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ABSTRACT
Retargeting aims at adapting an original high-resolution photo/video
to a low-resolution screen with an arbitrary aspect ratio. Conven-
tional approaches are generally based on desktop PCs, since the
computation might be intolerable for mobile platforms (especially
when retargeting videos). Besides, only low-level visual features
are exploited typically, whereas human visual perception is not well
encoded. In this paper, we propose a novel retargeting framework
which fast shrinks photo/video by leveraging human gaze behavior.
Speci�cally, we �rst derive a geometry-preserved graph ranking
algorithm, which e�ciently selects a few salient object patches to
mimic human gaze shi�ing path (GSP) when viewing each scenery.
A�erward, an aggregation-based CNN is developed to hierarchi-
cally learn the deep representation for each GSP. Based on this, a
probabilistic model is developed to learn the priors of the training
photos which are marked as aesthetically-pleasing by professional
photographers. We utilize the learned priors to e�ciently shrink
the corresponding GSP of a retargeted photo/video to be maximally
similar to those from the training photos. Extensive experiments
have demonstrated that: 1) our method consumes less than 35ms
to retarget a 1024 × 768 photo (or a 1280 × 720 video frame) on
popular iOS/Android devices, which is orders of magnitude faster
than the conventional retargeting algorithms; 2) the retargeted
photos/videos produced by our method outperform its competitors
signi�cantly based on the paired-comparison-based user study; and
3) the learned GSPs are highly indicative of human visual a�ention
according to the human eye tracking experiments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;
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KEYWORDS
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1 INTRODUCTION
With the widespread usage of mobile devices, retargeting has be-
coming an indispensable technique which optimally displays the
original high-resolution photo/video on a low-resolution screens
with an arbitrary aspect ratio. For example, users usually want to
set their iPhone wallpaper as their favorite pictures. So how to ef-
fectively adapt an 3264×2448 photo taken by a DSLR to a 750×1334
iPhone screen? Non-uniform scaling may lead to visual distortion
if the photo contains multiple semantic objects, e.g., human/animal
faces and vehicle wheels. Meanwhile, simple photo cropping does
not work when the aesthetically-pleasing visual contents are scat-
tered inside a photo. To achieve a semantically-reasonable and
well-aesthetic retargeting result, content-aware photo retargeting
is developed, which maximally preserves the visually salient regions
while keeping the non-salient ones to a minimum scale. Neverthe-
less, the existing content-aware photo retargeting algorithms are
still frustrated by the following drawbacks:

Figure 1: Encoding human gaze shi�ing path using an or-
dered patch sequence 1 → 2 → 3 → 4, whereas the existing
deep networks can only represent a single patch.

• �ey may not work e�ciently on mobile platforms, al-
though a large quantity of photo/video retargeting tasks
are carried out based on iOS/Android devices. For exam-
ple, it will take a few seconds to process each 3264 × 2448
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photo using the well-known seam carving [1] on a desktop
PC, let alone for mobile platforms. With the assistance of
Nvidia CUDA GPU, retargeting can be greatly accelerated
on desktop platforms [13]. But how to design a real-time
retargeting system on mobile platforms remains a tough
challenge;

• It is generally acknowledged that shallow features are less
descriptive than the deep features. However, existing retar-
geting algorithms are generally based on shallow features.
Retargeting using deep features might be intolerably time-
consuming because of the relatively low performance of
mobile processors. Moreover, high-level semantic clues
cannot be discovered e�ectively and e�ciently. Even for
desktop computers, it may takes seconds to extract the
region-level semantic feature from each image/video, such
as the object bank [19] and weakly-supervised region se-
mantic encoding [38];

• It is essential to incorporate human visual perception into
the retargeting process (as shown in Fig. 1), since viewers
generally expect a perceptually well-aesthetic retargeting
result. However, current retargeting models can hardly
re�ect human visual perception, i.e., the human gaze allo-
cations when viewing each image or video clip. Further-
more, current deep models are typically based on images
or image patches, they cannot explicitly represent an or-
dered set of image regions that are sequentially perceived
by human eye.

