
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-2018 

Pricing for a last-mile transportation system Pricing for a last-mile transportation system 

Yiwei CHEN 
Singapore University of Technology and Design 

Hai WANG 
Singapore Management University, haiwang@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, Asian Studies Commons, and the 

Transportation Commons 

Citation Citation 
CHEN, Yiwei and WANG, Hai. Pricing for a last-mile transportation system. (2018). Transportation 
Research Part B: Methodological. 107, 57-69. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3872 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/361?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3872&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Transportation Research Part B 107 (2018) 57–69 

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

Pricing for a Last-Mile Transportation System 

Yiwei Chen 
a , Hai Wang 

b , ∗

a Engineering Systems and Design, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore 
b School of Information Systems, Singapore Management University, 80 Stamford Road, 178902, Singapore 

a r t i c l e i n f o 

Article history: 
Received 20 February 2017 
Revised 28 October 2017 
Accepted 18 November 2017 

Keywords: 
Last-mile 
Pricing 
Multi-type passengers 
Social welfare 

a b s t r a c t 

The Last-Mile Problem refers to the provision of travel service from the nearest pub- 

lic transportation node to a home or other destination. Last-Mile Transportation System 

(LMTS), which has recently emerged, provide on-demand shared transportation. We con- 

sider an LMTS with multiple passenger types—adults, senior citizens, children, and stu- 

dents. The LMTS designer determines the price for the passengers, last-mile service vehi- 

cle capacity, and service fleet size (number of vehicles) for each last-mile region to max- 

imize the social welfare generated by the LMTS. The level of last-mile service (in terms 

of passenger waiting time) is approximated by using a batch arrival, batch service, multi- 

server queueing model. The LMTS designer’s optimal decisions and optimal social welfare 

are obtained by solving a constrained nonlinear optimization problem. Our model is im- 

plemented in numerical experiments by using real data from Singapore. We show the op- 

timal annual social welfare gained is large. We also analyze a counterpart LMTS in which 

the LMTS designer sets an identical price for all passenger types. We find that in the ab- 

sence of price discounts for special groups of passengers, social welfare undergoes almost 

no change, but the consumer surplus of passengers in special groups suffers significantly. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Background and literature survey 

The Last-Mile Problem (LMP)—that is, the design and provision of travel service from a public transportation node to a 

passenger’s final destination—has attracted growing attention in recent years, for several reasons. First, the lack of last-mile 

service is the main deterrent to use of public transportation services. At the same time, with population rapidly increasing 

in many cities, how to motivate people to use public transport, and in turn reduce road congestion and air pollution, is 

challenging. Second, the impaired mobility of certain demographic groups, such as senior citizens, children and students 

traveling alone with safety concerns, and people with physical disabilities, increases demand for last-mile service and may 

even be required by law if they use a public transportation mode. 1 Third, with more business models and services arising 

from the sharing economy, last-mile service, which offers on-demand transportation that utilizes a shared resource (i.e., a 

shared vehicle fleet), serves as an important testbed and breaks ground for generic on-demand shared services. 

A specific last-mile region in a Last-Mile Transportation System (LMTS) is illustrated schematically in Fig. 1 . LMTS serves 

a public transportation node, such as a rapid transit metro station at which trains discharge passengers. Passengers’ final 

destinations (homes, workplaces, public institutions, etc.) are spatially distributed in the urban area served by the node, and 
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E-mail addresses: yiwei_chen@sutd.edu.sg (Y. Chen), haiwang@smu.edu.sg (H. Wang). 
1 In Singapore, many people in these groups prefer a public transportation mode because it is much cheaper than personalized travel services. One key 

reason they sometimes cannot take public transportation (and must therefore rely on personalized travel services) is the lack of an LMTS. 
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Fig. 1. Schematic of a last-mile region around a metro station. 

a fleet of vehicles is available to transport each passenger to her final destination. The routes and schedules of LMTS vehicles 

are flexible, and can adjust to specific last-mile service requests. 

Any passenger needing last-mile service is required to provide advance notice to the LMTS of her impending arrival at 

the alighting station and her specific final destination. Once this information is received, the LMTS assigns her to one of 

the vehicles in the LMTS fleet, plans the vehicle’s route so that it includes a stop at her destination, estimates the vehicle’s 

departure time, and notifies her accordingly. Once all of the passengers assigned to a vehicle are on board, the vehicle 

executes a delivery route with stops at each passenger’s destination and returns to the station to pick up passengers for 

its next delivery tour. Detailed LMTS settings for the area around the last-mile region of one metro station can be found in 

Wang and Odoni (2014) . 

Many papers address various models and case studies of the LMP and LMTS. With the high penetration of services 

such as Uber worldwide, most people are aware of the benefits of on-demand transportation services and request even 

more specialized forms, including last-mile service. Several case studies analyze LMTS in different contexts, including 

Liu et al. (2012) study of a bicycle-sharing program for an LMTS in Beijing. Many studies have also examined the design 

and operation of an LMTS. Wang and Odoni (2014) address the planning side by focusing on LMTS from a stochastic and 

planning perspective and provide closed-form approximations for the performance of an LMTS as a function of the system’s 

fundamental design parameters. Addressing the operational side, Wang (2017) focuses on LMTS from an operational perspec- 

tive and provides efficient strategies for passenger assignment, vehicle routing and scheduling based on a set of last-mile 

demand information. Personal rapid transit (PRT), which refers to a variety of transportation systems with characteristics 

that are similar, in some ways, to LMTS, has also attracted significant attention in recent years, such as Anderson (1998), Bly 

and Teychenne (2005), Lees-Miller et al. (2009), Berger et al. (2011) , and Mueller and Sgouridis (2011) . 

The pricing problem of urban transportation systems has been studied in diverse contexts. The relevant literature mainly 

focuses on dynamic pricing and congestion pricing in transportation network. The most influential papers in this area in- 

clude Yang & Bell (1997), Yang & Huang (1998, 2005 ), Yang & Meng (20 0 0), Lindsney & Verhoef (2001), Mookherjee & Friesz 

(20 08), Lu et al. (20 08), Lou et al. (2010), de Palma & Lindsey (2011), Wu et al. (2011), Lawphongpanich & Yin (2012), Do 

Chung et al. (2012) , and Wang et al. (2016) . None of these papers addresses LMTS pricing, which is the subject of this paper. 

