-
cally, and exponentially distributed. (The results are
qualitatively the same for other common interarrival
time distributions we tested.) Note that by varying
� for fixed M and �, the workload in system (i.e.,
the traffic intensity or the utilization of server) over
the arrival period, as measured by �=�/�, is varied.
On the other hand, by varying M for fixed � and
�, the workload remains constant, but the period of
arrivals, as measured by the expected time until the
last customer arrives, is varied.

The following observations can be made regarding
system performance in terms of the expected waiting
time of an arbitrary customer:

• Arrival processes with different features can lead
to significantly different expected waiting times. More-
over, there is a considerable difference between the
performance of systems with constant expected inter-
arrival times and those with heterogeneous expected
interarrival times. Clearly, ignoring the heterogeneity
in the arrival process can lead to significant errors in
performance evaluation.
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• Arrival processes with constant expected inter-
arrival times does not guarantee better performance.
In other words, arrivals with a fixed intensity may
not necessarily be preferable to arrivals with variable
intensity.

• Arrival processes with “decreasing” interarrival
times always perform better than processes with
“increasing” and “decreasing/increasing” interarrival
times. In other words, processes where arrivals peak
later leads to better performance than those where
arrivals peak earlier. This is due to the fact that a peak
in arrivals that occurs early in the process can delay all
customers that arrive subsequently.

• The relative performance of different arrival pro-
cesses depends on problem parameter values. For
example, when � is small (��1), “constant” is the best
because it spreads out arrivals, reducing the possibility
of congestion. On the other hand, when � is large
(��1), congestion is inevitable. In that case, arrival
processes, with features that can limit the number of
customers affected by congestion, become more prefer-
able, which explains, for example, why “decreasing” is
the best.

• The difference in performance between different
arrival processes decreases as � increases. The perfor-
mances become indistinguishable as � gets large, in
which case, all customers arrive nearly instantaneously.

• The threshold on � that determines the relative
performance of different arrival processes is affected
by M . For example, the larger M is, the larger is the
value of � under which “Constant” performs the best.
In §6, we provide an approximation that allows us to
specify these thresholds in closed form.

In addition to the expected waiting time, we also
obtained results for the impact of different arrival
processes on the variance of waiting time. For brevity,
we omit these results (which are available from the
authors upon request) and note the following.

Figure 2 Impact of Interarrival Time Features on Makespan and Arrival Time 4M=401�=15
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��

• Most of the observations on expected waiting
time continue to hold. For example, arrival processes
with different features lead to significantly different
variances, with the “constant” interarrival time fea-
ture not always leading to the lowest variance. The
difference in variances induced by different arrival pro-
cesses decreases as � increases, with the threshold on �
that determines the relative performance of different
processes affected by M .

• Systems with “constant” and “increasing/
decreasing” interarrival times always perform better
than the others. In particular, for small �, “constant”
performs the best because it smoothes the arrival pro-
cess and reduces the possibility of congestion. However,
for large �, congestion is inevitable, and “increas-
ing/decreasing” performs the best because it separates
the arrival process into two subprocesses with each
one having a lower peak value of congestion.

In Figures 2(a) and 2(b), we present results that
illustrate the impact of different arrival processes on
the expected makespan and the expected arrival time,
with solid lines representing expected makespan and
expected arrival time, respectively, and dashed lines
representing expected waiting time. Here too, arrival
processes with different interarrival time features can
lead to significantly different expected makespans, with
“constant” not necessarily being the best. While the
average expected interarrival time stays the same for all
processes, makespan is minimized by minimizing the
expected waiting time in queue of the last customer (or
equivalently minimizing idleness of the server). This is
achieved by maximizing the number of customers that
arrive early, which explains why “increasing” performs
the best and “decreasing” performs the worst. The
relative performance of other processes depends on
system utilization. For example, when utilization is
low, “decreasing/increasing” performs better than
“increasing/decreasing.” Although the peak of arrivals
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occurs later under “decreasing/increasing,” there is
enough capacity in the system to ensure that most
customers will clear before the last customer arrives.
This is not the case when utilization is high. In this
case, it is preferable to have the peak of arrivals occur
as early as possible to minimize the idleness of the
server, which explains why “increasing/decreasing” is
more preferable. As with the expected waiting time,
the difference in the expected makespan induced by
different arrival processes decreases as � increases. This
difference approaches zero as � becomes large. Similar
to the expected makespan, the expected arrival time is
lower when more customers arrive earlier. Therefore,
the relative performance of different arrival processes
on the expected arrival time coincides with the one
observed for the expected makespan.

