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Abstract. Electroencephalography (EEG) signal based intent recogni-
tion has recently attracted much attention in both academia and in-
dustries, due to helping the elderly or motor-disabled people controlling
smart devices to communicate with outer world. However, the utiliza-
tion of EEG signals is challenged by low accuracy, arduous and time-
consuming feature extraction. This paper proposes a 7-layer deep learn-
ing model to classify raw EEG signals with the aim of recognizing sub-
jects’ intents, to avoid the time consumed in pre-processing and feature
extraction. The hyper-parameters are selected by an Orthogonal Array
experiment method for efficiency. Our model is applied to an open EEG
dataset provided by PhysioNet and achieves the accuracy of 0.9325 on
the intent recognition. The applicability of our proposed model is fur-
ther demonstrated by two use cases of smart living (assisted living with
robotics and home automation).

Keywords: Intent recognition, Deep learning, EEG, Smart home

1 Introduction

Smart living involves a collection of technologies that monitor and control do-
mestic living environments, intended to support residents’ routine activities to
improve their quality of lives. However, the existing smart living control tech-
nologies (e.g., voice control [1] and application-based control [2]), may still be
found difficult in situations that people have troubles in motor abilities, such
as aged individuals, people having motor neuron disease(e.g., Parkinson disease,
cord injury, brain-stem stroke) or disabilities.

Thus, to assist such individuals, new smart home systems based on intent
recognition are essential, which likely can alleviate aforementioned issues.

Electroencephalography (EEG) signals reflect activities on certain brain areas
not requiring any initiative actions such as gesture, voice, or so on. EEG data
is generated when a subject imagines performing a certain action such as close
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hands. Therefore, EEG signal are widely captured to recognize one’s intent, with
the intent of using it as input to communicate or interact with external smart
devices such as wheelchairs or service robots a real-time brain-computer interface
(BCI) systems [3].

So far, existing EEG-based intent recognition approaches face several chal-
lenges. First, the data pre-processing, parameters selection and feature engi-
neering are time-consuming and highly dependent on human expertise. Second,
current accuracies mostly center around 60 ∼ 85% [4–6], which are too low for
real-world deployment. Finally, existing research mainly focus on binary intents
recognition while multi-intent scenario dominates the practical applications.

On the other hand, deep learning based approaches are capable of modelling
high level representations as well as capturing complex relationships, which are
often hidden in raw data, via stacking multiple layers of information processing
modules in hierarchical architectures [7]. Recurrent Neural Networks (RNNs) is
one example making use of sequential information. In particular, Long Short-
Term Memory (LSTM) is one RNN architecture designed to model temporal se-
quences and their long-range dependencies, and often results in higher accurate
compared to conventional RNNs [8]. In this paper, we propose a deep recurrent
neural network model for intent recognition in smart living, to help individu-
als with motor impairments. Reusable source code and dataset are provided to
reproduce the results1. Our main contributions of this paper are highlighted as
below:

– We propose a LSTM recurrent neural network for smart living intent recog-
nition, which directly processes raw EEG data under multi-class scenario.

– We apply Orthogonal Array experiment method for hyper-parameters tun-
ing, which saves 98.4% of time compared to exhausting tuning.

– We evaluate our approach over an open EEG dataset and achieves 0.9325 of
accuracy. We also demonstrate the applicability of proposed intent recogni-
tion in two real use cases.

2 Related Work

The current application of EEG signals is mainly in medicine and neurology.
[9] proposes a Logistic Regression (LR) approach to analyse EEG signals to
detect seizure patient and achieves as high as 91% of accuracy. Wavelet analysis
[10] is employed to carry on a diagnosis of Traumatic Brain Injury (TBI) by
quantitative EEG (qEEG) data and reaches 87.85% of accuracy. Power spectral
density [11] are extracted as EEG data features to input into SVM, extreme
learning machine and linear discriminant analysis to predict the outcome of
Transcranial direct current stimulation (TDCS) treatment. The work achieves
76% accuracy with the data from FC4 ∼ AF8 channels and 92% with the data
from CPz ∼ CP2 channels.