We study LMTS pricing with multi-type passengers—adults, senior citizens, children, and students. Given each type’s last- 

mile service demand in each last-mile region, the geometric route configuration, discounts for specific passenger types, and 

the vehicle operating cost, we solve a constrained nonlinear optimization problem to determine the price for the passengers, 

the vehicle capacity, and the service fleet size (number of vehicles) in each last-mile region to maximize the social welfare 

generated by LMTS. 

The main body of the paper is organized as follows: In Section 2 , we propose a constrained nonlinear optimization model 

for LMTS pricing. Section 3 implements the model in a set of numerical experiments by using real data from Singapore; we 

also discuss our results and insights. Section 4 contains summary and concluding remarks. 

2. Model 

We now present the main model for the LMTS pricing. We first introduce the settings and notation in Section 2.1 . We 

then describe two important measures—passenger waiting time and passenger utility—in Section 2.2 and Section 2.3 , re- 

spectively. We propose the LMTS designer’s problem—a constrained nonlinear optimization model in Section 2.4 , and finally 

discuss how to solve it in Section 2.5 . 
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2.1. Settings and notation 

Consider a city that plans to implement LMTS at a set of metro stations indexed by 1, …, J . Trains dynamically arrive at 

station j over time and the inter-arrival time between consecutive arriving trains is assumed to be a constant, denoted by h j . 

There are I types of passengers, indexed by 1, …, I , who take trains and, potentially, use the LMTS. Without loss of generality, 

we define type-1 passengers as regular passengers , such as adults. This type of passengers are typically not eligible to enjoy 

any discount while taking the public transportations. We define passengers with other types 2, …, I as special passengers, 

such as senior citizens, children, and students. These passengers are typically eligible to enjoy the discounted fares while 

taking the public transportations. Upon each train’s arrival at station j , N 
j 
i of type i ∈ {1, …, I } passengers are discharged. We 

assume that N 
j 
1 , . . . , N 

j 
I are independent random variables. For each passenger type i , N 

j 
i is also independent and identically 

distributed for all trains that arrive at station j . We denote by μ
N j 

i 
and σ 2 

N j 
i 

the mean and variance of N 
j 
i , respectively. At 

each station j , passenger destinations are independent and identically distributed in the last-mile region, which is convex 

and compact with known dimensions. 

The LMTS designer needs to determine the full price p ∈ P for the regular passengers, i.e., type-1 passengers who buy 

the tickets at the full price without being eligible to enjoy any discount. The fare for any specific type passengers with i 

∈ {1, ���, I }, p i , is restricted to be a predetermined fraction θ i ∈ [0, 1] of the full price, i.e., p i = θ i p . 
2 Note that we have 

θ1 = 1.0 so the price p 1 for the regular passengers equals to the full price p . Therefore, the fares for all types of passengers 

are automatically determined after the full price p is determined. We assume that the feasible set of full price, P , is finite. 

This is reasonable in the sense that the fare in the public transportation system cannot be arbitrarily high and the minimum 

price unit is one cent. We also assume that the price for each passenger type i, p i , is identical at all stations and does not 

depend on a passenger’s travel distance and travel time. This assumption is reasonable in the sense that in many public 

transportation systems around the world—such as Singapore, Beijing, Boston, and New York—the fare is a fixed rate if the 

travel distance is less than a threshold level (typically, at least several miles). 

The designer needs to determine the capacity of vehicles used for the last-mile service, c ∈ C . We assume that the 

feasible set of vehicle capacity, C , is finite. This is reasonable in the sense that a vehicle cannot be arbitrarily large and the 

capacity must be an integer. 

The designer also needs to determine the number of vehicles that provide the last-mile service at each metro station j, 

m j ∈ {0, 1, …, M }. We assume each vehicle incurs per unit of time operating cost q . 

At each station j , we denote by ˆ N 
j 

i the number of type- i passengers who are willing to use the LMTS. We denote by 

ˆ N j = 
I ∑ 

i =1 

ˆ N 
j 

i the total number of passengers who are willing to use the LMTS. We denote by μ ˆ N j and σ2 
ˆ N j 

the mean and 

variance of ˆ N j , respectively. Service times for passengers who use the LMTS are independent and identically distributed. We 

denote by μS ̂ N j 
and σ2 

S ̂ N j 
the mean and variance of travel time, respectively, of one service trip (serving no more than c 

passengers) at station j if ˆ N j passengers from each train are willing to use the LMTS. Note that both μS ̂ N j 
and σ2 

S ̂ N j 
depend 

on c , μ ˆ N j and passenger destination topologies in the last-mile region around station j . 

Example 1. From Wang and Odoni (2014) , for the last-mile region in Fig. 1 (assumed to be a square area with side travel 

time b and uniformly distributed destinations), μS ̂ N j 
≈ 0 . 57 c √ 

μ
ˆ N j 

b + 0 . 764 , σ2 
S ̂ N j 

≈ β2 
( c+1 ) β1 

2 μ
2 
S ̂ N j 

, where β1 ≈ 0.7124 and β2 ≈
0.1385. 

Before we present the optimization model for the LMTS pricing problem, we provide the glossary of notation in Table 1 . 

2.2. Passenger waiting time 

Every passenger shares an LMTS vehicle with other passengers. A passenger who gets off the train and intends to use 

the LMTS is either (1) assigned to an idle vehicle that has an available seat or (2) directed to wait in a queue until a vehicle 

is available. Note that at each station j , the passenger expected waiting time for the last-mile service, w j , depends on the 

passenger destination topologies. We assume that w j in the LMTS satisfies the following properties. 

Assumption 1. At each station j ∈ {1, …, J }, given passenger destination topologies, the passenger expected waiting time for 

last-mile service, w j , is increasing in μ ˆ N j and σ2 
ˆ N j 

, respectively. 

Under this assumption, a passenger waits longer if more passengers request the service or the number of passengers 

who request the service is more uncertain. Many passenger destination topologies that commonly occur in cities satisfy this 

2 In this paper, we bold all variables that are functions of the LMTS designer’s decisions. We also bold all optimal decisions and optimal outputs. 
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Table 1 
Glossary of notation. 