5.2. Impact of Heterogeneity in Service Times
In our results (the details of which are not shown here
for the sake of brevity), we examine the impact of
heterogeneity in service times. Here again, we investi-
gate five service processes with different service time
features, as shown in Table 2. These include settings
where expected service times (1) decrease with each
subsequent service completion, (2) increase, (3) decrease
and then increase, (4) increase and then decrease, and
(5) are constant. To allow for a fair comparison between
different processes, we maintain the same number of
customers and the same average expected service time
(equals 1/�) across processes.

Similar to what we have observed for the arrival
process, service processes with different service time
features can lead to significantly different expected
waiting times, with the “constant” service time feature
again not necessarily being the best. Service processes
with features that postpone congestion are preferable
when utilization is high (��1) (e.g., “increasing” tends
to perform the best). This is perhaps also consistent

Table 2 Service Time Features

Service time features Expected service times

Decreasing E4�m5=
M−m+1
M+1

2
�

for m=110001M

Increasing E4�m5=
m

M+1
2
�

for m=110001M

Decreasing/increasing E4�m5=
M−2m+1

M+1
2
�

for m=110001
M

2

E4�m5=
2m−M

M+1
2
�

for m=
M+2
2

10001M

Increasing/decreasing E4�m5=
2m
M+1

2
�

for m=110001
M

2

E4�m5=
2M−2m+1

M+1
2
�

for m=
M+2
2

10001M

Constant E4�m5=
1
�

for m=110001M

with known results from the scheduling literature
regarding the optimality of the “shortest processing
time first” scheduling rule. However, when utilization
is low (�� 1), this is not the case, and “constant”
performs the best for reasons similar to those explained
for the arrival process.

With regard to the variance of waiting time, again for
the same reasons as explained in the previous section,
when utilization is high, “decreasing/increasing” per-
forms the best, and when utilization is low, “constant”
performs the best. For expected makespan, the order
of preference tends to be reversed, with features that
reduce congestion later in the arrival process being
preferable (in other words, for the expected makespan,
it is preferable that arrivals with shorter service times
occur later in the arrival process).

5.3. On the Impact on Capacity Levels
In this section, we examine how arrival processes with
different features affect the capacity needed to guaran-
tee a specified level of performance (e.g., a maximum
expected waiting time or makespan). For single-server
systems, determining this capacity requires determining
the minimum processing rate. For systems with multi-
ple servers, this requires determining the minimum
number of servers.

In Figure 3, we show the minimum service rate �
needed under each of the four heterogeneous arrival
processes described in Table 1 to meet a specified
minimum expected waiting time target. In this case, the
specified target is the expected waiting time obtained
under the arrival process with “constant” interarrival
times at �=1. As we can see, the difference in the
capacity levels needed under different arrival processes
can be dramatically different. Ignoring the hetero-
geneity in interarrival times (and similarly in service
requirements) can therefore lead to significant under or
over investments in capacity, resulting in either poor
service quality or unjustified additional capacity cost.

Figure 3 Impact of Interarrival Time Features on Capacity Level
4M=1005
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6. A Fluid Approximation
Although the performance analysis given in §§3 and 4
is exact, we resorted to numerical analysis in order to
draw the conclusions in §5. This is because the exact
results are not in closed form and therefore are difficult
to use to characterize structural results. To provide
further support for the numerical results, we discuss in
this section a deterministic fluid approximation that
does yield closed-form expressions and that allows us
to capture key features of our setting. The objective
from this approximation is of course not to substitute
for the exact analysis, which is easy to implement,
but to analytically confirm the numerical findings
of §5 and provide evidence of their robustness. The
approximation may also be useful in investigating
additional structural results and as a first step in
examining first order effects. The approximation does
not require the assumption of exponential service
times and, therefore, is useful for the study of more
general systems. For the sake of brevity, we describe the
approximation in the context of the single-server model.
However, extending the treatment to the multiserver
case is relatively straightforward.