1 https://github.com/xiangzhang1015/EEG-based-Control
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All the aforementioned literature uses binary classification and extracts fea-
tures in different areas manually. Recent research focuses more on the perfor-
mance comparison of different classifiers. [12] builds one deep belief net (DBN)
classifier for each channel and combines them through Ada-boost algorithm and
classifies the left and right hand motor imagery.The work achieves average 83%
accuracy. [5] adopts SVM as the classifier and achieves an average accuracy of
65% with the input data being denoised by a wavelet denoising algorithm before
power spectral density (PSD) feature selection. [13] yields an accuracy of 80%
with the foundational universal background models (UBMs) classifier after the
data is processed by I-vectors and Joint Factor Analysis (JFA). [14] combined
convolutional neural networks (CNN) and stacked autoencoders (SAE) to clas-
sify EEG Motor Imagery signals and results 90% accuracy. The application of
related methods in smart living in relatively limited. As an example, [15] uses
high pass and low pass filter to reduce the noise signal interference and extracts
EEG features by fisher distance. The switch control experiment results show
that their approach achieves an accuracy of 86%.

3 The Proposed Approach

Fig. 1: Workflow of the Proposed Approach

In this section we introduce the flow chart of the proposed approach at first
and then involve to more details. The architecture of our approach is shown in
Figure 1. The system consists of two components: the online component and the
offline component.

In the online component, raw EEG data, collected from subjects, are used to
train a deep recurrent neural network model (Section 3.1). The model directly
works on raw EEG data without any pre-processing, smoothing, filtering or
feature extraction. The parameters in the deep learning model are optimized
by the Orthogonal Array experiment (Section 3.2). In the offline component,
the user’s willing (EEG signal) is sent to above pre-trained RNN model and
then recognized as specific intent. The intent is subsequently used to command
devices, such as turning lights on/off or driving a robot to serve a cup of water.
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3.1 LSTM Recurrent Neural Network

RNN, as a class of deep neural networks, can help to explore the feature de-
pendencies over time through an internal state of the network, which allows us
to exhibit dynamic temporal behavior. In order to precisely recognize the user’s
intent in smart living surrounding, we propose a 7-layer LSTM Recurrent Neural
Network model including three components: 1 input layer, 5 hidden layers, and
1 output layer. In hidden layers, two of them are consisted of LSTM cells [16]
(shown as the rectangles in Figure 1).

Assume one collection of EEG signals is E = {E1, E2, ..., Ej , ..., Ebs}, Ej ∈
RK with nbs denotes the batch size, j denotes the j-th EEG sample, and K
denotes the number of dimensions in each EEG raw signal (K = 64 in this
paper). And in the RNN model, we denote the i-th layer (i = 1, 2, · · · , I, I = 7
in this paper) Xr

i = {Xr
ijk|k = 1, 2, · · · ,Ki}, Xr

i ∈ R[nbs,1,Ki] (K1 = K = 64),
where Ki denotes the dimension of the layer. Note that the number of dimension
equals to the amount of neurons accordingly in each layer. When the input only
contains one EEG sample, the first layer can be Xr

1 = Ej .
Weights between layer i and layer i+1 can be denoted asW r

i,(i+1) ∈ R[Ki,Ki+1],

for instance, W r
1,2 describes the weight between layer 1 and layer 2. bri ∈ RKi

denotes the biases of i -th layer. The connection between the i-th and (i+ 1)-th
layer will be Xr

i+1 = Xr
i ∗W r

i,i+1 + bri .
Please note the sizes of Xr

i , W r
i,i+1 and bri must match. For example, in

Figure 1, the transformation between H1 layer and H2 layer, the sizes of Xr
3 , Xr

2 ,
W[2,3], and br2 are correspondingly [nbs, 1,K3], [nbs, 1,K2], [K2,K3], and [nbs, 1].
The 5-th and 6-th layers here are LSTM layers, and they can be connected by:

fi = sigmoid(T (Xr
(i−1)j , X

r
(i)(j−1)))

ff = sigmoid(T (Xr
(i−1)j , X

r
(i)(j−1)))

fo = sigmoid(T (Xr
(i−1)j , X

r
(i)(j−1)))

fm = tanh(T (Xr
(i−1)j , X

r
(i)(j−1)))

cij = ff � ci(j−1) + fi � fm
Xr

ij = fo � tanh(cij)

where fi, ff , fo and fm represent the input gate, forget gate, output gate and
input modulation gate accordingly, and � denotes the element-wise multiplica-
tion. The cij denotes the state (memory) in the j-th LSTM cell in the i-th layer,
which is the most significant part to explore the time-series relevance between
samples. The T (Xr

