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ABSTRACT

Target imaging and material identification play an important role
in many real-life applications. This paper introduces TagScan, a
system that can identify the material type and image the hori-
zontal cut of a target simultaneously with cheap commercial off-
the-shelf (COTS) RFID devices. The key intuition is that different
materials and target sizes cause different amounts of phase and
RSS (Received Signal Strength) changes when radio frequency (RF)
signal penetrates through the target. Multiple challenges need to
be addressed before we can turn the idea into a functional system
including (i) indoor environments exhibit rich multipath which
breaks the linear relationship between the phase change and the
propagation distance inside a target; (ii) without knowing either
material type or target size, trying to obtain these two information
simultaneously is challenging; and (iii) stitching pieces of the propa-
gation distances inside a target for an image estimate is non-trivial.

We propose solutions to all the challenges and evaluate the
system’s performance in three different environments. TagScan is
able to achieve higher than 94% material identification accuracies
for 10 liquids and differentiate even very similar objects such as
Coke and Pepsi. TagScan can accurately estimate the horizontal cut
images of more than one target behind a wall.

CCS CONCEPTS

• Computer systems organization → Sensors and actuators;

KEYWORDS

Horizontal cut imaging; Material identification; Multipath suppres-
sion; Phase and RSS measurements; RFID
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1 INTRODUCTION

Device-free passive sensing, where no device is attached to the
target, has recently received considerable attentions. Many com-
pelling applications are enabled by device-free passive sensing,
such as human motion tracking [2, 45], gesture and activity recog-
nition [35, 37], elderly fall detection [38], and even localizing a
person behind a wall [3, 41]. Diverse technologies have been em-
ployed for these applications including camera [48], infrared [18],
audio [36] and RF signal [47].

Among the technologies for device-free passive sensing, RF-
based approaches [22, 28, 31, 37] offer two appealing advantages:
(i) functioning in the dark environments and (ii) RF signals can
penetrate non-metal walls. More importantly, RF-based solutions
are promising due to their ubiquity and low cost. In particular, RFID
is evolving as a major candidate for object identification and local-
ization in indoor environments. RFID has been used for localiza-
tion [32, 34], baggage sorting [25, 44], gesture recognition [10, 26],
and even tracing a user’s handwriting in the air without a physical
touch screen [16, 33]. RFID tags are everywhere and commonly
used for bus cards, car keys, pass cards, etc. One main reason for
the widespread of usage is the simplicity and extremely low cost of
the RFID tags (each tag costs 5 –10 cents USD).

Though a success in localization and gesture recognition, a miss-
ing research component of existing device-free sensing technology
is using cheap commodity RF devices, such as RFID, to perform tar-
get imaging and material identification. Many applications would
benefit from knowing the shape and material type of a target. For
example, a robot can automatically adjust its grip strength if it
knows the object is an egg instead of a stone by using material iden-
tification. Detecting concealed weapons at a security checkpoint
would be possible by knowing the target shape and the material
type. It will be possible to differentiate Pepsi from Coke without
labels or a taste test.

Existing target imaging and material identification systems, such
as Radar [19], X-Ray [21], CT/MRI [49] and B-scan ultrasonogra-
phy [7], use dedicated hardware with high frequency signal, large
bandwidth and antenna arrays, which are extremely expensive and
usually large in size. Moreover, X-Ray and CT employ very high
frequency signals which are harmful to the human body [23].

Recently, some researchers attempt to use the RF signals to im-
age a target’s shape [1, 8, 11] or identify a target’s material [46, 50].
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RF-Capture [1] can capture the skeleton of a human target using
special-purpose hardware with larger than 1 GHz bandwidth Fre-
quency Modulated Continuous Wave (FMCW) signals. However,
commodity Wi-Fi and RFID devices have much smaller bandwidths.
Wision system [11] with a two-dimensional antenna array, employs
the reflected Wi-Fi signal from the target for imaging. However, its
imaging performance is still coarse. Moreover, the above systems
employ the reflection signals bounced off the target. Thus, these
systems can only obtain the surface image and the surface material
of a target – they are not able to obtain the internal horizontal cut
image and the internal material of a target. Overall, imaging a tar-
get’s shape and identifying its material type with cheap commodity
devices remain challenging.

This paper introduces TagScan, a system that can both identify
the material type and image the internal horizontal cut of a target
simultaneously with cheap COTS RFID devices. Unlike existing sys-
tems which employ dedicated hardware or special-purpose large
bandwidth signals to extract the reflectivity and permeability pa-
rameters for material identification [40], TagScan exploits the phase
and RSS changes when the signal penetrates inside a target for ma-
terial identification and imaging. The phase and RSS measurements
are widely available on commodity devices and TagScan works well
with a small 4 MHz bandwidth. We believe this work introduces a
new direction for performing material identification and imaging
with COTS devices. TagScan’s material identification and imaging
are based on the key observation that different materials and target
sizes will cause different amounts of phase and RSS changes when
the RF signal penetrates through a target. Further, if there is no
multipath, the phase change values exhibit a linear relationship
with the propagation distances inside the target.

Though the basic idea sounds straightforward, it is non-trivial
to realize TagScan due to the following challenges:

• Challenge 1: In an indoor environment, the rich multipath sig-
nals break the linear relationship between the phase changes
and the propagation distances inside a target.

• Challenge 2: Determining the size of a target given the material
type or identifying the material given the target size is relatively
easy. Without knowing either material type or target size, trying
to identify these two pieces of information at the same time is
much more challenging.

• Challenge 3: Even if the propagation distances inside a target
at different directions are obtained, stitching them together to
create the image is still challenging as the starting points of the
propagation distances are unknown.

To deal with the first challenge, we propose a multipath suppression
scheme based on the following observations: (i) the phase measure-
ments change linearly over the carrier frequencies if the direct-path
signal dominates; (ii) for nearby tags and adjacent channels, the
direct-path signals are similar while the multipath signals are usu-
ally quite different. Based on the first observation, TagScan picks
data from relatively “clean” channels that are not greatly affected
by multipath for processing. With the second observation, TagScan
further reduces the multipath effect by applying carefully chosen
weights on the signals received from different tags and at different
channels, so that the power of the direct-path signals increases

greatly while the power of the reflection signals is averaged out to
a small value.

To address the second challenge, although the RSS change and
phase change are dependent on both the target material and the
target size, we discover a parameter that related to the ratio of RSS
change and phase change (denoted as RP-rate) is a unique feature for
each material type and independent of the target size. By removing
one variable, we are able to obtain the target material and size/shape
at the same time.

