
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2018

A novel representation and compression for queries on A novel representation and compression for queries on

trajectories in road networks trajectories in road networks

Xiaochun YANG
Northeastern University

Bin WANG
Northeastern University

Kai YANG
Northeastern University

Chengfei LIU
Swinburne University of Technology

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
YANG, Xiaochun; WANG, Bin; YANG, Kai; LIU, Chengfei; and ZHENG, Baihua. A novel representation and
compression for queries on trajectories in road networks. (2018). IEEE Transactions on Knowledge and
Data Engineering. 30, (4), 613-629.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3870

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3870&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 1

A Novel Representation and Compression for
Queries on Trajectories in Road Networks

Xiaochun Yang,Member,IEEE, Bin Wang, Kai Yang, Chengfei Liu, and Baihua Zheng,Member,IEEE

Abstract—Recording and querying time-stamped trajectories incurs high cost of data storage and computing. In this paper, we explore
several characteristics of the trajectories in road networks, which have motivated the idea of coding trajectories by associating
timestamps with relative spatial path and locations. Such a representation contains large number of duplicate information to achieve a
lower entropy compared with the existing representations, thereby drastically cutting the storage cost. We propose several techniques
to compress spatial path and locations separately, which can support fast positioning and achieve better compression ratio. For
locations, we propose two novel encoding schemes such that the binary code can preserve distance information, which is very helpful
for LBS applications. In addition, an unresolved question in this area is whether it is possible to perform search directly on the
compressed trajectories, and if the answer is yes, then how. Here we show that directly querying compressed trajectories based on our
encoding scheme is possible and can be done efficiently. We design a set of primitive operations for this purpose, and propose index
structures to reduce query response time. We demonstrate the advantage of our method and compare it against existing ones through
a thorough experimental study on real trajectories in road network.

Index Terms—Road network, Trajectory, Compression, Representation

F

1 INTRODUCTION

For the purpose of reducing overhead in data storage and
processing, trajectory compression is to compress the size of tra-
jectories while maintaining their utility. In this paper, we consider
both storing and querying trajectories in road network. We aim to
store trajectories using relatively small space and support queries
with high performance.

There are mainly two types of representations for trajectories
in road networks. A typical type of expressions combines a times-
tamp t and a 2D position (x, y) together in the form of (t, x, y)
to express a time-stamped position in a trajectory [28]. Such a
representation causes big overhead of data storage and computing.
The other type of expressions separates spatial locations from
timestamps, using consecutive edges 〈ei, . . . , ej〉 to represent a
spatial path of a trajectory, and a sequence of distance-time pairs,
each of which is represented as (di, ti), to capture the tempo-
ral information. Accordingly, lossy compression approaches
are proposed for spatial and temporal information respectively.
PRESS [20] and the generalized in-network trajectory data model
proposed by Sandu-Popa et al in [17] are the latest representative
works of the second type of expressions. However, a good com-
pression ratio can only be achieved under a large error bound/error
threshold. [17] does not report how to do query processing on their
compressed trajectories, and the query processing in [20] heavily
relies on decompression.

• X.Yang, B. Wang, and K. Yang are with the School of Computer Science
and Engineering, Northeastern University, China.
Email: {yangxc,binwang}@mail.neu.edu.cn,
yangkai@stumail.neu.edu.cn

• C. Liu is with the Faculty of Science, Engineering and Technology,
Swinburne University of Techenology, Australia.
Email: cliu@swin.edu.au

• B. Zheng is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
Email: bhzheng@smu.edu.sg

In this paper, we propose a novel representation, a lossless
compression for both spatial path and timestamps, and an error-
bounded compression for locations. Such representation and com-
pression can achieve high compression ratio under a small error
bound and can support queries efficiently. The first challenge of
this work is to design a good representation with small entropy
(i.e. the representation contains large amount of duplicate in-
formation) to facilitate storing and querying trajectories in road
networks, considering both space overhead and efficiency. This
means that, from the compression perspective, it prefers entropy
of a trajectory representation to be low; and from the querying
perspective, it aims at being able to support query processing
efficiently. To attain the above goals, we propose a novel represen-
tation of trajectories in road networks (called TED-representation),
where a trajectory is represented by a spatial entry path (E),
distances (D) that locations appear in the spatial entry path, and a
time flag sequence (T) to indicate if a position appears in a certain
edge of a spatial entry path at a certain timestamp (see Section 2).
This separation provides ideal properties to support both com-
pression and location-based query processing, with mainly two
advantages. First, it enables us to capture characteristics of tra-
jectories in road networks, and enables our expression to achieve
lower entropy than existing representations. Second, it allows us to
easily associate these three dimensions to build up a close relation
among a spatial path, locations, and timestamps. Follow the most
representative work PRESS [20] that separates each trajectory into
a spatial path and a temporal sequence, we further separate the
temporal sequence into locations and timestamps, which enables
us to effectively cut down the error bound.

The second challenge addressed in this paper is to pro-
pose compression algorithms to transform TED representation
into shorter binary words T̊ , E̊, and D̊, respectively, such that
TED representation can be recoverable from T̊ , E̊, and D̊ (see
Section 3). We propose several techniques to compress spatial
entry paths and locations separately. For spatial entry paths, we

Published in IEEE transactions on knowledge and data engineering,
2017 November, Issue 99, Pages 1-17,
http://doi.org/10.1109/TKDE.2017.2776927

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 2

propose a fixed-length encoding for a single path and consider
the feature of trajectories in a road network to compress multiple
trajectories. Such a compression can support fast location and it
is also able to achieve a high compression ratio, especially when
the total number of trajectories that need compression is large.
We will demonstrate that this compression can drastically reduce
the storage costs, achieve a high compression ratio, and support
all kinds of paths, including non-shortest paths, acyclic single
trajectories, periodical trajectories, and multiple trajectories. For
locations, we first propose a distance-preserving encoding scheme
called DP-encoding to encode locations. Then we propose a novel
encoding scheme DDP-encoding to make the code decodable,
and a pruned DDP-encoding to further save space so that the
size of codes for location is close to that of Huffman encoding.
We show that these two encoding schemes can preserve distance
information as well as process queries efficiently for Location-
Based Service (LBS) applications.

The last but not the least challenge addressed in this work is to
devise techniques to answer typical queries on compressed trajec-
tories. As we know there are so many queries supporting different
LBS applications, it is impossible and unnecessary to enumerate
all of them in a paper. Therefore, we list two types of primitive op-
erations, which are fundamental functions to support LBS related
applications. We show that query processing can be effectively
limited to a small candidate region in compressed trajectories, and
only a small part of data needs to be decompressed, which is
efficient. We propose novel index structures and algorithms for
this purpose, and reduce the primitive operation response time.
We then present our algorithms for four types of commonly used
LBS queries (see Section 4). We finally demonstrate the advantage
of our method and compare it against existing ones through a
thorough experimental study on real trajectories in road network
(see Section 5).

2 TRAJECTORY REPRESENTATION AND FRAME-
WORK

A trajectory Tr is a series of time-stamped raw positional data
p in the form of (t, x, y), where t is a timestamp, and (x, y) refers
to a location in a 2D Euclidean space with a latitude x and a
longitude y. Fig. 1(a) shows a raw trajectory. A road network is
generally defined as a directed graph G=(V,E), where V is the
vertex set and E is the edge set. Each vertex has different exit
entries pointing to different edges. The exit entries of a vertex are
unique consecutive numbers starting from 1. Fig. 1(b) shows an
example of a road network, where vi represents a vertex and ei
represents an edge. Each vi has a few exit entries. For instance, v6
has three exit entries labeled by 1 to 3.

