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Privacy-Preserving Outsourced Calculation of
Floating Point Numbers

Ximeng Liu, Member, IEEE, Robert H. Deng, Fellow, IEEE, Wenxiu Ding, Rongxing Lu, Senior Member, IEEE,
Baodong Qin

Abstract—In this paper, we propose a framework for privacy-
preserving outsourced calculation of floating point numbers,
which we refer to as POCF. Using POCF, a user can securely
outsource the storing and processing of floating point numbers
to a cloud server while preserving the privacy of the (original)
data and the computed results. Specifically, we first present
privacy-preserving integer processing protocols for common in-
teger operations. We then present an approach to outsourcing
floating point numbers for storage in privacy-preserving way,
and securely processing commonly used floating point number
operations on-the-fly. We prove that the proposed POCF achieves
the goal of floating point number processing without privacy
leakage to unauthorized parties, and demonstrate the utility and
the efficiency of POCF using simulations.

Index Terms—Privacy-Preserving; Homomorphic Encryption;
Outsourced Computation; Floating Point Numbers.

I. INTRODUCTION

CLOUD computing, with its immense computing and stor-
age power, is a promising solution to store and process

data for individuals as well as organizations. Cloud computing
has been increasingly used in various domains such as Internet
of Things (IoT) [1], e-commerce [2], and e-healthcare [3].
The U.S. Federal Government cloud computing market enters
into double-digit growth phase - at about 16.2% compounded
annual growth rate over the period of 2015-2020, with annual
federal cloud computing market to hit $10 billion landmark
by 2020 [4]. Forrester forecasts that the global market for
cloud computing will grow from $40.7 billion in 2011 to more
than $241 billion in 2020 [5]. It is, therefore, unsurprising that
research labs, such as [6], [7], dedicated to cloud computing
research have also been set up.

Real numbers are the most common numerical data used in
measuring quantities that we use every day. In an e-heathcare
cloud system, body sensors are used to monitor patients’
conditions, such as heart rates, blood glucoses, insulin, and C-
peptide levels. These data (always contain real numbers) are
sent to the cloud for storage and processing because sensors
are invariably resource-constrained. However, patients’ data
are highly sensitive and must be protected in accordance
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with regulations such as Health Insurance Portability and
Accountability Act (HIPPA). Thus, the security and privacy of
personal health information in cloud computing is considered
an important issue. Moreover, computation on the outsourced
data is required in many applications. In the e-heathcare
cloud example, some decision making model can be used to
automatically check a patients’ health status. The parameters
of the decision making model frequently contain real numbers
(e.g., the probability used in the naı̈ve Bayes model [8]), so
do the outsourced personal health data (e. g., blood glucose,
insulin, and C-peptide levels are often constructed as non-
integer, see the recent study involving 36,745 subjects aged
between 40 and 69 years old in the Japan Public Health Center-
based prospective study [9]).

However, cryptosystems are generally designed to protect
only integer values and computations on integers envivnately
affect the accuracy of data and decision making results, and
may even lead to wrong diagnosis of a patient’s illness. Float-
ing point numbers (FPNs), ubiquitous in computer systems and
languages, are the formulaic representations that approximate
real numbers so as to support a trade-off between range and
precision. How to achieve floating point number calculation
without compromising the privacy of the outsourced data
becomes a challenging issue.

In this paper, we seek to address the above-mentioned
challenge by presenting a framework for Privacy-preserving
Outsourced Calculation of Floating Point Numbers (POCF).
Different from the exiting secure FPN calculation frameworks
[10], [11], [12], [13], [14], [15], we regard the challenge issues
of our POCF to be five-fold, namely:
• Secure Centralized Floating Point Number Storage:

Floating point numbers are encrypted and outsourced to
central public cloud servers without unnecessary plain-
text expansion. Data splitting method, which is used to
generate extra dummy messages [10], [11], [12], [13],
[14], is not required in POCF. Instead, all the FPNs are
centrally stored in the cloud platform with specific format
and constant-length.

• Secure Floating Point Number Computation: Our POCF
can securely achieve the commonly used outsourced FPN
operations on-the-fly. Both the original FPNs and the
final computed results are not leaked to any unauthorized
parties, including curious-but-honest insiders, during the
secure FPN processing.

• Efficient Exception Handling: Our framework is able to
handle FPN exceptions (such as overflow and underflow)
from storage to processing. No complex pre-computation
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is needed in order to handle exceptions and no extra
component is required to store any exception information
for encrypted FPNs in our POCF.

• Supporting Iterative Calculations: In order to support
unlimited iterative calculations, both the original and the
computed FPNs in POFC maintain the same format such
that the output of the previous secure FPN computations
can be directly used as the input for the next secure FPN
computation.

• Ease of Use: POFC does not require its clients to perform
any complex pre-processing to outsource FPNs to the
cloud - a client only needs to encrypt-and-outsource his
FPNs. Moreover, the interaction between clients and the
cloud server is kept to the minimal - a client only needs to
send a computation query to the cloud server, and waits
for the cloud to reply with the result of the computation
in a single round.

The remainder of this paper is organized as follows: In
Section II, we describe some preliminaries required for under-
standing of our proposed POCF. In Section III, we formalize
the system model, state the problem, and show the attacker
model. Then, we present Paillier cryptosystem with partial
decryption (PCPD) and privacy-preserving integer processing
protocols in Section IV, followed by secure floating point
number storage and calculation protocols in Section V. The
security analysis and performance evaluation are presented in
Sections VI and VII, respectively. Related work is discussed
in Section VIII. Section IX concludes this paper.

II. PRELIMINARY

In this section, we review the definitions of Additive Ho-
momorphic Cryptosystem (AHC) and Floating Point Numbers
(FPNs), which serve as the basic conception for constructing
the proposed POCF.

A. Notations

Throughout the paper, we use ‖x‖ to denote bit length of
x, and |x| to represent the absolute value of x. Moreover, we
use pka and ska to denote the public and private keys of a
Request User (RU) a, sk(1)

a , sk
(2)
a to denote the partial private

keys that form ska, [x]pka to denote the encrypted data of
x using pka, and Dska(·) to denote the decryption algorithm
using ska. For simplicity, if all ciphertexts belong to a specific
RU, say a, we will simply use [x] instead of [x]pka .

B. Additive Homomorphic Cryptosystem (AHC)

Suppose that [m1] and [m2] are two additive homomor-
phic ciphertexts under the same public key pk in an addi-
tive homomorphic cryptosystem. The additive homomorphic
cryptosystem (e.g. Paillier cryptosystem [16] and Benaloh
cryptosystem [17]) has the additive homomorphism property:

Dsk([m1] · [m2]) = m1 +m2.

C. Floating Point Numbers (FPNs)

Here, we first define the floating-point format used in our
paper. We say a floating-point format is characterized by four
integers: 1) a radix (or base) β ≥ 2; 2) a precision η ≥ 2
(roughly speaking, η is the number of “significant digits” of
the representation); 3) two extremal exponents emin and emax
such that emin < 0 < emax. A finite floating-point number in
such a format is a number for which there exists at least one
representation triplet (s,m, e), such that,

x = (−1)s ·m · βe−η+1

• s ∈ {0, 1} is the sign of x.
• m is an integer of absolute value less than or equal

to βη − 1. It is called the integral significand of the
representation of x;

• e is an integer such that emin ≤ e ≤ emax, called the
exponent of the representation of x.

Note that the result of an operation (or function) on floating-
point numbers is not exactly representable in the floating-point
system being used, so it has to be rounded. For instance,
the four rounding modes that appear in the IEEE 754-2008
standard [18] are:

Round toward −∞: RD(x) the largest floating-point num-
ber (possibly −∞) less than or equal to x;

Round toward +∞: RU(x) is the smallest floating-point
number (possibly +∞) greater than or equal to x;

Round toward zero: RZ(x) is the closest floating-point
number to x that is no greater in magnitude than x.

Round to nearest: RN(x) is the floating-point number that
is the closest to x.

x y

x
x

x

x
y
y

y

y

Fig. 1. The four rounding modes

We illustrate these four rounding modes in Fig. 1. Without
loss of generality, we use round toward zero mode in our
POCF.

III. SYSTEM MODEL & PRIVACY REQUIREMENT

In this section, we formalize the POCF system model,
outline the problem statement, and define the attack model.

A. System Model

In our system, we mainly focus on how the cloud server
responds to user request in a privacy-preserving manner. The
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system comprises a Key Generation Center (KGC), a Cloud
Platform (CP), a Computation Service Provider (CSP), and
Request Users (RUs) - see Fig. 2.
• KGC: The trusted KGC is tasked with the distribution

and management of the private keys in the system.
• RUs: Generally, a RU uses its public key to encrypt some

data, and then outsources the encrypted data to a CP. The
RU can also request a CP to perform some calculations
over the outsourced data.

• CP: A CP has ‘unlimited’ data storage space, and stores
and manages data outsourced from all registered RUs. A
CP also stores all the intermediate and final results in
encrypted form. Furthermore, a CP is able to perform
certain calculations over encrypted data.

• CSP: A CSP provides online computation services to
users. For example, a CSP can process encrypted data,
such as multiplication of plaintext over the encrypted
data. Also, the CSP is able to partially decrypt ciphertexts
sent by the CP, perform certain calculations over the par-
tially decrypted data, and then re-encrypt the calculated
results.

Fig. 2. System model under consideration

B. Problem Statement

Consider a database T which contains α records xi (1 ≤
i ≤ α), where xi is a floating point number1 belonging to a
RU (e.g. insulin level). Data should be encrypted prior to being
outsourced to a CP for storage. The RU can launch a query
to the CP to obtain some statistic information about T at will.
For example, the RU can query for the mean, x̄ =

∑α
i=1 xi/α,

and the variance, dj =
∑α
i=1(xi − x̄)2/α, as well as per-

forming self-defined calculations, such as some sums (e.g.
X =

∑α
i=1 xi) and multiplications (e.g. X ′ =

∏α
i=1 xi). As

xi is a FPN and needs to be encrypted during the calculation,
we have the following challenges:

1The non-numeric data can be stored in our POCF. A group of non-numeric
data can be encrypted and stored simultaneously in order to reduce the storage
overhead (see Section V-C).