Parameters : 
J : number of stations (last-mile regions); 
I : number of passenger types; 
h j : inter-arrival time between consecutive arriving trains at station j ; 
N j 

i : random variable to indicate the number of type- i passengers discharged from each train at station j ; 
μ

N j 
i 
: mean of N j 

i ; 

σ 2 
N j 

i 
: variance of N j 

i ; 

θ i : fraction of the price for type- i passengers relative to the full price for regular passengers (type-1 passengers); 
q : operating cost per vehicle per unit of time; 
v : random variable to indicate a passenger’s valuation on the last-mile service; 
v̄ i : upper limit of a type- i passenger’s valuation on the last-mile service; 
f i ( • ): P.D.F. of a type- i passenger’s valuation on the last-mile service; 
F i ( • ): C.D.F. of a type- i passenger’s valuation on the last-mile service; 
F̄ i (·) : complementary C.D.F. of a type- i passenger’s valuation on the last-mile service; 
αi : type- i passenger’s per unit of time disutility from waiting to use the LMTS; 
Decision variables: 
p : full price for the regular passengers (i.e., type-1 passengers); 
c : capacity of vehicles used for the last-mile service; 
m j : number of vehicles that provide the last-mile service at station j, j ∈ {1, …, J }; 
Endogenously determined variables: 
p i : price for type- i passengers, i ∈ {1, …, I }; 
ˆ N j 

i : random variable to indicate the number of type- i passengers who are willing to use the LMTS at station j ; 
ˆ N j : random variable to indicate the total number of passengers who are willing to use the LMTS at station j ; 
μ ˆ N j : mean of ˆ N j ; 
σ2 

ˆ N j : variance of ˆ N j ; 

μS ̂ N j : mean of the travel time of one last-mile service trip at station j ; 
σ2 

S ̂ N j 
: variance of the travel time of one last-mile service trip at station j ; 

w j : passenger’s expected waiting time for the last-mile service at station j ; 

U j 
i (v ) : a type- i passenger’s utility if she values the last-mile service at v and uses this service at station j ; 

CS j ( p,c, m j ): per unit of time expected consumer surplus at station j ; 
Profit j ( p,c, m j ): per unit of time expected vehicle profit at station j ; 
SW j ( p,c, m j ): per unit of time expected social welfare at station j ; 
SW ( p, c , { m j }): per unit of time expected social welfare over all stations; 
Optimal outputs: 
m j ( p,c ): optimal number of vehicles at station j , given the full price for regular passengers is p and vehicle capacity is c ; 
p ∗( c ): optimal full price for regular passengers, given the vehicle capacity is c ; 
p ∗: optimal full price for regular passengers; 
c ∗: optimal vehicle capacity; 
m j, ∗: optimal number of vehicles at station j ; 
SW ∗: optimal per unit of time expected social welfare over all stations; 

assumption. For the last-mile region in Fig. 1 , Wang and Odoni (2014) provide an expression to approximate w j as: 

w j ≈
6 m j μ ˆ N j σ

2 
S ̂ N j 

+ 6 c 

∣∣∣√ 
μ ˆ N j 
c 

∣∣∣2 

μ2 
S ̂ N j 

+ m j 
2 
cμ2 

S ̂ N j 
− cμ2 

S ̂ N j 

12 m j 
(
h j m j c − μ ˆ N j μS ̂ N j 

)

· exp 

⎡ 

⎢ ⎣ −
4 
(
h j m j c − μ ˆ N j μS ̂ N j 

)
μ ˆ N j μS ̂ N j 

6 m j c μ ˆ N j σ
2 
S ̂ N j 

+ 6 c 2 
∣∣∣√ 

μ ˆ N j 
c 

∣∣∣2 

μ2 
S ̂ N j 

+ m j 
2 
c 2 μ2 

S ̂ N j 
− c 2 μ2 

S ̂ N j 

⎤ 

⎥ ⎦ 

+ 

(
6 c 2 

∣∣∣√ 
μ ˆ N j 
c 

∣∣∣2 

+ m j 
2 
c 2 + 6 μ2 

ˆ N j 
− 6 m j c μ ˆ N j − c 2 

)
μS ̂ N j 

12 m j c μ ˆ N j 
, (1) 

where μS ̂ N j 
and σ2 

S ̂ N j 
are functions of c , μ ˆ N j and σ2 

ˆ N j 
. Assumption 1 is satisfied for most realistic input values. 

For analytic purposes, we express passenger expected waiting time w j as an explicit function of μ ˆ N j , σ
2 
ˆ N j 

, c, m j , and 

features of passenger destination topologies: 

w j = w j 
(
μ ˆ N j , σ

2 
ˆ N j 

, c, m j , topolog y j 
)
, ∀ j ∈ { 1 , . . . , J } . (2) 
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2.3. Passenger utility 

Each passenger is endowed with a valuation (willingness-to-pay) for using the LMTS. For each passenger type i , passenger 

valuations are heterogeneous and supported on [ 0 , ̄v i ] . The fraction of type- i passengers whose valuations are no greater than 

v is denoted by F i (v ) = v / ̄v i . We denote f i (v ) 
�= d F i (v ) / dv and F̄ i (v ) 

�= 1 − F i (v ) . 
At station j , if a type- i passenger with valuation v uses the LMTS, she garners the expected utility (measured in dollars) 

U 
j 

i (v ) = v − p i − αi w j , where αi ≥ 0 is type- i passenger’s per unit of time disutility from waiting to use the LMTS. A type- 

i passenger with valuation v uses the LMTS if and only if doing so allows her to get non-negative expected utility, i.e., 

U 
j 

i (v ) ≥ 0 . Therefore, for each passenger type i , only passengers with valuation v ≥ p i + αi w j request to use the LMTS. 

Therefore, at each station j , the mean of the total number of passengers who get off from one train and request to use 

the LMTS is given by 

μ ˆ N j = 

I ∑ 

i =1 

E 
(

ˆ N 
j 

i 

)
= 

I ∑ 

i =1 

μ
N j 

i 
· F̄ i 

(
p i + αi w j 

)
. (3) 

The variance of the total number of passengers who get off from one train and request to use the LMTS is given by 

σ2 
ˆ N j 

= 

I ∑ 

i =1 

V ar 
(

ˆ N 
j 

i 

)
= 

I ∑ 

i =1 

σ 2 
N j 

i 
·
(
F̄ i 
(

p i + αi w j 
))2 

, (4) 

where the first equality follows from the assumption that passenger arrivals and valuations over different passenger types 

are independent. 

Therefore, at each station j , given the full price p for regular passengers, the number of service fleet m j , the vehicle 

capacity c and passenger destination topologies, Eqs. (2) –(4) allow us to compute passenger average waiting time w j , and 

the mean μ ˆ N j and variance σ2 
ˆ N j 

of the total number of passengers who use the LMTS. 