(00:00:00, 103.628820E, 1.296850N)

(00:01:30, 103.628839E, 1.296857N)

(00:03:00, 103.628840E, 1.296862N)

(00:04:30, 103.628835E, 1.296866N)

(00:06:01, 103.628823E, 1.296870N)

(a) Raw trajectory

v2 v3
v4

v5

v6v7

4

2
2

2

p5

1

1
1

p1

p2
3

p3

e1 e2

e4

e5

e3

3 p4
1

(b) Embedded trajectory

Fig. 1: A trajectory Tr1 embedded in a road network.

A raw trajectory can be embeded to an embedded trajectory
in a road network using map matching process [20], with each

time-stamped raw positional data p mapped to anembed data.
The bold path in Fig. 1(b) represents an embedded trajectory Tr1
corresponding to the raw trajectory containing five time-stamped
raw positional data shown in Fig. 1(a). Take PRESS [20] as an
example. It transforms a raw trajectory in the form of (t, x, y)s to
a spatial path with a sequence of edges and a temporal sequence
formed by a set of time-distance pairs. To be more specific, PRESS
coverts each time-stamped data p of a trajectory Tr to (e, 〈d, t〉),
where e indicates the edge that p locates, t is the time-stamp where
p is sampled, and d records the distance travelled along Tr from
the start of the journey to p. For instance, PRESS expresses p2 in
Fig. 1(b) as (e3, 〈00:01:30,|e1|+|e2|+‖p2−v4‖1〉) indicating that
p2 locates in the edge e3 at 00:01:30 and the distance between v2
(the start point of its trajectory) and p2 is |e1|+ |e2|+‖p2−v4‖1.

2.1 Framework
We propose a new framework to compress trajectories for

physical storage and to support query processing for LBS applica-
tions. Fig. 2 shows our framework. Given a set of GPS trajectories,
each of which can be converted to an embeded trajectory via map
matching process [12], [20]. Like PRESS, we represent each time-
stamped data p via a triple (time, edge, distance), therefore an
embedded trajectory can be represented by a time sequence (T), a
spatial entry path (E), and a distance sequence (D) (with details
presented in Section 2.2). Unlike PRESS, spatial information is
represented by spatial entry paths and distances with a much lower
entropy and hence corresponding compression algorithms are able
to achieve much higher compression ratios. The representation of
timestamps (T) facilitates the association between entry paths (E)
and distances (D). A trajectory represented in this TED format is
called a TED-trajectory.

Map
trajectories

Trajectory
re-formatter

Time

compressor

Distance

GPS
trajectories

Time seq.

Entry path

Distance seq.

Edge

compressor

compressor

Query
processor

LBS
applications

matcher
map

trajectories

Compressed

TED

Fig. 2: Our framework for representing and compressing trajecto-
ries.

We then compress TED-trajectories by compressing T, E, and
D separately, with details presented in Section 3. Efficient search
algorithms are developed to process LBS queries by only partially
decompressing compressed trajectories, with details presented in
Section 4.

2.2 A New Representation: TED Format
We represent a raw trajectory using the following TED format.

E: Entry path for a trajectory. Entry path E(Tr) captures
a sequence of edges passed by a trajectory Tr. Exiting path
representations use a sequence of consecutive edges [9], [19], [20],
[24], while we would like to propose a new representation. Recall
that each vertex v ∈ V (G) in a road network G has different
exit entries pointing to different edges. Inspired by this, a directed
edge from a vertex v can be represented by vertex v and one of its
exit entries (i.e. the i-th exit entry, where i ≥ 1). Accordingly, an
entry path could be represented by the start vertex of the path and
a sequence of integers, each of which corresponds to an exit entry.
In order to distinguish an edge e that has h (> 1) raw positional

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 3

data located on from an edge e′ that has zero/one raw positional
data located on, we append (h−1) 0s after the exit entry of e. For
example, the entry path E(Tr1) for the trajectory Tr1 in Fig. 1
is represented as v1 → 4, 2, 2, 1, 0, 2, and the bit 0 is to indicate
that there are two raw positional data on edge e4.
D: Distance sequence for a trajectory. The sequence of relative
distances D(Tr) records the exact locations along the edges
corresponding to the embedded data. Note that a raw positional
data can be located at any point of an edge, not necessarily at
a vertex. PRESS [20] uses distance-time 〈d, t〉 pairs to record
the distance to the start point of the whole trajectory at a certain
timestamp. This expression is incompressible, because (i) for any
two tuples (di, ti) and 〈dj , tj〉 of a trajectory, ti is definitely
different from tj ; and (ii) for a tuple 〈di, ti〉 of trajectory Tri
and another tuple 〈di′ , ti〉 of trajectory Tri′ , di is very likely to
be different from di′ .

In this work, we propose to separate locations from the times-
tamps. Given a raw positional data p on the edge e (vi → en),
we use the distance from the start vertex vi of e to the point p to
indicate the exact location of p along the edge. Since the lengths
of edges in a road network vary greatly, we normalize distances to
relative distance within [0, 1) range, as defined in Definition 1.

Definition 1. Relative distance. Given an edge e (v → en) and a
location p = (x, y) on this edge, let d be the network distance
between the start vertex v and p. The relative distance of p
w.r.t. e is a ratio of d to the length of e, denoted r(p) = d

|e| .

Then, locations of raw positional data points of a trajectory can
be expressed as a sequence of relative distances. For instance, the
locations w.r.t. five points of Tr1 in Fig. 1 are represented as
〈0, 0.5, 0.375, 0.75, 0.75〉. Note if two locations have the same
relative distances to their own start vertices, they are duplicate and
become compressible.
T: Time sequence and a time flag bit-string. T (Tr) of a trajec-
tory Tr is to record the list of timestamps (t1, t2, · · ·) w.r.t. Tr,
together with a binary string of time flags T̊ (Tr). Besides T (Tr),
we introduce T̊ (Tr) to associate time stamps in T (Tr) with entry
paths in E(Tr) and relative distances in D(Tr). Obviously, the
mapping between timestamps in T (Tr) and relative distances in
D(Tr) follows one-to-one mapping strictly, but not the mapping
between time stamps in T (Tr) and entry paths E(Tr) as an
edge passed by the trajectory Tr could have no embedded data
(e.g. the underlined digit 2 in the entry path v2 → 4, 2, 2, 1, 0, 2
in Fig. 3). Therefore, we introduce a bit-string T̊ (Tr) sharing
the same length as E(Tr). The jth bit in T̊ (Tr) is associated
with the jth digit in E(Tr). If the jth digit in the entry path
E(Tr) is to indicate the jth edge passed by the trajectory Tr
without any embedded data, the jth bit in T̊ (Tr) is set to 0;
otherwise, it is set to 1. In other words, all the bits in T̊ (Tr)
corresponding to underlined digits in E(Tr) are set to 0 while the
rest bits are set to 1. Notice that, the first j bits in T̊ (Tr) (i.e. the
substring T̊ (Tr)[1, j]) must contain i bit 1s since it corresponds
to i timestamps in T (Tr). Therefore, the number of 1s in T̊ (Tr)
must be equivalent to the number of timestamps captured by
T (Tr) and the number of relative distances captured by D(Tr).
For example, the time flag sequence T̊ (Tr1) is (101111)2, where
(·)2 is the binary bits. Fig. 3 shows the mapping relationship
among relative distances D(Tr1), timestamps T (Tr1), time flag
bit-string T̊ (Tr1), and the entry path E(Tr1).

v2 → 4Entry path E(Tr1)

Time flags T̊ (Tr1) 1

Time seq. T (Tr1) 00:00:00 00:01:30 00:03:00 00:06:01

Distance seq. D(Tr1) 0 0.5 0.375 0.75

22 1 0

1 1 1 10

00:04:30

0.75

2

Fig. 3: An example of TED representation.

2.3 Converting Raw Data to TED trajectory

In the following, we explain how to form the entry path E,
the distance sequence D, and the time sequence T for a given
trajectory.