We treat all customer interarrival and service times
as being deterministic and replace all corresponding
random variables by their expected values. (For every
quantity Z defined in §3 for the original model, we
define a corresponding quantity ZF for the fluid approx-
imation). We treat the arrival of customers as fluid,
one unit per customer, that is “pumped in” to the
system at a constant rate �m over the time period
4AF

m−11A
F
m7 for m=210001M . Because T1 =0 in the orig-

inal model, we assume all the fluid associated with
the first customer is present in the system at time 0.

Figure 4 An Illustration of the Fluid Approximation
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Similarly, we treat the service process as fluid, also
one unit per customer, that is “pumped out” at a
constant rate �m over the time period 4DF

m−11D
F
m7 for

m=210001M and at the rate �1 over the time period
401DF

1 7, where DF
m=max4DF

m−11A
F
m5+1/�m with DF

1 =

1/�1. By induction, it is straightforward to show that
DF

m =max1≤i≤m8
∑i

j=2 1/�j +
∑m

j=i1/�j9 for m=110001M
(by convention, an empty sum equals 0).

We define AF 4t5 and DF 4t5 as the cumulative arrivals
to the system and the cumulative departures from the
system by time t, respectively (with AF 405=1). It is
not difficult to see that AF 4t5 and DF 4t5 are piecewise
linear functions. (See Figure 4 for an illustration.) The
area between AF 4t5 and DF 4t5 over the interval 601DF

M 7
corresponds to the total time spent in the system for all
customers, which when divided by the total number of
customers, yields the expected time in system of an
arbitrary customer. Let us denote the expected time in
the system of an arbitrary customer by EF 4Y 5. Then,
we have

EF 4Y 5=

∫ DF
M

0 6AF 4t5−DF 4t57dt

M
0

The area under AF 4t5 over the interval 601DF
M 7 is

the sum of the areas of M −1 trapezoids and one
rectangle. If we define SF

m4A5 as the area of the mth
trapezoid from the left, then SF

m4A5=4m+ 1
2 541/�m+15 for

m=110001M−1, and the area of the rectangle, which
we denote as SF

r 4A5, equals M4DF
M −AF

M 5.
We now let SF 4A5 denote the total area under

AF 4t5 for t∈ 601DF
M 7. Then, we can show that SF 4A5=

∑M−1
m=1 S

F
m4A5+ SF

r 4A5 =
∑M

m=2 m41/�m5− 4M +
1
2 5A

F
M +

MDF
M .
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Similarly, we denote SF 4D5 as the area under DF 4t5
over the interval 601DF

M 7. This is the sum of the areas
of one triangle and M −1 trapezoids. The area of
the triangle, which we denote by SF

t 4D5, equals 1
2D

F
1 .

The area of the mth trapezoid from the left, which
we denoted as SF

m4D5, is given by SF
m4D5= 4m+

1
2 5

4DF
m+1 −DF

m5 for m= 110001M − 1. This implies that
SF 4D5=

∑M−1
m=1 S

F
m4D5+SF

t 4D5= 4M−
1
2 5D

F
M −

∑M−1
m=1 D

F
m.

Putting it together, the expected time in system can
be written as

EF 4Y 5

=
SF 4A5−SF 4D5

M

=

∑M
m=2m41/�m5−4M+1/25AF

M +
∑M

m=1D
F
m−1/2DF

M

M
0

Using the above explicit expressions, we can eval-
uate each of the arrival and service time processes
considered in the numerical study of the previous sec-
tions. For the sake of brevity, we focus on the relative
performance of different arrival processes. Without
loss of generality, we scale time such that �m=1 for
m=110001M , and the sequences 81/�m �m=210001M9
are as those sequences in Table 1. For the four arrival
processes with heterogeneous interarrival times, 1/�m∈

