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Abstract

We propose a target-oriented robust optimization approach to solve a multi-product, multi-period

inventory management problem subject to ordering capacity constraints. We assume the demand for

each product in each period is characterized by an uncertainty set, which depends only on a reference

value and the bounds of the demand. Our goal is to find an ordering policy that maximizes the sizes of

all the uncertainty sets such that all demand realizations from the sets will result in a total cost lower

than a pre-specified cost target. We prove that a static decision rule is optimal for an approximate

formulation of the problem, which significantly reduces the computation burden. By tuning the cost

target, the resultant policy can achieve a balance between the expected cost and the associated cost

variance. Numerical experiments suggest that, although only limited demand information is used, the

proposed approach performs comparably to traditional methods based on dynamic programming and

stochastic programming. More importantly, our approach significantly outperforms the traditional

methods if the latter assume inaccurate demand distributions. We demonstrate the applicability of

our approach through two case studies from different industries.

Key words: Inventory, Cost, Variability, Lead Time, Robust Optimization, Target
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1 Introduction

Inventory represents a significant part of our economy. For example, the total investment in inventory

in the United States for a quarter can be as high as $1.57 trillion (Nahmias, 2009). Inventory improves

service level by buffering uncertainty, but carrying inventory incurs holding cost. As global competition

becomes more intense, good inventory management becomes crucial to the success of many companies.

In this paper we address a multi-product, multi-period inventory management problem with fixed

ordering costs and lead times. This problem is notoriously hard to solve and has been studied since

1950s (Scarf, 1958).

Starting from 1960s, dynamic programming (DP) appears as a leading methodology in this area of

research. Some crucial theoretical results have been developed, such as the optimality of base stock

policies (Scarf, 1959, 1960; Veinott, 1966; Azoury, 1985; Miller, 1986; Zipkin, 2000). The idea of the

DP approach is to decompose a large problem into many small problems that can be solved relatively

easily. This leads to explosion of the number of small recursive optimization problems, which is well

known as the “curse of dimensionality”. This limits the applicability of DP especially for problems with

a large number of variables.

Another common approach to solve inventory management problems is to use stochastic program-

ming (SP) (Birge and Louveaux, 2011). However, SP is limited to problems with a very short planning

horizon because the event tree grows exponentially with the length of the planning horizon.

The above methods also face other difficulties in practice. The DP approach requires the knowledge

of the probability distribution functions of the underlying stochastic parameters (for example, product

demands). On the other hand, the SP approach needs sufficient samples of these parameters to estimate

the expected value of the cost function. Identifying the distribution functions of the stochastic param-

eters is a common challenge in practice. For example, for a new electronic product such as a mobile

phone, it is difficult to identify the distribution of future demand precisely. Furthermore, the product

life may not be long enough to collect adequate samples or to observe any demand pattern.

Since the DP and SP approaches depend heavily on the distributions of stochastic parameters,

a solution optimized under a particular distribution may perform badly under another distribution,

even with the same mean and variance (Bertsimas and Thiele, 2004, 2006). As a result, it is neces-

sary to adopt a methodology that relies only on partial information of the uncertain parameters. A

promising approach is robust optimization (RO) that was initially introduced to immunize uncertain

mathematical optimization problems against infeasibility, while preserving the tractability of the mod-
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els (Ben-Tal and Nemirovski, 1998, 1999, 2000; Bertsimas and Sim, 2004, 2006; Bertsimas et al., 2004;

El-Ghaoui and Lebret, 1997; El-Ghaoui et al., 1998; Goh and Sim, 2010).

The research in RO experiences exponential growth in the last decade. Most RO methods share the

following two merits: (1) Only limited knowledge of underlying uncertain parameters is used. Most of the

early papers in the literature assume only the support sets of uncertain parameters. Some applications

assume that means and support sets are known to obtain additional theoretical results (Wang et al.,

2009). Chen and Sim (2009) derive a rather tight upper bound on the expected value of the positive

part of a random variable. This result has been used to tackle problems in supply chain management

and finance (See and Sim, 2010; Chen et al., 2009). (2) The tractability of an optimization problem can

be well preserved by the RO approach: The robust counterpart of a linear programming (LP) problem

remains as an LP problem if the uncertain parameters are characterized by linearly constrained support

sets, or remains as a second-order cone optimization problem if the original optimization problem and

the uncertain support sets can be described using second-order cones.

Thanks to the above mentioned properties, RO has already been applied to solve problems in

supply chain and inventory management. For example, Bertsimas and Thiele (2004, 2006) introduce

an RO approach for supply chain management based on a “budget of uncertainty” model proposed

by Bertsimas and Sim (2004). Bertsimas and Thiele (2004, 2006) show that an optimal solution has

a base-stock structure, and this result can be extended to a supply chain with capacity constraints.

Their numerical results suggest that the robust solution performs comparably to a solution based on an

exact distribution, but the former works well against distributional ambiguity. Papers along a similar

direction include Adida and Perakis (2006), Bienstock and Özbay (2008), and Song et al. (2012).

Under the RO approach, decision variables can be parameterized as functions of uncertain factors

(also called decision rules) to improve the performance of the solution. For example, Ben-Tal et al.

(2004) introduce the concept of adjustable robust counterparts, also known as linear decision rules,

to postpone decisions until uncertainties are realized. Ben-Tal et al. (2005) introduce this technique

to handle a retailer-supplier flexible commitment contract problem. Their simulation results suggest

that although only support sets of uncertainty are given, the RO solution based on a linear decision

rule approximates the optimal policy well. Ang et al. (2012) apply linear decision rules to solve the

storage-retrieval problem in a unit-load warehouse with time-varying arrivals and random departures

of different products over multiple periods. See and Sim (2010) generalize the linear decision rule to a

truncated linear decision rule for inventory management problems with ordering capacity constraints.

The authors also demonstrate the advantages of the truncated linear decision rule by simulations.
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A special case of decision rules is a static rule, which is a static function of the uncertain factors.

Some papers discuss the optimality of a static rule under special conditions. Ben-Tal and Nemirovski

(1999) consider a single-stage problem under uncertainty. They show that a static rule is optimal if

each constraint is associated with an uncertainty set, and the uncertainty sets of different constraints

are independent of each other. Bertsimas et al. (2013) show that a static rule is optimal if and only if a

certain transformation of the uncertainty sets is convex. In case the transformation is non-convex, the

authors give a tight bound on the performance of a static rule. In contrast, we show in this paper that

a static rule is optimal if a worst-case scenario of uncertainty can be identified.

Besides requiring less information on uncertainty, RO also differs from DP and SP in the objective

function. DP and SP usually minimize the expected value of a certain performance measure (such as

cost), while RO minimizes the worst-case value of the measure. However, both objective functions may

not be suitable for decision makers because sometimes their objective is to fulfill a pre-specified target

for the performance measure (Chen and Sim, 2009). For example, if the decision makers’ objective

is to ensure that the cost is always lower than a pre-specified budget, then a policy that minimizes

the expected cost may not work well because it may lead to large variance of cost. This reduces the

probability of fulfilling a budget that is larger than the expected cost.

This paper fills the gap by proposing a target-oriented robust optimization formulation that aims

to maximize the chance of fulfilling a pre-specified target. By tuning the target value, the resultant

policy can achieve a balance between the aggressiveness on performance measure and the associated

risk. Specifically, our contributions can be summarized as follows:

1. We propose a new method for inventory management based on target-oriented robust optimiza-

tion. This approach has the following four characteristics: (i) It only makes use of some reference values

(such as the means) and the bounds of products’ demands, and is suitable for problems with demand

distributional ambiguity. (ii) The proposed formulation can be solved in a reasonable amount of time for

multi-product, multi-period problems with realistic sizes. We demonstrate this in two case studies from

different industries. (iii) Ordering capacity and many other kinds of constraints can be incorporated

easily into our formulation. (iv) By tuning the cost target, a balance between the expected cost and

the cost variance is achievable, which cannot be done by other existing approaches.

2. We prove the optimality of a static rule for a set of problems where a worst-case scenario of

uncertainty can be identified. Specifically, if the feasibility of a solution can be ensured by its feasibility

under a worst-case uncertainty scenario, then the static rule is optimal and no complicated decision

rules are needed. Fortunately, for the inventory management problem a worst-case uncertainty scenario
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can be found by applying a few relaxations. This makes our approach computationally amiable.

3. We analyze the solution of our approach in detail for a single-product, single-period problem.

We discover a piece-wise linear structure of the solution. If the inventory level is lower than a threshold

value, the order quantity depends on the inventory level and the value of objective function. Otherwise,

the ordering policy becomes an order-up-to policy.