(i−1)j , X
r
(i)(j−1)) denotes the operation as follows:

Xr
(i−1)j ∗W +Xr

(i)(j−1) ∗W
′ + b

where W , W ′ and b denote the corresponding weights and biases. At last, we
obtain the RNN predict results Xr

7 and employ the cross-entropy as the cost
function. The `2 norm is selected as the regularization function and the cost is
optimized by the AdamOptimizer algorithm [17].
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3.2 Orthogonal Array Experiment Method

Although deep learning algorithms can generally achieve good performance in
many areas, tuning the hyper-parameters (e.g., the number of layers, the number
of nodes in each layer and the learning rate) is time-consuming and dependent
on one’s experience. This paper employs the Orthogonal Array (OA) experi-
ment method [18] to select the hyper-parameters, which works much faster than
traditional hyper-parameters tuning methods. OA2 is widely used in design of
experiments, coding theory, and cryptography, however, to our best knowledge,
this paper is the very first work to apply OA of the parameter tuning in machine
learning and data mining areas.

OA is a systematic and statistical method and its principle is to compare
the dependent variable which is resulted from a different combination of inde-
pendent variables. It chooses certain representative combinations instead of all
combinations for testing. In this method, independent variable is called “factor”
and different values of factor are called “levels”. For instance, if the program has
three factors and each of them has three levels, which are represented by a cube
with 27 nodes (each node represents one combination of hyper-parameters), OA
only chooses 9 representative groups of parameters to optimize the selection. As
shown in Figure 2, A1, A2, A3 represent 3 levels of factor A, while factors B,C
are by the same token (the factor is supposed to be statistically independent
with the others). The 9 circled nodes are the nine groups selected by OA. Each
edge (totally 27 edges) in the cube has one circled node and each face (totally 9
faces) has three circled nodes.

For different number of factors and levels, corresponding OA table is pro-
vided. Generally, an OA table can be written as Lna(nnc

b ), where na denotes
the number of hyper-parameter combination, nb denotes the number of levels of
each factor and nc denotes the number of factors.

A3
C1

Factor A

A2B3

C2

F
a
c
to

r 
C

Factor B

C3

B2
A1B1

Fig. 2: OA selection

Level 1 Level 2 Level 3 Level 4

λ 0.002 0.004 0.006 0.008
lr 0.005 0.01 0.015 0.02
Ki 16 32 48 64
I 5 6 7 8
nb 1 3 6 13

Table 1: Factors and levels

2 https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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4 Experiments

4.1 Dataset

We select the widely used EEG data from PhysioNet eegmmidb (EEG motor
movement/imagery database) database3 to evaluate the proposed approach. The
EEG signals we selected are under 5 categories of intents. The intents are shown
in Table 2. In our work, we select 280,000 EEG samples from 10 subjects (28,000
samples each subject) for the experiment. Every sample is a vector of 64 elements
corresponding to 64 channels.
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0.6

0.65
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e
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class 4

Fig. 3: ROC curves. X-axis is the logarithmic of the False Positive Rate.

Intent Label Robot (Case 1) Household Appliance (Case 2)

Eye Closed 1 Walk Ahead Turn on Blue LEDs
Left Fist 2 Turn Left Turn on White LED
Right Fist 3 Turn Right Turn on Yellow LED
Both Fists 4 Grasp Turn on Red LED
Both Feet 5 Unloose Turn on All LEDs

Table 2: Intents and corresponding label
and function in case studies

Ground truth Evaluation
0 1 2 3 4 Precision Recall F1 AUC

0 2062 19 23 23 22 0.9595 0.9591 0.9593 0.9982
1 27 1120 19 15 20 0.9326 0.9349 0.9337 0.9977
2 23 23 1086 24 31 0.9149 0.9126 0.9138 0.9990
3 20 15 27 1112 35 0.9198 0.9213 0.9205 0.9990

Predicted
Label

4 18 21 35 33 1147 0.9147 0.9139 0.9143 0.9987

Table 3: The confusion matrix of 5-
classes classification

4.2 Overall Comparison

This section is aimed to demonstrate the efficiency of the proposed approach, for
which we compare our approach with the state-of-the-art methods. Our model
is composed of 7 layers RNN with 2 LSTM layers, the learning rate and the λ
are set as 0.004 and 0.005, the number of the nodes in each hidden layer is 64
and the number of batches nb is 3 (detailed in Section 4.3).