Algorithm 1 shows the convertion from a sequence of raw
positional data to a TED trajectory. It first invokes MapMatch
to embed raw positional data in edges 〈e1, . . . , ek〉 in a road
network. Then it iteratively checks if a positional data (xj , yj)
locates in an edge ei until all all edges and positional data have
been processed (lines 4 – 17). For each edge ei = vi → eni, if
there exists a positional data locating in ei, it appends dj

|ei| to D,

tj to T , and a bit 1 to T̊ , otherwise, it only appends a bit 0 to T̊ .
If there are l (> 1) positional data locating in ei, it appends l − 1
0s to E (lines 11 – 13). Finally, it returns T,E,D, T̊ . The time
complexity is linear to the number of raw positional data.

Notice that, our TED representation is not affected by the
shape of trajectories (e.g. a trajectory with a circle).

Algorithm 1: CONVERT.
Input: A sequence of raw data (t1, x1, y1), . . . , (tm, xm, ym);
Output: The corresponding TED format;

1 Get edges 〈e1, . . . , ek〉 ← and positions 〈d1, . . . , dm〉 by
invoking MapMatch((t1, x1, y1), . . . , (tm, xm, ym));

2 E ← ∅; D ← ∅; T ← ∅; T̊ ← ∅;
3 i← 1; j ← 1; FLAG← true;
4 repeat
5 if FLAG then
6 if (xj , yj) locates at ei = (vi, eni) then
7 D.append(

dj
|ei|); T.append(tj); T̊ .append(bit 1);

8 else
9 T̊ .append(bit 0);

10 E.append(eni); FLAG←false; j + +;
11 while (xj , yj) locates at ei = (vi, eni)&&!FLAG do
12 E.append(0); D.append(

dj
|ei|);

13 T.append(tj); T̊ .append(bit 1); j + +;

14 FLAG← true;

15 else
16 i + +;

17 until i > k&& j > m;
18 return T,E,D, T̊ ;

Benefit of TED Format. By using the new format, the spatial
path 〈e1, e2, e3, e4, e5〉 of the trajectory Tr1 shown in Fig. 1(b)
can be represented as v2 → 4, 2, 2, 1, 0, 2. As compared with
the existing representation, the new representation contains more
duplicates. The entropy of the entry path using our representa-
tion is H(P)TED = −∑m

i=1 f(eni) log2 f(eni), where eni
is the exit entry number and f(eni) is the proportion of eni
in all exit entries in the collection of trajectories. For exam-
ple, for the entry path v2 → 4, 2, 2, 1, 0, 2, the Shannon en-
tropy using our representation is H(P)TED = − 1

6 log2
1
6 −

3
6 log2

3
6 − 1

6 log2
1
6 − 1

6 log2
1
6 = 1.79. Compared with the

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 4

entropy H(P) = −∑m
i=1 f(ei) log2 f(ei) = 2.32 using the

existing representation 〈e1, e2, e3, e4, e5〉, our representation for
spatial path has a much lower entropy.

In addition, we separately represent distance d from its time
stamp. By proposing relative distances, a non-clyclic trajectory
has a higher probability to contain duplicate relative distances and
becomes compressible.

3 TED-TRAJECTORIES COMPRESSION

Given a trajectory Tr in the form of (t, x, y) sequence, and a
compressed trajectory Tr′ of Tr based on its TED representation,
the effectiveness of the TED representation and compression is
evaluated by the compression ratio which is defined as the rate
of Tr’s storage cost to that of Tr′, i.e., |Tr||Tr′| . In this section,
we explain how to perform compression on TED-trajectories. The
high compression ratio achieved by TED-trajectories well justifies
the advantage of TED representation in terms of compression.

3.1 Lossless Multiple Entry Paths Compression
Given an entry path E(Tr), each exit entry eni in E(Tr)

occupies blog2 kc + 1 bits, where k is the maximal number of
entries in any vertex v ∈ V . We call these blog2 kc + 1 bits
an entry code w.r.t. eni. Let E̊(Tr) be a sequence of entry
codes w.r.t. entries in E(Tr). For example, if k = 7, the
entry path E(Tr1): v2 → 4, 2, 2, 1, 0, 2 has a corresponding
E̊(Tr1)=(100 010 010 001 000 010)2, where every 3 bits
represent an entry. Accordingly, given an entry path E(Tr) of
m entries, E̊(Tr) occupies in total (blog2 kc + 1) · m bits. In
the following, we consider n trajectories {Tr1, . . . , T rn} with
each E̊(Tri) having m entries. We present a basic compression
algorithm and also an enhanced version to compress and store
these entry code sequences w.r.t. the n entry paths in less than
sizeO = (blog2 kc+ 1) ·m · n space.

3.1.1 A Basic Approach for Compressing Paths
Recall that each entry in E̊(Tri) occupies blog2 kc + 1 bits

and the exit entries of each vertex always start from 1, i.e., vs →
i with i ≥ 1. Assume exit entries of a vertex share the same
probability to appear in the trajectory, then the first bit of each
blog2 kc + 1 bits (corresponding to an exit entry) has a higher
probability to be 0. In other words, if we extract the first bit
of m entries in each E̊(Tri), those bits form an n × m binary
matrix with majority of bits being 0. This inspires us to propose
BASICPATHCOMP, which uses one extra base binary sequence
and auxiliary columns to represent the n ×m binary matrix in a
compressed form.

Fig. 4 plots an example to illustrate the main idea of BA-
SICPATHCOMP. Assume we need to compress E̊(Tr1), E̊(Tr2),
and E̊(Tr3), with k=7 (i.e., n=3 and m=6). E̊(Tr1), E̊(Tr2),
and E̊(Tr3) occupy in total dlog2 ke·m·n = 54 bits. BASIC-
PATHCOMP first extracts the first bit of entry code in every entry
code sequence (underlined bit) to form matrix M of 3×6, and
only maintains the remaining bits of entry code (non-underlined
bits) in every E(Tri) in compressed entry code sequences (i.e.,
E̊′(Tr1), E̊′(Tr2), and E̊′(Tr3) in Fig. 4). It next forms 6-bits
base binary sequence B where the first bit and the sixth bit are
1. Accordingly, an auxiliary matrix A is formed which contains
m′ (=2) columns, corresponding to the first and the sixth columns
of M respectively. In total, the compressed entry code sequences,

100010010001000110

001001011001010100

E̊(Tr1)

E̊(Tr2)

100000001010001010E̊(Tr3)

⇒

001010010010

010111011000

E̊′(Tr1)

000001100110

B

+
1

0

1

1

1

0

↓ compress

1 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0

M

1 0 0 0 0 1

A

⇓

E̊′(Tr2)

E̊′(Tr3)

Fig. 4: An example of compressing entry codes.

B and A, occupy blog2 kc ·m · n + m + n ·m′ = 48 bits. In
other words, if we assume β is the probability that B contains at
least c 0s (with c≥1), then the size of n compressed entry code
sequences has its sizeB≤blog2 kc·m·n+m+(1−β) ·m ·n. Now
we discuss the value of β. Let α be the probability thatM(i, j)=1
in the i-th row in M , then for any position j in B, the probability
that B[j]=0 is αn. Therefore the probability that B contains at
least c bits of 0 is

β =
m∑

x=c

(mx)αn·x(1− αn)m−x. (1)

According to Eq. 1, when β > 1
n , the approach BASICPATH-

COMP can lead to space reduction. In addition, β decreases as c
m

gets larger. If we use one word (e.g. 32 bits) to store a column
in A, when c is less than 10% of m, the probability that B
has at least c 0s is very high, approaching 100%. Accordingly,
we can physically store each column in A as a word for every
32 trajectories (i.e. n = 32). Then increasing the number of
trajectories will not affect the compression ratio.