2.4. The LMTS designer’s problem 

The LMTS designer aims to determine the full price p for regular passengers, the vehicle capacity c , and the number of 

operating vehicles m j at each station j with the objective of maximizing per unit of time expected social welfare for the city 

or region. 

Social welfare is the summation of consumer surplus and vehicle profit over all stations. At each station j , the per unit 

of time expected consumer surplus (measured in dollars) is given by 

C S j 
(

p, c, m j 
)

= 
1 

h j 

I ∑ 

i =1 

μ
N j 

i 
· E 

((
U 

j 
i ( v ) 

)+ )

= 
1 

h j 

I ∑ 

i =1 

μ
N j 

i 
·

v̄ i ∫ 
v = p i + αi w j 

(
v − p i − αi w j 

)
f i ( v ) dv 

= 
1 

h j 

I ∑ 

i =1 

μ
N j 

i 
·

⎛ 

⎝ 

v̄ i ∫ 
v = p i + αi w j 

v f i ( v ) dv −
(

p i + αi w j 
)
F̄ i 
(

p i + αi w j 
)
⎞ 

⎠ . (5) 

At each station j , the per unit of time expected vehicle profit is given by 

Profit j 
(

p, c, m j 
)

= 
1 

h j 

I ∑ 

i =1 

p i · E 
(

ˆ N 
j 

i 

)
− m j q 

= 
1 

h j 

I ∑ 

i =1 

p i · μN j 
i 
· F̄ i 

(
p i + αi w j 

)
− m j q. (6) 

Therefore, the per unit of time expected social welfare generated by the LMTS at each station j is given by 

S W j 
(

p, c, m j 
)

= C S j 
(

p, c, m j 
)

+ Profit j 
(

p, c, m j 
)

= 
1 

h j 

I ∑ 

i =1 

μ
N j 

i 
·

⎛ 

⎝ 

v̄ i ∫ 
v = p i + αi w j 

v f i ( v ) dv − αi w j ̄F i 
(

p i + αi w j 
)⎞ 

⎠ − m j q. (7) 

The per unit of time expected social welfare generated by the LMTS over all stations is given by 

SW 
(

p, c, 
{

m j 
})

= 

J ∑ 

j=1 

S W j 
(

p, c, m j 
)
. (8) 
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Table 2 
Algorithm for solving LMTS designer’s problem. 

For p ∈ P , c ∈ C 
For j = 1: J 
For m j = 0: M 
Compute SW j ( p,c, m j ) 
End 
Get m j ( p,c ) 
End 

SW ( p, c, { m j ( p, c ) } ) = 
J ∑ 

j=1 
S W j ( p, c, m j ( p, c ) ) 

End 
( p ∗ , c ∗) = argmax p ∈ P , c ∈ C SW ( p, c , { m j ( p,c )}) 
For j = 1: J 
m j, ∗ = m j ( p ∗ , c ∗) 
End 
SW ∗ = SW ( p ∗ , c ∗ ,{ m j ( p ∗ , c ∗)}) 

The LMTS designer determines the full price p for regular passengers, the vehicle capacity c , and the number of operat- 

ing vehicles m j (upper bounded by M ) at each station j to maximize the LMTS’s per unit of time expected social welfare. 

Therefore, the LMTS designer solves the following constrained nonlinear optimization problem: 

max 
p∈ P,c∈ C, m j ∈ { 0 , 1 ,..,M } 

SW 
(

p, c, 
{

m j 
})

subject to : 
μ ˆ N j μS ̂ N j 

h j m j c < 1 , ∀ j ∈ { 1 , . . . , J } 
We denote by ( p ∗, c ∗,{ m j, ∗}) the optimal solution and SW ∗ the optimal value to the optimization problem above. Full 

price for regular passengers ( p ), vehicle capacity ( c ), and number of vehicles at each station ( m j ) are decision variables 

exogenously determined by the LMTS designer. Among the three types of decisions, full price for regular passengers ( p ) and 

vehicle capacity ( c ) are coupled decisions across all stations, i.e., price and vehicle capacity for the last-mile service around 

all the metro stations are identical. After p as the full price is decided, the price for type- i passengers can be determined as 

p i = θ i p for all i . 

The number of vehicles ( m j ) could be different at different station j . For each station, the constraint on each station’s 

LMTS utilization ratio, μ ˆ N j μS ̂ N j 
/ h j m j c < 1 , is necessary to avoid unbounded increase over time in passenger waiting time. 

Passenger waiting time ( w j ), mean ( μ ˆ N j ) and variance ( σ2 
ˆ N j 

) of passengers who use the LMTS are then endogenously deter- 

mined through Eqs. (2) –(4) . Specifically, Eq. (2) specifies that passenger waiting time ( w j ) depends on mean ( μ ˆ N j ) and vari- 

ance ( σ2 
ˆ N j 

) of passengers who use the LMTS, vehicle capacity ( c ), and the number of vehicles at that station ( m j ). Eqs. (3) and 

(4) specify that the mean ( μ ˆ N j ) and variance ( σ2 
ˆ N j 

) of passengers who use the LMTS at each station depend on price ( p ) and 

passenger waiting time ( w j ) at that station. 

2.5. Algorithm for solving the LMTS designer’s problem 

In this subsection, we present an algorithm to solve the LMTS designer’s problem defined in Section 2.4 . To state our 

algorithm, we denote by m j ( p, c ) = argma x m j ∈{ 0 , 1 , ... ,M } S W j ( p, c, m j ) the optimal number of vehicles at station j , given full 

price p for regular passengers and vehicle capacity c . Our algorithm is described in Table 2 . 

The key idea of this algorithm is to decompose the LMTS designer’s optimization problem into a two-layer optimization 

problem: an inner-layer optimization problem to optimize the number of vehicles at each station ( m j ) with fixed full price 

( p ) and fixed vehicle capacity ( c ) (i.e., fixed coupled decisions across stations); and an outer-layer optimization problem to 

optimize the coupled decisions price ( p ) and vehicle capacity ( c ). We then explain in details how to solve the inner-layer 

and the outer-layer optimization problems. 