841/M542/�51000144M−15/M542/�59, and for the process
with constant interarrival times, we have 41/M542/�5≤
1/�≤ 44M−15/M542/�5. In what follows, we consider
the average time in the system instead of the average
waiting time in queue. Because the total service times
of all customers are the same among all the arrival
processes, the ordering of processes will not be affected
by using time in the system instead of the waiting
time in queue. Let EF 4Y 54C5, EF 4Y 54D5, EF 4Y 54I5, EF 4Y 54DI5,
and EF 4Y 54ID5 refer to the expected time in system for
the arrival processes with “constant,” “decreasing,”
“increasing,” “decreasing/increasing,” and “increas-
ing/decreasing” interarrival times, respectively.

We distinguish three different cases—Case 1:
41/M542/�5≥1; Case 2: 44M−15/M542/�5≤1; Case 3:
41/M542/�5<1<44M−15/M542/�5.

Case 1. This is an obvious case. We have DF
M =

4M+4�−155/� for all the processes. Therefore, it is easy
to show that EF 4Y 5 is the same for all the processes.

Case 2: In this case, DF
M =M for all the pro-

cesses. After some algebra, we obtain EF 4Y 54C5=
44�−15M2 +2M−15/42�M5, EF 4Y 54D5=443�−45M2 +

9M−55/46�M5, EF 4Y 54I5= 443�−25M2 +3M−15/46�M5,
EF 4Y 54DI5=442�−25M2 +3M5/44�M5, and EF 4Y 54ID5=

442�−25M2 +3M5/44�M5. Then, we can easily show
that

EF 4Y 54D5<EF 4Y 54ID5=EF 4Y 54DI5<EF 4Y 54C5<EF 4Y 54I51

which is consistent with the results in §5.1.

Case 3. Denote DF
M4C5, DF

M4D5, and DF
M4I5 as the

makespan for the arrival processes with “constant,”
“decreasing,” and “increasing” interarrival times, respec-
tively. We can show that (see the detail derivations in
the online supplement, available at http://dx.doi.og/
10.1287/msom.2014.0481)

DF
M4C5=



















M+4�−15
�

for �∈

(

2
1
M

11
)

1

M for �∈

[

112
M−1
M

)

1

DF
M4D5=

4�2 +45M+42�−45
44�5

1

and

DF
M4I5=



















M+4�−15
�

for �∈

(

2
1
M

11
)

1

M for �∈

[

112
M−1
M

)

0

Then,

EF 4Y 54C5=



















2�M−�

2�M
for �∈

(

2
1
M

11
)

1

4�−15M2 +2M−1
2�M

for �∈

[

112
M−1
M

)

1

EF 4Y 54D5=
�3M2 −43�2 −24�5M−10�

24�M
1 and

EF 4Y 54I5=



























































�3M2 −43�2 −6�5M−�

6�M

for �∈

(

2
1
M

11
)

1

43�−25M2 +3M−1
6�M

for �∈

[

112
M−1
M

)

0

Applying the implicit function theorem, it is easy
to show that there exits an �F 4M5∈ 411244M−15/M55
increasing in M such that

EF 4Y 54C5<EF 4Y 54D5<EF 4Y 54I5 for �∈

(

2
1
M

1�F 4M5

)

1

and

EF 4Y 54D5<EF 4Y 54C5<EF 4Y 54I5

for �∈

(

�F 4M512
M−1
M

)

1

which is again consistent with the results in §5.1.
(We can obtain similar expressions for the expected
time in system for the arrival processes with
“decreasing/increasing” and “increasing/decreasing”
interarrival times. For the sake of brevity, we omit the
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details. The relative ordering also coincides with the
one observed in the previous section.)

Other results from §5.1 can also be confirmed using
the fluid approximation. For example, the difference
in performance between different arrival processes
decreases as � increases and approaches 0 as �→�.
The limit case of �→� corresponds to the case of
instantaneous arrivals. In that case, the expression
for the expected time in system reduces to EF 4Y 5=
41/M5

∑M
m=2

∑m−1
j=1 1/�j +41/2M5

∑M
m=1 1/�j . It is straight-

forward to show that this expression converges asymp-
totically to the expression from the exact analysis in §3
as M→�, with limM→�E

F 4Y 5/E4Y 5=1.