3.1.2 Improving Compression Using Multiple Bases

Each bit-0 in the base binary sequence B enables BASIC-
PATHCOMP to achieve certain space saving. As n increases,
the chance for all the n bits in j-th column of M to be 0s
becomes smaller and hence the potential amount of space that
can be saved might be reduced. Motivated by this observation,
we propose an improved approach IMPRVPATHCOMP to partition
n entry code sequences into q groups G1, . . . , Gq of different
sizes such that the matrix M of each group has many columns
with only zero values. Instead of using a single base B, IMPRV-
PATHCOMP uses q bases B1, . . . , Bq , where each Bx is used to
compress entry code sequences in Gx. Then, the size for storing
{E̊(Tr1), . . . , E̊(Trn)} by using IMPRVPATHCOMP becomes
size

(q)
I ≤ blog2 kc ·m ·n+ q ·m+

∑q
x=1(m− cx)|Gx|, where

base Bx for group Gx contains at least cx bits of 0. Notice that
when a group contains all m bits of 0, the corresponding base is
empty.

Now, the problem of compressing {E̊(Tr1), . . . , E̊(Trn)}
can be converted to decide a q and a partition of n trajectories into
q groups such that size(q)I is minimum, which can be divided into
the following two sub-problems.
Sub-problem 1: Matrix transformation. We firstly adopt ma-
trix reordering approach to transform the matrix M to a new
matrix M ′, such that M ′ is divided into left and right parts,
where the right part only stores 0s. We assume the left part is
distinguished from the right part by a set of boundary nodes
(i1, j1), . . . , (iz, jz) in M ′ such that ia ≤ ia+1 and ja ≤ ja+1,
as marked by cross signs in Fig. 5(a).

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 5

Mn×m M ′
n×m

⇒ 0

m m′

(a) Matrix transformation

M ′
n×m

m′

(b) Maximize
∑q

x=1
cx|Gx|

(i2,j2)

(i4,j4)

G1

G2

G3 azz

a1z

axy

Fig. 5: Matrix transformation and partition.

To achieve this, we start examining the first row of matrix M .
We choose a row with minimal number of bit-1s in M and then
switch this row with the first row, e.g., in Fig. 5(a) the second
row and the examining row (e.g. first row) of M need to be
switched. Then, we examine columns in M . Let l be the smallest
unexamined column number (l = 1 in this case). We start from
the l-th column and keep checking every unexamined column
corresponding to the first row in M till the last column. Let r
capture the column that is currently examined with r ∈ [l,m]. If
the r-th column in the first row is 1 (i.e. M [1, r] = 1), we switch
l-th column with the r-th column of M and increase l value by
one to indicate the first column has been examined. By this way,
the first row is separated into two parts: the left parts containing
only bits 1s and the right part containing only bits 0s. We then
examine the submatrix Mtmp from the second row to the n-th
row and from the l-th column to the m-th column. We repeat the
above process until all rows in the matrix have been processed
and we get the final transformed matrix M ′. Fig. 5(a) shows two
matrices before and after transformations. Only 0s appear in the
right part in M ′n×m, with (1, 1), (2, 2), (3, 4), (4, 5), (5, 6), and
(6, 8) being the boundary nodes.
Theorem 1. The sub-problem of transforming Mn×m to M ′n×m

is NP-hard.

We show the proof sketch in Appendix A.1.
Then minimizing space problem for multiple entry code se-

quences becomes the following problem of partitioning M ′.
Sub-problem 2: Partitioning M ′n×m to q groups. Given a set
of boundary nodes I = {(i1, j1), . . . , (iz, jz)} in M ′ and an
integer q(> 1), we need to choose a set Iq of q−1 boundary nodes
(Iq ⊆ I) to minimize size(q)I . This is equivalent to choosing Iq
to maximize

∑q
x=1 cx|Gx|, since both blog2 kc·m·n and q·m are

constant values for q. Here
∑q
x=1 cx|Gx| equals the covered areas

in the right part with 0s in M ′, e.g., the light grey area in Fig. 5(b)
indicates the covered areas by choosing boundary nodes (i2, j2)
and (i4, j4).
Theorem 2. The sub-problem of partitioning M ′n×m to q groups

is NP-hard.

We show the proof sketch in Appendix A.2.
Algorithm 2 shows the algorithm PARTITION, which costs

O(qz) time since the main cost is for adjusting gain values for
nodes in I − Iq−1 (see line 7). Here, gain of (ix, jx), denoted as
gain(ix, jx), refers to the number of bits that a boundary node
(ix, jx) could reduce (i.e. the areas that (ix, jx) could cover).
For an M ′ with z boundary nodes, we can partition it into a set
of small areas a11, . . . , a1z, a22, . . . , a2z, . . . , azz (see Fig. 5(b))
with gain(ix, jx) =

∑i
x=1

∑z
y=j+1 axy.

Theorem 3. Let OPT* and OPT be the covered areas inM ′n×m us-
ing the greedy algorithm PARTITION and the optimal solution,
respectively, then OPT

OPT∗ <
3
2 .

We show the proof sketch in Appendix A.3.

Algorithm 2: PARTITION.
Input: Gain values for every boundary node in

I = {(i1, j1), . . . , (iz, jz)} in M ′n×m in ascending
order, an integer q;

Output: A set Iq−1 (∈ I) that are used for partition;
1 Iq−1 ← ∅; count← 1; totalGrain← 0;
2 while count < q do
3 Choose (ix, jx) with largest gain(ix, jx) from I;
4 totalGrain← totalGain + gain(ix, jx);
5 Iq−1 ← Iq−1 ∪ {(ix, jx)};
6 Remove calculated cells from M ′;
7 Adjust gain values for nodes in I − Iq−1;
8 count← count + 1;

9 return Iq−1;

Then the algorithm IMPRVPATHCOMP invokes PARTITION

using a q value from 1 to z and chooses the maximum size
(q)
I .

Notice that, the above approach can be easily extended to the
case where trajectories have variable lengths. We firstly rank
trajectories in ascending order of their lengths. Then, for those
with the same length, we use BASICPATHCOMP and IMPRV-
PATHCOMP for further compression. The time for compressing
consists of three parts, which are (i) scanning and generating entry
path to {E̊(Tr1), . . . , E̊(Trn)} using O(mn) time, (ii) invoking
MATRIX TRANSFORM using O(mn) time, and (iii) invoking
PARTITION using O(q) time, where m is the average length of
trajectories, n is the number of trajectories, and q(� n) is the
number of groups. Therefore, the time complexity for compressing
entry path is O(mn).
Decompressing entry code sequences. The process of decom-
pressing the j-th entry enj in the entry path of a trajectory Tri is
as follows. Let wj be the entry code with length blog2 kc + 1
to represent entry enj . The first step is to get the low order
bits of wj . We chop E̊′(Tri) and let its j-th segment between
positions 1 + (j − 1)blog2 kc and jblog2 kc be the low order
bits of w. The second step is to get the first bit of wj . Assume
that the trajectory Tri belongs to group Gx. If Bx[j] equals to
0, the first bit of wj is 0; otherwise, let Bx[j] be the ath bit-1
in Bx and Tri correspond to the yth path in Gx, then the first
bit of wj is A[a][y]. The corresponding integer value of wj is the
entry value enj . We develop COUNTBIT(Bx[1, j]) to calculate a
efficiently as follows. Let the first j bits in Bx occupy z bytes,
i.e., Bx[1, j] = c1c2 . . . cz , where ci is a byte and z = dn8 e. Let
Cf (ci) be the summation of 1s in a byte ci. Each byte corresponds
to an unsigned char, and we can use a pre-computed mapping
table to store the mapping pairs between every unsigned char and
number of bit 1s in its byte [1]. The size of this mapping table is
small (i.e., only 28 = 256 bytes) and counting bit 1s of a word
can be done in constant time [1]. Therefore, the decompressing
operation can be done in constant time.