This paper is organized as follows. Section 2 describes the inventory management problem and

defines notation. Section 3 describes the traditional DP approach. Section 4 introduces our formulation

and method. Section 5 compares our method with the DP and SP approaches through numerical

experiments. Section 6 demonstrates through two case studies that our approach is implementable in

practice. Section 7 discusses some generalizations and Section 8 concludes the paper.

2 Problem description and notation

Consider an inventory system with P products indexed as i = 1, . . . , P over a planning horizon with T

periods indexed as t = 1, . . . , T . Let P := {1, 2, 3, . . . , P} and T := {1, 2, 3, . . . , T}. In each period t,

the following procedure is repeated:

1. Let yit denote the on-hand inventory level of product i at the start of period t. Based on this

inventory level, we place an order (or production lot) of quantity xit at the start of period t for

product i. This incurs a fixed ordering (or setup) cost Ai
t and a variable ordering cost citx

i
t, where

cit represents the ordering cost per unit. In this problem, xit are decision variables and yit are

dependent variables.

2. We consider a constant lead time of l(i) periods for product i. Thus, an order placed at the start

of period t− l(i) will arrive at the start of period t.

3. Each product i in period t faces random demand d̃it, which is realized as dit at the end of the

period. The inventory level at the end of period t becomes yit + xit−l(i) − dit.

4. If yit + xit−l(i) − dit ≥ 0, the remaining inventory is carried to the next period t + 1. This incurs

a holding cost hit per unit. On the other hand, if yit + xit−l(i) − dit < 0, unsatisfied demand is

backlogged to the next period. This incurs a backlog cost bit per unit.

5. At the start of period t+ 1 the inventory level is yit+1 = yit + xit−l(i) − dit. Steps 1–4 are repeated.
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Table 1 defines the notation used in this paper. It is noteworthy that in practice the replenishment

decision xit is not necessarily determined at the beginning of the planning horizon (the start of period

1). Instead, to achieve good performance it can be postponed to period t after observing the realization

dt−1 of d̃t−1. Therefore, x
i
t is a non-anticipative function, denoted by xit (dt−1), which depends only on

demand information up to period t− 1.

Table 1: Notation

P : number of products

P : {1, 2, 3, . . . , P}

T : number of periods in the planning horizon

T : {1, 2, 3, . . . , T}

l(i): lead time (in number of periods) of product i

hi

t: inventory holding cost per unit of product i from period t to period t+ 1

bi
t
: backlog cost per unit of product i from period t to period t+ 1

Ai

t: fixed ordering cost per order for product i in period t

ci
t
: variable ordering cost per unit of product i in period t

d̃it: demand for product i in period t with support set
[

dit, d̄
i
t

]

di
t
: demand realization for product i in period t

d̃i

t
: collection of demands for product i from period 1 to period t, d̃i

t
:=
(

d̃i1, . . . , d̃
i

t

)

∈ R
t

d̃t: collection of demands for all products from period 1 to period t, d̃t :=
(

d̃1
t
, . . . , d̃P

t

)

∈ R
t×P

di

t: collection of demand realizations for product i from period 1 to period t, di

t :=
(

di1, . . . , d
i

t

)

∈ R
t

dt: collection of demand realizations for all products from period 1 to period t, dt :=
(

d1
t
, . . . ,dP

t

)

∈ R
t×P

yit: on-hand inventory level of product i at the start of period t

xi

t
: order quantity placed for product i at the start of period t

yt: collection of yit for all products in period t, yt :=
(

y1t , . . . , y
P
t

)

∈ R
P

xt: collection of xi

t
for all products in period t, xt :=

(

x1
t
, . . . , xP

t

)

∈ R
P

x̄t: maximum total order quantity for all products in period t

Nt: the set of non-anticipative functions mapping R
(t−1)×P to R

Given the initial inventory level yi1, replenishment quantities xi1−l(i), x
i
2−l(i), . . . , x

i
t−l(i), and demand

realizations di
t, the inventory level at the start of period t+ 1 is a function yit+1 : R× R

t × R
t → R,

yit+1 = yi1 +

t
∑

k=1

xik−l(i) −
t
∑

k=1

dik. (1)

Note that in Equation (1) the order quantities
{

xi1−l(i), . . . , x
i
0

}

are given before period t = 1.

For any variable y ∈ R, define (y)+ := max{0, y} and (y)− := max{0,−y}. Thus,
(

yit+1

)+
and

(

yit+1

)−
represent inventory overage and underage, respectively, at the end of period t after demand d̃it
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is realized. Given the replenishment quantity xit and the inventory level yit+1, the total cost incurred for

product i in period t is Ai
tI
(

xit
)

+ citx
i
t + hit

(

yit+1

)+
+ bit

(

yit+1

)−
, where I

(

xit
)

equals 1 if xit > 0, and

equals 0 otherwise.

3 A stochastic optimization model

Given the stochastic demands d̃t, our goal is to determine an ordering policy xit

(

d̃t−1

)

, for all i ∈ P,

t ∈ T , such that the expected total cost within the planning horizon is minimized. We formulate this

as a multi-period stochastic optimization problem as follows:

min E

[

∑

i∈P

∑

t∈T

Ai
tI
(

xit

(

d̃t−1

))

+ citx
i
t

(

d̃t−1

)

+ hit
(

yit+1

)+
+ bit

(

yit+1

)−

]

s.t.
∑

i∈P

xit

(

d̃t−1

)

≤ x̄t, t ∈ T ; (2a)

xit

(

d̃t−1

)

≥ 0, i ∈ P, t ∈ T ; (2b)

xit ∈ Nt, i ∈ P, t ∈ T ; (2c)

where Nt is a set containing all non-anticipative functions mapping R
(t−1)×P to R. Constraint (2a)

represents the ordering capacity constraint. We use the shorthand x
(

d̃t−1

)

≤ a to denote that the

random variable x
(

d̃t−1

)

is less than or equal to a almost surely. Hence, it is noteworthy that all the

constraints in Problem (2) must be satisfied for all realizations of the demands d̃t−1. By solving Problem

(2), a non-anticipative replenishment policy that minimizes the expected total cost can be determined.

However, Problem (2) is generally a difficult optimization problem to solve in practice (Shapiro, 2006).

Theoretically, we can use dynamic programming to solve Problem (2). Define qi
t := (xit−l(i), . . . , x

i
t−1)

as outstanding order quantities for product i in period t. Recall that qi
1 =

(

xi1−l(i), . . . , x
i
0

)

are given

before period t = 1. Let qt := (q1
t , . . . ,q

P
t ). Given the order quantities xt, inventory levels yt,

outstanding order quantities qt, and demand realizations dt−1, the expected cost incurred in period t is

rt (xt,yt,qt;dt−1) =
∑

i∈P

(

Ai
tI
(

xit
)

+ citx
i
t

)

+E
d̃t

[

∑

i∈P

(

hit
(

yit+1

)+
+ bit

(

yit+1

)−
)

∣

∣

∣

∣

∣

d̃t−1 = dt−1

]

. (3)

Let Jt (yt,qt;dt−1) denote the optimal expected cost from period t until the end of planning horizon.

The optimality equations can be written as

Jt (yt,qt;dt−1) = min
xt∈Ft

{

rt (xt,yt,qt;dt−1) + E
d̃t

[

Jt+1

(

yt+1,qt+1; d̃t

)∣

∣

∣
d̃t−1 = dt−1

]}

, (4)
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where Ft = {xt| x
i
t ≥ 0, i ∈ P,

∑

i∈P xit ≤ x̄t}. The boundary conditions are JT+1 (yT+1,qT+1;dT ) = 0,

for all yT+1,qT+1, and dT .

For a special case with l(i) = 0, i ∈ P, and d̃it, i ∈ P, t ∈ T , are independent of each other, the

optimality equations reduce to the following familiar form:

Jt (yt) = min
xt∈Ft

{

rt (xt,yt) + E(d̃1t ,··· ,d̃Pt )
[Jt+1 (yt+1)]

}

, (5)

with boundary conditions JT+1 (yT+1) = 0, for all yT+1.

Let x∗
t denote the optimal decision in period t for Problem (4). An optimal replenishment policy

for the entire planning horizon can be determined by the sequence {x∗
1, . . . ,x

∗
T }, which we call the DP

policy. However, Problem (4) is generally intractable due to its large state space in practice.

4 A target-oriented robust optimization approach

Solving the stochastic inventory management problem (Problem (2)) using the dynamic programming

method in Section 3 requires demand distributions to compute the expected total cost. Unfortunately,

the demand distributions are often not available. Even if the demand distributions are known, it is not

always possible to obtain the optimal solution due to computational complexity.

To overcome these issues, we propose a method based on target-oriented robust optimization to

solve the inventory management problem. Under our approach, only a reference value (for example,

the mean) and the support set of each product’s demand in each period are required. Furthermore, our

approach only requires solving a moderate-size mixed-integer linear program. This significantly reduces

the computational complexity.