1) Traditional encryption method can only encrypt positive
integers and zero over a finite field. Therefore, we need to be
able to store FPNs without compromising the privacy of the
data owner (RU).

2) Before constructing FPN calculation, the encrypted inte-
ger calculation protocols need to been inbuilt first to support
for commonly used operations. For example, integer number
operations, such as multiplications, comparisons, and modular,
should be achievable by operating on the encrypted integer
numbers.

3) In order to support outsourced FPN processing, the
basic operations on FPNs (e.g. addition, multiplication, and
comparison between encrypted FPNs) need to be constructed.

C. Attack Model

In our attack model, RUs, CP and CSP are curious-but-
honest parties, which strictly follow the protocol, but are also
interested to learn data belonging to other parties. Therefore,
we introduce an active adversary A∗ in our model. The goal
of A∗ is to decrypt the challenge RU’s ciphertext with the
following capabilities:

1) A∗ may eavesdrop on all communication links to obtain
encrypted data.

2) A∗ may compromise the CP to guess plaintext values
of all ciphertexts outsourced from the challenge RU, and all
the ciphertexts sent from the CSP by executing an interactive
protocol.

3) A∗ may compromise the CSP to guess plaintext values
of all ciphertexts sent from the CP by executing an interactive
protocol.

4) A∗ may compromise RUs, with the exception of the
challenge RU, to get access to their decryption capabilities,
and try to guess all plaintexts belonging to the challenge RU.

The adversary A∗, however, is restricted from compromis-
ing (1) both the CSP and the CP concurrently, and (2) the
challenge RU. We remark that such restrictions are typical
in adversary models used in cryptographic protocols (see the
review of adversary models in [19]).

IV. CRYPTO PRIMITIVE AND BASIC PRIVACY PRESERVING
INTEGER CALCULATION PROTOCOLS

In order to achieve the secure outsourced storage, we will
firstly design a new Paillier based Cryptosystem. Then, the
basic privacy-preserving integer calculation protocols will be
designed as the basis of constructing secure floating point
numbers calculation in Section V.

A. Paillier Cryptosystem with Partial Decryption (PCPD)

In order to realize POCF, the Paillier-based cryptosys-
tem [20] appears to be a suitable solution for our system at
first glance. However, the RU is not able to directly send the
private key to the servers and the servers can use the private
key to get the corresponding user’s data squarely. Therefore,
we adapt the Paillier-based cryptosystem to separate its private
key into different shares in order to reduce the leaking risk,
and we refer to this new system the Paillier Cryptosystem with
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Partial Decryption (PCPD). PCPD consists of the following
algorithms:

KeyGen: Let k be the security parameter and p, q be two
large prime numbers, where ‖p‖ = ‖q‖ = k. We then compute
N = pq and λ = (p−1)(q−1)/2,2 define a function L(x) =
x−1
N , and choose a generator g of order N . Same to [16], we

choose g = 1 + N , as 1 + N is just an element of order N .
The public key is then pk = N , and the corresponding private
key is sk = λ.

Encryption (Enc): Given a message m ∈ ZN , we choose
a random number r ∈ Z∗N . The ciphertext is generated as

[m] = gm · rN mod N2 = (1 +mN) · rN mod N2.

Decryption (Dec): To decrypt [m] using the decryption
algorithm Dsk(·) and the corresponding private key sk = λ,
we need to compute

[m]λ mod N2 = rλN (1+mNλ) mod N2 = (1+mNλ).

Since gcd(λ,N) = 1, m can be recovered as:

m = L([m]λ mod N2)λ−1 mod N.

Private Key Splitting (KeyS): The private key sk = λ is
split into two parts, denoted as sk(1) = λ1 and sk(2) = λ2,
s.t., λ1 + λ2 ≡ 0 mod λ and λ1 + λ2 ≡ 1 mod N holding
at the same time (see Section VI-A1).

Partial decryption Step 1 (PDec1): Once [m] is received,
the PDec1 algorithm PDsk(1)(·) can be run as follows:

Using partial private key sk(1) = λ1, the partial decrypted
ciphertext CT (1) is calculated as:

CT (1) = [m]
λ1 = rλ1N (1 +mNλ1) mod N2.

Partial decryption Step 2 (PDec2): Once CT (1) and [m]
are received, the PDec2 algorithm PDsk(2)(CT

(1); [m]) can
be run to recover the original message m.

CT (2) = [m]
λ2 = rλ2N (1 +mNλ2) mod N2.

The algorithm computes T ′′ = CT (1) · CT (2) mod N2, and
then calculates m = L(T ′′).

Ciphertext Refresh (CR): Once [m] is received, the CR
algorithm can refresh the ciphertext without changing the
original message m, by randomly choosing r′ ∈ Z∗N and
calculating

[m]′ = [m] · r′N = (r · r′)N · (1 +mN) mod N2.

Given m1,m2 ∈ ZN , our PCPD has the following proper-
ties

[m1] · [m2] = (1 + (m1 +m2) ·N) · (r1r2)N mod N2

= [m1 +m2].

[m1]N−1 = (1 + (N − 1)m1 ·N)) · rN−1·N mod N2

= [−m1].

2In the original Paillier cryptosystem, the decryption key λ is chosen as
lcm(p− 1, q − 1). We choose λ = (p− 1)(q − 1)/2 as we need to sample
the partial decryption without the knowledage of λ in the security proof of
PCPD scheme (see Theorem 1).

The KGC generates the private key sk and public key pk
for a RU, and randomly divides sk into two partial private
keys sk(1) and sk(2) before sending sk(1) and pk to the CP,
and sk(2) and pk to the CSP. The RU can encrypt data using
pk and outsource the ciphertexts to the CP for storage.

After introducing the underlying algorithms in PCPD, we
will now present the secure sub-protocols for processing
integers. Before constructing, we assume that both CP and
CSP will be involved in the following integer processing sub-
protocols. Unless otherwise specified, the input integers x, y
involved in the following sub-protocols can be positive, zero
and negative3, and restricted in the range of [−R1, R1], where
‖R1‖ < ‖N‖/4−1. If we need a larger plaintext range, we can
simply use the larger N . A larger N implies a broader plaintext
range, and therefore, a higher level of security. However, this
will affect the efficiency of the PCPD (See Fig. 3(a)).

B. Revised Secure Multiplication Protocol (RSM)

As our PCPD can only support additive homomorphism, we
are unable to achieve multiplication between two plaintexts. In
order to allow plaintext multiplication, we revise the original
Secure Multiplication (SM) protocol [21], and present the re-
vised protocol, Revised Secure Multiplication Protocol (RSM).
When the CP is given two encrypted data [x] and [y] as input,
the RSM will securely compute [x · y] as follows:

Step-1(@CP): The CP selects two random numbers
rx, ry ∈ Z∗N , calculates X = [x] · [rx], Y = [y] · [ry],
X1 = PDsk(1)(X), and Y1 = PDsk(1)(Y ), sends X ,Y , X1

and Y1 to the CSP.
Step-2(@CSP): The CSP calculates

h = PDsk(2)(X;X1) · PDsk(2)(Y ;Y1)

by using the other partially private key sk(2). Then, the CSP
encrypts h using pk, denoted them as H = [h], and sends H
to the CP. It can be shown easily that h = (x+ rx)(y + ry).

Step-3(@CP): Once h′ is received, the CP first computes
S1 = [rx · ry]N−1, S2 = [x]N−ry and S3 = [y]N−rx . Then,
the CP uses the following formula:

H · S1 · S2 · S3 = [h− ry · x− rx · y − rx · ry] = [x · y].

Therefore, both CP and CSP can jointly compute [x · y].

C. Secure Exclusive OR calculation Protocol (SXOR)

Given two encrypted data [x] and [y] (x, y ∈ {0, 1}), the
goal of SXOR protocol is to get the encrypted bit XOR result
[f ]. The overall steps of SXOR protocol are jointly calculated
as follows:

[f∗1 ]← RSM([1]·([x])N−1; [y]); [f∗2 ]← RSM([x]; [1]·([y])N−1).

[f ] = [u1 ⊕ u2] = [f∗1 ] · [f∗2 ].

Notice that if f = 0, then x = y. Otherwise, x 6= y.

3In PCPD, a number with interval (0, N/2] represents as positive number,
while a number with interval (N/2, N) represents as negative number.

https://www.researchgate.net/publication/260992755_k-Nearest_Neighbor_Classification_over_Semantically_Secure_Encrypted_Relational_Data?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
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D. Secure Less Than Protocol (SLT)

Given two encrypted numbers [x] and [y], the goal of
SLT protocol is to get the encrypted data [u∗] to show the
relationship between the plaintext of the two encrypted data,
i.e., x ≥ y or x < y. The overall steps of SLT protocol are
shown as follows:

Step-1: (1) CP and CSP jointly calculates

[x1] = ([x])2 · [1] = [2x+ 1]; [y1] = ([y])2 = [2y].4

(2) CP flips a coin s and chooses a random number r (r 6=
0), s.t. ‖r‖ < ‖N‖/4, if s = 1, calculates

[l] = ([x1] · ([y1])N−1)r = [r(x1 − y1)].

If s = 0, calculates

[l] = ([y1] · ([x1])N−1)r = [r(y1 − x1)].

(3) CP uses sk(1) to calculate K = PDsk(1)([l]), and sends
the result to CSP.

Step-2(@CSP): Use sk(2) to decrypt K, and gets l.
If ‖l‖ > ‖N‖/2, CSP denotes u′ = 1 and denotes u′ = 0

otherwise. Then CSP uses pk to encrypt u′, and sends [u′]
back to CP.