3.2 Error-Bounded Distance-Preserving Compression

Distance sequence D(Tr) records a sequence of relative
distances. We could adopt the well known Huffman encoding [3]
to compress D(Tr). That is to transform every relative distance
r(pi) to a binary code wi and to assign to the most frequently
occurring r(pi) the shortest wi, and the least frequently occurring
r(pi) the longest wi. It has been proved that Huffman encoding is
an optimal solution in terms of compression ratio [3].

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 6

However, Huffman code is designed based on frequencies of
relative distances instead of their values. For example, given two
relative distances r(p1) < r(p2), the Huffman code of r(p1)
could be larger than that of r(p2). If we want to search relative
distance values within a range [r(p1), r(p2)], we have to scan
D̊(Tr) and traverse the Huffman tree to get all relative distances
in D̊(Tr). It causes a delay in answering some LBS queries that
are based on distances.

Therefore, we aim to provide a distance-preserving encoding
scheme (DP-encoding scheme for short), where each code w
can be associated with a relative distance in D(Tr). Given two
relative distances r(p1) < r(p2), let w1 and w2 be their cor-
responding compressed codes. A DP-encoding scheme guarantees
w1 < w2. A straightforward way is to adopt the typical encoding
scheme that approximates a relative distance r(pi) using an
accumulation of some pre-selected values in a geometric sequence
α = 1

2 ,
1
4 , . . . ,

1
2`

and encode r(pi) to a code wi ∈ {0, 1}`i ,
where wi is a sequence of binary bits. Let wij be the j-th bit in wi
(j ≥ 1). Any relative distance r(pi) ∈ (0, 1) could be represented
as r(pi) =

∑∞
j=1 wijα[j]. When r(pi) is 0, we encode it to (0)2.

Notice that, theoretically wi could end in an infinite string
of zeros. For instance, the relative distance 0.4 is encoded
as (011001100...)2. In this paper, we propose an accuracy of
positioning η to bound the inaccuracy that could be caused
by the distance compression. 1 Given the length |e| of a path
e and an error bound (i.e. accuracy of positioning) η, when
r(p) −∑∞

j=1 wijα[j] ≤ η
|e| , we use

∑∞
j=1 wijα[j] to approx-

imately encode r(p). For example, when |e| = 500 meters and
η = 1 meter, r(p) = 0.4 could be encoded as (0110011)2.

Although DP-encoding is error-bounded and preserves the
relative distances, it brings disadvantages. If we store relative
distances of a trajectory in one binary file (e.g., (0, 0.5, 0.375,
0.75, 0.75) will be stored as (010111111)2)), we could not
decode them as we do not know where to segment each binary
code wi, and we even cannot tell how many relative distances
are stored in the compressed sequence. Can we expand wi to w′i,
such that w′i keeps the ability to describe relative distance and is
recoverable, and the cost of such expansion is small?
Decodable DP-Encoding Scheme. If each relative distance is
encoded into wi of fixed length, the problem is solved. However,
it wastes lots of space to store 0s which could be actually saved.
In this work, we propose an expansion scheme based on prefix
condition [8]. A list w′1 . . . w

′
p of binary words satisfies the prefix

condition iff ∀1 ≤ i < j ≤ p, w′i is not a prefix of w′j and
vice versa, and such list could be decoded easily. Therefore,
given a list D with its relative distances encoded by DP-coding
scheme into wis, we propose to expand wi to a prefix code
w′i = wivi if necessary, such that w′is of D satisfy the prefix
condition and can be decoded into r(p1), . . . , r(pp) easily. As
mentioned above, DP-coding will encode the relative distance
list 0, 0.5, 0.375, 0.75, 0.75 of our example D to w1 = (0)2,
w2 = (1)2, w3 = (011)2, and w4 = (11)2. Here, w1 is a prefix
of w3, and w2 is a prefix of w4 and hence they do not satisfy the
prefix condition. We need to expand w1 and w2 to make all four
binary words satisfy the prefix condition.

Before we explain how to expand wi to w′i via appending
vi after wi, we first analyze the DP-encode scheme r(pi) →

1. The latest report GPS accuracy is from 3.5 meters to 7.8 meters (please
see http://www.gps.gov/systems/gps/performance/accuracy/).

wi ∈ {0, 1}`i , which has the following “good” property to make
it expandable by using vi with a small size.
Property 3.1. Given a relative distance r(pi) ∈ [0, 1) and the DP-

encoding scheme r(pi) → wi ∈ {0, 1}`i , any code wi of a
non-zero relative distance r(pi) must end with 1.

Property 3.1 inspires us to assign vi a sequence of 0s so that
w′i = wivi becomes decodable. Below we propose an algorithm
EXPANSION to generate w′i. EXPANSION first uses a binary tree,
called DP-tree, to express all DP-encoded words. In DP-tree,
the left child node corresponds to label 0 while the right one
corresponds to label 1; and the labels from the root to a black node
represent a DP-encoded word. For k distinct relative distances,
EXPANSION spends O(k) time to scan them and to build a DP-
tree. Given two black nodes n1 and n2 in DP-tree, let w1 and w2

be their corresponding binary words. If n1 is an ancestor of n2,
w1 must be a prefix of w2. In other words, an internal black node
(i.e. non-root, non-leaf node) must be such an ancestor that needs
expansion as it must have at least one black descendant node. In
the following, we assume internal node nl is such an internal node
and explain how EXPANSION expands nl.

Started from node nl, EXPANSION keeps visiting the left child
(labelled 0) until it meets a descendant node n′ of nl without left
child. EXPANSION inserts a node nc as a child of n′ and adds 0
as the label from n′ to nc. Property 3.1 guarantees the existence
of n′ as all the binary words corresponding to relative distances
must end with 1. Let x be the number of 0s from nl to nc, and
then EXPANSION appends x consecutive 0s after wi to generate
a decodable w′i. The DP-tree after expansion is called decodable
DP-tree (DDP-tree for short), in which every code corresponds
to a path from the root to a leaf satisfying prefix condition. For
example, Fig. 6(a) shows a DP-tree before expansion and Fig. 6(b)
shows the DDP-tree after expansion. Using DDP-encoding, the bi-
nary code for 0, 0.5, 0.375, 0.75, 0.75 is (00100111111)2, which
requires 11 bits. The accuracy of EXPANSION is guaranteed by
Theorem 4.

DP encoding

0

0.75
0.5
0.375

→ (1)2
→ (011)2

0 0.5

0.75 0

(a) DP-tree. (b) DDP-tree. (c) Pruned DDP-tree.

DDP encoding PDDP encoding
→ (0)2

→ (11)2

0

0.75
0.5
0.375

→ (10)2
→ (011)2
→ (00)2

→ (11)2

0

0.75
0.5
0.375

→ (10)2
→ (01)2
→ (00)2

→ (11)2

0.375 0.375

0.5 0.75 0 0.375 0.5 0.75

0 1

Fig. 6: Tree expansion and pruning.

Theorem 4. Let w be a code and w′ be its expanded code using the
algorithm EXPANSION. Then w′ must be unique and shortest.

We show the proof sketch in Appendix A.4.
Given a DDP-tree, the decoding of the whole sequence

D(Tri) is straightforward. It traverses the DDP-tree node by node
as each bit is read from the input binary code, and the search for
that particular distance is terminated when a left node is reached.
Shortening decodable codes by maximized pruning DDP-tree.
We could further reduce the space by pruning long codes in DDP-
tree. The main idea is that if a leaf node nl has no sibling and its
parent node np does not represent any distance (i.e., not black),
it could be represented by its parent node np by copying labels

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 7

of nl to np; thereafter nl can be removed and np becomes a leaf
node. We examine all the leaf nodes in DDP-tree until no new leaf
node could be pruned to form a pruned DDP-tree (PDDP-tree for
short). Then, every path in the PDDP-tree corresponds to a binary
code, called a pruned binary code.