To deal with the third challenge, the key intuition is that the tar-
get images estimated from two different arrays will align well when
all the starting points of the propagation distances are correctly
selected. We thus model the imaging problem as an optimization
problem and search the starting points by minimizing the difference
of two images estimated from the two arrays.

We build a prototype of TagScan using just one Impinj RFID
reader [14] and 16 cheap Alien RFID tags [12]. The 16 tags form
two linear tag-arrays with 8 tags in each. We evaluate the material
identification and imaging performance in three typical indoor en-
vironments: a library, a lab-office and an empty hall corresponding
to high, medium and low multipath environments. In the lab-office
environment, the material identification accuracies of TagScan are
higher than 94% and 91% for 10 types of liquids and 6 types of solid
targets, respectively. Note that we employ very similar liquids such
as Pepsi, Coke and sweet water with different sugar concentrations
to make our material identification problem challenging. TagScan
can also estimate the cut image of a human body accurately which
has attractive authentication application. In a more challenging sce-
nario, TagScan can estimate the cut images of a cube and a cylinder
behind a wall simultaneously when they are not close to each other.
Contributions: The main contributions of this paper are summa-
rized as follows:

(1) To the best of our knowledge, this is the first RFID-based system
which utilizes the widely available phase and RSS information
on COTS devices to perform material identification and target
imaging simultaneously.

(2) We propose a multipath suppression method so that even in a
rich multipath environment, the phase and RSS changes can be
used to identify the material type and image the target shape at
a high accuracy.

(3) We discover a feature that is unique for each material type and
independent of the target size, and also can be easily calculated
from the RSS and phase readings. We observe that this feature is
sensitive enough to help differentiate between Pepsi and Coke.

(4) Without knowing the ground truth image beforehand, TagScan
is able to estimate the cut image of a target based on one ob-
servation: the images estimated from two different arrays align
well if they are estimated correctly.

(5) We design and implement TagScan with COTS RFID devices.
Comprehensive experiments demonstrate the effectiveness of
TagScan under varying conditions.

Paper outline: We introduce the preliminary studies in Section 2.
We detail TagScan’s design in Section 3. The implementation is
described in Section 4 followed by the evaluations in Section 5. We
discuss limitations and other related issues in Section 6. The related
work is shown in Section 7 and we conclude this paper in Section 8.
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Figure 1: Preliminary studies of the phase and RSS changes inside targets with different materials and different sizes.

2 PRELIMINARY

We present the preliminary studies of the phase and RSS changes
inside a target and the effect of multipath on the phase change
measurements in this section.

2.1 Phase Changes Inside a Target

To illustrate TagScan’s basic idea for material identification, Fig. 1(a)
shows an example where a directional antenna of an RFID reader
is placed on the ground in an open space to minimize the amount
of multipath. A plastic measuring cup with a height of 28.5 cm and
a diameter of 19.7 cm is placed on top of the antenna. We place
an RFID tag on top of the cup and pour the same amount (8 cm of
height) of purified water, vinegar, skimmed milk, whole milk, Coke
and Pepsi into the cup. We measure the phase and RSS readings be-
fore and after each liquid is poured into the cup, and then calculate
the changes shown in Fig. 1(b).

We observe that the phase changes for water, vinegar, skimmed
milk and whole milk are quite different. For Coke and Pepsi, the
result is surprising since there is still around 0.2 radians phase
change difference,1 which is clear enough for us to differentiate
them. The RSS changes for Coke and Pepsi are very similar but
are quite different from other liquids. The observation implies that
it is possible to employ the phase and RSS changes for material
identification. Note that the commodity RFID reader eliminates the
directly reflected signal from a target and only keeps the signal
from the tags [14].

To illustrate TagScan’s basic idea for imaging, we use three
different types of liquids (purified water, Coke, and vinegar) and
run the following benchmark experiment. We vary the amount of
liquid in the cup and measure the phase changes with respect to
the empty cup. During the process, the gap distance between the
tag and the liquid surface is decreased from 26.5 cm to from 8.5 cm
in a step of 2 cm and the liquid height is increased from 2 cm to 20
cm. Fig. 1(c) shows a clear linear relationship between the phase
change and the distance that the signal travelled inside the liquid.
Further, the slopes of different materials are distinct. Based on this
observation, if the material of a target is known, TagScan can get
the propagation distance inside the target with the phase change
measurement. This propagation distance is the “width” information
of the target at one angle. By stitching those “widths” from many
angles, TagScan can obtain the target’s cut image.

1Impinj R420 reader [14] has an analog to digital converter of 12-bit which achieves a
phase resolution of 0.0015 radians.

2.2 Phase Changes in Multipath Environment

We show the intuition behind our multipath suppression method
using both the theoretical analysis and the benchmark experiments.
In an ideal open space without any multipath, the measured phase
difference between frequency fp and frequency fq at a reader can
be written as:

Δϕfp,fq =
4πL

C
(fp − fq ), (1)

where C is the speed of light and L is the distance between the
tag and antenna. Since L is a constant for a given deployment, the
slope 4πL/C of the phase change is also a constant. So the phase
value changes linearly with frequency when there is only direct
path. In reality, the linear relationship is broken by multipath. We
run benchmark experiments in three different environments: a hall
environment (little multipath), a lab-office environment (medium
multipath), and a library environment (rich multipath). An RFID
tag is placed 5 m away from the reader antenna, and the reader is
programmed to hop over 16 adjacent channels.2

Observation 1: Fig. 2 shows the phase measurements over 16
channels in four different environments with different amounts
of multipath. We can see that in the hall environment with little
multipath, the linear relationship between phases and channels can
still be observed. One reason behind this is that commodity RFID
devices usually employ directional antennas to increase the trans-
mission range, which reduces the amount of multipath. However,
even with directional antenna, in a rich-multipath environment
such as a library, the linear relationship does not exist any more.

Observation 2: Fig. 3 shows the phasemeasurements of 6 nearby
tags (the spacing between adjacent tags is about 10 cm) in the hall
environment. We can see that the slopes of the phase changes are
similar for closely placed tags. As direct path is dominant in the hall
environment, we conclude that the direct-path signals are similar
at closely placed tags.