3 https://www.physionet.org/pn4/EEGmmidb/
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Our intent recognition result, the confusion matrix and the corresponding
evaluation are presented in Table 3. It can be read that our approach produces
a mean accuracy of 0.9325, in tests of five intents recognition on 10 subjects.
The ROC (Receiver Operating Characteristic) curves of five intents are dis-
played in Figure 3. Additionally, comparison with the state-of-the-art methods
is shown in Table 5 (the Binary/Multi column refers binary intents recognition
or multi-intents recognition). The KNN sets the number of neighbors as 3; the
SVM adopts One-vs-the-rest (OvR) multi-class strategy and the estimator is
LinearSVC; the RF sets the number of estimators as 300; the AdaBoost adopts
the number of estimators as 50 and the learning rate as 0.3; all the not men-
tioned parameters are set as default values. We can perceive that the proposed
approach significantly outperforms all the state-of-the-art methods, by a large
margin of 10%.

4.3 Hyper-parameter Tuning

The intent recognition results rely on hyper-parameters since we adopt deep
learning model. To achieve optimal recognition accuracy, we employ OA to op-
timize the hyper-parameters. In this paper, we select five most common hyper-
parameters including λ (the coefficient of `2 norm), lr (learning rate), Ki(the hid-
den layer nodes size), I (the number of layers), and nb (the number of batches4),
and they are shown in Table 1. Since this OA experiment contains 5 factors and
4 levels, the total number of factor combinations can be found in the standard
orthogonal experiment table5. As shown in the standard orthogonal experiment
table, 5 factors with 4 levels OA experiment has 16 different combine ways, which
means 16 experiments should be conducted to optimize the hyper-parameters.
The combination of hyper-parameters and the range analysis of results of the
experiment, are shown in Table 4. The optical λ, lr, Ki, I, and nb tuned by OA
are 0.004, 0.005, 64, 7, and 3, respectively. The parameter selection of 5 factors
and 4 levels needs 1024 = 45 combinations in an exhaustive method, while with
OA only 16 combinations are needed. This means (1 − 16/1024) = 98.4% of
time are saved. In Table 4, Rleveli is the sum of accuracy of all the combinations
contains leveli. We selected the best levels listed in Table 4 for training the
model and obtain an accuracy of 0.9325.

Table 4: OA experiment factor analysis
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Rlevel1 Rlevel2 Rlevel3 Rlevel4 Best level

λ 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.006 0.006 0.006 0.006 0.008 0.008 0.008 0.008 3.159 3.26 2.441 2.44 0.004
lr 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 3.47 2.875 2.747 2.208 0.005
Ki 16 32 48 64 32 16 64 48 48 64 16 32 64 48 32 16 2.132 2.886 3.011 3.271 64
I 5 6 7 8 7 8 5 6 8 7 6 5 6 5 8 7 2.326 2.932 3.048 2.894 7
nb 1 3 6 13 13 6 3 1 3 1 13 6 6 13 1 3 2.969 3.088 2.907 2.336 3
acc 0.689 0.91 0.893 0.667 0.925 0.717 0.848 0.77 0.926 0.826 0.322 0.367 0.93 0.422 0.684 0.404

4 The size of training dataset and testing dataset depends on nb since the total dataset
is fixed, e.g., if nb equals 1, there will be 14,000 training dataset and 14,000 testing
dataset. If nb equals 3, we will have 21,000 training dataset and 7,000 testing dataset

5 https://www.york.ac.uk/depts/maths/tables/l16b.htm
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4.4 Feature Evolution