To solve the above problems, we propose a perceptually-aware
model which e�ciently shrinks the original photo/video by deeply
encoding human gaze shi�ing sequences. Our approach involves
three key modules. By extracting a succinct set of object patches
from each photo or video frame, a fast graph ranking algorithm is
developed to sequentially recognize highly salient object patches
for constructing gaze shi�ing paths (GSPs), wherein the geometrical
clue of photo/video are optimally encoded. Since the GSPs are 2D
features which may not be explicitly utilized by the existing prob-
abilistic models, we propose an aggregation deep network which
sequentially concatenates the object patches along each GSP into
its deep representation. Based on the deep representation, we learn
the GSP distribution from a large quantity of aesthetically-pleasing
photos crawled from Flickr. �e learned priors well re�ects how
human perceives well-aesthetic sceneries, which are then utilized
to guide the photo/video retargeting process. �eoretically, we can
enforce that the GSP of the test photo/video is maximally simi-
lar to those from the well-aesthetic Flickr photos. Computational
time analysis have demonstrated that our proposed retargeting
system can run in real-time on the state-of-the-art iOS/Android
devices. Moreover, comprehensive user studies have shown that
photos/videos retargeted by our method are more visually a�rac-
tive and be�er preserve semantically important objects than its
competitors.

�e main contributions of this work can be summarized as fol-
lows. First, we propose a geometry-preserving graph ranking al-
gorithm which e�ciently and e�ectively select visually/semantic
patches for building a GSP. Second, an aggregation-based deep
model is developed for learning the deep feature of each GSP, which

is more descriptive than the shallow features. �ird, a uni�ed prob-
abilistic model is proposed for photo/video retargeting, wherein
experiences of multiple Flickr users and auxiliary visual clues can
be �exibly encoded.

2 RELATEDWORK
Many content-aware retargeting algorithms have been proposed
in the literature. �ey can roughly be categorized into the discrete
and continuous retargeting1. For the former, a seam (8-connected
path of pixels from top to bo�om or from le� to right) is iteratively
removed to preserve the important pixels within a photo. Further,
Avidan et al. [1] formulated seam detection as dynamic program-
ming, where a gradient energy is employed as the importance map.
Bubinstein et al. [32] introduced a forward energy criterion to im-
prove Avidan et al.’s work. As a variant of seaming, Pritch et al. [30]
proposed to discretely remove repeated pa�erns in homogenous
image regions. For continuous retargeting, Wolf et al. [43] pro-
posed to merge less important pixels in order to reduce distortion.
Wang et al. [42] proposed an optimized scale-and-stretch approach,
which iteratively wraps local regions to match the optimal scaling
factors as close as possible. In [36], Sun et al. proposed an algo-
rithm to create thumbnails from input images. Two thumbnailing
algorithms, termed SOATtp and SOATcr, have been designed to
combine the scale and object aware saliency with image retargeting
and thumbnail cropping respectively. In [10], Guo et al. presented
an e�ective image retargeting method using saliency-based mesh
parametrization, which optimally preserves image structures. Since
many approaches cannot e�ectively preserve structural lines, Lin et
al. [20] presented a patch-based photo retargeting model which
preserves the shapes of both visually salient objects and structural
lines. It is worth noticing that, the above content-aware retarget-
ing methods depend merely on low-level feature-based saliency
maps, which can hardly re�ect visual semantics. Rubinstein et
al. [33] presented a retargeting algorithm focusing on searching
the optimal path in the resizing space. Wang et al. [42] introduced
a scale-and-stretch warping algorithm that allows resizing images
into di�erent aspect ratios while preserving visually prominent
features. In [51], Zhang et al. proposed a content-aware dynamic
video retargeting algorithm. A pixel-level shrinkable map is con-
structed that indicates both the importance of each pixel and its
continuity, based on which a scaling function calculates the new
pixel location of the retargeted video. In [14], Krähenbühl et al.
developed a content-aware interactive video retargeting system.
It combines key frame-based constraint editing with numerous
automatic algorithms for video analysis.

In recent years, Castillo et al. [4] evaluated the impact of photo re-
targeting on human �xations, by experimenting on the RetargetMe
data set [31]. �eir work revealed that: 1) even strong artifacts
in the retargeted photo cannot in�uence human gaze shi�ing if
they are distributed outside the regions of interest; 2) removing
contents in photo retargeting might change its semantics, which
in�uences human perception of photo aesthetics accordingly; and
3) employing eye-tracking data can more accurately capture the

1�ere are a large body of retargeting-related methods and discussing them enumera-
tively would be too lengthy (e.g., [10, 11, 17, 21, 28, 32, 34, 37, 45, 48, 49]). Readers can
refer to [2, 34, 37] for a more comprehensive survey.
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regions of interest, which might be informative for photo retarget-
ing. In [45], Zhang et al. proposed a photo retargeting model by
learning human gaze allocation, wherein a few salient graphlets are
selected based on a sparsity-guided ranking algorithm. Noticeably,
the above perception-guided retargeting models may not be applied
onto mobile platforms. �e reason lies in that there is no exact solu-
tion to the sparse ranking algorithm, and the approximate solution
might be intolerably time-consuming.