Step-3(@CP): Once [u′] is received, CP computes as fol-
lows: (1) if s = 1, CP denotes [U ] = CR([u′]). If s = 0, CP
computes [U ] = [1] · ([u′])N−1 = [1− u′].

Notice that if u∗ = 0, it shows that x ≥ y. If u∗ = 1, it
shows that x < y.

E. Secure Equivalent Testing Protocol (SEQ)

Given two encrypted data [x] and [y], the goal of SEQ
protocol is to get the encrypted result [f ] to show whether the
plaintexts of the two encrypted data are equivalent, i.e., x = y.
The overall steps of SEQ protocol are shown as follows:

[u1]← SLT([x], [y]); [u2]← SLT([y], [x]);

[f ] = [u1 ⊕ u2] = SXOR([u1]; [u2]).

Notice that if f = 0, then x = y. Otherwise, x 6= y.

F. Secure Exponent Calculation (SEXP)

Given a public number x and an encrypted number [y] (x >
0, y ≥ 0), the SEXP protocol will provide the encrypted data
[U ], s.t., U = xy .5 The SEXP is described as follows:

Step-1(@CP): (1) The CP chooses a random number r ∈
Z∗N and computes

[y1] = [y] · [r] = [y + r]; S = (xr)−1 mod N.

(2) Since the CP knows sk(1), the CP can compute Y =
PDsk(1)([y1]), prior to sending Y and [y1] to the CSP.

Step-2(@CSP): The CSP will decrypt Y using sk(2), and
obtain y1. Then, the CSP calculates h = xy1 , encrypts h using

4The orignial data x and y needs to be transformed into x1 and x2, in
order to avoid showing the equivalent relationship to CSP. For example, if
x = y = 6, we will obtain x1 = 13 and y1 = 12 after the transformation,
s.t., x1 6= y1.

5If we want to calculate U = xy , we must make a restriction, s.t. y is
relative small number, i.e., xy < N . If we want to calculate xy mod N ,
there is no above restriction.

pk, denoted them as H = [h], and sends H to the CP. It can
be easily found that h = xy+r mod N .

Step-3(@CP): Once [h] is received, the CP gains [xy] as
follows: [U ] = [h]S = [xy+r · (xr)−1] = [xy].

G. Secure Inverse Calculation (SINV)

Given an encrypted number [x] (x 6= 0), the SEXP protocol
outputs an encrypted data [U ] such that U = x−1 mod N .
The SINV is described as follows:

Step-1(@CP): (1) The CP chooses a random number r ∈
Z∗N and computes [x1] = [x]r.

(2) Since the CP knows sk(1), the CP can compute X =
PDsk(1)([x1]), prior to send Y and [x1] to the CSP.

Step-2(@CSP): The CSP will decrypt Y using sk(2), and
obtain x1. Then, the CSP calculates h = (x1)−1 mod N ,
encrypts h using pk, denoted them as H = [h], and sends H
to the CP.

Step-3(@CP): Once [h] is received, the CP gains [xy] as
follows [U ] = [h]r = [(x · r)−1 · (r)] = [x−1 mod N ].

H. Secure Modular Calculation (SMOD)

Given a public number p (p� N) and an encrypted number
[x], the goal of SMOD protocol is to calculate the encrypted
data [x mod p]. The SMOD is described as follows:

Step-1(@CP): (1) The CP chooses a random number r ∈
Z∗N and computes [x1] = [x] · [r] = [x+ r];

(2) the CP can compute X = PDsk(1)([x1]), prior to
sending X and [x1] to the CSP.

Step-2(@CSP): The CSP will decrypt X using sk(2), and
obtain x1. Then, the CSP calculates h = x1 mod p, encrypts
h using pk, denoted as H = [h], and sends H to the CP.

Step-3 : Once [h] is received, 1) the CP calculates

[U ] = [h] · [r mod p]N−1 = [(h mod p)− (r mod p)].6

2) CP and CSP jointly calculate [ku]← SLT([U ]; [0]);
3) CP calculates [T ] = [U ] · [ku]p = [U + p · ku].
Next, we will use the above protocols to achieve secure

outsourced FPN processing.

V. PRIVACY PRESERVING STORAGE AND CALCULATION
ON FLOATING POINT NUMBERS

If a RU wants to outsource the Floating Point Numbers
(FPNs) to the CP, two technical challenges need to be solved:
1) secure outsourced FPN storage, 2) secure calculation over
outsourced FPNs.

A. Storing Encrypted Floating Point Numbers

In our system, the same precision η and β are used in all
the data. Also, a FPN x = (−1)s · (m1m2 · · ·mη) · βe−η+1

can be represented as a triple (s,m, e − η + 1), where 1 ≤
m1 < β, 0 ≤ mi < β. For example, with η = 3 and β = 10,
a number −17 can be denoted as (−1)1 ·170 ·10−1 and stored
as (1, 170,−1), while 1 can be denoted as (−1)

0 · 100 · 10−2

6As (h− r) mod p = ((h mod p)− (r mod p)) mod p and −p <
U < p, we determine whether U is greater than 0 or not. If −p < U < 0,
we will calculate the final result as U+p, otherwise, we will calculate U+0.
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and stored as (0, 100,−2). In order to securely store the FPN,
our POCF will encrypt the FPN as triplet ([s], [m], [t]), where
s ∈ {0, 1}, m is η-digital number, (emin − η + 1) ≤ t ≤
(emax− η+ 1). Moreover, we define some special characters:
positive infinity (+∞), negative infinity (−∞), and not a
number (NaN) in TABLE I.

TABLE I
DEFINITION OF SPECIAL CHARACTERS

Datum Sign s Significand m Exponent e
+0 0 0 0
−0 1 0 0
+∞ 0 0 emax + 1
−∞ 1 0 emax + 1
NaN 0 nonzero emax + 1

The encrypted data are construct as 〈x〉 = ([sx], [mx], [tx]).
We first define two kinds of FPN operations “+” and “×”:

〈x〉+ 〈y〉 = ([sx] · [sy], [mx] · [my], [tx] · [ty])

= ([sx + sy], [mx +my], [tx + ty]),

[A]× 〈x〉 = ([sz], [mz], [tz]),

where [sz]← RSM([A], [sx]), [mz]← RSM([A], [mx]), [tz]←
RSM([A], [tx]). Notice that the FPN operation “×” has a higher
computation priority than the FPN operation “+”.

B. Secure Outsourced Floating Point Number Computation

Here, we introduce five protocols to achieve five different
secure floating point numbers computation in the outsourced
environment.

1) Secure Floating Point Numbers Equivalent Protocol
(FPEQ): Given two encrypted FPNs 〈x〉 = ([sx], [mx], [tx])
and 〈y〉 = ([sy], [my], [ty]), the goal of FPEQ protocol is to
calculate [f ], s.t., f = 0 when x = y, and f = 1 otherwise.
The idea is easy to follow: we only need to test sx

?
= sy ,

mx
?
= my , and tx

?
= ty . The overall steps of FPEQ protocol

are shown as follows:

[u1]← SXOR([sx]; [sy]); [u2]← SEQ([mx]; [my]);

[u3]← SEQ([tx], [ty]);[u4]← RSM([1][u1]N−1; [1][u2]N−1);

[u5]← RSM([1] · [u3]N−1;[u4]); [f ] = [1] · [u5]N−1.

2) Secure Floating Point Numbers Sorting with Absolute
Value (SFPS): Given two encrypted FPNs 〈x〉 and 〈y〉, the
goal of SFPS protocol is to generate 〈A〉 and 〈I〉, s.t., A =
max(|x|, |y|) and I = min(|x|, |y|). The overall steps of SFPS
protocol are shown as follows:

Step-1: use FPEQ and RSM protocols

[X]← FPEQ(〈x〉 ; 〈NaN〉); [Y ]← FPEQ(〈y〉 ; 〈NaN〉);

[N0]← RSM([X]; [Y ]);

to judge 〈x〉 or 〈y〉 is encrypted NaN or not. If x or y
is NaN, the protocol will use 〈NaN〉 to replace 〈x〉 and 〈y〉.
Otherwise, the value of x and y are not changed. It can be
achieved by constructing 〈x∗〉 = [N0]×〈x〉+[1−N0]×〈NaN〉
and 〈y∗〉 = [N0]× 〈y〉+ [1−N0]× 〈NaN〉.

Step-2: We execute [St] ← SEQ([tx], [ty]) to test whether
the exponents of x∗ and y∗ are equal. If tx 6= ty (St = 1), we
choose the number with bigger exponent as the larger FPN
number. The construction is easy: we first calculate [Lt] ←
SLT([tx], [ty]); Then, we construct the bigger encrypted value
as [St]× ([1−Lt]× 〈x∗〉+ [Lt]× 〈y∗〉). The smaller one is
constructed as [St]×([Lt]×〈x∗〉+[1−Lt]×〈y∗〉). If exponents
of x and y are equal, i.e., tx = ty , we choose the number with
bigger significand as the larger FPN number. The construction
is as follows: we first calculate [Lm] ← SLT([mx], [my]);
Then, we construct the bigger one as [1− St]× ([1−Lm]×
〈x∗〉+ [Lm]× 〈y∗〉). The smaller one is constructed as [1−
St]× ([Lm]× 〈x∗〉+ [1− Lm]× 〈y∗〉).

After these steps, the SFPS will output the maximum
encrypted FPN value 〈A〉 = [St]× ([1− Lt]× 〈x∗〉+ [Lt]×
〈y∗〉) + ([1− St]× ([1−Lm]× 〈x∗〉+ [Lm]× 〈y∗〉)) and the
minimum encrypted FPN value 〈I〉 = [St] × ([Lt] × 〈x∗〉 +
[1−Lt]×〈y∗〉) + [1−St]× ([Lm]×〈x∗〉+ [1−Lm]×〈y∗〉).