These results convince us to select phase readings from the rela-
tively “clean” channels based on the linear property whenmultipath
is not strong. The selection pool is large as we have multiple tags
and each tag has multiple channels. When multipath is strong, it
is difficult to find these kind of “clean” channels and thus we pro-
pose a multipath suppression scheme (Section 3.2) to address the
multipath issue.

2The frequency range of Impinj R420 reader in China is 920.625 – 924.375 MHz and
each channel has a bandwidth of 250 KHz.
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3 DESIGN

3.1 Overview

TagScan is a material identification and imaging system built on
COTS RFID devices. It only uses one RFID reader with one antenna
and multiple tags which form two linear tag-arrays as shown in
Fig. 4. The reader communicates with the tags across different
frequency channels.3 For imaging, we let the reader move along a
given trajectory. When the target blocks the direct path between
the reader and tag-array, phase and RSS changes can be observed
and are utilised for material identification and target image. Fig. 5
shows the system architecture which has four modules:

• Data Collection Module: TagScan collects a set of phase and
RSS measurements as the baseline data4 when there is no target.
TagScan then acquires another set of measurements when the
target appears.

• Multipath Suppression Module: TagScan first identifies the
relatively “clean” channels which are not greatly affected by mul-
tipath. TagScan then strengthens the power of the direct-path
signal and reduces the power of reflection signals by assigning
carefully chosen weights to the measured signals at different
channels and different tags as discussed in Section 3.2.

• Material Identification Module: TagScan extracts the feature
parameter RP-rate which is only dependent on the target mate-
rial and employs the “K Nearest Neighbor” (KNN) [9] classifier
to identify the target’s material as described in Section 3.3. Note
that for material identification, only one tag-array is needed and
the reader does not need to move.

• Target Imaging Module: Once the target material is identified,
TagScan estimates the signal propagation distance inside the
target along a specific direction. This propagation distance is the

3RFID systems use frequency hopping for security reason.
4The baseline measurements only need to be measured once.

“width” information of the target at one angle. TagScan stitches
together the “widths” from many angles to obtain the horizontal
cut image of the target as described in Section 3.4.

3.2 Multipath Suppression

TagScan relies on the linear relationship between the distance trav-
elled inside the target and the phase/RSS changes for material
identification and target imaging. However, multipath reflections
break the linear relationship. To deal with multipath, we introduce
a two-stage multipath suppression method. In stage 1, we iden-
tify the relatively “clean” channels that are not greatly affected
by multipath. In stage 2, we further reduce the effect of multipath
by assigning carefully chosen weights to the measured signals at
different channels and different tags. By doing this, the power of
direct-path signals increases greatly while the power of the reflec-
tion signals is averaged out to a small value.

3.2.1 Identifying the relatively “clean” channels. Using “Observa-
tion 1” and “Observation 2” in Section 2.2, we identify the relatively
“clean” channels whose direct-path signal dominates with a sim-
ple linear fit. However, this works well only in the environment
with little multipath such as the hall environment and is much less
reliable in medium and rich multipath environments.

3.2.2 Enhancing the direct-path signal. Using the method de-
scribed above, we are able to remove “dirty” data in environments
with little multipath. However, there is always residual multipath
noise left in the relatively “clean” data. Furthermore, in a rich mul-
tipath environment, it is difficult to identify such “clean” channels.
Thus, we propose a method to strengthen the direct-path signal
and reduce the power of multipath reflection signals.

At a high level, we combine signals measured from different
channels and different tags by assigning each signal a different
weight to enhance the direct-path signal and reduce the multipath
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effect. The intuition is that the direct-path signals measured at
nearby tags and adjacent channels are similar. Thus, we can align
these direct-path signals by compensating the phase shifts with
carefully chosen weights. Then, we sum up the compensated signals
so the direct-path signals are aligned and added constructively,
while the reflected path signals are reduced to a small value.

Formally, we consider a tag-array with M tags and a reader
working in frequency hopping mode across K adjacent channels.
We take the first tag as the reference tag and the first channel with
frequency f as the reference channel. The tags are placed with a
distance of d and the frequency spacing between adjacent channels
is Δf . There are two types of phase shifts in the direct-path signals.
First, the phase shift between tags is due to the propagation distance
difference. As shown in Fig. 6(a), when two direct-path signals arrive
at the tags at a same angle-of-arrival (AoA) θ , the two direct-path
signals have a propagation distance difference of d cos(θ ) and thus

a phase difference of
4π f
C d cos(θ ). Second, the phase shift between

channels is due to the carrier frequency difference. As shown in
Fig. 6(b), two direct-path signals with slightly different frequencies
arrive at a same tag with a very similar propagation time τ . Thus,
the two direct-path signals have a phase shift of 4πτΔf .

To model the multipath reflection signals, suppose there are P
copies (one direct-path and P − 1 reflection paths) of a transmission,
i.e., S=[s1, s2, · · · , sP ]

T , arriving at the array from P different AoA
angles θ=[θ1, θ2, · · · , θP ] with P different time-of-flights (ToFs)
τ = [τ1,τ2, · · · ,τP ]. ForM tags and K channels, we have a total of
M ×K measured signals. The measured signal xm,k atm-th tag and
k-th channel is:

xm,k =

P∑
p=1

sp · e−j ·[ω(m,k,θp )+μ(m,k,τp )], (2)

ω(m,k,θp ) =
4π [f + (k − 1)Δf ]

C
(m − 1)dcos(θp ), (3)

μ(m,k,τp ) = 4π (k − 1)Δf [τp −
(m − 1)dcos(θp )

C
], (4)

where, ω(m,k,θp ) and μ(m,k,τp ) represent two types of phase
shifts due to the propagation distance difference and the carrier
frequency difference. With respect to the direct-path signal at the
reference tag and the reference channel, the phase shifts of direct-
path signal atm-th tag and k-th channel are calculated using Eq. (3)
and Eq. (4). Thus, we can align the direct-path signals by com-
pensating the calculated phase shifts for measured signals at all
tags and all channels, so the direct-path signals have a same phase
and thus can be added constructively. Specifically, the weight for

compensating the phase shift of signal xm,k atm-th tag and k-th

channel is: e j ·ω(m,k,θ1) · e j ·μ(m,k,τ1).
Without loss of generality, we assume s1 ∈ S is the direct-path

signal and {s2, · · · , sp } are the reflection-path signals. We can now
sum the weighted signals as follows:

Γ =
M∑

m=1

K∑
k=1

xm,k · e j ·ω(m,k,θ1) · e j ·μ(m,k,τ1)