3 OUR PROPOSED METHOD
3.1 Fast Human Gaze Behavior Modeling
Biological and psychological studies [3, 44] have shown that, in
human visual system, only a small fraction of distinctive sensory
information is selected for further processing. More speci�cally,
before understanding each real-world scenery, humans will �rst per-
ceive objects, i.e., selecting possible object locations. Subsequently,
human vision system will process only part of an image/video in de-
tail, while leaving the others nearly unprocessed. Apparently, it is
important to incorporate such human perception into the retarget-
ing process. Toward a mobile retargeting system, a fast object pro-
posals generation associated with an e�cient geometry-preserved
graph ranking algorithm is developed for simulating how humans
selectively allocating their gazes.

BING-based fast object patches [6]: Humans typically a�end
to those foreground semantic objects, e.g., human/animal faces.
Optimally preserving these semantic objects are essential during re-
targeting, since heavily shrinking them may cause visual distortion.
To e�ectively recognize these semantic objects which may draw
human a�ention, we employ an objectness measure to produce
a succinct set of object proposals. During the system design, we
believe that an optimal objectness measure should have the fol-
lowing advantages: 1) achieving a high object detection accuracy
and ultra-low computational cost; 2) generating a succinct set of
object proposals which will facilitate the subsequent salient object
patches detection; and 3) exhibiting a good generalization ability
to unknown object categories, thereby the model can be �exibly
applied onto di�erent data sets.

Taking the above criteria into consideration, we adopt the BING
feature proposed by Cheng et al. [6] as the objectness measure. �e
BING feature resizes each image window to 8× 8 and subsequently
uses the binarized norm of gradient as its descriptor. It can achieve
a high object detection accuracy and maintain an extraordinarily
fast speed at the same time.

Geometry-preserved graph ranking: We observe that there
are still a number of object patches output from [6]. To mimic
the actively viewing mechanism of human visual system, an ef-
�cient geometry-preserved graph ranking algorithm is proposed
for selecting object patches based on their representativeness to a
photo/video. �ese highly representative object patches are more
likely to draw human a�ention, which are sequentially connected
to form the gaze shi�ing path (GSP).

We denote a set of object patches as {x1, · · · ,xN } ∈ R137, where
each xi is the 137-D appearance feature (128-D HOG [7] plus 9-D
color moment [35]) of the i-th object patch. To preserve the geo-
metrical characteristics of a photo/video, we construct a kNN graph
G, wherein each vertex represents an object patch and each edge

Figure 2: Le�: preserving all the relative distances between
object patches and implicitly maintaining the image/video
geometrical characteristics; Right: GSP constructed using
the geometry-preserved graph ranking, wherein M = 5 top-
ranked object patches are selected.

links pairwise spatially adjacent object patches as shown on the
le� of Fig. 2. Speci�cally, the edge weight of graph G is:

Wi j = exp(−
||xi − x j | |

2

σ 2 ), (1)

In our implementation, each object patch is linked with its three
nearest neighbors. If pairwise object patches are not connected,
we simply set the edge weight to zero. As shown on the le� of
Fig. 2, preserving all the pairwise distances between object patches
during our proposed graph ranking can implicitly maintain the
image/video geometrical feature.

Let ϕ : x → R be a ranking function which assigns to each
object patch xi a ranking score, we de�ne an initial vector y =
[y1, · · · ,yN ]T , wherein yi = 1 if the i-th object patch is salient and
yi = 0 otherwise. Based on this, the cost function associated with
ϕ can be formulated as:

f (ϕ) =
1
2 (

N∑
i, j=1

Wi j | |
1
Dii

ϕi −
1
Dj j

ϕ j | |
2 + µ

N∑
i=1
| |ri − yi | |

2), (2)

where µ > 0 is the regularization parameter; matrix D is a diagonal
matrix whose i-th diagonal element is Dii =

∑N
j=1 Wi j .

�e �rst term in (2) is a smoothness constraint that enforces the
adjacent object patches have similar ranking scores. �e second
term is a ��ing constraint which means that the ranking result
should maximally �t the initial label assignment. Notably, the initial
labels are assigned according to a well-known fast visual saliency
model proposed by Hou et al. [12].

By minimizing object function (1), we obtain the optimal ϕ using
the following closed-form solution:

ϕ∗ = (IN − S/(µ + 1))y, (3)

where S is the symmetrical normalization of matrix W, i.e., S =
D−1/2WD−1/2; IN is an N × N -sized identity matrix.