2.5.1. Inner-layer optimization problem 

In the inner-layer optimization problem, we fix price ( p ) and vehicle capacity ( c ), and optimize the number of vehicles at 

each station ( m j ). Although the total number of decision variables is equal to the number of stations J , we can decompose 

this multi-station optimization problem into a series of single-station optimization problems for each station with a single 

decision variable, the number of vehicles at that station m j . For each single-station optimization problem, given price ( p ) 

and vehicle capacity ( c ), the LMTS designer solves the following problem: 

max 
m j ∈ { 0 , 1 ,..,M } 

S W j 
(

p, c, m j 
)

subject to : 
μ ˆ N j μS ̂ N j 

h j m j c < 1 

Now, we discuss how to solve this optimization problem. At each station j , we notice that, in practice, m j may only take a 

finite number of values. Therefore, we can enumerate over all possible m j ∈ {0, 1, …, M }. For each given m j in {0, 1, …, M }, 
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Table 3 
Bisection method to approxiamte ˆ w j . 

Step 0: Set w j 
LB ← 0 and w j 

UB ← w̄ 

Step 1: Set ˆ w j ← 
w j 

LB + w j UB 
2 

Step 2: Use ˆ w j and Eq. (3) to approximate μ ˆ N j : 

μ ˆ N j ← 
I ∑ 

i =1 
μ

N j 
i 
· F̄ i ( p i + αi ̂  w j ) 

Step 3: Use ˆ w j and Eq. (4) to approximate σ2 
ˆ N j : 

σ2 
ˆ N j ← 

I ∑ 

i =1 
σ 2 

N j 
i 
· ( ̄F i ( p i + αi ̂  w j ) ) 2 

Step 4: Plug estimated μ ˆ N j from Step 2 and σ2 
ˆ N j from Step 3 into Eq. (2) , denoted by 

˜ w j ← w j ( μ ˆ N j , σ
2 
ˆ N j , c, m j , topolog y j ) 

Step 5: 
While | ̃  w j − ˆ w j | > ε
IF ˜ w j > ˆ w j 

Set w j 
LB ← ˆ w j 

ELSE 

Set w j 
UB ← ˆ w j 

END 
Repeat Step 1–Step 4 
END 

verifying whether the utilization ratio constraint μ ˆ N j μS ̂ N j 
/ h j m j c < 1 is satisfied and computing the social welfare at station 

j requires us to compute passenger average waiting time w j . Typically, there is no closed-form solution for the exact w j . We 

can use the following approach to find an approximated w j , denoted as ˆ w j , which can be arbitrarily close to the true value 

w j . 

We assume that w j falls between 0 and w̄ and denote by ε the maximum tolerable difference between ˆ w j and w j . 

Following from Assumption 1 , we can use the following bisection method in Table 3 to find such ˆ w j . 

The passenger expected waiting time function w j ( μ ˆ N j , σ
2 
ˆ N j 

, c, m j , topolog y j ) could be approximately obtained as 

Eq. (1) following the method described by Wang & Odoni (2014) . 

2.5.2. Outer-layer optimization problem 

In the outer-layer optimization problem, we aim to optimize price p and vehicle capacity c . In practice, both the feasible 

set of price P and the feasible set of vehicle capacity C are finite and typically not very large in terms of cardinality. We 

could enumerate over all the feasible prices and vehicle capacities to seek their optimal values. The LMTS designer uses each 

enumerated price p and vehical capacity c as input variables to solve the aforementioned inner-layer optimization problem 

and obtain the parameterized optimal social welfare, SW ( p, c , { m j ( p,c )}). In the outer-layer problem, the LMTS designer seeks 

the optimal price p ∈ P and vehical capacity c ∈ C to maximize the social welfare, i.e., the LMTS designer solves the following 

optimization problem: 

S W ∗ = max 
p∈ P, c∈ C 

SW 
(

p, c, 
{

m j ( p, c ) 
})

The feasible set of price P and vehicle capacity C are finite and typically not very large in terms of cardinality. For 

instance, if the feasible price is no more than $10, the set of price P will be [0, 10] containing 10 0 0 elements in unit of cent. 

If we use normal vehicles, the set of capacity C could be [1, 50] containing 50 integral elements. Therefore, we do not have 

any computational burden to enumerate all possible fares p ∈ P and all possible vehicle capacity c ∈ C . 

3. Numerical experiments 

In this section, we implement the pricing model described in our numerical experiments by using real data from Sin- 

gapore for the LMTS at a sample set of metro stations. In this section, we first discuss the background and settings of the 

numerical experiments and then present the results, followed by detailed discussion. 

3.1. Experimental background and settings 

Singapore is a city-state with high utilization of public transportation, especially buses and mass rapid transit (MRT). 

The latter consists of metro and light urban rail service, with five lines and 102 stations currently in operation. In an effort 

to increase the use of public transport in response to Singapore’s rise in affluence and steadily increasing population, the 

government imposed an extremely high tax for private vehicle ownership (e.g., the cost of a license plate that is valid for 10 

years is approximately S$ 50,0 0 0). Public transport is the leading transportation service mode in Singapore; several million 

residents (out of a total population around 5.6 million) use public transport—especially the MRT—daily. 
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Fig. 2. Singapore MRT map and sample stations for experiment. 

Singapore also has a rapidly aging population. According to Ng (2015) , the number of residents 65 and older doubled 

from 220,0 0 0 in 20 0 0 to 440,0 0 0 in 2015, and is expected to rise to 90 0,0 0 0 by 2030. Public transport is this group’s pri- 

mary transportation mode. Meanwhile, school children also rely on public transport to commute daily between home and 

school. These two large groups, therefore—senior citizens and children—are potential last-mile service users, and demon- 

strate that LMTS holds significant promise for Singapore. Both government agencies and transport service providers are 

committed to the establishment of this innovative transportation service. 

In a set of numerical experiments, we implement the LMTS pricing model for 10 sample MRT stations located near 

residential areas well outside the downtown region. Distances between successive sample MRT stations are longer than the 

distances between downtown stations, which causes the last segment of a passenger’s trip to be longer; this renders LMTS 

more valuable—even necessary—in the last-mile region around these sample stations. Each station covers a last-mile region 

in which passengers’ final destinations are distributed. The side length of the region is around 1.5–2.5 km, which induces a 

travel time b of approximately 4–5 min if we assume that vehicle travel speed is around 30–40 km/hour in residential areas. 

Passenger expected waiting time is approximated by Eq. (1) described in Example 1 . Fig. 2 shows the Singapore MRT line 

map and the 10 sample stations (in the red rectangle). 