=

(
s1 +

P∑
p=2

sp

)
+ · · ·+(

s1 +
P∑
p=2

spe
j ·[ω(M,K,θ1)−ω(M,K,θp )+μ(M,K,τ1)−μ(M,K,τp )]

)

= MK · s1︸��︷︷��︸
Direct−path
signal increased

+

P∑
p=2

[
sp

(
M∑

m=1

K∑
k=1

e j ·Ψ(m,k,θp,τP )

)]
︸���������������������������������������︷︷���������������������������������������︸

Reflection signals add up with random phase shifts

,

(5)

where, Ψ(m,k,θp ,τp ) =
4π [f +(k−1)Δf ](m−1)d

C [cos(θ1)− cos(θp )] +
4π (k − 1)Δf (τ1 − τp ). As shown in the above equation, the direct-
path signal s1 adds constructively and its power is increased byMK
times. The reflection-path signals are relatively random, i.e., their
angle θp and propagation time τp (p � 1) are quite different from θ1
and τ1 of direct-path signal and are usually very different from each
other. Thus, when we align the direct-path signals, the reflection
signals add with random phases and their power averages out to a
small value. Note that this “averaging out” happens when angles
and propagation delays of different reflection signals are randomly
distributed which is usually true in reality. With a relatively large
value ofM and K , the power of the combined direct-path signals
is much stronger than the power of the reduced reflection-path
signals. Thus, the direct-path signal now dominates and the linear
relationship holds. We can then estimate the direct-path signal ŝ1,
and its corresponding phase ϕ and RSS R as:

ŝ1 ≈ Γ/(MK), ϕ = ∠(ŝ1), R = 20 log |ŝ1 |, (6)

where ∠(·) and | · | represent the angle and absolute value of a
complex number. In this paper, we employ the JADE [30] algorithm
to jointly estimate the angle θ1 and propagation time τ1 of the
direct-path signal. Specifically, JADE is a subspace-based technique
which is an extension of the well known MUSIC algorithm [24].
MUSIC is utilized for one-dimensional parameter estimation while
JADE is capable of multi-dimensional parameter estimation. We
use the method introduced in SpotFi [15] to identify the direct path.

In the rest of this paper, we use the strengthened direct-path
signal’s phase and RSS value, i.e., ϕ and R in Eq. (6), for material
identification and target imaging.

3.3 Target Material Identification

We first introduce the phase and RSS changes caused by a target
and then describe our material identification method.

Phase changes after a target shows up. The wavelength of
RF signal changes when the signal travels from one material into
another while the frequency does not change [6]. As a result, the
phase changes are different when the RF signal travels inside dif-
ferent materials, even if the propagation distances are the same.
Considering the direct path between the reader and “Tag-array 1”
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as shown in Fig. 4, where the RF signal penetrates through a target.
Let L and L′ denote the distances along the direct path from the
reader to tag-array and to target, respectively. D is the propagation
distance inside the target. Let ϕair and ϕtar be the measured signal
phase before and after the target blocks the direct path. The phase
change Δϕ = ϕtar − ϕair after the target shows up is given by:

Δϕ = [2(L − D)
2π

λair
+ 2D

2π

λtar
− 2L

2π

λair
] mod 2π

= [2D(
2π

λtar
−

2π

λair
)] mod 2π

= [2D(βtar − βair )] mod 2π , (7)

where λair and λtar are signal wavelengths in the air and in the
target. The βair =

2π
λair

and βtar =
2π
λtar

are defined as the signal’s

phase constant in the air and in the target.
RSS changes. The RSS measurement also changes when the RF

signal travels through different target materials. Specifically, the
amplitude has an e−α attenuation over a unit prorogation distance,
where α is the attenuation constant which only depends on the
target material [6]. Let Rair and Rtar be the RSS measurements
before and after the target blocks the direct path. Then, the RSS
change ΔR = Rtar − Rair is given as:

ΔR = 20 log(
Atar
Aair

)

= 20 log
AS · e−αair 2L

′
e−αtar 2De−αair 2(L−L

′−D)

AS · e−αair 2(L′+D+L−L′−D)

= 20 log[e−2D(αtar−αair )], (8)

where Aair and Atar are the measured signal amplitudes before
and after the target blocks the direct path, AS is the amplitude of
the transmitted signal, αair and αtar are the signal’s attenuation
constants in the air and in the target. Note that Eq. (7) and Eq. (8) also
show that the distance L between tags and reader does not affect
TagScan’s performance, since it is cancelled out when calculating
the phase change and RSS change measurements.

3.3.1 Material feature extraction. To identify the material type,
we need to extract features that are uniquely related to the material.
The phase and RSS changes can not be used directly, since they
are also related to the target size, i.e., the propagation distance D.
Compared with the phase and RSS changes, the phase constant β
and attenuation constant α are more promising candidates to serve
as features for material identification. Different materials have dif-
ferent β and α values [6]. However, it is a challenge to estimate the
values of β and α at the same time since there are three unknown
parameters including the propagation distance D in the two equa-
tions Eq. (7) and Eq. (8). Employing multiple reader-tag pairs or
frequency-hopping to increase the number of equations does not
solve this problem, because the created additional equations are
redundant. We address this problem with a novel method. Instead
of seeking the absolute values of phase constant β and attenua-
tion constant α , we prove that the relative relationship of β and
α calculated by the RSS change and phase change is a parameter
independent of target size, and also is unique for each material.
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Figure 7: Differentiating materials with the feature Ω.

Specifically, based on Eq. (7) and Eq. (8), we have:

2D =
Δϕ + 2ζ π

βtar − βair
=

ln 10ΔR/20

αair − αtar
, (9)

where, ζ is an integer.5 Based on Eq. (9), we define a feature, i.e.,
RP-rate Ω, which is related to the ratio of RSS change and phase
change as:

Ω =
ln 10ΔR/20

Δϕ+2ζ π
=

αair − αtar
βtar − βair

. (10)

Note that (i) βair and αair are constants, since they are the phase
constant and attenuation constant in the air; (ii) the values of βtar
and αtar are also fixed for a given material. Thus, the right side of
Eq. (10) is a constant and Ω is unique for a particular material. To
this end, we successfully avoid solving βtar and αtar but employ
Ω estimated by Eq. (10) for material identification. The feature Ω
is independent of the signal propagation distance inside a target
which enables material identification without a need of knowing
the target size. We show through benchmark experiments that Ω is
a fine-grained feature sensitive enough to identify different target
materials. We test 6 liquid materials, i.e., “Vinegar”, “Soy source”,
“Liquor”, “Beer”, “Saline water” and “Purified water”. We conduct
experiments in the lab-office environment based on the deployment
shown in Fig. 1(a). We run the experiments 40 times and calculate
the values of Ω based on Eq. (10). The results in Fig. 7 show that
the Ω values of 6 liquids are clearly different from each other. It
implies that Ω can be employed to effectively identify the target’s
material type.