4.1 Formulation

We find a replenishment policy based on robust optimization. For each d̃it, define an adjustable uncer-

tainty set

Di
t(γ) :=

{

dit | d̂
i
t − γzit ≤ dit ≤ d̂it + γz̄it

}

, (6)

where d̂it represents a reference value (for example, the mean or median) of the demand for product i

in period t, zit := d̂it − dit, z̄
i
t := d̄it − d̂it, and γ ∈ [0, 1] is called the uncertainty set parameter. Define

Di
t(γ) := Di

1(γ)× · · · ×Di
t(γ) and Dt(γ) := D1

t (γ) × · · · ×DP
t (γ).
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We introduce a cost target τ , which is pre-specified by the decision maker. Our goal is to determine

a replenishment policy that maximizes the sizes of all the adjustable uncertainty sets such that all

demand realizations from the sets will result in a total cost no more than τ . We can achieve this by

solving the following optimization problem. Given a cost target τ , we maximize the uncertainty set

parameter γ subject to the cost target constraint:

γ∗ :=max γ (7a)

s.t.
∑

i∈P

∑

t∈T

(

Ai
tI
(

xit (dt−1)
)

+ citx
i
t (dt−1) + hit

(

yit+1

)+
+ bit

(

yit+1

)−
)

≤ τ, ∀dT ∈ DT (γ); (7b)

∑

i∈P

xit (dt−1) ≤ x̄t, ∀dt−1 ∈ Dt−1(γ), t ∈ T ; (7c)

xit (dt−1) ∈ Nt, ∀dt−1 ∈ Dt−1(γ), i ∈ P, t ∈ T ; (7d)

xit (dt−1) ≥ 0, ∀dt−1 ∈ Dt−1(γ), i ∈ P, t ∈ T ; (7e)

0 ≤ γ ≤ 1. (7f)

The above is called the Target-Oriented Robust Optimization (TRO) formulation for the inventory

management problem. Under this formulation, the decision variables are xit (dt−1) , i ∈ P, t ∈ T ,

and γ. Each xit (dt−1) is expressed as a non-anticipative function of dt−1. For convenience, define

xi1 (d0) = xi1, i ∈ P. The first constraint represents the cost target constraint. The remaining constraints

correspond to constraints in Problem (2). Note that besides the ordering capacity constraints (7c), we

can easily incorporate other constraints (for example, warehouse capacity constraint) into the above

formulation. Problem (7) determines an ordering policy {xt}t∈T that costs no more than τ under the

largest attainable adjustable uncertainty sets.

It is noteworthy that there may exist multiple optimal ordering policies for Problem (7). How do

we choose from these multiple policies? If the cost target constraint (7b) is binding under an optimal

solution for Problem (7), each optimal policy {xt}t∈T gives the same worst-case total cost τ (with the

extreme values of dt−1). We can choose any one of these optimal policies arbitrarily. If the cost target

constraint (7b) is not binding (for example, when we are given a big budget such that τ equals a large

value), different optimal policies for Problem (7) may give different worst-case total costs (although

they are all no more than τ). In this situation, we choose an optimal policy {xt}t∈T that minimizes the

worst-case total cost.
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4.2 A static rule

In Problem (7) each decision variable xit (dt−1) belongs to the set Nt of non-anticipative functions

of dt−1. In practice, it is intractable to consider all possible functions in Nt. Instead, to overcome

this issue the optimal policy xit (dt−1) can be approximated as a static function, as an affine function

(Ben-Tal et al., 2004), or as a piece-wise affine function (Chen et al., 2008; Wang et al., 2010) of the

uncertainty variables dt−1. In this section, we approximate the optimal policy using a static function

as xit (dt−1) = xit, for all i ∈ P, t ∈ T . We call this policy a static rule. We study an approximation of

Problem (7) in which the static rule is optimal. It is worth noting that under the static rule although

the ordering decisions cannot be adjusted as the information of the uncertainty variables is unveiled,

the order quantity xit for product i can be different for different t.

Another challenge of solving Problem (7) is caused by the (·)+ and (·)− functions in Constraint (7b).

There are various ways to represent these functions. Note that both (yit+1)
+ and (yit+1)

− are scalars,

and for any period t one of them must be zero. Problem (7) can be approximated by the following

formulation.

γ′′ := max γ

s.t.
∑

i∈P

∑

t∈T

(

Ai
tI
(

xit (dt−1)
)

+ citx
i
t (dt−1) + θit

)

≤ τ, ∀dT−1 ∈ DT−1(γ);

θit ≥ hit

(

yi1 +

t
∑

k=1

(

xik−l(i)

(

dk−l(i)−1

)

− dik

)

)

, ∀dt ∈ Dt(γ), i ∈ P, t ∈ T ; (8a)

θit ≥ −bit

(

yi1 +

t
∑

k=1

(

xik−l(i)

(

dk−l(i)−1

)

− dik

)

)

, ∀dt ∈ Dt(γ), i ∈ P, t ∈ T ; (8b)

∑

i∈P

xit (dt−1) ≤ x̄t, ∀dt−1 ∈ Dt−1(γ), t ∈ T ;

xit (dt−1) ∈ Nt, ∀dt−1 ∈ Dt−1(γ), i ∈ P, t ∈ T ;

xit (dt−1) ≥ 0, ∀dt−1 ∈ Dt−1(γ), i ∈ P, t ∈ T ;

0 ≤ γ ≤ 1.

It is worth noting that given any γ, the worst-case total cost of Problem (7) is no larger than the

worst-case total cost of Problem (8). Thus, the cost target constraint is tighter in Problem (8), which

leads to γ′′ ≤ γ∗. This is because given any γ the worst-case total cost of Problem (7) is induced by

a full vector of worst-case demand realizations d∗
T−1 =

(

d1∗
T−1, . . . ,d

P∗
T−1

)

. In contrast, given any γ the

worst-case total cost of Problem (8) comprises many different θit, each corresponds to a sub-vector of
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worst-case demand realizations d̆i
t, for i ∈ P, t ∈ T . Note that for each i each element of d̆i

t may vary

with t.

We can tighten Constraint (8a) by replacing dik with d̂ik −uik, and tighten Constraint (8b) by replac-

ing dik with d̂ik+vik, where u
i
k and vik are uncertainty variables falling in U i

k(γ) :=
{

uik|0 ≤ uik ≤ γzik
}

and

V i
k (γ) :=

{

vik|0 ≤ vik ≤ γz̄ik
}

respectively. As a result, each dit and Di
t(γ) in the above formulation can

be represented as dit = dit
(

uit, v
i
t

)

= d̂it − uit + vit and Di
t(γ) =

{

d̂it − uit + vit | u
i
t ∈ U i

t (γ), v
i
t ∈ V i

t (γ)
}

re-

spectively. Thus, each decision variable xit (dt−1) can be expressed as a function of uik and vik, i ∈ P, k =

1, . . . , t−1. For notational convenience, define ui
t(γ) :=

(

ui1(γ), . . . , u
i
t(γ)

)

, ut(γ) :=
(

u1
t (γ), . . . ,u

P
t (γ)

)

,

vi
t(γ) :=

(

vi1(γ), . . . , v
i
t(γ)

)

, and vt(γ) :=
(

v1
t (γ), . . . ,v

P
t (γ)

)

. Define Ui
t(γ) := U i

1(γ) × · · · × U i
t (γ)

and Ut(γ) := U1
t (γ) × · · · × UP

t (γ). Similarly, define Vi
t(γ) := V i

1 (γ) × · · · × V i
t (γ) and Vt(γ) :=

V1
t (γ)× · · · ×VP

t (γ). Problem (8) can be approximated as

γ′ := max γ (9)

s.t.
∑

i∈P

∑

t∈T

(

Ai
tI
(

xit (dt−1)
)

+ citx
i
t (dt−1) + θit

)

≤ τ, ∀uT−1 ∈ UT−1(γ),∀vT−1 ∈ VT−1(γ);

θit ≥ hit

(

yi1 −
t
∑

k=1

d̂ik +

t
∑

k=1

(

xik−l(i)

(

dk−l(i)−1

)

+ uik

)

)

, ∀ut ∈ Ut(γ),∀vt ∈ Vt(γ), i ∈ P, t ∈ T ;

θit ≥ −bit

(

yi1 −
t
∑

k=1

d̂ik +
t
∑

k=1

(

xik−l(i)

(

dk−l(i)−1

)

− vik

)

)

, ∀ut ∈ Ut(γ),∀vt ∈ Vt(γ), i ∈ P, t ∈ T ;

∑

i∈P

xit (dt−1) ≤ x̄t, ∀ut−1 ∈ Ut−1(γ),∀vt−1 ∈ Vt−1(γ), t ∈ T ;

xit (dt−1) ∈ Nt, ∀ut−1 ∈ Ut−1(γ),∀vt−1 ∈ Vt−1(γ), i ∈ P, t ∈ T ;

xit (dt−1) ≥ 0, ∀ut−1 ∈ Ut−1(γ),∀vt−1 ∈ Vt−1(γ), i ∈ P, t ∈ T ;

0 ≤ γ ≤ 1.