3) Secure Floating Point Numbers Addition (SFPA): Given
two encrypted FPNs 〈x〉 and 〈y〉, the goal of SFPA protocol
is to calculate the result 〈f∗〉, s.t., f∗ = x + y.7 The overall
steps of SFPA protocol are shown as follows:

Step-1: We first need to handle the special cases, if 〈x〉 or
〈y〉 is equal to 〈NaN〉, the final result is 〈NaN〉. Also, if one
is +∞ and the other is −∞, the result is still 〈NaN〉. This
can be achieved by following calculations:

[X1]← FPEQ(〈x〉 ; 〈NaN〉); [Y1]← FPEQ(〈y〉 ; 〈NaN〉);

[X2]← FPEQ(〈x〉 ; 〈+∞〉); [Y2]← FPEQ(〈y〉 ; 〈+∞〉);

[X3]← FPEQ(〈x〉 ; 〈−∞〉); [Y3]← FPEQ(〈y〉 ; 〈−∞〉);

[U1]← RSM([1] · [X2]N−1; [1] · [Y3]N−1); (1)

[U2]← RSM([1] · [Y2]N−1; [1] · [X3]N−1); (2)

[u∗1] = [1] · [X1]N−1[1] · [Y1]N−1 · [U1] · [U2] = [(1−X1) +
(1− Y1) + (1−X2)(1− Y3) + (1−X3)(1− Y2)].

Then, we execute [u∗] ← SLT([u∗1]; [1]) and construct
〈x∗〉 = [u∗] × 〈x〉 + [1 − u∗] × 〈NaN〉 and 〈y∗〉 = [u∗] ×
〈y〉+ [1− u∗]× 〈NaN〉.

Step-2: We execute SFPS to sort x∗ and y∗, i.e.,
(〈A〉 ; 〈I〉)← SFPS(〈x∗〉 ; 〈y∗〉). Then compute:

[t1] = [tA] · [tI ]N−1 = [tA − tI ]; [B1]← SEXP(10; [t1]);

[t2] = [tA] · [η] · [tI ]N−1 = [tA − tI + η];

[B2]← SEXP(10; [t2]);

[K1] = [mA · 10tA−tI ]← RSM([mA]; [B1]).

Furthermore, we need to execute
[sv]← SXOR([sA]; [sI ]); [SV ]← SEXP(−1; [sv]);

[SV ·mI ]← RSM([SV ]; [mI ]), and

[E1] = [mA · 10tA−tI + (−1)sv ·mI ] = [K1][SV ·mI ]. (3)

Step-3: Initial [uη−1] = [1]. Next, we judge how many
digits are the result significand, i.e., the length of E1. The
construction are is follows:

7Note that 〈x+ y〉 6= 〈x〉+ 〈y〉 (defined in Section V-A).
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for(j = η to 2η − 1) {calculate [E∗j ]← SMOD([E1]; 10j);

[T ∗j ] = [E1] · [E∗j ]N−1; [uj ]← SEQ([T ∗]; [0]).

[wj,j−1]← SXOR([uj ]; [uj−1]); [u′j ]← RSM([wj,j−1]; [j]); }

Finally, calculate [U ] =
∑2η−1
i=η [u′j ].

8

Step-4: Thereafter, we need to construct the result signifi-
cand with η digitals as follows: 1) execute

[t3] = [U ] · [η]N−1; [B3]← SEXP(10; [t3]); [Mf ] = [0];

2) for(j = 0 to η − 1) {calculate [B′j ]← SEQ([j]; [t3]);

[E3]← SMOD([E1]; 10j); [M ′j ] = [E1] · [E3]N−1;

[u′j ]← RSM([1] · [B′j ]N−1; [M ′j ]); [Mf ] = [Mf ] · [u′j ].}

3) CP calculate [tf ] = [tA] · [U ]; [s∗f ] = [sA].

[B4]← SINV([B3]); [mf ]← RSM([Mf ]; [B4]);

Step-5: Finally, we determine whether the result reaches
±∞ or not. If the answer is yes, we refresh the result into
±∞, otherwise, we use the calculated result. The construction
is as follows:

[uf ]← SLT([tf ]; [ηmax]); [m∗f ]← RSM([uf ]; [mf ]);

[t∗1]← RSM([uf ]; [tf ]); [t∗2]← RSM([1] · [uf ]N−1; [ηmax]);

[t∗f ] = [t∗1] · [t∗2] = [uf · tf + (1− uf ) · ηmax].

Step-6: We need to execute [ut]← SLT([t1]; [η]). If tA−TI ≥
η, we directly choose 〈A〉 as the final result. Otherwise,
we will choose 〈f∗〉 as the result. The FPN addition result
is 〈f ′〉 = ([1 − ut] × 〈A〉 + [ut] × 〈f∗〉), where 〈f∗〉 =
([s∗f ], [m∗f ], [t∗f ]). �

For secure FPN subtraction, we first need to change formula
(1)-(3) into (4)-(6), respectively,

[U1]← RSM([1] · [X2]N−1; [1] · [Y2]N−1); (4)

[U2]← RSM([1] · [X3]N−1; [1] · [Y3]N−1); (5)

[E1] = [mA · 10tA−tI − (−1)sv ·mI ] = [K1][SV ·mI ]. (6)

Moreover, to handle the special case that minuend is equal
to 0, the formula [s∗f ] = [sA] in Step-4-3 of SFPA is changed
into

[Z]← FPEQ(〈x〉 ; 〈0〉); [sA · Z]← RSM([sA]; [Z]);

[s∗f ] = [1] · [Z]N−1 · [sA · Z] = [1− Z + sA · Z].

4) Secure Floating Point Numbers Multiplication (SFPM):
Given two encrypted FPNs 〈x〉 and 〈y〉, the goal of SFPM
protocol is to calculate the result 〈f∗〉, s.t., f∗ = x · y.9 The
overall steps of SFPM protocol are shown as follows:

Step-1: it is similar to that of the Step-1 in SFPA. The
different is that we need to handle the special case that one
FPN is 0 and the other FPN is∞ (include both +∞ and −∞).
After this step, 〈x∗〉 and 〈y∗〉 are generated.

8Step-3 can be parallel executed which only takes one round communica-
tion.

9Note that 〈x · y〉 6= 〈x〉 × 〈y〉 (defined in Section V-A).

Step-2: Here, we calculate sign, significand and exponents
as follows:

[P1]← RSM([mx]; [my]); [s∗f ]← SXOR([sx]; [sy]).
Step-3: we judge the P1 is 2η − 1 or 2η digits.

[E∗]← SMOD([P1]; 102η−1); [T ∗] = [P1] · [E∗]N−1;

[U ]← SEQ([T ∗]; [0]).

If U = 1, it shows that P1 is 2η digits. Otherwise, it is 2η−1
digits.

Step-4: Thereafter, we need to construct the result signifi-
cand with η digitals as follows: 1) execute

[t3] = [U ] · [η − 1]; [B3]← SEXP(10; [t3]); [Mf ] = [0];

2) for(j = η − 1 to η) {calculate [B′j ]← SEQ([j]; [t3]);

[E3]← SMOD([E1]; 10j); [M ′j ] = [P1] · [E3]N−1;

[u′j ]← RSM([1] · [B′j ]N−1; [M ′j ]); [Mf ] = [Mf ] · [u′j ].}

3) CP calculate [tf ] = [tx] · [ty] · [η] · [U ]; [s∗f ] = [sA].

[B4]← SINV([B3]); [mf ]← RSM([Mf ]; [B4]);

Step-5: Finally, we determine whether the result reach ±∞
or not. This step is same to that of Step-5 in SFPA.

5) Secure Floating Point Numbers Comparison (SFPC):
Given two encrypted FPNs 〈x〉 and 〈y〉, the goal of SFPC
protocol is to calculate [f ], s.t., f reflects the relationship
between x and y. The overall steps of SFPC protocol are
shown as follows:

Step-1: We execute SFPS to sort x and y

(〈A〉 ; 〈I〉)← SFPS(〈x〉 ; 〈y〉).

Step-2: Here, we test whether x or y is equal to NaN or
not. If not, we test the sign symbols of x and y are different
or not. If the sign symbols of x and y are different, the FPN
with positive sign is the larger one. If the sign symbol of x
and y are the same, the one with larger absolute value is the
larger one if the sign of x and y are positive. Otherwise, the
one with larger absolute value is the small one if both sign of
x and y are negative. The construction is as follows:

[U ]← FPEQ(〈A〉 ; 〈NaN〉); [U1]← FPEQ(〈x〉 ; 〈A〉);

[sv]← SXOR([sx]; [sy]). [P1]← RSM([sx]; [U1]);

[P2]← RSM([1] · [U1]N−1; [1] · [sx]N−1) = [(1−U1)(1− sx)];

[E1]← RSM([P1] · [P2]; [1] · [sv]N−1);

[E2]← RSM([sv]; [1] · [sx]N−1);

[Ux] = [E1] · [E2] =[((1− U1)(1− sx) + U1sx)(1− sx ⊕ sy)

+ (sx ⊕ sy)(1− sx)];

[K1]← RSM([1] · [Ux]N−1; [1]N−1); [K2] = [K1] · [Ux];

[f ]← RSM([U ]; [K2]) = [U · (Ux + (1− Ux) · (−1))];

Notice that if f = 0, it shows that x or y is equal to NaN. If
f = 1, it shows that x ≥ y. If f = −1, it shows that x < y.

Remark: The format of PCPD ciphertext is used as the
output of SFPC and FPEQ protocol, i.e., output as [f ]. If the
floating pointing ciphertext format is needed, the output of
SFPC and FPEQ protocol can be stored as 〈f〉 = ([0], [f ], [0]).



8

C. The Overview of POCF

Here, we show how to achieve data outsourcing and com-
putation in the real environment with POCF.