3.2 Deep Network for GSP Representation
By constructing the GSP from each image/video, a deep architec-
ture is formulated to e�ciently learn its representation, which is
more descriptive than that produced by shallow models. As shown
in Fig. 3, the deep architecture contains two key components: 1)
deep CNN for representing each object patch, and 2) statistical-
aggregation-based GSP representation.
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Figure 3: Structure of our designed deep model, wherein an
ordered set of object patches are sequentially aggregated to
form the �nal deep representation.

First, thorough experimental validations [25] have shown that
maintaining the original image resolution and aspect ratio is essen-
tial to visual quality modeling. Moreover, arbitrarily-sized objects
are more descriptive to aesthetic quality [5]. To this end, we upgrade
the conventional �ve-layer CNN [16] to support arbitrarily-sized
inputs. �e key technique is an adaptive spatial pooling (ASP) layer
whose pooling size can be dynamically adjusted in order to support
input patches with various sizes.

Each of the M deep CNNs is detailed as follows. Starting from a
large quantity of top-ranked object patches selected by our graph
ranking algorithm, we randomly je�er each object patch and �ip
it horizontally/vertically with probability 0.5 to improve its gener-
ality. �e network contains four stages of convolution, ASP, and
local response normalization, followed by a fully-connected layer
with 1024 hidden units. A�erward, the network branches out one
fully connected layer containing H 128-D units to describe the cor-
responding H latent aesthetics-related topics, e.g., “colorful” and
“harmony”. It is worth emphasizing that, the bo�om CNN layers
are shared to: 1) decrease the number of parameters, and 2) take
advantage of the common low-layer CNN structure.

Second, as shown in Fig. 3, given a GSP which involves multiple
sequentially-connected object patches, we extract the L-D deep
feature for each object patch using the above patch-level deep CNN.
�en, these patch-level deep features are statistically aggregated
into the deep representation for each GSP.

We denote Θ = {θi }i ∈[1,M], where θi ∈ RL is the deep fea-
ture corresponding to each of the M object patches from a GSP.
�en, we represent Tk as the set of values of the k-th compo-
nent of all θi ∈ Θ, i.e., Tl = {θl j }j ∈[1,M]. �e statistical aggre-
gation involves a set of statistical functions: Ψ = {ψu }u ∈[1,U ].
Each ψ speci�es a particular statistical function toward the set
of patch-level deep feature output from the M CNNs. Herein, we
set Ψ = {min,max,mean,median}. �e outputs of the functions in
Ψ are concatenated and aggregated using a fully-connected layer to
generate a R-D vector to deeply describe a GSP. �e entire �owchart
of the above process can be formulated as:

f (Ψ) = Q × (⊕Uu=1 ⊕
L
l=1 ψu (Tl )), (4)

whereQ ∈ RR×U L represents the parameters of the fully-connected
aggregation layer, and U = 4 is the number of statistical functions.

Deep model training: During the forward propagation, the

output oi of each the i-th neuron at the statistical layer can be for-
mulated as oi =

∑M
m=1
∑L
l=1 pml→io

′
ml , where pml→i can be con-

sidered as the “contribution” of the neuron pml to the i-th neuron
at the statistical layer. Denoting ηi as the error propagated to the
i-th neuron at the statistical layer, the error η′ml back-propagated
to the neuron pml is calculated by η′ml =

∑
i pml→iηml .

�e overall architecture of our deep model is trained based on the
standard back-propagation of the error, associated with a stochastic
gradient decent as the loss function, i.e., the sum of the log-loss of
each object patch from the training stage.

Time cost of the deep model is briefed as follows. �e train-
ing stage takes about 17 hours on a desktop PC, wherein object
patches from 20,000 well-aesthetic photos are manually selected as
the training data. �e training is conducted o�-line. Comparatively,
the test stage is carried out rapidly. It takes nearly 11.435ms and
8.767ms to calculate the deep feature for each GSP, on iPhone 6S
and Samsung Galaxy S6 respectively.

3.3 Probabilistic Model for Retargeting
Due to the subjectivity of visual aesthetics perception, people with
di�erent backgrounds, experiences, and eduction might bias for
retargeted photo/video with certain styles. To reduce such bias, it
is necessary to exploit the aesthetic experiences of multiple users.
Speci�cally, to make the retargeted photo/video unbiased, we use
a probabilistic model to describe the aesthetic experience of pro-
fessional photographers. As a widely used statistic tool, Gaussian
mixture models (GMMs) have been shown to be e�ective for learn-
ing the distribution of a set of data. In our work, GMMs are used
to uncover the distribution of GSPs from all training aesthetically
pleasing photos. �e training photos are collected by googling
images using the keywords such as “iPhone wallpaper”. For each
GSP, we use a 5-component GMM to learn its distribution:

p ( f |θ ) =
∑5

i=1 αiN ( f |πi , Σi ), (5)

where f denotes the R-D deep feature for each GSP, and θ =
{αi ,πi , Σi } represents the GMM parameters.