The three main types of metro cards are for adults, senior citizens, and children/students ( i = {1, 2, 3}). We take adults as 

the regular passengers, i.e., adults pay the full price p (i.e., θ1 = 1.0). The current discount for senior citizens is around 30% 

(i.e., θ2 = 0.7), and for children/students is around 50% (i.e., θ3 = 0.5). The headway between metro trains ( h j in the model) 

can easily be obtained from the public train schedule. The expectation ( μ
N j 

i 
) and the variance ( σ 2 

N j 
i 
) of each passenger type 

discharged from trains can be obtained from metro card transaction data. 

Table 4 lists the corresponding statistics for all sample MRT stations. 

Considering the inter-arrival time between trains, the average total number of passengers discharged from all sample 

stations in each minute is 196.11. 

As for the monetary value of transportation waiting time αi , we use two references: (1) according to Trading Eco- 

nomics (2016) , the average hourly wage in Singapore is around S$ 20; and (2) according to Gómez-Ibañez et al. (1999) , 

for work trips in San Francisco, the monetary value per unit transfer waiting time is 195% of the user’s after-tax wages. 

Therefore, as an approximation, we estimate α1 = S$ 20 × 195% /hour ≈ S$ 2/3 /minute for adults. The monetary value of 
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Table 4 
Information on sample stations. 

j : station h j (min) 1: Adults 2: Senior citizens 3: Children/students 

μ
N j 

1 
σ 2 

N j 
1 

μ
N j 

2 
σ 2 

N j 
2 

μ
N j 

3 
σ 2 

N j 
3 

Station 1 6 143.6 1705.69 13.6 19.36 24.7 10 0.0 0 
Station 2 6 53.1 533.61 5.0 2.89 8.8 10.89 
Station 3 6 131.4 665.64 17.3 37.21 38.1 73.96 
Station 4 6 71.3 1169.64 12.2 37.21 27.9 309.76 
Station 5 6 135.9 2550.25 15.1 37.21 35.1 187.69 
Station 6 5 55.7 466.56 8.0 20.25 22.6 146.41 
Station 7 5 102.3 1608.01 9.3 34.81 31.2 190.44 
Station 8 6 60.7 272.25 10.0 5.76 20.7 132.25 
Station 9 6 13.4 31.36 2.7 2.89 3.3 5.29 
Station 10 6 47.9 210.25 6.2 9 3.3 1.44 

Fig. 3. Relationship between SW ( p, c , { m j ( p,c )}) and p . 

waiting time for senior citizens and children/students are approximated as α2 = S$ 1/6 /minute and α3 = S$ 1/20 /minute, re- 

spectively. These numerical values could be adjusted, given more accurate estimations from the survey. v̄ 1 for adults is set 

to be S$ 1.5 (the average metro cost), and v̄ 2 and v̄ 3 for senior citizens and children/students is set to be S$ 3.0 (base price 

to take an ordinary taxi). 

On the service supply side, we evaluate the possibilities with different types of vehicles for outsourcing transportation 

service in the market: (1) If we use ordinary taxis as LMTS service fleets, the vehicle capacity is c = 3 and the per unit time 

cost is q ≈ S$ 24/hour = S$ 0.4/minute; (2) if we use large van taxis, the vehicle capacity is c = 7 and the per unit time cost 

is q ≈ S$ 30/hour = S$ 0.5/minute; (3) if we use 9-seater vans, the vehicle capacity is c = 9 and the per unit time cost is q 

≈ S$ 40/hour ≈ S$ 0.67/minute; and (4) if we use 13-seater minibuses, the vehicle capacity is c = 13 and the per unit time 

cost is q ≈ S$ 50/hour ≈ S$ 0.83/minute. 

3.2. Experimental results and discussion 

In this subsection, we explore the impact of the LMTS designer’s decisions on price and vehicle capacity on social welfare, 

compute the LMTS designer’s optimal price and vehicle capacity that maximizes social welfare, analyze passenger behav- 

iors under the LMTS designer’s optimal decisions, and use Singapore as an example to show how an LMTS can potentially 

improve social welfare. 

3.2.1. Impact of prices on social welfare 

We begin with exploring the impact of LMTS price on social welfare. In Fig 3 , each curve that corresponds to a vehi- 

cle capacity c plots the relationship between each feasible price p and the corresponding optimal social welfare SW ( p, c , 

{ m j ( p,c )}). 

We make the following observations: 

• Given every feasible vehicle capacity decision c , the optimal LMTS price that maximizes social welfare, 

p ∗( c ) = argmax p ∈ P SW ( p, c , { m j ( p,c )}), cannot be too small. If the LMTS price is extremely small, an extremely large num- 

ber of passengers might be willing to use it. A large number of vehicles would be required to serve these passengers, 

and as a result, the negative effect of prohibitively high vehicle operating costs would dominate the positive effect of 

benefiting a large group of passengers. 
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Table 5 
Relationship between p ∗( c ), OC ( c ), SW ( p ∗( c ), c , { m j ( p ∗( c ), c )}), and c . 

c 3 7 9 13 

p ∗( c ) (S$) 0.80 0.47 0.44 0.37 
OC ( c ) (S$/served passenger) 0.88 0.61 0.66 0.71 
SW ( p ∗( c ), c , { m j ( p ∗( c ), c )}) (S$/min) 40.31 67.73 53.45 41.12 

Table 6 
Optimal LMTS fares and the impacts on each passenger type. 

Passenger type i 1: Adults 2: Senior citizens 3: Children/students 

p ∗
i (S$) 0.47 0.33 0.24 

PCT i 50% 87% 91% 
CS i (S$/served passenger) 0.39 1.30 1.37 

• Given every feasible vehicle capacity decision c , the optimal LMTS price p that maximizes social welfare, p ∗( c ), also 

cannot be too large. If the LMTS price becomes too large and using the LMTS becomes too expensive, only a small 

number of passengers will be willing to use it. Fewer vehicles would be required to serve these passengers, but the 

negative effect of losing passengers would dominate the positive effect of lower vehicle operating costs. 

3.2.2. Impact of vehicle capacity on social welfare 

Next, we aim to understand the impact of vehicle capacity, c , on the optimal LMTS price, p ∗( c ); the vehicle operating 

cost per served passenger, OC ( c ); and the optimal social welfare, SW ( p ∗( c ), c , { m j ( p ∗( c ), c )}). Results are reported in Table 5 . 