Recall that dit = dit
(

uit, v
i
t

)

= d̂it−uit+vit in the above formulation. Since the second and third constraints

of Problem (9) are more restrictive than Constraints (8a) and (8b), we have γ′ ≤ γ′′ ≤ γ∗.

It is more economic to solve Problem (9) because the static rule xit (dt−1) = xit is optimal under

such an approximation. Thus, no complicated decision rules need to be considered. To show this result,

define a vector wi
t :=

(

uit, vit
)

∈ U i
t (γ)× V i

t (γ) and let w =
(

w1
1, . . . , w

1
T , . . . , w

P
1 , . . . , w

P
T

)

. Note that w

represents a collection of uncertainty variables uit and vit, for i ∈ P and t ∈ T . Let W(γ) denote the

support set of w. Let π(w) denote a vector that contains all decision variables of Problem (9), and let
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F denote the feasible ranges of these variables. We can rewrite Problem (9) in the following general

form:

γ′ = max γ (10)

s.t. A(w)π(w) ≤ b(w), ∀w ∈ W(γ);

π(w) ∈ F , ∀w ∈ W(γ);

where A(w) and b(w) represent all deterministic and uncertain coefficients of Problem (9). It is

noteworthy that π(w) is a decision rule. We consider the static rule π(w) = π, which can be determined

by solving the following problem:

γs := max γ (11)

s.t. A(w)π ≤ b(w), ∀w ∈ W(γ);

π ∈ F .

We will show that an optimal solution of Problem (11) is also optimal for Problem (10). In other words,

the static rule is an optimal decision rule for Problem (10). We first give the following definition.

Definition 1 (Worst-case scenario of uncertainty). Given A(w) and b(w), an element w̆(γ) in

the set W(γ) is called a worst-case scenario of uncertainty if for each π ∈ F that satisfies A(w̆(γ))π ≤

b(w̆(γ)), it also satisfies A(w)π ≤ b(w), ∀w ∈ W(γ).

According to Definition 1, for any γ ∈ [0, 1], once we identify a feasible solution for Problem (11) under

a worst-case scenario of uncertainty, then the solution is also feasible for any other realizations of the

uncertainty variables. We use this property to show that the static rule is optimal for Problem (10).

Theorem 1 (Optimality of the static rule). Suppose for any γ ∈ [0, 1] Problem (11) has a worst-

case scenario of uncertainty, denoted by w̆(γ) ∈ W(γ). Let π† denote a static rule that represents the

solution of the following deterministic optimization problem:

γ† := max γ (12)

s.t. A(w̆(γ))π ≤ b(w̆(γ));

π ∈ F .

The static rule π
† is also optimal for Problem (10) and γ† = γs = γ′.

12



Proof. Clearly, we have γs ≤ γ′. We can also observe that

γs = max{γ : A(w)π ≤ b(w), ∀w ∈ W(γ), π ∈ F}

≥ max{γ : A(w̆(γ))π ≤ b(w̆(γ)), π ∈ F}

= γ†

= max{γ : A(w̆(γ))π(w̆(γ)) ≤ b(w̆(γ)), π(w̆(γ)) ∈ F}

≥ max{γ : A(w)π(w) ≤ b(w), π(w) ∈ F , ∀ w ∈ W(γ)}

= γ′,

where the first inequality is due to the definition of the worst-case scenario of uncertainty and the last

inequality is due to the fact that w̆(γ) ∈ W(γ). Note that the static rule π
† is optimal for Problem

(12) under the worst-case scenario of uncertainty w̆
(

γ†
)

. Thus, π† is feasible for Problem (10). Since

π
† achieves the optimal objective γ′, the static rule is also optimal for Problem (10).

Theorem 1 implies that if Problem (10) has a worst-case scenario of uncertainty for any γ, then it

can be solved by just considering the static rule and the worst-case scenario of uncertainty for any γ.

This significantly reduces the computation burden because no complicated decision rules are required.

Since Problem (10) has a general form, this result is not limited to the inventory management problem.

Thus, to solve Problem (9) we only need to consider the static rule xit (dt−1) = xit and the worst-

case scenario of uncertainty for any γ. The solution of Problem (9) can be determined by solving the

following mixed-integer program:

γ† = max γ (14)

s.t.
∑

i∈P

∑

t∈T

(

Ai
tI
(

xit
)

+ citx
i
t + θit

)

≤ τ,

θit ≥ hit

(

yi1 −
t
∑

k=1

d̂ik +
t
∑

k=1

(

xik−l(i) + γzik

)

)

, ∀ i ∈ P, t ∈ T ;

θit ≥ −bit

(

yi1 −
t
∑

k=1

d̂ik +
t
∑

k=1

(

xik−l(i) − γz̄ik

)

)

, ∀ i ∈ P, t ∈ T ;

∑

i∈P

xit ≤ x̄t, ∀ t ∈ T ;

xit ≥ 0, ∀ i ∈ P, t ∈ T ;

0 ≤ γ ≤ 1.
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In the following sections, we use Problem (14) to approximate Problem (7). The former is a mixed-

integer program with an optimal objective value γ† and the latter is a robust optimization problem with

an optimal objective value γ∗ ≥ γ†. Problem (14) can be solved by using any commercial or open-source

solvers. Furthermore, if the fixed ordering cost Ai
t = 0 for all i ∈ P and t ∈ T , then Problem (14)

reduces to a linear program. We call the solution to Problem (14) the TRO policy.

4.3 Target coefficient

The pre-specified cost target τ is an important parameter in our approach. If τ is too small, it may

cause Problem (14) to be infeasible or may lead to a replenishment policy with weak robustness (because

γ† is too small and thus the resultant uncertainty sets Di
t

(

γ†
)

are too small). On the other hand, an

overly large τ may result in a replenishment policy that is too conservative (Di
t

(

γ†
)

are too large). In

practice, it can be tedious to choose a proper value for τ . This involves some estimation of the total

cost for the entire planning horizon. Furthermore, the total cost depends on the initial inventory levels,

which change over time. To overcome this issue, we define target coefficient as

α :=
ρ(1)− τ

ρ(1)− ρ(0)
, (15)

where ρ(γ), γ = 0, 1, can be determined by solving the following mixed-integer program:

ρ(γ) := min
∑

i∈P

∑

t∈T

(

Ai
tI
(

xit
)

+ citx
i
t + θit

)

s.t. θit ≥ hit

(

yi1 −
t
∑

k=1

d̂ik +
t
∑

k=1

(

xik−l(i) + γzik

)

)

, ∀ i ∈ P, t ∈ T ;

θit ≥ −bit

(

yi1 −
t
∑

k=1

d̂ik +
t
∑

k=1

(

xik−l(i) − γz̄ik

)

)

, ∀ i ∈ P, t ∈ T ;

∑

i∈P

xit ≤ x̄t, ∀ t ∈ T ;

xit ≥ 0, ∀ i ∈ P, t ∈ T .

Given a target coefficient α ∈ [0, 1], the corresponding cost target is τ(α) = (1− α)ρ(1) + αρ(0), which

falls in the interval [ρ(0), ρ(1)].

It is useful to define target coefficient because Problem (14) is often solved in a rolling horizon

manner. Since the initial inventory levels change from one planning horizon to the next planning

horizon, the range of τ , [ρ(0), ρ(1)] may vary accordingly. Thus, by defining target coefficient we can

conveniently stick to a constant choice for α (say, α = 0.7) without knowing ρ(0) and ρ(1).
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4.4 A special case

We consider a special case with one product over a single period, and drop all the superscripts and

subscripts for notational simplicity in this section. The TRO policy in this case is given as follows.

Theorem 2 (The TRO policy for the single-product, single-period problem). Consider a

single-product single-period inventory management problem with zero lead time, zero fixed ordering cost,

variable ordering cost c, unit holding cost h, unit backlog cost b (b > c), stochastic demand with a

reference value d̂ and support set [d̂− z, d̂+ z̄], and no ordering capacity constraint. Under this setting,

Problem (14) is equivalent to Problem (7) and their optimal objective value is

γ∗ =



























(

τ + cy − cd̂
)

(b+ h)/ ((c+ h)bz̄ + (b− c)hz) , y ≤ y < ya;

1, ya ≤ y ≤ yb;
(

τ − hy + hd̂
)

/hz, yb < y ≤ ȳ;

(16)

where y = d̂− τ/c, ya = d̂− τ/c+((c+ h)bz̄ + (b− c)hz) /(cb+ ch), yb = d̂+ τ/h− z, and ȳ = d̂+ τ/h.