Figure 4: An example of the grid-based retargeting. �e le�
is the original photo and the right is the retargeted one.

A�er learning the GMM priors, we shrink a test photo (or video
frame) to make its GSP most similar to those from the training
photos. �at is, given the GSP of a test photo/video, we calculate
the probability of its GSP. To avoid the triangle mesh as the control
mesh in shrinking which may result in distortions in triangle orien-
tations, we use grid-based shrinking. Particularly, we decompose a
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photo into equal-sized grids (Grid size is a user-tuned parameter
and we set it to 20×20 based on cross validation), and the horizontal
weight of grid д is calculated as:

wh (д) = p ( f |θ ), if f ∩ дh , ∅, (6)

where f ∩ дh , ∅ denotes that GSP f is horizontally overlapping
with grid д.

Similarly, the vertical weight of grid д is calculated as:

wv (д) = p ( f |θ ), if f ∩ дv , ∅, (7)

For grids not overlapping with a GSP, we set the grid weights a
su�ciently low one (0.05 in our work) because these regions will
not be a�ended by human eye. A�er obtaining the horizontal (resp.
vertical) weight of each grid, a normalization operation is carried
out to make them sum to one, i.e., w̄h (ϕi ) = wh (ϕi )/

∑
i wh (ϕi ).

�erea�er, given the size of the retargeted photo/video whose size
is W × H , the horizontal dimension of the i-th grid is shrunk to
[W · w̄h (ϕi )], and the vertical one of the i-th grid is shrunk to
[H · w̄v (ϕi )], where [·] rounds a real number to the nearest integer.
�e above retargeting process can be elaborated in Fig. 4. Grids
covered by the central architecture are semantically signi�cant, and
are thus preserved in the retargeted photo with slight scaling. In
contrast, grids covered by the surrounding architecture are less
semantically important, thereby they are heavily shrunk in both
horizontal and vertical directions. Notably, the above steps are for
photo retargeting. For video retargeting, we follow the operations
in [46], where the shrinking weight of the current frame is utilized
to guide the shrinkage of the next frame.

�e time consumption of the above probabilistic retargeting
model is as follows. �e GMM training is moderately time-consuming
due to the iterative EM algorithm (i.e., about 130s on iPhone 6S and
Galaxy S6 respectively). Comparatively, the grid-based shrinking is
conducted very fast (about 2.321ms and 2.431 per image on iPhone
6S and Galaxy S6 respectively). Fortunately, the GMM training is
usually conducted o�-line, thereby the probabilistic retargeting is
real time on mobile platforms.

Based on our discussions from Sec 3.1 to Sec 3.3, the proposed
photo/video retargeting on mobile platforms can be summarized in
Algorithm 1.

Algorithm 1 Perceptual Retargeting on Mobile Platforms
input: N well-aesthetic photos from multiple professional
photographers, parameters: µ , M , and the test photo/video;
output: Retargeted photo/video;
1) Extract a set of object patches using the BING feature [6],
then utilize the geometry-preserved ranking to construct GSP;
2) Calculate the deep representation of each GSP based on our
aggregation-based deep model;
3) Retarget each photo/video using the grid-based probabilistic
model as shown in (5).

4 EXPERIMENTS AND ANALYSIS
All the baseline retargeting models were implemented based on the
C++. Except for our method, all the baseline retargeting algorithms
are experimented on the workstation HP Z840, which is equipped
with a dual Intel E5-2600 CPU, 32GB RAM, 256GB SSD, and HP
Z24X LED monitor. For our mobile retargeting algorithm, we im-
plement two versions on both iOS 10.1 and Android 6.0.1 platforms

respectively. Two popular mobile devices, iPhone 6S and Samsung
Galaxy S6, are employed for experiments.