1. Secure Data Outsourcing Phase: When some data are
needed to be outsourced, the RU should first decide whether
the data are numerical or not. If the RU wants to store numeric
message, he only need to transform the number into floating
pointing format, and encrypt the FPN by using the technique
introduced in section V-A. If the RU need to store the text
message, we need to encode each character into 8-bit or 16-
bit integer by using Unicode [22]. As calculation over the
text messages is not necessary, we can store a group of text
message at same time. For example, if N is 1024-bit length,
one ciphertext can handle at most 128 or 64 characters. The
RU can encrypt 384 or 192 characters at the same time by
adopting floating point format 〈x〉 (the sign, significand, and
exponent can be used for storage). After the encryption, all
the ciphertext will be sent to the CP for storage.

2. Secure Data Processing Phase: Once the outsourced cal-
culation is needed, the RU will send a query to the CP. Then,
the CP and CSP will jointly process the data according the
RU’s request. As all the data are stored in an encrypted form,
secure outsourced FPN computation technique in Section V-B
should be used10. After calculation, the computed results
are also stored as encrypted form in CP. Here, we give an
example to show how to use the above secure FPN operations
to construct the real-world applications (Single-layer Neural
Network, a.k.a., SNN). Suppose two encrypted FPN vectors
〈x〉 = (〈x1〉 , · · · , 〈xn〉) and 〈w〉 = (〈w1〉 , · · · , 〈wn〉), and an
encrypted FPN element 〈b〉 are stored in CP, where x1 · · · , xn
are called the input value, w1, · · · , wn are called the weight
values, and b is called bias. The goal is to get the result 〈c′〉,
where c′ = c (c is 0 or 1, without loss of generality, we denote
c = 1) if w ·x ≥ b. Otherwise, denote c′ = c ( c is the bitwise
NOT of c, i.e., c′ = 0). The overall steps can be listed as
follows:

1) Initial 〈A〉 = ([0], [0], [0]).
2) For i = 1, · · · , n, compute 〈Ai〉 ← SFPS(〈xi〉 ; 〈wi〉).

Then, calculate 〈A〉 ← SFPA(〈A〉 ; 〈Ai〉).
3) Calculate [B] ← SFPC(〈A〉 ; 〈b〉). Finally, it calculate

〈c′〉 = [B]×
〈

1
2

〉
+
〈

1
2

〉
. Note that the above FPN operations

‘+’ and ‘×’ are defined in Section V-A.
3. Secure Data Retrieval Phase: Suppose n encrypted data
〈x1〉 , · · · , 〈xn〉 are stored in the CP. If the k-th floating
point ciphertext is needed, the RU can directly send the
position information to CP for data retrieval. However, the
RU’s query information (which ciphertext is needed by RU)
will be exposed to CP. Instead, we adopt a different technique
to achieve secure floating point ciphertext retrieval: The RU
first sends the encrypted query [a1], · · · , [an] to the cloud,
where ak = 1 and ai = 0 (i = 1, · · · , n; i 6= k), i.e., 〈xk〉 is
the target ciphertext. Then, the CP will calculate as follows:

1) for i = 1, · · · , n, calculate 〈Ai〉 ← [ai]× 〈xi〉;

10Our POCF can be employed to protect the content of the data (including
the input data and its final output). Protecting the computation procedure is
not considered in the paper, i.e., the cloud server can still know which kinds
of calculation is needed by the RU. If this type of information needs to be
protected, we refer reader to [23], [24].

2) compute 〈A〉 ← 〈A1〉+ · · ·+ 〈An〉.
After that, 〈A〉 is sent back to RU for decryption.
The Necessity of CSP: As our PCPD is additive homo-

morphic encryption scheme, addition and multiplication homo-
morphic operations over encrypted data cannot be manipulated
in a single server at the same time (different from fully ho-
momorphic encryption scheme). Unfortunately, existing fully
homomorphic cryptosystem is rather inefficient, in term of
computation and storage overhead [25]. In the near future,
we can remove CSP from the system which will also result
in a more elegant system if an efficient fully homomorphic
cryptosystem exists.

VI. SECURITY ANALYSIS

In this section, we first analyze the security of the basic en-
cryption primitive and the sub-protocols, before demonstrating
the security of our POCF framework.

A. Analysis of PCPD

1) The existence of private key splitting: We randomly split
the private key sk = λ into two parts, denoted as λ1 and λ2,
s.t., both λ1 + λ2 ≡ 0 mod λ and λ1 + λ2 ≡ 1 mod N
hold. Since gcd(λ,N) = 1, there exists a unique s ∈ [1, λN ],
s.t. both s ≡ 0 mod λ and s ≡ 1 mod N hold According
to the Chinese remainder theorem [26], the value of s can be
represented as s = λ · (λ−1 mod N). Thus, we only need to
randomly choose λ1 ∈ [1, λN ] and set λ2 = s−λ1 mod λN .

2) The correctness of the partial decryption of PCPD:
Once CT (1) = rλ1N (1 + mNλ1) mod N2 is generated by
PDec1, both CT (1) and [m] are served as input of PDec2
algorithm. Then, CT (2) = rλ2N (1 + mNλ2) mod N2 is
computed, and calculates T ′′ as follows:

T ′′ = CT (1) · CT (2) mod N2

= r(λ1+λ2)N (1 +mN(λ1 + λ2)) mod N2 (7)

Due to λ1 + λ2 ≡ 0 mod λ, then r(λ1+λ2)N mod N2 = 1.
Because λ1 + λ2 ≡ 1 mod N (i.e., ∃ k, s.t., λ1 + λ2 =
1 + kN ), then we have (1 +mN(λ1 +λ2)) mod N2 = (1 +
mN(1+kN)) mod N2 = 1+mN. Finally, it calculates m =

L(T ′′) = L(1 + mN) = (1+mN)−1
N = m, which guarantees

the correctness.
3) Security of PCPD: In this section, we show that the

PCPD scheme is semantically secure against semi-trusted CSP
or CP even if it has one part of the decryption key of the
PCPD scheme. Here, we naturally assume that the CSP and
the CP can not collude with each other. Next, we define the
semantic security model for a public-key encryption scheme
that supports partial decryption, and then prove the security of
the PCPD scheme in this model.

Definition 1 (Semantic Security). Let E = (Gen,Enc,Dec)
be a public-key encryption scheme supporting partial de-
cryption. We say that E is semantically secure if for any
polynomial-time adversary A, it has negligible advantage (in
the security parameter) in the following experiment (between
the challenger and the adversary):

https://www.researchgate.net/publication/45928077_Privacy-Preserving_Access_of_Outsourced_Data_via_Oblivious_RAMSimulation?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
https://www.researchgate.net/publication/225620722_Oblivious_RAM_Revisited?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
https://www.researchgate.net/publication/224001315_The_Unicode_Standard_Version_20?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
https://www.researchgate.net/publication/304373854_Fully_homomorphic_encryption_with_relatively_small_key_and_ciphertext_sizes?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
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1) The challenger runs Gen(1k) to obtain a public key
and secret key pair (pk, sk), and then splits sk into two
parts (sk1, sk2). It sends the public key pk as well as
one part of the secret key, e.g., sk1 to the adversary A.

2) The adversary A chooses two equal-length messages m0

and m1 and sends them to the challenger.
3) The challenger chooses a random bit b ∈ {0, 1} and

sends the ciphertext c∗ = Enc(mb) to A.
4) The adversary outputs a bit b′ as a guess of b.

The adversary’s advantage in the above experiment is defined
as AdvE (k) := |Pr[b′ = b]− 1/2|.

Here, we briefly review the definition of Paillier’s Decisional
Composite Residuosity (DCR) assumption [20]. Let N = pq
be the product of two safe primes. Then the DCR assumption
roughly says that the set of N -th powers modulo N2 is com-
putationally indistinguishable from the uniform distribution
modulo N2, i.e.,

Definition 2 (The Decisional Composite Residuosity (DCR)
Assumption). The Decisional Composite Residuosity (DCR)
assumption states that

{xN mod N2 : x ∈ Z∗N2}
c
≈ {x : x ∈ Z∗N2},

where
c
≈ denotes computational indistinguishability.

The semantic security of Paillier cryptosystem is proved
under the DCR assumption [20]. Next, we show that if the
Paillier cryptosystem is semantically secure, then so does the
PCPD scheme.

Theorem 1. The PCPD scheme described in Section IV-A is
semantically secure, assuming the semantic security of the
underlying Paillier cryptosystem.

Proof. Assume that there exists a PPT adversary A breaking
the semantic security of the PCPD scheme with advantage at
most ε, then we can construct an algorithm S to break the
semantic security of the Paillier cryptosystem with advantage
at least ε− 1

2k , where k is the half bit-length of the modulus
N . The algorithm S has almost the same time complexity with
A.

Given the challenge public key pk = (N, g) of the Paillier
cryptosystem, S first chooses a random element sk1 from the
interval [1, N(N−1)/2] and then sends (pk, sk1) to A. When
S receives two equal-length messages (m0,m1) from A, it
passes them on to the challenger of the Paillier cryptosystem.
The challenger will randomly choose a message mb and send
the corresponding challenge ciphertext c∗ to S. S sends the
same challenge ciphertext c∗ to A. Finally, A outputs a bit b′

to S , which is just the guess of S. With the exception of the
partial decryption key sk1, the public key and the challenge
ciphertext have the same distributions as in the real semantic
security experiment from the adversary A’s point of view. As
the real partial decryption key comes from [1, λN ], it is easy
to show that two variables X and Y randomly chosen from
[1, λN ] and [1, N(N − 1)/2] respectively have at most 1

2k

statistical distance. So, S breaks the semantic security of the
Paillier cryptosystem is at least ε− 1

2k .

B. The Security of Sub-protocols

Here we recall the security model for securely realiz-
ing an ideal functionality in the presence of non-colluding
semi-honest adversaries. For simplicity, we do it for the
specific scenario of our functionality, which involve three
parties, challenge RU (a.k.a. “DR”), CP (a.k.a. “S1”) and
CSP (a.k.a.“S2”). We need to construct three simulators Sim=
(SimDR

,SimS1
,SimS2

) to against three kinds of adversaries
(ADR

,AS1
,AS2

) that corrupt DR, S1 and S2, respectively. We
refer the reader to [27], [28] for the general case definitions.