Fig. 6(c) shows the pruned DDP-tree and its PDDP en-
coding scheme. Using PDDP-encoding, the binary code for
0, 0.5, 0.375, 0.75, 0.75 is (0010011111)2, which occupies only
10 bits. Our experimental results in Section 5 show that PDDP
encoding scheme can compress relative distances in trajectories
significantly. Its compression size is close to the size of using
Huffman encoding, the one that can minimize the average code
lengths [3].

In addition, each leaf node in a PDDP-tree is associated
with subsequences in D̊(Tr). Then given a code, we can eas-
ily identify its corresponding subsequences in D̊(Tr) to avoid
scanning D̊(Tr) from the beginning. For example, 0.5 is asso-
ciated with position 3 (the starting position of subsequence 00 in
(001001111111)2). The time complexity of generating a DDP-tree
(or PDDP-tree) is O(p), and we only need to use O(k+ p) space
to store distinct codes and positions associated with subsequences,
where k is the number of distinct codes and p is the number of
raw positional data.

PDDP codes help to achieve two main advantages. First,
it helps to reduce the storage cost of D(Tr). Our location
compression using PDDP-encoding scheme can achieve a higher
compression ratio. Second, PDDP-encoding scheme can preserve
distance information in the binary code, which makes LBS query
processing more efficient.

3.3 Temporal Compression
Using TED format, the i-th timestamp ti in T (Tr) corre-

sponds to the i-th bit-1 in the time flag bit-string T̊ (Tr). Let
the j-th bit in T̊ (Tr) be the i-th bit-1, then T (Tr)[i] matches
T̊ (Tr)[j].
Compressing consecutive unchanged time intervals. Given
a trajectory Tr and any three embedded data (ti, ei, di),
(ti+1, ei+1, di+1), and (ti+2, ei+2, di+2), if ti+2 − ti+1 =
ti+1 − ti, we could remove ti+2 from T (Tr). In order to
record a remaining ti in the i-th timestamp in the compressed
time sequence, we store remaining timestamps in a sequence
T ′(Tr) where each element in T ′(Tr) is a pair (i, ti). For
example, T (Tr1) = {00:00:00, 00:01:30, 00:03:00, 00:04:30,
00:06:01}. The time intervals for the first four timestamps are
the same (i.e. equals to 00:01:30), so T ′(Tr) is {(1, 00:00:00), (2,
00:01:30), (5, 00:06:01)}. It implies that two missing pairs follow
the same time interval as their previous timestamps. Finally, we
store the compressed codes of the trajectory Tr1 as shown in
Fig. 7.

T̊ (Tr1) :

E̊′(Tr1): 00 10 10 01 00 10

1 0 1 1 1 1

(1, 00:00:00), (2, 00:01:30), (5, 00:06:01)

D̊(Tr1) : 00 10 01 11 11

+ B
A ...

...

... ...

T ′(Tr1) :

Fig. 7: Compressed codes for trajectory Tr1.

In addition, when an object stops at a certain place for a
while, the TED format requires large space to store duplicate
1s in T̊ , 0s in E̊, and same distance codes in D̊. In order to

avoid it, we preprocess each trajectory as follows. Given a set
of consecutive raw positional data corresponding to the same
location, i.e., (t1, x, y), (t2, x, y), . . ., (ti, x, y), we only keep
(t1, x, y) and (ti, x, y) but remove those in between. In this way,
we save spaces without losing anything. The time complexity is
linear to the number of raw positional data.
Compression multiple T̊ (Tr) and D̊(Tr). Given a set of time
flag sequences T̊ (Tr1), . . . , T̊ (Trn), they construct a bitmap.
Many Bitmap compression algorithms have been proposed to
compress bitmap in a bitmap index to save space [2], [5],
[7], [22], which require very little effort to compress and de-
compress. We adopt the recently reported Partitioned Word-
Aligned Hybrid (PWAH) compression algorithm in [22] to com-
press T̊ (Tr1), . . . , T̊ (Trn). We use the same way to compress
D̊(Tr1), . . . , D̊(Trn).

4 DIRECT QUERY ON COMPRESSED TRAJECTO-
RIES

In this section, we show that compressed TED-trajectories can
easily associate the three dimensions T, E, and D of trajectories
together to support queries in the road network efficiently. Ideally,
we hope to query compressed trajectories directly, i.e. without
fully decompressing the trajectories, or in the ideal case without
decompressing the trajectories at all.

As we know, many LBS applications require different LBS
queries [16], [26], [27]. First, we list two types of primitive
operations that are fundamental functions to support LBS related
applications in Section 4.1. Next, we propose index structures
to efficiently support these primitive operations in Section 4.2.
Finally, we demonstrate the flexibility of primitive operations in
supporting LBS queries by showcasing four very typical types of
LBS queries in Section 4.3.

4.1 Primitive Operations

There are two types of primitive operations. One is for
transformations from T̊ (Tr) to E̊(Tr) and D̊(Tr), respectively.
The other is for mapping between compressed trajectories and
their logical representations in the form (t, x, y) (see Fig. 8). In
the following, we discuss the implementation of these primitive
operations.

D̊(Tr)← T̊ (Tr)→ E̊(Tr)

(t1, x1, y1), . . . , (tp, xp, yp)

m
↔ Transformation

m Mapping

Fig. 8: Primitive operations.

4.1.1 Transformation Operations among TED codes
As we know, there is a one-to-one matching between T̊ (Tr)

and E̊′(Tr). Here, E̊′(Tr) is the compressed entry code sequence
of Tr where the first bit of each entry code in E̊(Tr) is skipped.
The j-th bit in T̊ (Tr) corresponds to the j-th entry in the entry
path. Since each entry is encoded as a blog2 kc-bit in E̊′(Tr), the
j-th entry starts at position (j − 1)blog2 kc + 1 in E̊′(Tr). The
matching between T̊ (Tr) and D̊(Tr) is not one-to-one. However,
for the i-th location in D̊(Tr), there are exactly i bits of 1 in
T̊ (Tr)[1, j] and hence we can also associate each i with j. Below
we elaborate transformation operations. As all these operations are

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 8

for one given trajectory Tr, we skip Tr for brevity (e.g., T̊ means
T̊ (Tr)).
• TtoE(T̊ , j, E̊′, B,A) returns the binary code of the j-th entry in
the compressed entry path in the form (E̊′, B,A) given the j-th
bit in T̊ . This operation first uses the process of decompressing
entry paths (see Section 3.1.2) to get the code wj . If wj is non-
zero, it returns wj directly. Otherwise, it keeps decompressing its
previous code wj−1 for the (j − 1)th entry until a non-zero code
is reached. It then returns this non-zero code. This operation can
be done in constant time O(C), where C is the average number
of embedded data within an edge.
• TtoD(T̊ , j, D̊), given the j-th bit in T̊ , returns the start position
pos in D̊ if T̊ [j] is a bit of 1 (i.e. it corresponds to a relative
distance code at position pos in D̊); −1 otherwise. If T̊ [j] is a
bit of 1, we first need to locate the bits corresponding to the i-th
relative distance in D̊. Recall that for the i-th location in D̊, there
are exact i bits of 1 in T̊ [1, j]. Consequently, we count the number
of bit 1s in the first j bits (including the j-th bit) in T̊ . We then
decode the binary code D̊ by traversing the adopted encoding tree
(e.g. DDP-tree or PDDP-tree) and return the start position of the
i-th code. Since each position of D̊ records the relative distance
to a vertex in the road network, we could guarantee that the error
bound of TtoD is the same as the accuracy of positioning η. Let
`z be the longest length of the code in the adopted encoding tree
and p be the length of D̊, then this operation requires on average
O(p2 `z) time.