7. Example Applications
In this section, we describe example applications where
the results from our analysis can be used to support
operational decision making.

7.1. A Job Sequencing Problem
Consider the job sequencing problem described in the
introduction section. In particular, consider a system
with M jobs to be sequenced on two production stages
(e.g., a manufacturing stage and an inspection stage)
in a series, with a single server at each stage (the
extension to multiple servers is straightforward). All M
jobs are available at time 0. The processing time of job
h for h=110001M , at stage r for r =112, is exponentially
distributed with rate �4h51r . Once a sequence is selected,
the jobs are processed in that sequence on both stages
without idling (i.e., a server never idles if there is a
job available to be processed). For a given sequence,
the expected waiting time of an arbitrary job at the
first stage equals 41/M5

∑M
m=2

∑m−1
l=1 1/�l11, where �l11

is the processing rate of the job assigned to position
l (the lth to process), and the corresponding total
time spent in that stage equals 41/M5

∑M
m=1

∑m
l=1 1/�l11.

To characterize the performance at the second stage,
we must first characterize the interarrival time dis-
tributions to that stage. This can be done by recog-
nizing that, given a job sequence, the distributions
of interarrival times to the second stage are simply
the distributions of processing times at the first stage.
In particular, if job h is assigned position m (m≥2)
in the sequence, then the time between the 4m−15th
and mth arrivals to the second stage is exponentially
distributed with rate �4h511. Consequently, the expected
waiting time for an arbitrary job at the second stage is
given by 41/M5

∑M
m=2

∑m−1
i=1

∑m−1
l=m−ipm1i/�l12, where pm1i

can be computed via the analysis we developed in §3,
with �l and �l in Equation (4) replaced by �l11 and
�l12 for all l, respectively. This leads to the expected
total waiting time in the system of an arbitrary job as
41/M5

∑M
m=2

∑m−1
i=1 41/�i11 +

∑m−1
l=m−ipm1i/�l125. Other per-

formance measures can be similarly obtained. In partic-
ular, the expected makespan is given by

∑M
m=1 1/�m11 +

∑M−1
i=1

∑M−1
l=M−ipM1i/�l12 +1/�M12.

Table 3 Job Sequences

Job sequences Expected service times at stage 1

Decreasing E4�m5=
M−m+1
M+1

2
�

for m=110001M

Increasing E4�m5=
m

M+1
2
�

for m=110001M

Decreasing/increasing E4�m5=
M−2m+1

M+1
2
�

for m=110001
M

2

E4�m5=
2m−M

M+1
2
�

for m=
M+2
2

10001M

Increasing/decreasing E4�m5=
2m
M+1

2
�

for m=110001
M

2

E4�m5=
2M−2m+1

M+1
2
�

for m=
M+2
2

10001M

From the above analysis, we can see that by con-
trolling the job sequence, the system manager can
control the distributions of interarrival times at the
second stage and, therefore, the corresponding system
performance. Next, we present numerical results for an
example system, where �4h511 =44M+15/h54�/25 and
�4h512 =�, for h=110001M and constants � and �. We
evaluate four different sequences (four permutations of
the sequence 844M+15/154�/251000144M+15/M54�/259)
as described in Table 3. (To be consistent with the
other sections, we name the sequences according to
the expected service times instead of the service rates.)
The first sequence corresponds to an ordering of the
jobs in decreasing expected service times at stage 1,
which implies an ordering of the jobs in decreasing
expected interarrival times at stage 2. With respect to
orderings of the expected interarrival times at stage 2,
the second sequence corresponds to increasing, the
third corresponds to decreasing and then increasing,
and the fourth corresponds to increasing and then
decreasing.