Let P = (DR, S1, S2) be the set of all protocol parties.
We consider three kinds of adversaries (ADR

,AS1 ,AS2 ) that
corrupt DR, S1 and S2, respectively. In the real world, DR

runs on input x and y (with additional auxiliary inputs zx and
zy), while S1 and S2 receive auxiliary inputs z1 and z2. Let
H ⊂ P be the set of honest parties. Then, for every P ∈ H ,
let outP be the output of party P , whereas if P is corrupted,
i.e. P ∈ P\H , then outP denotes the view of P during the
protocol Π.

For every P ∗ ∈ P , the partial view of P ∗ in a real-world
execution of protocol Π in the presence of adversaries A =
(ADR

,AS1
,AS2

) is defined as

REALP
∗

Π,A,H,z(x, y) = {outP : P ∈ H} ∪ outP∗ .

In the ideal world, there is an ideal functionality f for a
function f and the parties interact only with f . Here, the
challenge user sends x and y to f . If any of x or y is ⊥,
then f returns ⊥. Finally, f returns f(x, y) to the challenge
user. As before, let H ⊂ P be the set of honest parties. Then,
for every P ∈ H , let outP be the output returned by f to party
P , whereas if P is corrupted, outP is the same value returned
by P .

For every P ∗ ∈ P , the partial view of P ∗ in an ideal-
world execution in the presence of independent simulators
Sim= (SimDR

,SimS1 ,SimS2 ) is defined as

IDEALP
∗

f,Sim,H,z(x, y) = {outP : P ∈ H} ∪ outP∗ .

Informally, a protocol Π is considered secure against non-
colluding semi-honest adversaries if it partially emulates, in
the real world, an execution of f in the ideal world. More
formally,

Definition 3. Let f be a deterministic functionality among
parties in P . Let H ⊂ P be the subset of honest parties
in P . We say that Π securely realizes f if there exists a set
Sim= (SimDR

,SimS1
,SimS2

) of PPT transformations (where
SimD1

= SimD1
(AD1

) and so on) such that for all semi-
honest PPT adversaries A = (ADR

,AS1
,AS2

), for all inputs
x, y and auxiliary inputs z, and for all parties P ∈ P it holds

{REALP
∗

Π,A,H,z(λ, x, y)}λ∈N
c
≈ {IDEALP

∗

f ,Sim,H,z(λ, x, y)}λ∈N

Theorem 2. The RSM protocol described in Section IV-B can
securely compute multiplication of plaintext on ciphertext in
the presence of semi-honest (non-colluding) adversaries A =
(ADR

,AS1 ,AS2).

Proof. We only provide a proof to show how to construct three
independent simulators SimDR

,SimS1
,SimS2

.

https://www.researchgate.net/publication/287972089_An_Efficient_Privacy-Preserving_Outsourced_Computation_over_Public_Data?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
https://www.researchgate.net/publication/220336656_Outsourcing_Multi-Party_Computation?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
https://www.researchgate.net/publication/221348062_Public-Key_Cryptosystems_Based_on_Composite_Degree_Residuosity_Classes?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
https://www.researchgate.net/publication/221348062_Public-Key_Cryptosystems_Based_on_Composite_Degree_Residuosity_Classes?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
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SimDR
receives x and y as input and then simulates ADR

as follows: it generates encryption [x] = Enc(x) of x and
encryption [y] = Enc(y) of y. Finally, it returns [x] and [y] to
ADR

and outputs ADR
’s entire view.

The view of ADR
consists of the encrypted data. The views

of ADR
in the real and the ideal executions are indistinguish-

able due to the semantic security of PCPD.
SimS1

simulates AS1
as follows: First, it generates (ficti-

tious) encryptions of the inputs [x̂] and [ŷ] by running Enc(·)
on randomly chosen x̂, ŷ, randomly generates ri ∈ ZN ,
calculates X̂ and Ŷ , and then calculates X̂1 and Ŷ1 by using
PDec1(·). SimS1

sends the encryption X̂, Ŷ , X̂1, Ŷ1 to AD1
.

If AD1
replies with ⊥, then SimS1

returns ⊥.
The view of AS1

consists of the encrypted data it creates.
In both the real and the ideal executions, he receives the
output the encryptions X̂, Ŷ , X̂1, Ŷ1. In the real world, this is
guaranteed by the fact that the RU is honest and the semantic
security of PCPD. The views of AS1 in the real and the ideal
executions are indistinguishable.
SimS2

simulates AS2
as follows: it randomly choses h, uses

the Enc(·) to get [h], and then sends the encryptions to AD2
.

If AD2 replies with ⊥, then SimS2 returns ⊥.
The view of AS2

consists of the encrypted data it creates. In
both the real and the ideal executions, he receives the output
the encryptions [h]. In the real world, it is guaranteed by the
semantic security of PCPD. The views of AS1 in the real and
the ideal executions are indistinguishable.

The security proofs of SEXP,and SINV protocols are similar
to that of RSM protocol under the semi-honest (non-colluding)
adversaries A = (ADR

,AS1
,AS2

). In the following section,
we need to prove the security of SXOR.

Theorem 3. The SXOR protocol described in Section IV-C is
to securely evaluate the Exclusive OR operation of plaintext
over ciphertext in the presence of semi-honest (non-colluding)
adversaries A = (ADR

,AS1
,AS2

).

Proof. We now demonstrate how to construct three indepen-
dent simulators SimDR

,SimS1 ,SimS2 .
SimDR

receives x and y as input and simulates ADR
as

follows: it generates encryption [x] = Enc(x) of x and
encryption [y] = Enc(y) of y. Finally, it returns [x] and [y] to
ADR

and outputs ADR
’s entire view.

The view of ADR
consists of the encrypted data. The views

of ADR
in the real and the ideal executions are indistinguish-

able due to the semantic security of PCPD.
SimS1

simulates AS1
as follows: First, it generates (ficti-

tious) encryptions [x̂] and [ŷ] by running Enc(·) on randomly
chosen x̂, ŷ, Then, it calculates [1]·[x̂]N−1 and [1]·[ŷ]N−1, uses
[1] · [x̂]N−1 and [ŷ] as the inputs of Sim(RSM)

S1
(·, ·), uses [x̂] and

[1] · [ŷ]N−1 as the inputs of Sim(RSM)
S1

(·, ·), and generates [f̂∗1 ]

and [f̂∗2 ], respectively. Finally, it calculates [f̂ ] = [f̂∗1 ] · [f̂∗2 ],
sends the encryption [f̂∗1 ], [f̂∗2 ], [f̂ ] to AS1

. If AS1
replies with

⊥, then SimS1
returns ⊥.

SimS2 is analogous to SimS1 .

The security proofs of SLT, SEQ and SMOD are similar
to that of the SXOR under the semi-honest (non-colluding)

adversaries A = (ADR
,AS1

,AS2
). For the encrypted float-

ing point number calculations (include FPEQ, SFPS, SFPA,
SFPM, and SFPC), the security relies on the basic encrypted
integer calculation (the prove method is similar to that of
the SXOR), which has been proven. All the calculations are
operated over a ciphertext domain which is secure due to the
semantic security of PCPD. Next, we will illustrate our POCF
is secure under an active adversary A∗ defined in III-C.

C. Security of POCF framework

The security of POCF can be guaranteed by the following
theorem.

Theorem 4. The POCF framework can securely evalu-
ate the FPN operations of plaintext on ciphertext in the
presence of semi-honest (non-colluding) adversaries A =
(ADR

,AS1 ,AS2).

Proof. We now demonstrate how to construct three indepen-
dent simulators SimDR

,SimS1
,SimS2

.
SimDR

receives xi (i = 1, · · · , α) and aj(j = 1, · · · , n) as
input and simulates ADR

as follows: it generates encryption
〈xi〉 = ([sxi ], [mxi ], [txi ]), where [sxi ], [mxi ], [txi ] can be
generated by executing Enc(·). Moreover, it generates [aj ] =
Enc(aj) of aj . After that, it returns 〈xi〉 (i = 1, · · · , α) and
[aj ](j = 1, · · · , n) to ADR

and outputs ADR
’s entire view.

The view of ADR
consists of the encrypted data. The views

of ADR
in the real and the ideal executions are indistinguish-

able due to the semantic security of PCPD.
SimS1 simulates AS1 as follows: First, it receive RU’s

computation query, i.e., which kinds of secure FPN operations
are needed. Then, it generates (fictitious) encryptions 〈x̂i〉 and
[âj ] by running Enc(·) on randomly chosing sxi

,mxi
, txi

, aj
(i = 1, · · · , α, j = 1, · · · , n). Then, it uses Sim

(*)
S1

(·, ·) to
generate 〈x̂k〉, where k = α+ 1, · · · , n, and * can be FPEQ,
SFPS, SFPA, SFPM, and SFPC according to RU’s query. After
that, 〈Âj〉 = ([ŝAj ], [m̂Aj ], [t̂Aj ]) should be computed, where
[ŝAj

]← Sim
(RSM)
S1

([âj ], [ŝxj
]), [m̂Aj

]← Sim
(RSM)
S1

([âj ], [m̂xj
]),

and [t̂Aj ]← Sim
(RSM)
S1

([âj ], [t̂xj ]). Finally, it calculates [ŝA] =∏
j [ŝAj ], [m̂A] =

∏
j [m̂Aj ], [t̂A] =

∏
j [t̂Aj ], and sends the

encryption 〈Â〉 = ([ŝA], [m̂A], [t̂A]) to AS1 . If AS1 replies
with ⊥, then SimS1 returns ⊥.
SimS2 is analogous to SimS1 .