The corresponding replenishment policy is a state-dependent order-up-to policy:

xopt = max {Y (γ∗)− y, 0} , (17)

where Y (γ∗) = d̂+ γ∗(bz̄ − hz)/(h+ b) represents a state-dependent order-up-to level.

Proof. See Appendix A.

Figure 1 shows the objective γ∗, the order quantity xopt, and the inventory level y + xopt for the

single-product, single-period problem. We set τ = 5.3, c = 2, h = 1.2, b = 4, and d̃ follows a beta

distribution Beta(2, 5) on [0, 5]. The horizontal axis of Figure 1 can be divided into four intervals. Note

that γ∗ = 1 in the second and third intervals (corresponding to Cases (a.1) and (a.2), respectively, in

the proof in Appendix A). In contrast, γ∗ < 1 in the first and fourth intervals (corresponding to Cases

(b.1) and (b.2), respectively, in the proof in Appendix A).

As the initial inventory level y increases, γ∗ first increases until it hits its maximum value 1. It

remains at this maximum value until it begins to drop when y ≥ yb ≈ 4.4 as we enter the fourth interval

(see Equation (31) in Appendix A for an explanation). On the other hand, the order quantity xopt

decreases as y increases. Note that xopt decreases with a larger rate when γ∗ hits the value 1, and the

order quantity finally becomes 0.
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Figure 1: Solution structure of the single-product, single-period problem.

5 Numerical studies

We use numerical simulations to compare the performance of the TRO policy in Section 4.2 with that of

the DP policy in Section 3 and of a myopic policy described as follows. Given the inventory levels yt and

outstanding order quantities qt in each period t, the myopic policy adopts the order quantities xi1, i ∈ P,

which are obtained by solving Problem (2) with T = max
1≤i≤P

l(i) + 1 and xi2 = xi3 = · · · = xiT = 0, i ∈ P:

min
∑

i∈P

(

Ai
1I
(

xi1
)

+ ci1x
i
1

)

+ E
d̃T





∑

i∈P

l(i)+1
∑

t=1

(

hit
(

yit+1

)+
+ bit

(

yit+1

)−
)



 (18)

s.t.
∑

i∈P

xi1 ≤ x̄1;

xi1 ≥ 0, i ∈ P.

The expected value of the objective function of Problem (18) can be determined based on demand

distributions if they are available. Otherwise, it can be computed using sample average approximation.

Throughout this section, let N denote the number of simulated periods in each simulation, which

could be different from the length of planning horizon T in each approach. In Sections 5 and 6, we

assume d̂it represents the mean of the demand for product i in period t in Equation (6).

5.1 The multi-product, single-period problem

We compare the TRO policy (based on Problem (14)) with the DP policy (based on Equations (4)) and

the myopic policy (based on Problem (18)) for a multi-product, single-period problem. We set P = 10,

T = 1, l(i) = 0, x̄t = 15, Ai
t = 1, cit = 2, hit = 1 + 0.2i, and bit = 3i, for all i ∈ P, t ∈ T . We assume
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Figure 2: Performance of different policies for the multi-product, single-period problem.

the demand for each product in each period falls in [0, 5], and it follows a beta distribution Beta(2, 5).

After obtaining the solution of each approach, we do simulations to evaluate them.

Figure 2 shows the results of simulations with N = 1. Each data point in the graph represents the

mean and standard deviation of the costs of 1,000 simulations. The dots represent the results of the

TRO policy. Each dot is generated using a distinct value of τ . The diamonds and the crosses represent

the results of the DP policy and the myopic policy respectively. To see the effects of limited demand

information, the myopic policy is determined based on sample average approximation using a sample

set with cardinality 50. Each cross corresponds to a distinct sample set.

The bottom-left corner of Figure 2 shows the simulation results under different approaches when we

use the same demand distribution Beta(2, 5) in the simulations. The results suggest that, for similar

standard deviations, the mean costs of the TRO policy are very close to that of the DP policy and of

the myopic policy. This is surprising because only limited demand information (d̂it, z̄
i
t , and zit, for all

i and t), excluding the demand distribution, is used to obtain the TRO policy. In contrast, the other

two policies require the information of the demand distribution Beta(2, 5).

More importantly, the TRO policy provides additional flexibility that allows us to tune the cost

target τ . This flexibility is promising because one can balance the cost and its associated risk by

properly choosing τ . For example, when τ = 140.2 the mean cost of the TRO policy is roughly 10%

more than that of the DP policy and of the myopic policy, but its standard deviation of costs is 25%

lower. This suggests that we can substantially reduce the standard deviation of costs of the TRO policy
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Figure 3: Histograms and cumulative distributions of simulation costs.

by tuning τ without increasing its mean cost too much. In contrast, neither the DP policy nor the

myopic policy provides this degree of freedom.

To show the robustness of different approaches against distributional ambiguity, we repeat the

simulations using a different demand distribution Beta(5, 2). The results are shown in the top-right

corner of Figure 2. These results suggest that if a wrong demand distribution is used for solving

Equations (4) and Problem (18), the DP policy and the myopic policy, respectively, perform much

worse than the TRO policy. In most cases, both mean and standard deviation of costs provided by the

TRO policy are significantly lower than that of the other two policies.

To compare the TRO policy and the DP policy in more detail, we plot the distribution of simulation

costs under each policy. We set τ = 89.4 for the TRO policy. The top graph of Figure 3(a) shows the

histograms of costs under the two policies. The bold solid line and the bold dashed line correspond

to the TRO policy and the DP policy, respectively, when we use the demand distribution Beta(2, 5)

for the simulations. The distribution of costs under the DP policy is skewed toward the left compared

to the distribution under the TRO policy. However, the result is reversed when we use a different

demand distribution for the simulations. The right side of the same graph shows the histograms under

the two policies using the demand distribution Beta(5, 2) for the simulations. The solid line and the

dashed line correspond to the TRO policy and the DP policy respectively. Apparently, the costs under

the TRO policy are generally lower compared to the DP policy, which assumes an inaccurate demand

distribution. This demonstrates the robustness of the TRO policy against distributional ambiguity.

The bottom graph of Figure 3(a) shows the cumulative distribution functions of costs under the two
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policies. The left side of the graph shows the results when the DP policy assumes an accurate demand

distribution. Note that as the cost increases although the DP policy dominates initially, the two policies

give approximately the same cumulative probability at the cost target τ = 89.4 (corresponding to the

vertical dashed line). This suggests that the percentage of simulations with costs less than τ is similar

under both policies. On the other hand, the right side of the same graph suggests that if the DP policy

assumes an inaccurate demand distribution, the simulation cost under the TRO policy is first-order

stochastically dominated by that of the DP policy.

Figures 3(b) shows the histograms and the cumulative distribution functions of costs under both

approaches when we set τ = 123.3 for the TRO policy. If the DP policy assumes an inaccurate demand

distribution, the TRO policy significantly outperforms the DP policy for this value of τ .

5.2 The single-product, multi-period problem

To evaluate the TRO policy in more detail, we compare it with the DP policy with an accurate demand

distribution (which gives the optimal expected cost). We focus on the single-product, multi-period

problem so that we can compute the DP policy within a reasonable amount of time. We assume

demand for the product in each period follows a beta distribution Beta(2, 2) in the interval [0, 5], and

we use the same distribution in the simulations. We set T = 10, l(1) = 1, and x̄t = 5, for t ∈ T . We

adopt a rolling-horizon principle to determine the TRO policy in each period: After demand is realized

in each period of a simulation, we use the new inventory level to resolve Problem (14) to find the order

quantity for the next period. Table 2 shows the simulation results.

Each row of Table 2 corresponds to a setting of cost parameters. Each entry in the table shows the

average value and standard deviation (in brackets) of the costs of 1,000 simulations. The TRO policy

can be optimized by fine tuning the target coefficient α. The lowest cost of the TRO policy for each

setting of cost parameters is marked with an asterisk, and the highest cost is marked with a dagger

sign. The relative gap between the lowest cost and the optimal cost by the DP policy is shown in the

second-to-last column of Table 2. The last column of the table shows the relative gap between the

highest cost of the TRO policy and the optimal cost. Our results suggest that the cost of the TRO

policy is within 120% of the optimal cost.

Table 2 shows that the lowest costs of the TRO policy occur when α is between 0.5 and 0.8. This

suggests that we should set the target coefficient α in the interval [0.5, 0.8] for this problem instance.