4.1.2 Mappings Operations
For a collection of trajectories with logical format (t, x, y),

they are physically stored as compressed codes. Therefore, we
need to provide a few primitive mapping operations between the
logical format and their compressed codes.
• time2T(t, T̊). Given a time slot t, this operation returns its
mapped time positions j and j′ in T̊ such that their corresponding
timestamps ti and ti+1 satisfy ti ≤ t ≤ ti+1. For the given
time slot t, we first binary search t in T ′(Tr) and get two pairs
(ix, tx) and (iy, ty) such that tx ≤ t ≤ ty . If ix and iy are
not adjacent numbers (i.e. iy>ix+1), it means each timestamp
tx′ (tx<tx′<ty) in T ′(Tr) follows the same time interval of
tI=tx−tx−1. Therefore, we calculate ix′ = ix+b t−txtI

c such that
its corresponding timestamp tx′ = tx + b t−txtI

c ≤ t is the closest
timestamp to t. Then we locate the j-th bit in T̊ such that its first
j bits contain ix′ bit 1s. Similar to the function COUNTBIT (see
Section 3.1.2), let T̊ occupy several bytes c1c2 . . . and Cf (ci) be
the summation of 1s in a byte ci. We devise LOCATEBIT(ix, T̊) to
calculate j in constant time as follows. We start from c1 and find
a byte ch such that i′ =

∑h−1
i=1 Cf (ci) ≤ ix ≤

∑h
i=1 Cf (ci).

We then scan bits in the h-th byte and locate the ath bit such that
the first j = 8(h− 1) + a bits in T̊ (Tr) contain ix bits 1. Then,
starting from j, we find the next bit 1 at position j′ in T̊ , and
return j and j′. The operation time2T(t, T̊) costs O(log l), where
l is the length of T ′(Tr).
• edge2E(vs, en, v, E̊′, B,A). Given an edge represented by
vs → en in the road network, and a compressed entry path
(E̊′, B,A) starting from v, this operation returns −1 if trajectory
Tr does not pass the input edge; otherwise it returns an integer
j which means vs → en is the j-th edge passed by Tr. To
support this mapping, we recover the edges passed by Tr via
decompressing (E̊′, B,A). Let v′ be the starting vertex, i = 1
represent the current iteration, and e′ be the i-th decompressed

entry. If v′ → e′ equals vs → en, i is returned to complete the
mapping. Otherwise, i is increased by 1, v′ is reset to the ending
vertex of edge v′ → e′, and e′ is reset to the next decompressed
entry. If none of the edges passed by Tr could match vs → en,
−1 is returned. The time complexity of this operation is O(m2)
where m is the average length of a trajectory.

4.2 An Index to Support Efficient Primitive Operations
Based on above description, we understand both edge2E and

TtoD have to scan E̊′(Tr) and D̊(Tr) from beginning, respec-
tively. In order to avoid it, we hope to index some vertices in a
road network so that we can locate an edge in E̊′(Tr) via starting
from an intermediate vertex. In the following, we propose an index
structure to tackle this problem. The main idea is to partition the
road network into sub-regions so that a trajectory actually crosses
one or several sub-regions.

v3
v4

v6
v7

4

2
2

p5 p4

1
1

p1

p2

3
3

0 1

1

0

01

00 10

11

1100
11111101
1110

2

v5p3
1

v2 3

x0

y0

Fig. 9: Partitioning a road network.

0 1

(v2, 1, 1, 0) (v3, 2, 1, d11) (v5, 4, 3, d12) (v6, 6, 7, d13) (v7,−, 9, d14)

(v4, 1, 1, 0) (v2, 3, 1, d21) (v5, 5, 1, d22) (v6, 7, 5, d23) (v7,−, 9, d24)

Tr1

Tr2

log nu

log nu

2

x ≥ x0

y ≥ y0 y ≥ y0

Fig. 10: Partition tree for Tr1 and Tr2.

Road network partition. For ease of presentation, we use grids
to partition a road network, while our technique can be applied
to other partition approaches. We partition the network into four
regions via x0 and y0 that correspond to binary codes 00, 01, 10,
and 11, respectively, as shown in Fig. 9. For each region, we can
further partition it into four sub-regions using the same encoding
scheme. Let d be the number of iterative partitioning steps, then
there are totally 22d sub-regions and the code for each sub-region
occupies 2d bits. Given a vertex v of a trajectory Tr, it can be
easily located into a sub-region Si by comparing its 2D location
with x0 and y0. For example, vertex v5 locates in the region 1110.
If we pre-process the trajectory Tr such that vi refers to the first
vertex in Si that is reached by Tr, we can actually scan Tr from
vi instead of the first vertex of Tr when we need to locate v in
trajectory Tr. We name the first vertex in sub-region Si reached
by Tr as a representative vertex w.r.t. Tr.
Partition tree. We use a partition tree to maintain these repre-
sentative vertices w.r.t. their trajectories. The partition tree is a
binary tree, with left sub-tree standing for 0 (i.e. x < x0 for
the first level or y < y0 for the second level) and right sub-tree
standing for 1 (i.e. x ≥ x0 or y ≥ y0), as shown in Fig. 10.
The label sequence from the root to a leaf corresponds to a region
code U . Each leaf node stores a list of tuples, with each in the
form of (v, j, i′, dac) corresponding to a trajectory Tr. Here, v is

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 9

TABLE 1: Major LBS Queries.
Query types Queries Related primitive operations Time complexity

Basic where(Tr, t) time2T, TtoE O(m
22d+1)

when(Tr, x, y) TtoD O(p
22d+1 `z)

Range distance(Tr, t1, t2) time2T, TtoE O(m
22d+1)

howlong(Tr, x1, y1, x2, y2) TtoD O(p
22d+1 `z)

Aggregation count(Trset, x, y, r) TtoD O(p
22d+1 `z)

kNN(Trset, x, y, t1, t2) time2T, TtoE, TtoD O(m
22d+1 +

p
22d+1

`z + c·n· log k)
General window(Trset, x1, y1, x2, y2, t1, t2) time2T, TtoE, TtoD O(m

22d+1 +
p

22d+1
`z + c·n)

Algorithm 3: Finding previous representative vertex.
Input: An edge (vs, en), start vertex v of a trajectory Trx, and

a partition tree Pt;
Output: Tuples (v, j, i′, dac) corresponding to vs if (vs, en) is

an edge in Tr, null otherwise;
1 Traverse Tr to its leaf node nl using vs;
2 Scan the list pointed by nl and return tuples (v, j, i′, dac)

corresponding to the trajectory Trx;

the representative vertex for the region with code U w.r.t. Tr, j
indicates that the edge started from v is the j-th entry in Tr,
and dac is the accumulative distance traveled along Tr from
the beginning to v. Let j′ < j such that T̊ (Tr)[j′] = 1 and
meanwhile ∀j′ ≤ j′′ ≤ j, T̊ (Tr)[j′′] = 0. Then, i′ refers to
matching position of relative distance corresponding to T̊ (Tr)[j′],
which is also stored in the partition tree. i′ allows us to scan
D̊(Tr) from position i′ instead of the beginning when we need to
locate the relative distance w.r.t. T̊ (Tr)[j]. In total, the partition
tree stores 22d vertices and n · 22d tuples. Notice that in order to
balance the overall load performance for a given set of trajectories,
we can determine the parameters x0 and y0 according to the
trajectories. Fig. 10 shows an example partition tree. Let Tr1
be the trajectory that crosses vertices v2, v3, v4, v5, v6, and v7,
and Tr2 be another trajectory that crosses vertices v4, v3, v2,
v5, v6, and v7. We can see from Fig. 9 that vertices v3 and
v4 locate in the same sub-region 1000. For sub-region 1000,
vertex v3 is the representative vertex w.r.t. Tr1 since it is the
first vertex in Tr1 that arrives in this region, whereas v4 is the
representative vertex w.r.t. Tr2. We store the set of prefixes for
each depth in perfect hash table, e.g. d1=(0,1), d2=(00,01,10,11),
d3=(001,011,100,110,111), d4=(0010,0111,1000,1101,1110).