Here, we also give an analysis to show that our POCF can
resist system attacker defined in Section III-C. The analysis
describes as follows: If A∗ eavesdrops on the transmission
between the challenge RU and the CP, the original encrypted
data and the final results will be obtained by A∗. Moreover,
ciphertext results (obtained by executing FPEQ, SFPS, SFPA,
SFPM, and SFPC) transmitted between CP and CSP may also
be available to A∗ due to the eavesdropping. However, these
data are encrypted during transmit, A∗ will not be able to
decrypt the ciphertext without knowing the challenge RU’s
private key due to the semantic security of the PCPD cryp-
tosystem. Next, we suppose A∗ has compromised the CSP (or
CP) to obtain the challenge RU’s partial private key. However,
A∗ is unable to recover the challenge RU’s private key to
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TABLE II
THE PERFORMANCE OF PCPD (1000-TIME ON AVERAGE, 80-BIT SECURITY LEVEL)

Algorithm Enc PDec1 PDec2 CR Dec
PC Run Time 7.660 ms 14.509 ms 22.168 ms 7.942 ms 8.221 ms

Smartphone Run Time 44.727 ms 89.460 ms 130.860 ms 44.791 ms 45.904 ms

decrypt the ciphertext, as the private key is randomly split
by executing KeyS algorithm of PCPD. Even when the CSP
is compromised, A∗ is unable to obtain useful information
as our protocols use the known technique of “blinding” the
plaintext [29]: given an encryption of a message, we use the
additively homomorphic property of the PCPD cryptosystem
to add a random message to it. Therefore, original plaintext
is “blinded”. In the event that A∗ gets hold of private keys
belonging to other RUs (i.e. not the challenge RU), A∗ is still
unable to decrypt the challenge RU’s ciphertext due to the
unrelated property of different RU’s private keys in our system
(recall private keys in the system are selected randomly and
independently).

VII. EVALUATIONS

In this section, we evaluate the performance of POCF.

A. Experiment Analysis

The computation cost and communication overhead of the
proposed POCF are evaluated using a custom simulator built
in Java, and the experiments are performed on a personal
computer (PC) with 3.6 GHz eight-core processor and 12 GB
RAM memory.

1) Basic Crypto Primitive and Protocols’ Performance:
We first evaluate the performance of our basic cryptographic
primitive and toolkits for both integer number and FPNs on
our PC testbed – see TABLEs II, III and IV, respectively.
We let N be 1024 bits to achieve 80-bit security [30]. We
then use a smartphone with a four-core processor (4×Cortex-
A53) and 2 GB RAM memory to evaluate the performance of
the basic crypto primitive – see TABLE II. The evaluations
demonstrate that the algorithms in PCPD are suitable for
both PC and smartphone platforms. Note that both the secure
integer and FPN calculation protocols are constructed for
outsourced computation; therefore, they will be only evaluated
in the PC testbed.

2) Factors Affecting Protocols’ Performance: For secure
integer processing protocols, the length of N affects the
running time of the proposed schemes. From Fig. 3(a)-3(f),
we can see that both the running time and the communication
overhead of the integer processing schemes increase with
N . This is because the running time of the basic operations
(modular multiplication and exponential) increases as N in-
creases. More bits need to be transmitted due to the increase
in N . For the secure FPNs computation, two factors affect the
performance: i) the length of N , ii) the domain size of the
significant digits η. From Fig. 3(g)-3(i), we can see that both
computational and communication costs of all the protocols
increase with N , as the protocols rely on the basic operations
(modular multiplication and modular exponentiation). From

Fig. 3(j)-3(l), we can see that only the computational cost
and the communication overhead in SFPA increase with the
significant digit η. This is due to more loops are executed
with the increase of η which consumes more computation and
communication resources in SFPA, while the other secure FPN
calculations (FPEQ, SFPS, SFPM, and SFPC) are not affected.

B. Computational Analysis

1) Computational Overhead: Let us assume that one regu-
lar exponentiation operation with an exponent of length ‖N‖
requires 1.5‖N‖ multiplications [31] (e.g. the length of r is
‖N‖, and compute gr requires 1.5‖N‖ multiplications). As
exponentiation operation is significantly more costly than the
addition and multiplication operations, we ignore the fixed
numbers of addition and multiplication operations in our anal-
ysis. For the PCPD scheme, Enc needs 1.5‖N‖ multiplications
to encrypt a message, Dec needs 1.5‖N‖ multiplications to
decrypt a ciphertext PDec1 needs 3‖N‖ multiplications to
process, PDec2 needs 3‖N‖ multiplications (as both the length
of λ1 and λ2 is 2‖N‖, and compute gλ1 and gλ2 requires
3‖N‖ multiplications), and CR needs 1.5‖N‖ multiplications
to refresh a ciphertext.

For the basic sub-protocols, it costs 13.5‖N‖ multiplica-
tions for the CP and 7.5‖N‖ multiplications for the CSP to
run the RSM. For the SXOR, it costs 30‖N‖ multiplications for
the CP and 15‖N‖ multiplications for the CSP to run. For the
SLT, it costs 7.5‖N‖ multiplications for the CP and 4.5‖N‖
multiplications for the CSP to run. For the SEQ, it costs 45‖N‖
multiplications for the CP and 24‖N‖ multiplications for the
CSP to run. For the SEXP, it costs 7.5‖N‖ multiplications for
the CP and 6‖N‖ multiplications for the CSP to run. For the
SINV, it costs 6‖N‖ multiplications for the CP and 4.5‖N‖
multiplications for the CSP to run. For the SMOD, it costs
13.5‖N‖ multiplications for the CP and 9‖N‖ multiplications
for the CSP to run. For the secure floating point calculation, it
takes O(‖N‖) multiplications for the FPEQ, SFPS and SFPM,
while it takes O(η‖N‖) multiplications for the SFPA.

TABLE III
THE PERFORMANCE OF SUB-PROTOCOLS FOR INTEGER (1000-TIMES FOR

AVERAGE, 80-BIT SECURITY LEVEL)

Protocol CP compute. CSP compute. Commu.
RSM 95.635 ms 52.864 ms 1.248 KB
SLT 45.363 ms 31.255 ms 0.749 KB
SXOR 220.521 ms 113.203 ms 2.498 KB
SEQ 295.803 ms 161.788 ms 3.996 KB
SEXP 32.512 ms 31.802 ms 0.749 KB
SINV 18.993 ms 30.934 ms 0.749 KB
SMOD 96.641 ms 60.453 ms 1.499 KB

2) Communication Overhead: In the PCPD scheme, the
ciphertext [x] and CT (1) need to transmit 2‖N‖ bits. For the

https://www.researchgate.net/publication/200104862_The_art_of_computer_programming_Volume_2_Seminumerical_algorithms_Reading?el=1_x_8&enrichId=rgreq-82cfd72705ce68cdf58a16432f70a2f9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzMTQxNDtBUzozOTAyNDA1ODcwMTAwNTBAMTQ3MDA1MjAxNDc1Mg==
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(a) Running time on CP (vary with bit
length of N )
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(b) Running time on CSP (vary with
bit length of N )
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length of N )
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(d) Running time on CP (vary with bit
length of N )
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(e) Running time on CSP (vary with
bit length of N )
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(f) Communication costs between CP
and CSP (vary with bit length of N )
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(g) Running time on CP (vary with bit
length of N , η = 7)
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(h) Run time on CSP (vary with bit
length of N , η = 7)
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(i) Communication costs between CP
and CSP (vary with bit length of N ,
η = 7)
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with size of significant digit, ‖N‖ =
1024)
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Fig. 3. Simulation results

TABLE IV
THE PERFORMANCE OF SECURE CALCULATIONS OF FPNS (1000-TIME ON

AVERAGE AVERAGE, 80-BIT SECURITY LEVEL, SINGLE PRECISION FPN)

Protocol CP compute. CSP compute. Commu.
SFPA 21.602 s 14.567 s 330.095 KB
SFPM 7.788 s 4.980 s 106.694 KB
SFPC 9.797 s 5.234 s 124.928 KB
SFPS 6.845 s 3.732 s 88.949 KB
FPEQ 1.054 s 0.545 s 12.994 KB

basic sub-protocols, it takes 10‖N‖ bits to run the RSM, 6‖N‖
bits to run the SLT, SEXP, and SINV. Moreover, it takes
20‖N‖ bits to run the SXOR, 32‖N‖ bits to run the SEQ, and
12‖N‖ bits to run the SMOD. For the secure floating point
calculation, it takes O(‖N‖) bits for the FPEQ, SFPS and
SFPM, while it takes O(η‖N‖) bits for the SFPA.

C. Analysis of secure FPNs computation

1) Rounding Errors: When approximating a nonzero real
number x by RZ(x) (where RZ(·) is the round toward zero
model defined in Section II-C), a relative error ε(x) = |(x −
RZ(x))/x| happened. If x is in the normal range, the relative
error ε(x) is less than or equal to β1−η .

For any arithmetic operation > ∈
{FPN addition, FPN subtraction, FPN multiplication},
for RZ rounding mode, and for all floating-point numbers a,
b such that a > b does not underflow or overflow, we find
that if z is the result of the correctly rounded operation a> b
(that is, if z = ◦(a> b)), then

◦(a> b) = (a> b)(1 + ε) + ε′,

with |ε| ≤ β1−η and |ε′| ≤ βemin+1−η , and ε and ε′ cannot
both be nonzero. For the detailed and comprehensive analysis,
we refer the reader to [32].

2) The Correctness Guarantee : As the FPNs are stored as
triplet ([s], [m], [t]). If a RU only wants to securely store the
FPNs without any calculations, the following restriction should
be satisfied: ‖m‖ < ‖N‖ and ‖t‖ < ‖N‖. If a RU need to do
securely FPNs storage & computation over 〈x〉 and 〈y〉, the
following restriction should be satisfied: 1) ‖mxβ

η +my‖ <
‖N‖, 2) ‖mx · my · β2η‖ < ‖N‖, and 3) ‖t‖ < ‖N‖/4.11

Note that these restriction can be easily satisfied. For example,
if we choose length of N as 1024 bits and β = 10, then
‖N‖/4 is 256-bit. For single precision FPN, exponent t need

11Note that s ∈ {0, 1} which satisfy the restriction ‖s‖ < ‖N‖.
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8-bit while significand m needs 23-bit to represent. For double
precision FPN, exponent t need 11-bit while significand m
needs 52-bit to represent. Both the situation can satisfy the
above restriction. Here, we only use double precision FPN
as an example to illustrate. For restriction 1, due to |mx ·
10η| < 116, so |mx · 10η + my| < 117 which satisfies the
restriction. For restriction 2, due to ‖mx · my‖ ≤ 105, and
‖102η‖ < 128, thus ‖mx ·my · 102η‖ < 256 and satisfy the
restriction). Notice that ‖N‖ = 1024 can achieve both the
single precision FPN and double precision FPN calculation.
If higher precision FPNs the user are needed (even the user-
defined precision), such that, all above-mentioned conditions
are not hold simultaneously. We can simply use the larger N
to solve the problem.