We make the following observations: 

• The optimal price p ∗( c ) declines as vehicle capacity increases. When a vehicle has more seats, due to economy of scale, 

the operating cost per passenger is reduced. In turn, the LMTS designer can charge passengers cheaper prices. 
• Vehicle capacity c cannot be too small or too large. When c is too small, delivering service to passengers requires the 

LMTS to operate too many vehicles. Therefore, a large number of vehicles leads to prohibitively high operating costs. 

When c is too large, it is more likely that some seats on a vehicle for a given trip will be empty. Therefore, vehicle 

operating efficiency is too low. As a result, social welfare suffers when vehicle capacity is either too small or too large. 

We observe from Table 5 that the social welfare is maximized if the LMTS uses vehicles with capacity 

c ∗ = argmax c ∈ C SW ( p ∗( c ), c , { m j ( p ∗( c ), c )}) = 7 to deliver service. In the rest of this subsection, all analyzes will be performed 

under c ∗ = 7. 

3.2.3. Impact of prices on each type of passenger consumer surplus 

Next, we analyze passenger behaviors and consumer surplus under the optimal LMTS decisions ( p ∗, c ∗) ∈ 

argmax 
p∈ P,c∈ C 

SW ( p, c, { m j ( p, c ) } ) . In Table 6 , for each passenger type i ∈ {adults, senior citizens, children/students}, we report 

the optimal LMTS price p ∗
i ; the percentage of passengers who purchase fares to use the LMTS, PCT i ; and the expected 

consumer surplus that a served passenger receives from using the LMTS, CS i . 

We make the following observations: 

• Roughly 90% of seniors, children, and students and half of the adults benefit from the LMTS. Therefore, our de- 

signed LMTS allows a majority of people—and, in particular, most of the people in special groups (senior citizens, 

children/students)—to benefit from the LMTS. 
• The consumer surplus an adult passenger receives is as high as 0.39/1.5 = 26% of her willingness-to-pay. The consumer 

surplus a senior, child, or student receives from using the LMTS is more than three times of an adult’s consumer surplus. 

Therefore, our designed LMTS can substantially improve people’s welfare; in particular, such improvements are significant 

for senior citizens, children and students. 

3.2.4. Necessity of offering discounts to passengers in special groups 

Next, we explain why offering discounts to special groups of passengers—in this case, 30% off for senior citizens and 

50% off for children and students—is benificial. We consider a counterpart LMTS with no discount for any passenger type, 

i.e., θ1 = θ2 = … = θ I = 1. In this counterpart, the LMTS charges an optimal identical price, denoted by p ′ , for all passengers. 

Let PCT ′ i denote the percentage of type- i passengers who use the LMTS, CS ′ i the expected consumer surplus that a type- 

i passenger receives from using the LMTS, and SW ′ the optimal total social welfare per minute over all sample stations. In 

Table 7 , we report the optimal price in the counterpart LMTS with identical prices; the relative change in the percentage of 

each passenger type that uses the LMTS from the primary LMTS with type-dependent prices to the counterpart LMTS with 

identical prices, �PC T i = ( PCT ′ i − PC T i ) / PC T i ; the relative change in consumer surplus that a type- i passenger receives from 

using the primary LMTS to the counterpart LMTS, �C S i = ( CS ′ i − C S i ) / C S i ; and the relative total social welfare change from 

the primary LMTS to the counterpart LMTS, �SW ∗ = ( SW 
′ − SW ∗)/ SW ∗. 
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Table 7 
LMTS with type-dependent prices vs. LMTS with identical prices. 

Passenger type i 1: Adults 2: Senior citizens 3: Children/students 
p ′ (S$) 0.44 

�PCT i 0.03 −0.04 −0.07 
�CS i 0.04 −0.05 −0.07 
�SW ∗ 0.004 

We make the following observations: 

• If the LMTS designer does not offer discounts to special groups of passengers, the decrement in the percentage of special 

groups of passengers who use the LMTS is much higher than the increment in the percentage of adults who are willing 

to use the LMTS. In addition, by eliminating discount offers, the percentage of consumer surplus loss for a special-group 

passenger who uses the LMTS is much higher than the percentage of consumer surplus gain for an adult who uses the 

LMTS. 
• Although removing discount offers can increase social welfare, the percentage of social welfare increment is almost neg- 

ligible relative to the negative effects of removing discount offers on special groups of passengers. 

The above analysis indicates that it is essential that special groups of passengers be allowed cheaper prices for using the 

LMTS. 

3.2.5. Impact of total social welfare generated by the LMTS 

Next, we analyze social welfare. As reported in the third column in Table 5 , implementing the LMTS over all sample 

stations that we study in this paper can cause expected social welfare of as much as SW ∗ = S$ 67.73/min. Recall that the 

average total number of passengers discharged from all sample stations in each minute is 196.11. Therefore, LMTS generates 

expected social welfare for the city or region of SW ∗/196.11 = S$ 0.35 for each passenger. As reported by the Singapore Land 

Transport Authority (2012) , average daily ridership for the rail system in Singapore is 2.525 million. Therefore, assuming 

a hypothetical scenario in which 10% riders may consider last-mile service, the estimated total social welfare the LMTS 

generates in Singapore per year, denoted by SW ∗LMTS , is estimated as: 

SW 
∗
LMTS = S$ 0 . 35 × 2 . 525 million × 10% / day × 366 days / year = S$ 32 . 3 million / year . 

To evaluate how significant this is, we compare SW ∗LMTS with a benchmark defined as Value Added in industries in 

Passenger and Freight Rail Transport, Passenger Land Transport, & Aerial Cableways in Singapore in 2012, denoted by 

GDP Land Transport . This benchmark is a proxy of the contribution of the Singapore land transportation service industry to 

Singapore’s GDP. As reported by the Singapore Department of Statistics (2015) , GDP Land Transport = S$ 1836.5 million/year. We 

have 

SW 
∗
LMTS 

GD P Land Transport 
= 

S$ 32 . 3 million / year 

S$ 1 , 836 . 5 million / year 
= 1 . 76% . 

This result demonstrates that the LMTS can play a significant role in improving social welfare in Singapore. 

3.2.6. Potential deployment in other places 

In this numerical experiment, we evaluate the potential benefits of LMTS using Singapore as an example. In the optimal 

solutions with specific input parameters, the average operating cost to provide last-mile service for each served passenger 

is S$ 0.61. The price for adults, senior citizens, and children/students is S$ 0.47, S$ 0.33, and S$ 0.24, respectively. Therefore, 

the average subsidy for each trip for each user is S$ 0.14, S$ 0.28, and S$ 0.37, respectively. Considering that the current 

actual subsidy for public transportation is 4 billion per year in Singapore (according to the Singapore Parliament (2015) , 

which translates to S$ 4.34 per public transportation ridership), this amount is promising. In addition, if we put a higher 

weight on the service provider’s profit in the optimization model, the subsidy needed for LMTS will certainly be decreased 

further. 