3.3.2 Material identification. TagScan has two steps for material
identification. First, TagScan builds a feature database which maps
the materials to feature (Ω) values. Specifically, for each material,
we collect the phase and RSS change measurements in an open
space, and then calculate its feature value according to Eq. (10).
Note that this process happens only once. Second, based on the
phase and RSS change measurements of a test material, TagScan
calculates the new feature value and employs the KNN classifier [9]
to identify the material type with the database.

3.3.3 Distinguish between similar materials. The feature value
Ω is a fine grained parameter to differentiate materials. We can
even employ Ω to differentiate Pepsi and Coke as shown in Section
5.3. In rare cases when the Ω values are similar, the phase and RSS

5ζ =0 for relatively small objects. The propagation distance inside the water needs to
be more than 84.25 cm to cause a phase change of more than 2π .
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Figure 8: An illustration of target imaging. (a) and (b) show the target image estimates from Array 1 and Array 2, respectively. (c) is the union set of the two
estimated images in (a) and (b). (d) shows another image estimate. (e) shows the output of final image estimate when the difference of images estimated from the
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Figure 9: Boundary detection and starting points selection.

change values of each individual may be quite different and can also
be employed to further differentiate two materials. For example, we
find that sweet water with a 6% sugar concentration has a similar
Ω with Coke but their phase change values are very different.

3.3.4 Propagation distance estimation. After identifying the tar-
get’s material, we can acquire the material’s phase constant β either
via experiment or from handbook [6]. Then, the propagation dis-
tance D can be estimated from Eq. (7) for imaging. We employ the
phase measurement but not the RSS measurement to estimate D
since the resolution of phase data is higher and the phase readings
are usually more stable than the RSS readings.

3.4 Target Shape Imaging

TagScan utilizes the propagation distances inside a target for imag-
ing. Specifically, each propagation distance represents one piece of
target width information at one angle. By stitching together these
width information at many angles, TagScan can obtain the hori-
zontal cut image of the target. Note that TagScan can obtain the
propagation distances at different angles after the target’s material
is identified. However, the challenge here is that we have no idea
about the starting points of the propagation distances. To address
this challenge, the key intuition is that the target images estimated
by two different arrays will align well when the starting points
are correctly selected. Thus, we model the imaging problem as an
optimization problem and search the starting points by minimizing
the difference of two images estimated from the two arrays.

To narrow down the search space, we first detect the angles of
the target boundaries based on the phase change measurements. As
shown in Fig. 9, TagScan detects the angles for the lower boundary
θ1,l and the upper boundary θ1,u at “Array 1” by comparing the

phase changeswith a threshold. However, the phase changesmay be
small when the target’s boundary part is thin and the propagation
distance inside the target is small. In this scenario, the phase noise
will confuse the boundary detection. Traditionally, the Cumulative
Sum (CUSUM) method [17] is used to address this type of boundary
detection problem. However, this method needs a priori knowledge
of the phase change distribution, which is not available in our
design. To deal with this problem, we have two observations: (i) the
phase variation caused by noise is random, which can be averaged
out over a time window; (ii) phase changes caused by a target will
be accumulated over the time window. We thus introduce a sliding
window based cumulative phase changemethod to detect the angles
of the target boundaries.

Formally, when the reader with antennamoves along a trajectory,
let {Δϕ1, · · · , ΔϕN } be the phase changes at N successive angles
{θ1, · · · ,θN }with respect to an array. If the indices of the lower and
upper boundary angles are l and u, their corresponding estimated
indexes l̂ and û are:

l̂ = inf{n |J (n) > h}, û = sup{n |J (n) > h}, (11)

J (n) = |V (n) −

∑n−1
i=1 V (n − i)

n − 1
|, n ≥ 2, (12)

V (n) =
1

W

∑n+W

j=n
Δϕ j , n ≥ 1, (13)

where,W is a robust window size used to reduce the false alarms,
V (n) is the mean phase change of current window, J (n) calculates
the difference between mean phase change values of the current
window and the past windows, h is an empiric threshold defined
for boundary detection.

Once the angles of the target boundaries are detected, we have a
polygon formed by the four intersection points of the four angle
boundaries obtained from two arrays, i.e., the polygon P1P2P3P4
shown in Fig. 9. Next, TagScan estimates the target’s cut image
in the polygon area by searching the true starting points. Ini-
tially, TagScan randomly picks a point at each edge of the polygon
P1P2P3P4, such as the pointsV1,V2,V3 andV4 in Fig. 9, and connects
these points to form the initial candidate target edges. Then, each
array chooses the closest candidate target edges and takes these
edges as the starting points of the propagation distances estimated.
For example, the “Array 1” chooses the edge V1V2 and edge V1V4
as the target edges and assumes the starting points are located on
the two edges. TagScan can now stitch together the propagation
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Table 1: Test liquids for material identification.

Liquids Vinegar Soy Source Coke Liquor Beer

Compositions
Acetate 50%;

Carbohydrate 4.9 g/100 ml.
Amino acids 0.4 g/100 ml;
Carbohydrate 6.7 g/100 ml.

Carbohydrate
3.5 g/100 ml.

Ethyl alcohol
50% vol.

Ethyl alcohol
3.1% vol.

Liquids Purified Water Saline Water Sweet Water Whole Milk Skimmed Milk

Compositions ——
Salt

10.9 g/100 ml.
Sugar

25.3 g/100 ml.
Fat

4.0 g/100 ml.
Fat

0 g/100 ml.

Table 2: Test targets for cut imaging.

Horizontal cut of target Size (cm) Material

Triangular Edge: 20
Plastic,

wood, water.
Hexagonal Edge: 20

Quadrangular 43.5 × 34
Quadrangular 81 × 81 Concrete.

Circular Diameter: 25
Plastic, water.

Circular Diameter: 20
Human target 40 × 20 Water, fat, bone, etc.

distances along different angles and obtain the coarse estimated
images with respect to the two arrays, as shown in Fig. 8(a)-(b).