The lowest cost of the TRO policy for each parameter setting is within 104% of the optimal cost.
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Table 2: Performance of the TRO and DP policies for the single-product, multi-period
problem

(A1

t
, c1

t
, h1

t
, b1

t
)

DP TRO policy Relative gaps

policy α = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 min max

(1, 2, 0.1, 3)
55.37

(7.84)

66.16†

(6.24)

65.16

(6.34)

63.24

(6.62)

61.74

(6.74)

60.47

(6.87)

59.30

(7.12)

58.26

(7.75)

57.59∗

(8.24)

58.04

(9.31)
4.00% 19.49%

(1, 1, 0.1, 5)
34.66

(5.40)

40.54†

(4.11)

39.65

(4.28)

38.24

(4.46)

37.36

(4.57)

36.76

(4.73)

36.07

(4.91)

35.73∗

(5.55)

36.26

(7.12)

37.88

(9.04)
3.08% 16.96%

(1, 2, 1, 3)
71.42

(8.64)

80.54†

(4.11)

78.72

(4.62)

77.08

(5.34)

75.74

(6.18)

74.78

(7.15)

74.20

(8.31)

74.10∗

(9.43)

74.55

(10.85)

75.38

(12.05)
3.75% 12.77%

(1, 1, 1, 5)
54.50

(7.24)

63.71†

(4.30)

61.20

(4.36)

58.77

(4.66)

57.10

(5.37)

56.03

(6.42)

55.74∗

(7.96)

56.48

(9.96)

58.30

(12.20)

61.95

(14.99)
2.27% 16.90%

(1, 1, 2, 5)
67.87

(9.83)

75.07†

(8.50)

72.94

(8.42)

71.17

(8.51)

69.78

(8.81)

68.87

(9.36)

68.44∗

(10.18)

68.82

(11.61)

69.83

(13.16)

71.46

(14.75)
0.84% 10.61%

(1, 1, 3, 2)
59.56

(8.07)

61.45†

(9.31)

61.11

(9.02)

60.86

(8.75)

60.71

(8.52)

60.66∗

(8.33)

60.71

(8.19)

60.87

(8.09)

61.12

(8.04)

61.42

(8.01)
1.84% 3.18%

(1, 1, 5, 2)
66.89

(9.79)

71.34

(12.24)

69.92

(11.61)

69.30

(10.96)

68.39

(10.46)

67.92∗

(10.20)

67.95

(10.21)

68.73

(10.57)

70.13

(11.33)

72.11†

(12.32)
1.54% 7.80%

(10, 2, 1, 3)
110.41

(13.78)

120.87†

(9.67)

119.24

(10.11)

119.65

(10.25)

116.12

(10.80)

114.39

(11.11)

113.48

(11.57)

112.94

(12.01)

112.54∗

(12.85)

112.77

(13.56)
1.93% 9.47%

†: The highest mean cost. ∗: The lowest mean cost.

5.3 The multi-product, multi-period problem

We also evaluate the TRO policy in a multi-product, multi-period setting with P = 3 and T = 5. To

ensure tractability, we assume that demand for each product in each period has only three possible

values 0, 2.5, and 5 with probabilities 0.6, 0.3, and 0.1 respectively. We consider products i = 1, 2, 3 of

the problem in Section 5.1 and assume all other parameters remain unchanged. For the TRO policy,

we set α = 0.2, 0.3, . . . , 0.7. For each value of α, we adopt the same rolling-horizon principle described

in Section 5.2 to determine the TRO policy in each period of every simulation. Figure 4(a) shows the

mean and standard deviation of the costs of 1,000 simulations under the TRO and the DP policies.

The left side of the graph shows the results when the presumed demand distribution: Pr(0) = 0.6,

Pr(2.5) = 0.3, and Pr(5) = 0.1 is used for the simulations. The TRO policy gives lower standard

deviations but slightly higher means compared to the DP policy. On the right side of the graph, we

plot the results of the simulations with a different demand distribution: Pr(0) = 0.1, Pr(2.5) = 0.3,

and Pr(5) = 0.6. The results suggest that if the DP policy assumes an inaccurate demand distribution,

the TRO policy always gives a lower mean cost and sometimes also a lower standard deviation.

It is worth noting that we control the target coefficient α (instead of cost target τ) in Figure 4(a).

This is because in each simulation we use the rolling-horizon principle to determine the TRO policy

for each period. The planning horizon of Problem (14) reduces as we progress in time. Thus, given

a specific α, the values of ρ(0) and ρ(1) in Equation (15) may change from period to period. This
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Figure 4: Comparison of the TRO and the DP policies in the multi-product, multi-period
problem.

may result in different values of τ in different periods. Let τ(t) denote the cost target in period t. In

addition, the initial inventory levels for period t may vary across different simulations. This will also

lead to different values of τ(t) in different simulations for the same period t. Figure 4(b) shows that the

average value of τ(t) over all simulations decreases with t. This is consistent with our intuition: As t

increases, the planning horizon of Problem (14) reduces, which results in a lower cost target.

5.4 A robustness comparison

In order to test the robustness of the TRO policy, we compare it with the DP policy over a family

of demand distributions using the same problem instance in Section 5.1. When we compute the DP

policy we assume demand for each product in each period follows the beta distribution Beta(4, 4) in the

interval [0, 5]. For the simulations, we use the demand distribution Beta(η, η) in [0, 5] where 0.1 ≤ η ≤ 6.

Under this distribution, the demand for each product in each period has mean equal to 2.5 for all η.

Based on the recommendations of Table 2, we set α = 0.7 for the TRO policy.

Figure 5(a) shows the mean and standard deviation of the costs of 1,000 simulations under each

policy for each η. The results of the two policies corresponding to the same value of η are connected by

a dotted line. Figure 5(a) suggests that if the demand distributions used in the simulations are close

to the one assumed by the DP policy (that is, for distributions that are similar to the one shown in

Figure 5(b) with η = 4), the DP policy outperforms the TRO policy in mean cost. However, the latter

gives a lower standard deviation of costs for most of the values of η. If the demand distributions used
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Figure 5: Comparison of the TRO and DP policies under a family of demand distributions.

in the simulations are substantially different from the one assumed by the DP policy (for example, the

distributions shown in Figure 5(b) with η = 0.3 or 1), then the TRO policy is superior to the DP policy

in both mean and standard deviation of costs. This suggests that the TRO policy is robust over a broad

family of demand distributions.

We also investigate the performance of the TRO and DP policies when the demands for different

products follow different distributions. We consider P = 5, T = 1, x̄t = 15, Ai
t = 1, cit = 1, hit = 1+0.2i,

bit = 2.5i, for all i ∈ P, t ∈ T . To compute the DP policy, we assume the demands follow a Beta(4, 4)

distribution. However, in the simulations, the demand for each product i follows a Beta(ηi1, η
i
2) distri-

bution, where ηi1 and ηi2 are randomly chosen from the set {0.2, 0.6, 0.8, 1, 2, 4, 6}. Figure 6(a) shows

the mean and the standard deviation of costs under each policy based on 20,000 simulation runs. The

results suggest that the TRO policy outperforms the DP policy in both mean and standard deviation of

costs for a wide range of α (from 0.476 to 0.938). Figure 6(b) shows the distribution of costs under each

policy (with α = 0.476 for the TRO policy). The histograms in the top graph suggest that the TRO

policy yields a significantly narrower distribution. The bottom graph shows the cumulative distribution

of costs under each policy. As the cost increases, the TRO policy outperforms the DP policy by yielding

a significantly larger cumulative probability at the cost target τ = 42 (α = 0.476, corresponding to the

vertical dashed line in the graph). The above results suggest that the TRO policy is robust against

distributional ambiguity even if the demands for different products follow different distributions.
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Figure 6: Comparison of the TRO and DP policies when demand distributions are random.

5.5 Quality of the approximation

To evaluate the approximation by Problem (14), we compare its solution with that of the original

formulation (Problem (7)). We focus on the case with two products over two periods so that Problem

(7) can be solved by enumerating all possible extreme values of demands d̃it, i, t = 1, 2.

We consider four different sets of cost parameters. For each set of the parameters, we begin from

three different initial inventory settings. This leads to twelve different problem instances. Figure 7

shows the optimal order quantities xi1, i = 1, 2, for period 1 for both Problems (7) and (14) across

various problem instances. The order quantity xi1 for product i under the approximate formulation

(Problem (14)) is very close to that of the original formulation (Problem (7)). Table 3 compares the

optimal value of the uncertainty set parameter γ∗ under the original formulation with its approximation

γ† determined by solving Problem (14). The results suggest that although γ† is generally smaller than

γ∗, they are very close for some problem instances.

Table 3: Optimal uncertainty set parameter γ∗ versus its approximation γ†

γ∗/γ† Parameter set 1 Parameter set 2 Parameter set 3 Parameter set 4

Inventory setting 1 0.5641 / 0.5641 0.5454 / 0.4444 0.4667 / 0.3975 0.6250 / 0.5652

Inventory setting 2 0.3566 / 0.3501 0.3211 / 0.2815 0.3044 / 0.2593 0.5250 / 0.4462

Inventory setting 3 0.4728 / 0.4421 0.3943 / 0.2585 0.2745 / 0.1795 0.5143 / 0.3437
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Figure 7: Optimal order quantities for Problems (7) and (14).