4.1 Comparative Study
Photo retargeting evaluation: We compare our retargeting method
against several representative approaches in the state-of-the-art,
including three cropping methods: omni-range context-based crop-
ping (OCBC) [5], probabilistic graphlet-based cropping (PGC) [50],
describable a�ribute for photo cropping (DAPC) [8], as well as four
content-aware retargeting methods: seam carving (SC) [1] and its
improved version (ISC) [32], optimized scale-and-sketch (OSS) [42],
and saliency-based mesh parametrization (SMP) [10]. We experi-
ment on the standard retargeting image set, RetargetMe [31]. �e
resolution of the resulting photos is �xed to: 640 × 960.

Figure 5: Comparison of our approach with well-known
photo retargeting methods (PM: our proposed method)

In order to make the evaluation comprehensive, we adopt a
paired-comparison-based user study to evaluate the e�ectiveness
of the proposed retargeting algorithm. �is strategy was also used
in [50] to evaluate the quality of a cropped photo. In the paired com-
parison, each subject is presented with a pair of retargeted photos
from two di�erent approaches, and is required to indicate a pref-
erence as of which one they would choose for a phone wallpaper.
�e participants are 35 ∼ 45 amateur/professional photographers.

As the comparative results shown in Fig. 5, we made the follow-
ing observations. First, compared with the three content-aware
retargeting methods, our approach preserves the semantically im-
portant objects in the original photo well, such as the barrels from
the �rst photo, the wheels from the second vehicle wheels. In
contrast, the compared retargeting methods may shrink the seman-
tically important objects, such as the vehicles wheels and human
face. Even worse, SC and its variant ISC, as well as OSS may re-
sult in visual distortions, i.e., the human faces and drawing papers.
Moreover, only our retargeting method well preserves the spatial
composition of the orginal photo. For example, in the last photo,
the le� barrel is larger than the right one. For photos retargeted
by di�erent methods, only our method accurately captures this
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Figure 6: Statistics of user study from the six sets of retar-
geted photos in Fig. 5 (the vertical axes denote the user votes
for each retargeting method)

clue. Second, although cropping methods preserve important re-
gions without visual distortions, they abandon regions that are less
visually salient but still capture the global spatial layout. Speci�-
cally, the vehicle from the �rst photo, the entire human face and
church from the second and fourth photo, the le� door from the
last photo. �ird, as the statistical results displayed in Fig. 6, user
study demonstrates that our method outperforms its competitors
on the resulting photos. It is noticeable that, when the resulting
photos appear without distortion, the content-aware retargeting
outperforms the cropping technique, and vice versa. On all the
six photos, our approach produces non-distorted photos and the
semantically signi�cant objects are nicely preserved. �erefore, the
best resulting photos are consistently achieved by our approach.

Figure 7: Comparative video retargeting results

Video retargeting evaluation: We select six representative
algorithms as the baseline for testifying the video retargeting per-
formance. �ey are streaming video retargeting (SVR) [15], mosaic-
guided scaling (MGS) [48], motion-aware video retargeting (MAR) [39],

motion-based video retargeting (MVR) [41], scalable and coher-
ent video resizing (SCVR) [40], and key-frames using grid �ows
(KTS) [17]. We crawl nearly 500 video clips from Youtube, wherein
the resolution is �xed to 1280 × 720. �ese videos contain semantic
contents from eight categories (i.e., “human face”, “architecture”,
“landscape”, “vehicle”, “boat”, “park”, “pedestrian”, and “river”) and
each lasts from 46s to 98s. As the qualitative results shown in Fig. 7,
our method can best preserve the foreground salient objects. And
no obvious visual distortions are observed in retargeted videos pro-
duced by us. To quantitatively compare the retargeting results in
Fig. 7, we follow the paired-comparison-based user study above. As
shown in Fig. 8, users consistently consider that videos retargeted
by our method is the most aesthetically-pleasing.

Figure 8: Statistics of user study from the four sets of retar-
geted videos as displayed in Fig. 7

Time consumption analysis: In retrospect, our retargeting
framework contains three key components, fast GSP construction,
deep network for GSP representation, and probabilistic model for
retargeting. For photo retargeting, time consumptions of the three
steps are 13.212ms, 11.435ms, and 12.114ms respectively on the iOS
platform. On the Android platform, it takes 11.212ms, 8.767ms, and
11.231ms to conduct the three steps respectively. Totally, it con-
sumes about 30ms to retarget each photo, which is su�ciently fast.
Comparatively, even on the desktop platform, time consumptions
of the baseline photo retargeting algorithms are: 2.432s (SC), 3.332s
(ISC), 32.321s (OSS), and 13.211s (SMP) respectively.