To combine the two images estimated from the two arrays,
TagScan employs the union set of the two estimated images as
the output. Fig. 8(c) shows the union set of two estimated images in
Fig. 8(a)-(b). The estimated image in Fig. 8(c) is still quite different
from the ground truth image which means the starting points of
the propagation distances selected are not accurate. In reality, we
do not know the ground truth so how can we know the estimated
image is accurate? The key observation is that the images estimated
from the two arrays will align well when all the starting points
are selected accurately. While the starting points are located at
the target edges, we search different combinations of target edge
points on the four edges (e.g., P1P2, P2P3, P3P4 and P4P1 ) and then
calculate the difference between the two estimated images from
the two arrays. For example, Fig. 8(c) and (d) show another two
image estimates when we search two different combinations of
target edge points. The image estimated in Fig. 8(d) is better than
the image estimated in Fig. 8(c) since the difference between two
estimated images is smaller. In reality, finding the minimum differ-
ence is not time efficient so as long as the difference is smaller than
a pre-defined threshold, the search stops and the union set of the
two images is output as the final target image estimate, as shown
in Fig. 8(e). We utilize the MATLAB Genetic Algorithm toolbox to
speed up this searching process. Based on the experimental results,
the proposed imaging method can usually converge within one
second and the average processing time is around 200 ms. Note that
this method does not need to know if the target shape is triangle,
rectangle or circle beforehand and will automatically use the prop-
agation distances inside a target to determine the shape. However,
we do find that the imaging performance of TagScan is worse for
complex shapes such as a target with sawtooth edges.

4 IMPLEMENTATION

Hardware implementation: The system setup is shown in Fig. 10.
An Impinj Speedway R420 reader [14] is employed in our experi-
ments without any hardware or firmware modification. The R420
reader operates in frequency range of 920.625 – 924.375 MHz, which
is divided into 16 channels with a channel bandwidth of 250 KHz.
The default antenna used by R420 reader is a directional antenna
with a 9 dBi gain and 70◦ elevation and azimuth beam widths. In

Target
Antenna

Reader 

& laptop

iRobot &  

Battery

AntennaReaderTag
Hall Environment

(a) Hall environment and system setup.

Library Environment

Lab-office Environment

(b) Lab-office and library environment.

Figure 10: System setup and experimental environments.

the target imaging experiments, the reader together with the an-
tenna is carried by an iRobot to move around the target for a half
cycle. The moving speed is about 20 cm/s. Note that for material
identification, we do not require the reader to move since the mea-
surements at one location are enough. The cheap Alien General
Purpose tags [12] are used in our experiments. Each tag costs 5
cents and is shown in Fig. 10(a). We place multiple tags (e.g., 8 tags)
to form a linear tag-array and the spacing between adjacent tags is
4 cm. The heights of the tag-arrays and the reader antenna are the
same, i.e., both of them are 44.5 cm above the ground.

Backend implementation: The proposed algorithms are im-
plemented in C# and MATLAB code. The server is a laptop with
a 2.6 GHz CPU (Intel i7-6700HQ) and 16 GB memory. The server
communicates with the RFID reader using the low level reader pro-
tocol [13]. All the tags’ backscatter packets received at the reader
are forwarded to the server through an Ethernet cable. The size of
the RFID backscatter packet is small (12 bytes) [14] since the packet
only contains the tag’s ID.
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Figure 15: Material identification accuracy with
varying number of tags and channels.
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Figure 16: Material identification accuracy with
varying tag-antenna distances.

Default deployment setup: In the experiment, we deploy one
reader with one antenna and two tag-arrays. Each array has 8 tags
for accurate AoA estimation [42]. The reader is programmed to hop
over 16 channels. When we evaluate the impact of the number of
tags and channels, we change the default setup. Unless specifically
mentioned, we use this default setup for evaluation.

Tag diversity calibration: Accurate AoA estimation is highly
dependent on the phase value measured from each tag. However,
each tag has a random phase offset introduced by the hardware
diversity [44] and the coupling effect [39]. This random phase offset
needs to be carefully addressed before accurate AoA estimation. We
employ the method proposed in [34] to calibrate the phase offsets
among tags.

System requirements: In the current implementation, TagScan
requires the target to be static for imaging. TagScan also requires the
reader to move at a relatively low speed (i.e., below 0.5 m/s). When
the reader moves fast, the Doppler shift effect will change the phase
readings which will affect TagScan’s performance accordingly.

5 PERFORMANCE EVALUATION

In this section, we evaluate the material identification and target
imaging performance of TagScan. We first introduce the experimen-
tal environments and the tested targets, followed by the detailed
experimental results.

5.1 Experimental Environments and Targets

Experimental environments: we conduct experiments in three
typical indoor environments: a library, a lab-office, and an empty
hall corresponding to high, medium and low multipath environ-
ments as shown in Fig. 10. For each experimental environment, we

choose a 3.2 m × 3.2 m area as the test area and deploy TagScan
based on the layout shown in Fig. 4.

Tested targets: To evaluate the material identification perfor-
mance of TagScan, we use 10 different liquids and 6 different types
of solid objects as test targets. The liquids are listed in Table 1.
The solid objects are “Apple”, “Orange”, “Watermelon”, “Choco-
late”, “Wood” and “Brick”. To evaluate the imaging performance of
TagScan, we test targets with different shapes, sizes and materials.
The details are shown in Table 2.

5.2 Effect of Multipath Suppression

In the lab-office environment, we deploy one reader with just one
antenna and one tag-array. When the direct-path signal dominates,
the phases change linearly with the distance between the tag-array
and reader antenna. Fig. 11, shows that compared with the raw
phase values, the processed values after applying the multipath
suppression scheme have a linear pattern and match the theoretical
values well. This demonstrates the effectiveness of the proposed
multipath suppression scheme.