To better understand the essence of the proposed model, we graphically describe
the feature evolution procedures. Figure 4 shows the revolution of variations be-
tween samples from different classes. In the input layer, the samples are chaotic
entangled; and they become clear and observable in the last LSTM layer after
the training through several hidden layers. Particularly, in Figure 4(d), the black
rectangles display parts of the dimensions which can clearly show the difference
between the intents. Conclusively, the proposed approach is enabled to automat-
ically extract distinguishable features (Figure 4(d)) from the chaotic raw EEG
data (Figure 4(a)).
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(a) input layer

0 10 20 30 40 50 60

The number of dimension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

p
lit

u
d

e

(b) hidden layer 1
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(c) hidden layer 3
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(d) LSTM layer 2

Fig. 4: Feature evolution. The black rectangles in Figure 4(d) indicate the fea-
tures which can clearly show the difference between the various intents.

4.5 Deployment

In this section, the efficiency of intent recognition is demonstrated by two appli-
cations. The structure of RNN and the corresponding parameters used in this
section are the same as the counterparts in Section 4.2.

Assisted Living with Mind-controlled Mobile Robot A simulated robot
is navigated by our system, which learns user’s intent from EEG recordings,
to take a can of beverage from a table in the kitchen and put it in a table in
living room. This case randomly selects some EEG raw data from Subject 1
dataset as simulation inputs. The path is shown in Figure 5, which is designed
for the EEG data to drive PR2 to implement its service task. Starting from near
the Kitchen’s table, the PR2 robot walks forward and holds its hand to grasp
the beverage can. Then it turns back and walks along the path to the table in
living room and unlooses hands to put the beverage on the table. It shows that
the robot can precisely grasp and unloose target according to the path planned
in the subject’s mind. The simulation platform is in Gazebo toolbox6 and the
robot controlling program is powered by Robot Operating System (ROS)7. The
simulation environment is depicted in Figure 5 and the demo can be found
at here8. The robot executes 5 actions according to 5 commands described in
Table 2.
6 http://gazebosim.org/
7 http://www.ros.org/
8 https://www.youtube.com/watch?v=VZYX1095Vkc
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Assisted Living with Mind-controlled Appliances The most common sce-
nario in a smart home would be controlling household appliances. In this case, we
control four LEDs ON/OFF through intents. LED commands corresponding to
specific intents are mentioned in Table 2. For every command, the corresponding
LED keeps on for 2 seconds and then turns off. Such test is conducted 10 times
with totally 80 commands, and our model accomplishes 100% of accuracy, which
indicates that the EEG-based mind control have potential to be significant in
household in the future.

Index Methods Binary/Multi Accuracy
1 Almoari [3]

Binary

0.7497
2 Sun [5] 0.65
3 Major [4] 0.68

State
of the art

4 Shenoy [6] 0.8206

5 Tolic [19] 0.6821
6 Ward [13] Multi (3) 0.8
7 Pinheiro [20] Multi (4) 0.8505

Baselines

8 KNN (k=3)

Multi (5)

0.8369
9 SVM 0.5082
10 RF 0.7739
11 LDA 0.5127
12 AdaBoost 0.3431
13 CNN 0.8409
14 Ours 0.9325

Table 5: Performance comparison with the
state of the art methods. RF: Random For-
est, LDA: Linear Discriminant Analysis. All
the methods are evaluated using the
same database.

Fig. 5: Use Case 1: mind-controlled
PR2 assistive robot performs a daily
task: reaching a cup of water in
kitchen area and getting it back onto
a table in living room.

5 Conclusion and Futurework

In this paper, we present an LSTM-RNN approach to recognize the smart living
user intents in EEG raw signals. By experimenting on large scale EEG dataset,
we can claim that our proposed approach significantly outperforms a series of
the state-of-the-art methods by achieving 0.9325 of accuracy. It provides insight
into feature revolution by visualizing the data shape, waveform fluctuation flow-
ing through each layer of our proposed model. Moreover, we demonstrate the
applicability of the approach by implementing two use cases, wherein an assistive
robot performs a physical task, and household appliances are interacted, based
on intent recognition. Our prior work atop multi-task learning based framework
[21] shows the capability to capture certain underlying local commonalities un-
der the intra-class variabilities shared by all the activities of different subjects.
Our future works will focus on improving the accuracy in person-independent
scenario, wherein the training and testing data can be from different subjects.
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