For video retargeting, on the iOS platform, time consumptions
of the three steps are 0.231s, 0.321s, and 0.123s respectively when
retargeting each 1s video clip. On the Android platform, time costs
of the three operations are 0.254s, 0.221s, and 0.165s when retar-
geting each 1s video clip. �at is to say, our retargeting method is
real-time on mobile platforms. Contrastively, it takes nearly ten
seconds to retarget each 1s video for the other methods.

4.2 Parameter Analysis
�is experiment reports the in�uences of important parameters on
retargeting a speci�c photo. Totally, there are four key parameters
in our approach: 1) µ, the regularization parameter, 2) M , the num-
ber of object patches within each GSP, 3) L and R, the dimensions
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of patch-level and image-level deep features respectively, and 4)
the grid size for probabilistic retargeting. �e default values of
the above parameters are: µ = 0.2, K = 5, L = 256, R = 256, and
GridSize = 20.

Figure 9: Retargeted photos produced under di�erent pa-
rameter settings

Retargeting results under di�erent parameter se�ings are shown
in Fig. 9. First, we tune the value of µ and observe that the most
aesthetically-pleasing retargeted photo is achieved when µ = 0.3.
�is might because a larger µ will enforce too much on the locality-
preserving a�ribute, which will make the foreground object too
large. Even worse, slight visual distortion is observed when µ = 0.5.
Second, we present the retargeted photos when di�erent numbers
of object patches are selected for GSP construction. As seen, by
increasing the number of selected object patches M from one to
�ve, the semantically signi�cant objects, such as the barrels and the
drawing board, are be�er preserved in the retargeted photo. When
M is larger than �ve, however, the resulting photo remains almost
unchanged. �ereby, we setM = 5 for this photo. �ird, we retarget
a photo using di�erent dimensional patch-level and image-level
deep features, i.e., L and R. We observe that a larger L will make
more semantically important regions retained in the retargeted
photo. But emphasizing the foreground objects too much might
not be a good choice and may decrease the global composition, e.g.,

L = 256 or 512. Similarly, a too large R will also inappropriately
emphasize the foreground objects. In this way, we set R = 512.
Finally, we change the grid size and display the corresponding
retargeted photo. As can be seen, when the gird size is set to 5 × 5
and 10 × 10 respectively, the resulting photos are both distorted.
When the grid size is larger than 20 × 20, the distortion disappears
but the le� barrel becomes disharmonically large. �erefore, we set
the gird size to 20 × 20.

4.3 GSP Evaluation using Eye Tracker

Figure 10: Comparison of gaze shi�ing paths from �ve ob-
servers (di�erently colored) and our calculated GSPs

In this subsection, we quantitatively and qualitatively compare
the calculated GSPs with real human gaze shi�ing paths. More
speci�cally, we record the eye �xations from �ve observers by
leveraging the eye-tracker EyeLink II2, and then link the �xations
into a path in a sequential manner. As shown in Fig. 10, for most
scene images, our calculated GSPs are consistent with the real
human gaze shi�ing paths. Moreover, we calculate the percentage
of the human gaze shi�ing path which overlaps with our calculated
GSPs. In detail, given each of the �ve real human gaze shi�ing
paths, we connect all the segmented regions along the path and then
obtain the human gaze shi�ing path with the segmented regions.
�erea�er, the similarity between a GSP and a real human gaze
shi�ing path is measured as follows:

s (P1, P2) =
N (P1 ∩ P2)
N (P1) +N (P2)

, (8)

where P1 and P2 denote a calculated GSP and the real human gaze
shi�ing path with segmented regions respectively, N counts the
pixels inside each image region, and P1 ∩ P2 denotes the shared
regions between P1 and P2. According to (8), we observe that
the overlapping percentage between our calculated GSPs and real
human gaze shi�ing paths is 89.321% on average. �is result shows
that our predicted paths can e�ectively capture the real human
gaze shi�ing process.

2www.sr-research.com/
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Figure 11: Visualized GSPs from a set of AVA images [26].
�e yellow paths denote the GSPs predicted by our method,
where each circle indicates the location of a region.

Additionally, we visualize GSPs calculated from AVA scene im-
ages [26]. AVA contains a large number of images with their quality
scores. As shown in Fig. 11, the following observations can be made.
First, as shown in the photos whose quality levels ranged from 0.8
and 1, the high quality scene pictures with multiple interacting
objects are assigned with very high scores, which shows that our
calcualted GSPs can well predict how humans perceive local/global
composition in these beautiful pictures. Second, as shown in im-
ages whose quality levels are between 0.5 and 0.8, the high quality
pictures with a single object are also appreciated by the proposed
methods. �is is because our graph ranking algorithm can natu-
rally reveal local scene composition. �ird, the objects from photos
whose quality levels are ranked between 0 and 0.5 are either spa-
tially disharmoniously distributed or blurred. �erefore, they are
considered as low quality by our model.