6 Case studies

To demonstrate the applicability of the TRO policy, we perform case studies with two companies in Sin-

gapore. In the first case, we study the inventory management problem of a distributor of petrochemical

products. The second case study is conducted with a distributor of hardware parts.

6.1 Case study 1: A distributor of petrochemical products

We evaluate the TRO policy using data from a distributor of petrochemical products in Singapore.

Each period in our formulation corresponds to a month for this distributor. All products are from a

single supplier. Since the distributor usually receives the products from the supplier within a few days

after she places an order, we assume negligible lead times for all the products.

The autocorrelation of the total monthly demand for all 260 products of the distributor does not

indicate any obvious seasonality or pattern. We use a moving average method to forecast the mean

demand d̂it for product i in period t using its actual demands in periods t − 3 to t − 1. Let σi
t denote

the standard deviation of the demand for product i in period t. Similarly, we use the actual demands

for product i in periods t− 3 to t− 1 to estimate σi
t. We assume the demand for product i in period t

falls in the interval
[

max
{

0, d̂it − 3σi
t

}

, d̂it + 3σi
t

]

. Figure 8(a) shows the forecast mean and bounds of

the total demand for all the products.

We use α = 0.7 for the TRO policy and set T = 2, which gives the best results among other possible
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Figure 8: Demand forecast and total inventory level.

values. The values of Ai
t, c

i
t, h

i
t, and bit are known and fall in the ranges [0.2, 1], [0.06, 0.3], [0.02, 0.1],

and [0.1, 0.5] respectively. As there are 260 products, the dynamic program in Section 3 becomes

intractable. Thus, we compare the TRO policy with the myopic policy. Based on the realized demands

in the previous three periods, we use sample average approximation to compute the expected value of

the objective function of Problem (18) for the myopic policy. Following a rolling-horizon principle, we

compute the resultant cumulative costs of the TRO and the myopic policies using the actual demands

from period 4 to period 12.
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Figure 9: Cumulative costs and their components.

Figure 9(a) shows the cumulative cost of each policy over time. The TRO policy significantly
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outperforms the myopic policy. The cumulative cost from period 4 to period 12 under the myopic

policy is 30,910.4, whereas the cumulative cost under the TRO policy is 21,644.2. Figure 9(b) shows

the components of these cumulative costs. The figure suggests that the system has a large backlog cost

under the myopic policy. In contrast, the TRO policy achieves a better balance between the backlog

and holding costs. This is consistent with Figure 8(b), which shows the total inventory level of all

the products under each policy. The TRO policy maintains a total inventory level above or near zero,

whereas the total inventory level under the myopic policy falls far below zero after some time.

6.2 Case study 2: A distributor of hardware parts

The second case study is conducted with a distributor of hardware parts in Singapore, which manages a

wide range of industrial products such as relay, switch, rotary encoder, programmable logic controller,

etc. Demands for these products are driven by both walk-in and project-based customers. Demands

of walk-in customers are quite steady in terms of frequency and quantity, whereas demands of project-

based customers only occur occasionally but each order requests a large quantity. Under the distributor’s

current experience-based replenishment policy, it constantly faces overstock and understock.
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Figure 10: Autocorrelation of total daily demand and distribution of lead times.

Since the demands of project-based customers are handled separately, they are removed from this

case study. As a result, we focus on 40 products that are mainly demanded by walk-in customers.

Figure 10(a) shows the autocorrelation of the total daily demand of the 40 products over time. Peaks

at every 5 time lags suggest a weekly seasonality pattern (due to 5 working days per week). Lead times
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of the 40 products vary between 5 to 31 days and the distribution is shown in Figure 10(b). Each

period corresponds to a day and we choose T = 33, which is two days more than the longest lead time.

The values of Ai
t, c

i
t, h

i
t, and bit are given and fall in the ranges [3.2, 40.18], [0.6, 12.05], [0.2, 4.02], and

[2.2, 20.09] respectively.

Following the observation on Figure 10(a), we use historical data of the latest 9 weeks to predict

the products’ demands in each day of the following week. For example, the mean demand for product

i on Monday d̂iM of the following week is the average of actual demands for product i on Mondays in

the latest 9 weeks. We assume the demand for product i on Monday of the following week falls in the

range
[

max
{

0, d̂iM − 3σi
M

}

, d̂iM + 3σi
M

]

, where σi
M represents the sample standard deviation of actual

demands for product i on Mondays in the latest 9 weeks. Figure 11 compares the actual total demand

and the predicted total mean demand on Monday of each week.
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Figure 11: Demand forecast for Monday of each week.

To compare the TRO and the myopic policies, we use the first 9 weeks of historical data to estimate

the means and the bounds of demands for week 10. Following a rolling-horizon principle, we recompute

the policies every period and evaluate them using the actual demands. The cumulative cost of each

policy over 100 periods is shown in Figure 12(a). Again, the TRO policy significantly outperforms the

myopic policy. Figure 12(b) shows the components of their final cumulative costs. The two policies

result in similar ordering and backlog costs. Due to non-zero lead times of the products, both policies

maintain a substantial inventory level to avoid backlogs. However, the TRO policy results in a lower

inventory holding cost.
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Figure 12: Cumulative costs and their components.

7 Generalizations

Problem (7) can be generalized to handle more complex situations. We discuss two possibilities below.

7.1 Generalizing the cost target

In some situations, a company may have different budget plans for different periods. Furthermore, the

demands may vary significantly over time and the resultant cost may change substantially from one

period to another. Therefore, a single cost target for the entire planning horizon may not be sensible

in this kind of situations. We can generalize our formulation in Problem (7) by assuming that we have

a cost target τt in each period t ∈ T . We maximize the sizes of all the adjustable uncertainty sets by

maximizing γ, subject to the cost target constraint in each period t as follows:

γ∗ :=max γ (19a)

s.t.
∑

i∈P

(

Ai
tI
(

xit (dt−1)
)

+ citx
i
t (dt−1) + hit

(

yit+1

)+
+ bit

(

yit+1

)−
)

≤ τt, ∀dt−1 ∈ Dt−1(γ), t ∈ T ;

(19b)

∑

i∈P

xit (dt−1) ≤ x̄t, ∀dt−1 ∈ Dt−1(γ), t ∈ T ; (19c)

xit (dt−1) ∈ Nt, ∀dt−1 ∈ Dt−1(γ), i ∈ P, t ∈ T ; (19d)

xit (dt−1) ≥ 0, ∀dt−1 ∈ Dt−1(γ), i ∈ P, t ∈ T ; (19e)

0 ≤ γ ≤ 1. (19f)
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Note that there are T budget constraints in (19b). Instead of having a single budget constraint

for the entire planning horizon such as Constraint (7b), we require that the total cost in each period t

should not exceed the cost target τt in the above formulation. Problem (19) can be solved using a similar

approximation procedure described in Section 4.2, and Theorem 1 continues to hold. Thus, Problem (19)

can be approximated by Problem (14) with its first constraint replaced by
∑

i∈P

(

Ai
tI
(

xit
)

+ citx
i
t + θit

)

≤

τt, for all t ∈ T . As long as the length of planning horizon T is not too large, the computational time

to find the ordering policy xit for all i ∈ P, t ∈ T , will not increase significantly.

7.2 Generalizing the uncertainty set parameter

If the demand distributions vary significantly across products and periods, the same value of γ may

represent different levels of robustness. For example, if d̃it follows a normal distribution with low variance,

then the adjustable uncertainty set Di
t(γ) captures most demand realizations even with a low value of

γ. In contrast, if d̃it follows a distribution with low probability around the median but high probability

near the ends of its support set (such as Beta(0.3, 0.3) in Figure 5(b)), we may need a high value of γ

to ensure the robustness.

To make the level of robustness more consistent across different products and periods, we denote an

uncertainty set parameter as γit ∈ [0, 1] and define the corresponding adjustable uncertainty set as

Di
t

(

γit
)

:=
{

dit | d̂it − γit z
i
t ≤ dit ≤ d̂it + γit z̄

i
t

}

, (20)

for all i ∈ P, t ∈ T . We change the objective function of Problem (7) to
∑

i∈P,t∈T ǫitγ
i
t , where ǫ

i
t ∈ (0, 1)

represents the weight of γit and
∑

i∈P,t∈T ǫit = 1. We set ǫit to a large value if d̃it follows a distribution

with high probability around the median (such as a normal distribution). We set ǫit to a small value if

d̃it follows a distribution with low probability around the median, but high probability near the ends of

its support set (such as Beta(0.3, 0.3)). Likewise, the resultant problem can be solved using a similar

approximation procedure described in Section 4.2, and Theorem 1 remains valid.