Figure 5 provides comparisons of the four job
sequences under different values of delay costs. (Con-
sistent with the job scheduling literature, we assign

Figure 5 Impact of Job Sequence on Delay Cost 4M=100, �=1,
�=0055
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a delay cost, wr per job per unit time at stage r for
r=112; without loss of generality, we let w1 =1 and
vary w2; the case of w1 =w2 =1 allows us to compare
the expected total delay in the system for the four
different job sequences.) As we can see, the four job
sequences lead to significantly different total delay
costs. Perhaps surprisingly, the “increasing” sequence
that minimizes the delay cost at stage 1 does not neces-
sarily minimize the expected total delay cost. In fact,
for sufficiently large w2, such a sequence performs the
worst. This can be explained as follows. The “increas-
ing” sequence generates the “increasing” interarrival
times at stage 2, which as discussed in §5.1, results in
long waiting times. On the other hand, the “decreasing”
sequence, although leading to long waiting times at
stage 1, generates the “decreasing” interarrival times at
stage 2 and therefore results in short waiting times
at that stage. The net effect, when w2 is large, is lower
total delay cost.

Additional results (the details of which are not shown
here for the sake of brevity) indicate that the four
job sequences also lead to significant differences in
makespan, with the “increasing” sequence always per-
forming the best. Note that characterizing the optimal
sequence is difficult in general (even for the deter-
ministic setting, the problem is strongly NP-hard; see
discussions from Pinedo 2012) and is outside the scope
of this paper.

7.2. A Flight Boarding Problem
Consider the flight boarding problem described in the
introduction section. There are M passengers wait-
ing to board a flight, and they are grouped into K
equal size zones, each consisting of M/K passengers
(assuming M is divisible by K). Passengers from a
zone are called to embark only after all the passengers
from a higher ranked zone have finished embarking.
The announcement of each zone results in arrivals
to the gate drawn from a population of M/K passen-
gers. Assuming each passenger takes an exponentially
distributed amount of time to arrive, independent
of other customers, then the arrival process for each
zone corresponds to a pure death process, with the
interarrival time between customer m−1 and cus-
tomer m being exponentially distributed with rate
4M/K+1−m5� for m=210001M/K. (The arrival time of
the first customer is exponentially distributed with rate
4M/K5�.) This also implies that the expected interarrival
times within a zone are strictly increasing. Assuming
that service times are exponentially distributed with
rate �, the results of §3 can be readily applied to
obtain various measures of performance. In particular,
the expected waiting time of an arbitrary passenger
can be obtained by setting �m=4M/K+1−m5� for
m=210001M/K and �m=� for m=110001M/K in Equa-
tion (4), and the expected makespan (the expected

boarding completion time of all zones) is given by
K641/�5

∑M/K
m=1 1/m+41/�54

∑M/K−1
i=1 ipM/K1i+157.

As we can see, by controlling the number of zones,
the system manager can control the distributions of
interarrival times and therefore the corresponding
system performance. Two extreme cases are worth
highlighting. The first is when K=M ; in this case, the
expected interarrival times are constant. The second
is when K=1; in that case, the expected interarrival
times are strictly increasing. In between, the expected
interarrival times exhibit a cyclical pattern of being
strictly increasing within a cycle (a zone) and having
a step decrease between cycles (the start of boarding
each zone). Fewer zones reduce makespan while more
zones reduce waiting time. The system manager would
typically want to balance the costs associated with
these two measures; customers prefer to wait less while
boarding (and there is an implied delay cost) while
the airline would like to reduce the total boarding
time (and there is an implied resource usage cost).
There is of course indirect waiting time related to
customers waiting for their zones to be called, but the
cost of that waiting is lower because customers are
less inconvenienced in that case than when they are
waiting to board.

In Figure 6, we present numerical results for an
example system with 120 passengers. The solid line
represents the expected waiting times of an arbitrary
customer, and the dashed line represents the expected
makespan of the boarding process. It is interesting to
note the diminishing value of having more zones. An
initial increase in the number of zones significantly
reduces expected waiting time while further increases
lead to only marginal further reduction. Given that the
increase in makespan resulting from more zones does
not exhibit a similar diminishing effect, the optimal
number of zones would generally be relatively small.

It is worth noting that results from the above exam-
ples, as well as those from the previous sections, show
that in general, interarrival or service time features that

Figure 6 Impact of the Number of Zones on Expected Waiting Time and
Makespan 4M=120, �=001, �=15

120

220

320

0

25

50

1 2 3 4 5 6 7 8 9 10

E
(X

)

E
(D

M
)

Number of zones

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

16
1.