Last but not least, we analyze the GSPs extracted from both low
quality and high quality scene images. As can be seen from Fig. 11,
neither low nor high quality scene images have a particular path
geometry, e.g., the angle between pairwise shi�ing vectors (yellow
arrows). It is worth emphasizing that, for high quality scene pic-
tures, the �xation points (yellow circles) are aesthetically pleasing
and the objects along the path are harmoniously distributed.

4.4 �ality Prediction Evaluation
�e key of our probabilistic retargeting model is a quality mea-
sure which discovers the most beautiful candidate retargeted photo.
�e �rst experiment compares our approach with a series of shal-
low/deep media quality methods. �e shallow models include three
global feature-based approaches proposed by Dhar et al. [8], Luo et
al. [24], and Marcheso�i et al. [27], respectively; as well as two local
patch integration-based methods proposed by Cheng et al. [5] and
Nishiyama et al. [29], respectively. At the same time, three deep
quality models proposed by Lu et al. [22, 23] and Mai et al. [25]
are also testi�ed. In the comparative study, we notice that the
source codes of the �ve shallow quality models are not provided
and some experimental details are not mentioned, therefore it is
di�cult to strictly implement them. We thus adopt the following
implementation se�ings. For Dhar’s approach, we use the public
codes from Li et al. [18] to extract the a�ributes from each photo.

Table 1: Comparison of quality prediction performance

Models CUHK PNE AVA LIVE-IQ

Shallow

Dhar et al. 0.7386 0.6754 0.6435 0.8943
Luoet al. 0.8004 0.7213 0.6879 0.8854

Marcheso�iet al. 0.8767 0.8114 0.7891 0.8784
Cheng et al. 0.8432 0.7754 0.8121 0.9021

Nishiyama et al. 0.7745 0.7341 0.7659 0.8657

Deep

Lu et al. [22] 0.9154 0.8034 0.7446 0.8832
Lu et al. [23] 0.9237 0.8034 0.7446 0.9023

Mai et al. 0.9276 0.8432 0.7710 0.8943
Ours 0.9321 0.8676 0.8256 0.9312

�ese a�ributes are combined with the low-level features proposed
by Yeh et al. [47] to train the classi�er. For Luo et al.’s approach,
not only the low-level and high-level features in their publication
are implemented, but also the six global features from Getlter et
al. [9]’s work are used to strengthen the aesthetic prediction ability.
For Marcheso�i et al.’s approach, similar to the implementation of
Luo et al.’s method, the six additional features are also adopted. For
Cheng et al.’s approach, we implement it as a simpli�ed version
of our approach, i.e., only 2-sized graphlets are employed for aes-
thetics measure. Notably, for the three probabilistic model-based
quality (i.e., Cheng et al.’s, Nishiyama et al.’s, and our method), if
the quality score is larger than 0.5, then this image/video is deemed
as high quality, and vice versa. For the three deep quality models,
we notice that source codes of Lu et al. [22, 23]’s approaches are un-
available. �ereby, we implemented them by ourselves. According
to their publications, some detailed experimental con�gurations,
such as the CDUA-Convnet, are missing. �erefore, we carefully
tune the parameters until the performance on the AVA [26] is close
to that reported publicly.

We report the quality prediction accuracies on the CUHK, PNE,
AVA, and the LIVE-IQ in Table 1. On the four data sets, our approach
outperforms its competitors remarkably, which demonstrates the
advantages of our quality prediction. First, accurately modeling
human gaze shi�ing is informative in predicting media quality,
since human visual perception can be well encoded. Second, deep
models have remarkable advantage over shallow models in im-
age/video quality modeling. Noticeably, the previous deep quality
models based on the entire images or randomly-cropped image
patches might be less e�ective. Discovering visually/semantically
salient object patches for deep quality model training can receive a
signi�cant performance gain.

5 CONCLUSIONS
In this work, a mobile platform is designed which e�ectively re-
targets photos/videos by deeply encoding human gaze behavior.
More speci�cally, given a set of photos or video clips, we �rst con-
struct their GSPs based on the fast graph ranking. A�erward, a
deep architecture is proposed which converts each GSP into its
deep representation using an aggregation scheme. Finally, these
deep GSP features are integrated through a probabilistic model for
photo/video retargeting. Comprehensive experimental results on
both the iOS and Android devices have demonstrated the e�ciency
and e�ectiveness of our method.
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