8 Conclusion

Traditional methods based on dynamic programming or stochastic programming for inventory manage-

ment usually require full information of demand distributions. Unfortunately, precise demand distribu-

tions are often not available in practice. As a result, the traditional methods may perform poorly in
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practice when they are given inaccurate demand distributions. Furthermore, these methods often be-

come intractable for a problem with multiple products over multiple periods considering fixed ordering

costs and lead times.

To address the above issues, we propose an inventory management approach based on target-oriented

robust optimization (TRO). This approach determines an ordering policy that meets a pre-specified cost

target, while it accommodates demand variability as much as possible. The proposed approach has three

main merits. First, it only makes use of a reference value (such as the mean or median) and the bounds

of each product’s demand in each period, making it suitable to handle distributional ambiguity of

demands. Second, the proposed approach is well scalable and the multi-product, multi-period problem

can be solved in a reasonable amount of time. Third, by tuning the cost target, a balance between the

expected cost of the problem and the associated risk (cost variance) is achievable.

To reduce computation burden, we focus on a static rule under the TRO approach. This static rule

(also called the TRO policy) is computationally more amiable compared to other complicated decision

rules. We also prove that the static rule is optimal for an approximation of the original TRO formulation

for the problem.

We first consider a special case with a single product over one period to gain some insights. We

study the TRO policy in detail and discover that the order quantity is a piece-wise linear function of the

inventory level (see Figure 1). If the inventory level is lower than a certain threshold value, the order

quantity depends on both the inventory level and the optimal objective of the TRO formulation (γ∗). If

the inventory level exceeds the threshold value, the ordering policy becomes an order-up-to policy (see

Equations (16)-(17)).

The performance of the TRO policy is then benchmarked against dynamic programming (the DP

policy) in a multi-product, single-period problem. Our numerical results suggest that the costs of the

TRO policy are very close to that of the DP policy. This is surprising because the TRO policy only

makes use of limited demand information (means and bounds). In contrast, the optimal DP policy

requires full information of demand distributions. Furthermore, the TRO policy achieves a significantly

smaller variance of costs by having only a slightly higher expected cost (see the bottom-left corner

of Figure 2). More importantly, if the DP policy assumes inaccurate demand distributions, the TRO

policy may significantly outperform the DP policy in both expected value and variance of costs (see the

top-right corner of Figure 2). We observe similar results in a multi-product, multi-period problem.

A critical parameter of the TRO policy is the target coefficient, which determines the pre-specified

cost target. To find an optimal value of this parameter, we conduct an experiment based on a single-
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product, multi-period problem. Under various cost parameter settings, our numerical results suggest

that the best target coefficient falls in the range [0.5, 0.8].

One advantage of the TRO policy is its robustness against distributional ambiguity. We compare

the performance of the TRO and DP policies over a family of beta distributions with the mean and

bounds fixed. Our numerical experiments suggest that even if the demand distributions are close to

that assumed by the DP policy, the TRO policy generally leads to a smaller variance of costs than the

DP policy (see the bottom-left corner of Figure 5(a)). If the demand distributions are very different

from that assumed by the DP policy, the TRO policy outperforms the DP policy in both expected cost

and variance (see the top-right corner of Figure 5(a)).

We are confident that the TRO policy can handle practical problems with realistic sizes. We have

tested the TRO policy in two case studies using data from very different industries. The case studies

suggest that the TRO policy can be computed in a reasonable amount of time for monthly and daily

ordering decisions, and it generates substantial savings over a myopic policy.

It is worth noting that the performance of the TRO policy can be improved if we know the demand

distributions. Suppose d̃it has a cumulative distribution function P i
t (·), we can define an adjustable uncer-

tainty set for d̃it asD
i
t(γ) :=

{

zit(γ) ≤ dit ≤ z̄it(γ)
}

, where zit(γ) := inf
{

dit : P i
t

(

dit
)

≥ 0.5 − γ/2, dit ≥ dit
}

and z̄it(γ) := sup
{

dit : P i
t

(

dit
)

≤ 0.5 + γ/2, dit ≤ d̄it
}

. In this case, Problem (7) can be solved by a binary

search over γ ∈ [0, 1].
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A Proof of Theorem 2

Proof. Since P = 1 and T = 1, Problem (8) is equivalent to Problem (7) and both reduce to

γ∗ = γ′′ = max γ (21a)

s.t. cx+ θ ≤ τ ; (21b)

θ ≥ h
(

y − d̂+ (x+ γz)
)

; (21c)

θ ≥ −b
(

y − d̂+ (x− γz̄)
)

; (21d)

x ≥ 0; (21e)

0 ≤ γ ≤ 1; (21f)

which is equivalent to Problem (14). Therefore, we have γ† = γ∗ in this special case. There are two

cases for the solution to Problem (21): (a) γ∗ = 1 and (b) 0 ≤ γ∗ < 1.

(a) γ∗ = 1. As described at the end of Section 4.1, the optimal solution x in this case can be determined

by solving the following problem:

min cx+ θ (22a)

s.t. θ ≥ h
(

y − d̂+ (x+ z)
)

; (22b)

θ ≥ −b
(

y − d̂+ (x− z̄)
)

; (22c)

x ≥ 0. (22d)

Recall that c − b < 0, otherwise no orders should be placed all the time. Define g1(x) := (h +

c)x + h
(

y − d̂+ z
)

, g2(x) := (c − b)x − b
(

y − d̂− z̄
)

, and g(x) := max{g1(x), g2(x)}. Problem

(22) is equivalent to min{g(x)|x ≥ 0}. According to the initial inventory level y, there are two

possible cases for the solution of this problem:

(a.1) If the initial inventory level y is sufficiently low such that g1(0) ≤ g2(0), then the functions

g1(x) and g2(x) intersect with each other at some x ≥ 0 as shown in Figure 13(a). In this

case, the minimum of g(x) occurs at xopt where g1(xopt) = g2(xopt), which implies

xopt = d̂+
bz̄ − hz

h+ b
− y = Y (1)− y. (23)

Recall that Equation (23) holds if g(xopt) ≤ τ and g1(0) ≤ g2(0), which imply

y ≥ ya and y ≤ Y (1), (24)
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Figure 13: Two cases for γ∗ = 1.

respectively.

(a.2) If the initial inventory level y is sufficiently high such that g1(0) > g2(0), then the functions

g1(x) and g2(x) intersect with each other at some x < 0 as shown in Figure 13(b). In this

case,

xopt = 0, (25)

and min{g(x)|x ≥ 0} = g1(0). The order quantity xopt = 0 is optimal if g1(0) ≤ τ and

g1(0) ≥ g2(0), which imply

y ≥ Y (1) and y ≤ yb. (26)

(b) 0 ≤ γ∗ < 1. In this case, Constraint (21b) is always binding because γ∗ can no longer be increased.

Thus, given γ∗ < 1 the optimal solution x to Problem (21) can also be obtained by solving the

following problem:

min cx+ θ (27a)

s.t. θ ≥ h
(

y − d̂+ (x+ γ∗z)
)

; (27b)

θ ≥ −b
(

y − d̂+ (x− γ∗z̄)
)

; (27c)

x ≥ 0. (27d)

Note that Problem (27) has the same structure as Problem (22) and its solution can be derived

in a similar procedure:
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(b.1) If y is sufficiently small such that h
(

y − d̂+ γ∗z
)

≤ −b
(

y − d̂− γ∗z̄
)

, which is equivalent

to y ≤ Y (γ∗), the optimal order quantity is

xopt = d̂+ γ∗
bz̄ − hz

h+ b
− y = Y (γ∗)− y. (28)

Since Constraint (21b) is binding, we have (h+ c)xopt + h(y − d̂+ γ∗z) = τ . By substituting

xopt into this equation, we have

γ∗ =
(

τ + cy − cd̂
)

/

(

c+ h

b+ h
bz̄ +

b− c

b+ h
hz

)

. (29)

Together with 0 ≤ γ∗ < 1, Equation (29) yields

y ≤ y < ya. (30)

(b.2) If y is sufficiently large such that h
(

y − d̂+ γ∗z
)

> −b
(

y − d̂− γ∗z̄
)

, which is equivalent

to y > Y (γ∗), we have xopt = 0. Furthermore, τ = h
(

y − d̂+ γ∗z
)

, which implies

γ∗ =
1

hz

(

τ − hy + hd̂
)

. (31)

Together with 0 ≤ γ∗ < 1, Equation (31) yields

yb < y ≤ ȳ. (32)

Combining Cases (a) and (b), the optimal objective value and replenishment policy for the single-

product, single-period problem can be summarized as Equations (16) and (17) respectively.
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