3) Comparing with fix-point number strategy: Our secure
FPNs computation has natural advantages compared with the
existence secure fix-point number calculations (e.g., secure
integer processing).

1) Support arbitrary-time calculations. The traditional se-
cure fix-point calculations can only support limited times of
calculations. For example, a ‖N‖/4-bit length integer can only
multiply himself 4 times by executing RSM protocol. Different
from secure fix-point calculations, our secure FPNs computa-
tion can support arbitrary-time calculations. It is because of the
‘refresh’ property of our secure FPNs operations. For example,
support two FPNs with st bit length exponent t and sm bit
length significand m. After executing SFPA and SFPM, st and
sm are not changed.

2) Express more numbers. For secure fix-point number
storage, the bit-length of the number should be less than
‖N‖. For storing FPNs, the bit-length of exponent can be
represented up to ‖N‖ length.

3) Handle exceptional cases. Different from traditional se-
cure fix-point number processing, our secure FPNs processing
can handle exceptional cases, such as, result overflow and
underflow (see Section V-B).

D. Comprehensive Comparison

Here, we compare our POCF with the exiting secure
computation on floating point numbers scheme, which can
be categorized under two strategies: multiple parties storage
strategy [10], [11], [12], [13], [14] and storage outsourcing
strategy [15]. In the multiple parties storage strategy, n servers
(In [12], [13], [14], three servers are needed) are used to
storage data, i.e., each datum is randomly separated into n
shares using the secret sharing technique, and the each share
is distributed to a server for storage, respectively. However, it
bring huge computational cost and communication overhead
to the data owner for storing and managing the data, espe-
cially for updating and synchronizing the data. For example,
once a datum need to be updated, the data owner needs to
randomly separated the datum into n shares, encrypts the
shares with the corresponding server’s public key/session key,
and distributes them to the different servers, respectively.
Moreover, the data splitting methods in [10], [11] will increase
the storage overhead with the number of the servers, while
the ciphertext storage overhead will not be affected in [12],

[13], [14]. Furthermore, each secret (symmetry) key is pre-
shared between two servers (n(n− 1)/2 are needed) in order
to achieve secure communication, which increases the key
management cost. Most importantly, every operating system
must respond to floating-point exceptions [33], however, all
the schemes about multiple parties storage strategy cannot
completely handle the exceptional case, i.e., neither process
the exceptional case of the input data [10], [11], [12], [14],
[13], nor totally handle the overflow/underflow problem during
the calculation [11], [14], [13].

Different from multiple parties storage strategy, the storage
outsourcing strategy is more appropriated for the cloud com-
puting environment, i.e., all the data are centralized stored in
the cloud server after encryption, and it can solve the data
managing problem in the multiple parties storage strategy.
In [15], Ge and Zdonik try to use additive homomorphic
scheme to solve the storage and computation problem about
floating point numbers. Unfortunately, the [15] can only solve
the secure floating point numbers addition problem, and the
data expansion is huge. For example, using single precision
FPN, each datum needs to expand 32 times before encryption
and storage. If the double precision is needed, each FPN
plaintext needs to expand 256 times than its original plaintext.
Also, the floating-point exception problem is not considered in
[15]. To sum up the above scheme, our POCF is designed for
storage outsourcing strategy without extra plaintext expansion
(stored in the cloud with constant length). Moreover, our
POCF can process commonly used FPN operations and handle
exceptional cases, such as process overflow and underflow
during the whole calculation phases. Furthermore, we also
list the performance of the above schemes. The performance
can be measured in terms of two parameters: (i) the number
of interactive operations (e.g., multiplications) necessary to
perform the computation, and (ii) the number of sequential
interactions, or rounds. A comprehensive comparison between
the above schemes is shown in Table V.

VIII. RELATED WORK

With the increasing development of IT industry, the demand
for secure computation grows accordingly. One solution for se-
cure computation across different parties is called Multi-party
Computation (MPC) in which multiple parties jointly compute
a function over their inputs while keeping those inputs private
(for detailed definitions of secure computation see [34]). MPC
is an active topic in cryptography which has been studied for
more than twenty years since Yao’s millionaire protocol [35].
One approach to achieve MPC is Garbled-Circuit based MPC:
Bob creates a “garbled circuit”, and sends the circuit to
Alice. Alice evaluates the circuit with her inputs and returns
the result to Bob. The term garbled circuit is from Beaver,
Micali, and Rogaway [36], where the method is first based
on a symmetric primitive. After that, enormous literatures use
garbled-circuit to design protocol for real-world applications
[37], [38], [39], [40], and several techniques are designed
for improving the running time and memory requirements
of the garbled-circuit technique [41], [42], [43]. However,
these schemes still suffer from very high computation and
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TABLE V
COMPARISON WITH SECURE FLOATING POINT CALCULATION(WITH CONSTANT SECURITY PARAMETER)

Function/Algorithm [15] [10] [11] [12] [13] [14] Our
Add R 0 O(log η) O(1) O(1) O(log η) O(1) O(1)
Add I 0 O(η) O(η) O(η) O(log η) O(η) O(η)
Mul R N.A. O(1) O(1) O(1) O(log η) O(1) O(1)
Mul I N.A. O(η) O(η) O(1) O(log η) O(η) O(1)

Cmp R N.A. O(1) N.A. N.A. O(log η) O(1) O(1)
Cmp I N.A. O(η) N.A. N.A. O(log η) O(η) O(1)

Pre-shared Secret inf 0 n · (n− 1)/2 ≥ 1 3 3 3 0
Data Storage One Server n Servers ≥ 2 Servers Three Servers Three Servers Three Servers One Server

Data Expansion With Precision With Server Num. With Server Num. Constant Constant Constant Constant
Handle exceptional cases

During calculation × × × × × × X

Process non-numeric data × × × × × × X
– In the table, ‘Add’ is short for ‘floating point numbers addition’, ‘Mul’ is short for ‘floating point numbers multiplication’,

‘Cmp’ is short for ‘floating point numbers comparison’. ‘R’ is short for ‘communication round’, ‘I’ is short for ‘the number of interactive operations’

communication complexities [44], [45]. Another approach to
MPC is secret sharing based MPC protocols [46], [47], [48]
which generate random data using secret sharing techniques,
and distribute the shares to different servers. All the servers
jointly compute some functions interactively. Although the
secret sharing based MPC is promising, it requires multiple
servers to store certain redundant data, and requires pairwise
secure channels between servers. Very recently, fully homo-
morphic encryption (FHE) [49], [50] has been used to reduce
the round complexity (e.g, reduced to two-round) in MPC
[51], [52]. Unfortunately, one of the biggest drawbacks of
fully homomorphic cryptosystems is the system complexity.
The other approach is to use indistinguishability obfuscation
(IO) [53], [54] to achieve two-round MPC protocols [55], [56].
Although IO has the power to dramatically broaden the scope
of cryptography, how to construct practical IO is still an open
research problem.

As more users choose to encrypt-and-outsource their data
to cloud servers for storage with the constant evolution of
cloud and related technologies, it is important to ensure that
the outsourced encrypted data can be manipulated without
compromising on the privacy of the data owner. Different
from the huge computation and storage overhead of FHE,
partial homomorphic encryptions (including additive, multi-
plicative and somewhat homomorphic encryptions) are often
considered as the next best solution. Additive homomorphic
encryption schemes, such as the Paillier cryptosystem [16] and
the Bresson cryptosystem [57], allow a third party to perform
some additive calculations over ciphertexts. Multiplicative ho-
momorphic encryptions, such as the unpadded RSA cryptosys-
tem [58] and the ElGamal cryptosystem [59], allow a third
party to perform multiplication calculations over ciphertexts.
Somewhat homomorphic encryption (SWHE) [60] is a crucial
component of FHE which allows many additions and a small
number of multiplications on ciphertexts, and it can be used
to construct cloud applications [61], [62]. Due to the higher
efficiency of partial homomorphic encryptions, many privacy-
preserving protocols have been constructed, such as secure
comparison protocols [63], secure set intersection protocols
[64], and secure TOP-K protocols [21], [8]. Although ho-
momorphic encryptions have been applied in a number of
real-world scenarios [65], [28], most of the existing schemes

can only process integer numbers and cannot securely handle
FPNs. Although some works [10], [11], [12], [13], [14], [15]
have constructed the SMC on floating point numbers, however,
their framework has high interactive operation complexity (see
Section VII-D for comparison).

IX. CONCLUSION

In this paper, we proposed POCF, a framework for privacy-
preserving outsourced calculation on floating point numbers,
which allows a user to outsource encrypted FPNs to a cloud
service provider for storing and processing. We also proposed
a new cryptographic primitive, Paillier cryptosystem with
partial decryption (PCPD), to reduce both key management
cost and private key exposure risk. We built toolkits to perform
privacy preserving calculations to handle most commonly used
integer operations, and to process outsourced FPNs numbers
in a privacy-preserving way. The utility of our framework (and
the underlying building blocks) was then demonstrated using
simulations.

As a future research effort, we plan to apply our proposed
POCF in a specific application domain, such as e-health cloud
system and test it in a real-world setting. This will allow us
to refine the framework to handle more complex real-world
computations.
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