LMTS could potentially be deployed in other cities in Asia or Europe. First, many cities in Asia and Europe have huge 

populations, which could generate high utilization for public transportation systems such as subway and bus systems and, 

in turn, generate a large number of potential passengers for the LMTS. Second, many large cities in Asia and Europe—

e.g., Hong Kong, Paris, and Tokyo—suffer from serious traffic congestion. Some governments attempt to control private-car 

ownership to mitigate congestion and reduce air pollution. Consequently, public transportation systems, including the LMTS, 

are becoming more and more important. 

The LMTS could also be deployed in some U.S. cities. First, the density of public subway stations is much lower in many 

U.S. cities than in Asian cities such as Singapore and Hong Kong. Therefore, the actual travel distance for last-mile service 

in such U.S. cities is significantly longer than the travel distance for last-mile service in Asia. In other words, the so-called 

last-mile service in some U.S. cities could actually be the last-several-miles service. Second, conventional taxis in many U.S. 

cities are much more expensive than in Asia. These facts could allow the valuation ( v ) of last-mile service in the optimization 
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model for potential passengers in the U.S. to be much higher than the valuation of last-mile service in Asia. It is also possible 

that LMTS service providers in the U.S. could charge a higher price, which might induce good overall social welfare without 

considerable subsidies. 

3.2.7. Comparisons between LMTS and other ride-sharing systems 

In many cities around the world, ride-sharing services are available through an online matching intermediary (e.g., Uber, 

Lyft, and Didi). Conventional taxis also operate in almost every city. We compare these ride-sharing services with the LMTS 

from the perspectives of pricing and usage. Our proposed LMTS is more suitable for last-mile service than other ride-sharing 

services, including the online matching intermediary and conventional taxis. 

From the pricing perspective, the online matching ride-sharing intermediary has the following features: First, the price 

is dynamically adjusted in terms of when and where a service is requested (i.e., dynamic pricing). The algorithm for the 

dynamic pricing is a black box that is not transparent to the public, so the real-time price is unpredictable for passengers. 

Second, as a commercial company, when the intermediary sets the price, its ultimate objective is to maximize its own profit, 

rather than maximize social welfare. Therefore, the intermediary has an incentive to extract as much consumer surplus as 

possible. Third, the price not only affects the demand side—i.e., the number of passengers who request the service—but also 

affects the supply side dynamically—i.e., the number of drivers who are willing to provide the service. 

The conventional taxi system has the following features: First, the price normally consists of a base component and an 

incremental component that depends on actual travel distance and actual congestion time. Second, the base rate and incre- 

mental rate are also time-dependent in some cities—e.g., a 25% surcharge during morning peak hours and a 50% surcharge 

at night in Singapore, according to SMRT (2017) . Third, although the pricing formula is public information, a passenger can 

only learn the exact fare after completing the trip—i.e., there is uncertainty about how much a passenger will have to pay 

when requesting the service. 

By comparing the pricing scheme to these common ride-sharing systems, the LMTS has the following features: First, the 

price for LMTS is fixed for each type of passenger at each metro station, and the price is independent of when and where 

the service is requested. This is public information, and passengers know how much they have to pay for the service before 

requesting it. Second, since the motivation to provide LMTS is to make public transportation more attractive, the objective 

in the pricing optimization model is to maximize social welfare, rather than maximizing the service provider’s profit. Third, 

waiting time for last-mile service has been considered in LMTS pricing; in the paper, we describe our use of a batch arrival, 

batch service, multi-server queueing model to approximate the waiting time for last-mile service at each station. 

From the usage perspective, the online matching ride-sharing intermediary has the following features: First, a service 

request can only be made through a smartphone app, and many children and older people do not have smartphones or 

are not accustomed to using a smartphone to request a ride-sharing service. Second, all service requests are dispatched 

and matched with vehicles through the centralized intermediary; hence, passengers must wait passively to be matched. The 

dispatch algorithm is a black box to passengers. The service sequence may be determined for a profit purpose, instead of 

following some fairness rules such as FCSF (first-come, first-served) in the LMTS. Third, the origin and destination for a 

travel request could be anyplace, and many drivers may not be willing to accept a last-mile request because of its short 

distance. Since drivers cruise around the city, rather than waiting at public transportation stations, a passenger who needs 

LMTS from a metro station typically has to wait for a driver who is willing to provide last-mile service. 

A conventional taxi system has the following features: First, as with vehicles in the online matching ride-sharing plat- 

form, some taxis may not be willing to give rides for last-mile request. Second, since taxi stands are limited—or may not 

even be present at some public transportation stations—a passenger who needs last-mile service must typically walk to a 

main street or a shopping mall to hail a taxi. However, this is often difficult for core users of LMTS, such as children, se- 

niors, and the disabled. Third, the waiting time for a taxi is unpredictable, which may be perceived as even longer when the 

passenger is only traveling a short distance. 

By comparing usage to these common ride-sharing systems, LMTS offers the following features: First, a fleet of vehicles 

is dedicated to last-mile service in the LMTS, and vehicles are waiting for passengers at the single origin (the metro station). 

Second, if no vehicle is available for the time being, passengers know that vehicles are delivering last-mile service and will 

return after completing the current trip. Passengers join a single queue with an FCFS rule, and are able to reliably predict 

their waiting time. 

4. Concluding remarks 

In this paper, we consider a Last-Mile Transportation System (LMTS) with multi-type passengers—adults, senior citizens, 

children, and students. We propose a constrained nonlinear optimization model to determine the price for the passengers, 

the last-mile service vehicle capacity, and the service fleet size (number of vehicles) in each last-mile region to maximize 

the social welfare generated by the LMTS. 

Our model is numerically implemented by using real data from Singapore. We show the optimal annual social welfare 

(measured in Singapore dollars) gained by implementing LMTS countrywide is large. We analyze a counterpart LMTS in 

which the LMTS designer sets the identical price for all types of passengers. We find that in the absence of price discounts 

for special groups of passengers, social welfare undergoes almost no change. Consumer surplus for LMTS passengers in 

special groups, however, suffers significantly. 
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