57
.1

14
] 

on
 2

0 
Ju

ly
 2

01
4,

 a
t 1

9:
33

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Wang, Jouini, and Benjaafar: Service Systems with Finite Arrivals
Manufacturing & Service Operations Management 16(3), pp. 365–380, © 2014 INFORMS 379

reduce waiting time do not reduce makespan (in fact,
the reverse is typically true). Thus, there is a need
to trade off the benefit of lower waiting time against
shorter makespan when making decisions about which
features to induce.

There are other related settings where arrivals exhibit
features that are similar to the ones observed in the
flight boarding problem. As mentioned in the introduc-
tion, this can be the case when the arrival of customers
is triggered by the start of an event (e.g., the arrival of
passengers to check in for a flight or the arrivals of fans
to a concert), and customers may belong to different
classes that are differentiated by their risk attitudes
toward being late for the event (with some classes
preferring to arrive earlier than others). The arrival of
customers within the same class can be modeled as a
pure death process, which again leads to increasing
mean interarrival times. Although controlling the num-
ber of customers within each class is more difficult in
this case than in the flight boarding case, it may be
possible, with sufficient incentives, to induce customers
to arrive earlier or later. More importantly, recognizing
the heterogeneity in interarrival times allows the sys-
tem manager to plan for the necessary capacity (e.g.,
to meet target service levels as discussed in §5.3).

We conclude this section by noting that the insights
provided so far also apply to settings where arrivals
can be controlled in a more direct way, such as when
arrivals to a particular process can be specified. This
is the case, as we mentioned in the introduction,
when arrivals are determined by appointment times.
Assuming customers are punctual, interarrival times
would be deterministic and would correspond to the
time between appointment times. Depending on how
appointments are scheduled, interarrival times may
exhibit different features. For example, scheduling more
(fewer) appointments early on and then progressively
fewer (more) leads to increasing (decreasing) interar-
rival times. Scheduling appointments differently could
lead to interarrival times that exhibit combinations of
both the increasing and decreasing features.

To evaluate the impact of different arrival and service
time features, we carried out extensive experiments
similar to those in §5. (For the sake of brevity, we
omit the details.) The results obtained are qualita-
tively consistent with those described there. Hence,
our observations also provide insights into desirable
features of appointment schedules for such settings.
We note that some of these are consistent with the
results from the appointment scheduling literature.
For example, we observe that arrival processes with
the “increasing/decreasing” interarrival time feature,
although not always performing the best, do perform
relatively well for all the performance measures consid-
ered. This “increasing/decreasing” feature is consistent
with the dome-shaped appointment schedule shown in

Kaandorp and Koole (2007), performing well when the
performance measure is a weighted cost of waiting
time, idle time, and tardiness.

8. Concluding Comments
The results of this paper highlight the importance of
accounting for the heterogeneity in customer interar-
rival and service times when the number of customers
is finite and customer interarrival or service times
depend on their positions in the arrival sequence. This
heterogeneity arises naturally in many service systems,
but it could also be engineered into how these systems
are designed and managed. Accounting for this hetero-
geneity is important because different interarrival and
service time features, even if resulting in the same total
workload for the system, can lead to different levels of
performance.

There are several possible avenues for future research.
It would be useful to generalize our results to a broader
class of systems (including queueing networks, systems
with general service time distributions, and systems
with customer priorities) and to investigate additional
applications where systems with the type of features
we studied arise naturally. It would also be interesting
to study systems with other types of arrival processes
such as those with time-dependent arrival rates. More-
over, it would be useful to explore other types of
approximations (e.g., diffusion approximations). Finally,
it would be meaningful to revisit principles that have
been shown to be effective in the design and operation
of service systems under steady state assumptions and
to determine whether or not they continue to be effec-
tive in systems with finite arrivals and heterogeneous
interarrival and service times. One such principle is
the benefit of pooling servers and queues in systems
with multiple servers.

Supplemental Material
Supplemental material to this paper is available at http://dx
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