5.3 Material Identification Performance

Material identification accuracy: In the lab-office environment,
we evaluate the material identification accuracy of TagScan. For
each identification, we repeat the experiments 30 times by using
30 different targets with the same material, e.g., 30 apples of a
same brand. For each target, we collect 100 samples and set the
number of “Nearest Neighbors” as 12 in the KNN classifier based
on our empirical knowledge. Fig. 12 shows the identification ac-
curacy is more than 94% for 10 liquid materials. Fig. 13 shows the
identification accuracy is also high for solid targets although the
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Figure 17: PD estimation errors in different environments.

performance is slightly worse than liquids, since even two apples of
the same brand have slightly different feature values. We run addi-
tional experiments to identify the same type of liquids with slightly
different concentrations, e.g., sweet water with sugar concentra-
tion 8.3 g/100ml, 16.7 g/100ml and 25.3 g/100ml. Fig. 14 (up) shows
that TagScan still achieves a high accuracy of at least 96%. Finally,
we attempt to differentiate between “Coke”, “Pepsi”, “Whole milk”
and “Skimmed milk”. Fig. 14 (below) shows that TagScan achieves
100% accuracies in differentiating the two types of milk since their
phase difference is big as shown in Fig. 1(b). The difference between
“Coke” and “Pepsi” is relatively small but TagScan still achieves a
higher than 90% accuracy.

Effect of the number of tags and channels: More tags and
channels are helpful to suppress the multipath and increase the
phase estimation accuracy of direct-path signal. We run the ma-
terial identification experiments on the 10 liquids with varying
number of tags and channels in different environments. Fig. 15
shows that (i) the identification accuracy does increase with more
tags and channels; (ii) even in a rich multipath environment such
as a library, TagScan still achieves a high accuracy with 8 tags
and 16 channels. This further demonstrates the effectiveness of the
proposed multipath suppression scheme.

Effect of the distance between antenna and tags:When the
distance between the antenna and the tag-array is larger, the sig-
nal becomes weaker and the multipath effect is stronger, which
decrease the identification accuracy. We run material identifica-
tion experiments on 10 liquids with varying distances between the
antenna and the tag-array. Fig. 16 shows that the identification
accuracy of TagScan does not decrease much. TagScan achieves an
accuracy of higher than 90% in all the three environments when
the tag-antenna distance is no larger than 4 m.

5.4 Shape Imaging Performance

5.4.1 Accuracy of propagation distance estimation. In this sec-
tion, we evaluate the accuracy of the propagation distance (PD)
estimation. Under the deployment setup shown in Fig. 1(a), we con-
duct experiments in the three environments using purified water,
Coke and vinegar. We acquire the phase constant via the experi-
mental measurement, i.e., we calculate the phase constant based on
the phase value for a given liquid height. Fig. 17 shows that for a
liquid target with a height of 10 cm, the mean propagation distance
estimation errors are smaller than 1 cm.

20cm

Ground Truth

(a) Imaging of a triangle shape target with plastic & water.

81cm

Ground Truth

(b) Imaging of a rectangular shape cement pillar.

Figure 18: Cut imaging of a triangular target and a rectangular target with
material of plastic & water and cement.

5.4.2 Single target imaging. Next, we evaluate TagScan’s imag-
ing performance for the 7 targets listed in Table 2 in the lab-office
environment. Fig. 18 demonstrates that TagScan can estimate the
cut image of a triangular shape and a rectangular shape accurately
with only two arrays. Fig. 18(b) also shows that TagScan achieves a
high accuracy when the target material is cement.

When the cut shape of the target is a hexagon or a circle, the
imaging performance of TagScan degrades as shown in Fig. 19(a)-
(b), because the constraints (i.e., the propagation distances) from
the two arrays are not enough to achieve a fine-grained image. To
achieve a better accuracy, we increase the number of arrays from
2 to 4. As shown in Fig. 19(c), the imaging performance improves
significantly with more arrays. However, the computational load
also increases with more arrays.

5.4.3 See-through the wall imaging. Next, TagScan is tested to
image one and two targets behind a wall made of plywood.6 We
first carry out one round of baseline measurements when there is
no target behind the wall. Then, TagScan performs another round
of measurements when the target appears behind the wall and
estimates the cut image of the target. Fig. 20(a) shows that the
wall is not affecting the imaging performance and TagScan still
accurately obtains the target image behind a wall.

5.4.4 Human target imaging. We test if TagScan can accurately
obtain the cut image of a human target as this information can
be employed for human identification. However, estimating the
propagation distance inside a human body is more challenging, as
the human body is composed of different materials that are in both
liquid and solid forms. To overcome this challenge, TagScan first
calculates the average phase constant using 15 different human
targets (all volunteers are from the lab). Then, one human target is
randomly selected for the imaging evaluation. Fig. 20(b) shows that
TagScan can estimate the cut image of a human body at a relatively

6The thickness of the plywood wall is about 6 cm for easy of construction but the
RFID signal can penetrate through a much ticker wall as demonstrated in Fig. 18(b).
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Figure 19: Cut imaging for a hexagonal target and a circular target with two and four arrays.

Array 1

Ground Truth

(a) Single target through wall imaging.

Array 1

(b) Human target through wall imaging.

20cm

Array 1

(c) Two-target through wall imaging.

Figure 20: See-through wall imaging for a single target, human target and two targets.

high accuracy. Note that a person’s different clothes on different
days may lead to small changes in estimated cut image. For the
current experiments, the human target wears the same cloth.

5.4.5 Two-target imaging. Finally, TagScan is evaluated in a
challenging scenario where there are two targets. The intuition
allows TagScan to succeed is that the two targets will affect the
direct-path links separately when the targets are not located close
to each other. In this case, as shown in Fig. 20(c), TagScan images
both targets accurately. When targets are very close to each other,
TagScan will image them as one large target.

6 DISCUSSION

Maximum propagation distance inside a target: The transmis-
sion power of a COTS RFID reader is limited to 32.15 dBm and the
weakest signal power that a reader can hear is around -90 dBm [14].
We measure and find that the maximum propagation distance that
a RFID reader can still read a signal sent back by a tag through
purified water is around 4 m. However, this is not a fundamental
limitation of TagScan but the limit of hardware. By using directional
antenna with thinner transmission beam, TagScan should have no
problem for imaging even larger target.

Target mobility: When a target is moving, TagScan can still
identify its material as long as the target passes through the direct-
path link formed by the tag-array and the reader antenna. However,
it is challenging to estimate a moving target’s image since TagScan
needs to match the baseline phase/RSS readings (without the tar-
get) with the online measurements (with the target) at the exact
same target location to calculate the phase/RSS changes. When the
target is moving, it is difficult to match the measurements with the
appropriate baseline values.

End-to-end system latency: The system latency includes data
collection time and the processing time of the algorithms to identify
the material and image the target. The processing time is around

50 ms for material identification and 200 ms for imaging. For ma-
terial identification, TagScan needs one round of measurements
over 16 channels, which takes about 350 ms. Thus, the latency is
below 0.5 s. The packet collection time for imaging depends on
the size of the monitoring area. For example, TagScan takes 40 s to
collect packets in a 4 m × 4 m area when the robot moves around
the target for a half cycle at a speed of 20 cm/s. The data collection
rate of the Impinj R420 reader is about 45 samples per second. So
the number of samples collected for imaging is about 1800.

Identifying hybridmaterials. In reality, a lot of targets consist
of hybrid materials. It is a challenging problem to identify each
component material and the corresponding percentage. We leave
this interesting problem as the future work.

Imaging hollow targets. Imaging hollow targets has a lot of
applications but is also challenging for TagScan. With holes inside
the target, one propagation distance obtained may be divided into
several segments which makes imaging much more difficult.

Impact of container on material identification. In the cur-
rent experiments, the empty container (i.e., cup) is included when
we carry out the baseline measurements. Thus, the effect caused by
the container is totally removed, i.e., the material and the thickness
of the container will not affect the identification of the internal ma-
terial. In real-life applications, we may not always have the chance
to carry out baseline measurement with the empty container be-
forehand. In these scenarios, the container’s material and thickness
do affect TagScan’s performance.

7 RELATEDWORK

Commodity imaging systems. These systems including Radar[19],
X-Ray[21], CT/MRI [49] and B-scan [7], employ dedicated hardware
with high frequencies, large bandwidths and antenna arrays, which
are extremely expensive and usually large in size. For example, a
medical MRI system [49] can cost 200000-1000000 USD. MRI [49]
requires the target to be placed inside a large coil and then uses
the resonance signal reflected by the target for imaging. Moreover,
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X-Ray and CT employ very high frequency signals which are harm-
ful to the human body [23]. The ultrasonic systems, like B-scan [7],
can only work within a short distance range (e.g., sub-meters) and
are easily disrupted by the background noise. TagScan is built on
cheap commodity RFID devices (around 1000 USD) that works for
a relatively long distance range of 10 meters.

Camera and infrared based systems. Thermal infrared sensor
or visible light camera is widely used for target imaging [48] and
material identification [4, 20, 27]. Specifically, they acquire a target’s
millions of reflectance and/or fluorescence spectra for material
identification [4]. The thermal infrared sensor works in the night
but it requires the target to have a temperature above a specific
threshold to be detected. The visible light camera requires good
lighting conditions and has privacy issues. Moreover, both of them
cannot work in non-line-of-sight scenarios where the target is
blocked from line-of-sight (LoS) view. TagScan has the advantages
of working at day and night, not affected by heat sources, and can
also penetrate non-metallic walls.

RF-based imaging systems. Previous imaging work relies on
RF tomography technique [2, 41, 45]. However, they only obtain
a very coarse-grained image and do not capture the target’s fine-
grained shape information. The RF-Capture system [1] captures the
coarse skeleton information of a human target behind a wall using
20 antennas with a 1.78 GHz bandwidth. In contrast, TagScan is
built using low-cost commodity RFID devices and only requires one
antenna and a 4 MHz bandwidth. The Wision [11] system based on
Wi-Fi infrastructure requires a large two-dimensional antenna array
and uses the reflected signals from a target for imaging. Its imaging
performance is coarse due to the small bandwidth of commodity
Wi-Fi devices. Moreover, all the above systems only obtain the
vertical cut image and the surface material of a target, since they
use the reflection signals bounced off the target. TagScan uses the
signals that penetrate through a target and thus is able to obtain
the horizontal cut image and the internal material of the target.
Depatla et al. [8] build a Wi-Fi imaging system by using the RSS
attenuation caused by a target. However, the RSS readings fromWi-
Fi cards are coarse, limiting its imaging accuracy. It also requires
two Wi-Fi transceivers to move simultaneously and know each
other’s position at all time, severely limiting its practical application.
TagScan only needs one moving antenna and uses much more fine-
grained phase information for imaging.

RF-based material identification systems. The RSA system
[50] uses 60 GHz radios to identify a nearby target’s surfacematerial
and image its boundaries. However, 60 GHz signals have a short
transmission range and require LoS view to the target. On the
contrary, the wavelength of the RFID signal is relatively large (i.e.,
about 32 cm), which allows TagScan to identify a target’s material
and image its shape through a wall. RadarCat [46] also uses 60 GHz
signals for accurate material and object classification. However,
RadarCat requires to touch the target, which may not be convenient
in some scenarios. While, TagScan can passively identify a target’s
material even when the target is away (1-5 m) from the devices
(i.e., tag and antenna). Moreover, RFID’s frequency band is much
smaller than the 60 GHz signal. As a result, the sampling interval
is much larger and the distance estimate is coarse. Thus, it is more
challenging to carry out imaging and material identification with
RFID signals. Sarma et. al [5] build an RFID based liquid volume

detection system by mapping the RSS measurements with the level
of liquid in the glass. However, this system can not identify the
liquid material. TagScan not only can identify the target material,
but also can estimate the liquid height accurately.

Multipath suppression approaches. Manymethods have been
proposed to address themultipath problem indoors [2, 15, 29, 42, 43].
ArrayTrack [42] employs the property that the direct path is more
stable when the target is moving to identify the direct path. Chronos
[29], ToneTrack [43] and WiTrack [2] identify the ToF of the direct-
path signal based on the property that ToF of direct path has the
minimum value. Specifically, they either combine the Wi-Fi signals
of multiple channels [43] or use the FMCW signal with a large
bandwidth (i.e., sweeping from 5.46 GHz to 7.25 GHz) [2] to sepa-
rate different signals in the time domain. SpotFi [15] combines the
two ideas and identifies the AoA and ToF of direct-path signal at
the same time. Unlike previous methods that extracting the AoA
or ToF information to identify the direct-path signal, this paper
tries to strengthen the direct-path signal and average out the mul-
tipath signals. So our method is actually able to obtain the raw
direct-path signal rather than just differentiating which AoA/ToF
is corresponding to the direct-path signal.

8 CONCLUSION

This paper presents TagScan, the first RFID-based system which uti-
lizes the phase and RSS changes to perform material identification
and target imaging at the same time. Comprehensive real-world
experiments show that TagScan can achieve high accuracies for
target material identification and is sensitive enough to differenti-
ate even Pepsi and Coke. TagScan can also image more than one
targets of different shapes, sizes behind a wall.
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