Lemma 1. Looking up a representative vertex in a partition tree
costs O(log log nu) time, where nu is the number of nodes in
the partition tree.

Based on this partition tree, we can easily find a vertex close
to the given edge (vs, en) to accelerate the location of (vs, en)
w.r.t. a trajectory T̊ (Tr). Algorithm 3 shows the detail. Given a
vertex vs, it first traverses the tree to locate vs to a leaf node
(i.e., a sub-region Sj) and the labels from the root to the leaf
node correspond to the sub-region code U of Sj (line 1) and then
traverses the associated list (line 2). Since we are interested in the
case that the input edge (vs, en) belongs to the trajectory T̊ (Tr),
we can guarantee that there must exist a representative vertex v′

having the same region code as vs. The vertex v′ could be vs
or some other vertex. If (vs, en) does not belong to T̊ (Tr), the
algorithm returns null without traversing the trajectory. The time
complexity of Algorithm 3 is O(log log 22d) = O(log 2d).
Answering primitive operations efficiently. Now using Algo-
rithm 3 based on the partition tree, we can support the operations

edge2E and TtoD efficiently.
For the operation edge2E(vs, en, v, E̊′(Tr), B,A), we get the

range code of vs and invoke Algorithm 3 to get the representative
vertex v w.r.t. Tr. Instead of traversing the compressed entry path
from its start vertex vs, we start from v. The time complexity of
this operation depends on the depth d of iterative partitions in the
road network. Since v is a representative vertex of a sub-region
and there are totally 22d sub-regions, the time complexity for the
mapping operation edge2E is reduced from O(m2) to O(m

22d+1).
For the operation TtoD(T̊ (Tr), j, D̊(Tr)), in order to avoid

traversing D̊(Tr) from its beginning when the j-th bit in T̊ (Tr) is
1, we want to locate a start position i′x that we can decode D̊(Tr)
correctly. We binary search the array of tuples w.r.t. Tr pointed
by the partition tree using j and get tuple (v, jx, i

′
x, dac), where

jx is the closest integer to j (jx ≤ j). Since i′x is the start position
of the relative distance corresponding to T̊ (Tr)[jx], we start from
i′x and traverse the adopted encoding tree (e.g. Huffman, DDP, or
PDDP tree). Then the operation returns the start position of the
(j− j′′+ 1)th decoded relative distance. The time complexity for
this operation is reduced from O(p2 `z) to O(p

22d+1 `z).

4.3 Answering Major LBS Queries
Given a trajectory Tr stored as a TED format (v, E̊(Tr)),

D̊(Tr), (t1, T̊ (Tr)), many of LBS queries can be supported
via primitive operations with little decompression. Below we list
seven queries which roughly represent four types of typical LBS
queries, as summarized in Table 1. We also list in Table 1 the main
primitive operations that can be used to support those queries.
• where(Tr, t) query. A query where(T̊ (Tr), t) returns the 2D
location (x, y) where the object locates at time t in the trajectory
T̊ (Tr).

We first locate the sub-path ps that the object locates from
time stamps ti to ti+1 with ti ≤ t ≤ ti+1 as follows. We
use time2T(t, T̊ (Tr)) to get the mapping time position [j, j′]
in T̊ (Tr). Then we use TtoE(T̊ (Tr), j, E̊(Tr)) to get the code
w and translate it to the corresponding entry enj . We binary
search the array of representative vertices w.r.t. T̊ (Tr) and use
O(2d) time to locate the tuple (v′, js, i′, dac) with the largest
position js(≤ j). We then traverse the entry path from the
representative vertex v′ to enj and get the start vertex vj of enj .
Let p be the path from vertex v′ to vj . Similarly, we get the
edge (vj′ , enj′) and the sub-path ps from vj to vj′ . Then, the
object should locate at t−ti

ut |ps| from the start vertex vs along
the path ps. We finally locate this position in the road map and
get the corresponding location (x, y) as follows. According to
data structure EdgeGeometry in the road network, we know that
ps consists of a consecutive linear segments s1, . . . , sq . Then we
can get a linear segment sw that the object locates in at time
t, i.e.

∑w−1
j=1 |sj | ≤ |ps| ≤

∑w
j=1 |sj |. Let v′s = (xs, ys) and

v′e = (xe, ye) be the start and end points of the linear segment
sw. The 2D location (x, y) can be derived, as expressed in Eq. 2:

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 10

Algorithm 4: Calculating when query
Input: Adjacent locations rd1, rd2 in edges e1, e2 at time

stamps t1 and t2, respectively; Current location rd in
the edge e;

1 if e1 = e2 = e then
2 when← t1 + r−rd1

rd2−rd1
· ut;

3 else if there is a path p1 in between e1 and e && e = e2 then
4 when← t2 − (rd2−rd1)·|e|

(1−rd1)·|e1|+|p1|+rd2·|e2| · ut;

5 else if there is a path p1 in between e1 and e && a path p2 in
between e and e2 then

6 when← t1 + (1−rd1)·e1+|p1|+r·|e|
(1−rd1)·|e1|+|p1|+|p2|+rd2·|e2| · ut;

7 return when;

x = xs +

|ps|−
∑w−1

j=1 |sj |
|c| (xe − xs),

y = ys +
|ps|−

∑w−1
j=1 |sj |
|c| (ye − ys).

(2)

The time complexity of answering where(Tr, t) query is
mainly on traversing path from the representative vertex to the
edge, which on average is O(m

22d+1).
• when(Tr, x, y) query. It returns the timestamp that the object
locates at (x, y) in the trajectory Tr.

For the given location (x, y), we first utilize the popular map-
location operation mapmatch to locate (x, y) to its nearest edge
(vs, en) in the road network. Notice that, the position (x, y) might
not appear in any edge, so we let when(Tr, x, y) return false
if the distance from (x, y) to the edge (vs, en) is greater than
a threshold η. If (x, y) appears in the edge (vs, en), we check
if trajectory Tr contains the edge (vs, en) using Algorithm 3.
If so, we get the leaf node (v, j, i′, dac) of the representative
vertex corresponding to Tr and traverse T̊ (Tr) from the j-th
entry. We then invoke TtoD(T̊ (Tr), j, T̊ (Tr)) to get positions of
two adjacent relative distances rd1, rd2 and their edges e1, e2
using T̊ (Tr). Let the time stamps for these two adjacent lo-
cations be t1 and t2, respectively. Then when(Tr, x, y) can
be calculated easily by assuming that the object moves with
constant velocity between t1 and t2 by using Algorithm 4.
Answering howlong(Tr, x1, y1, x2, y2) query can be answered
using when(Tr, x1, y1) − when(Tr, x2, y2).
• distance(Tr, t1, t2) query. It returns the distance that an object
runs from t1 to t2 along the trajectory Tr. It can be easily
answered using where(Tr, t2)−where(Tr, t1).
• howlong(Tr, x1, y1, x2, y2) query. It returns how long it
takes the object to travel from location (x1, y1) to loca-
tion (x2, y2) along Tr. It can be easily answered using
when(Tr, x1, y1)−when(Tr, x2, y2).
• count(Trset, x, y, r) query. It returns the number of time-
stamped locations in a set of trajectories Trset along the path
R centered by (x, y) with radius r.

It locates (x, y) to the j-th entry in E̊(Trv) w.r.t. a trajectory
E̊(Trv). Then the algorithm uses j to get the i-th relative distance
r(pi) in D̊(Trv). If r(pi) locates in the path range R, the
algorithm adds the count number by 1. The final count number
is returned after all trajectories in Trset are processed.

Recall that D̊(Trv) can be encoded using DDP-encoding
scheme or PDDP-encoding scheme. Since they preserve distances
in their corresponding codes, we could efficiently get the i-th
relative distance in D̊(Trv) using DDP encoding scheme (the

approach based on PDDP encoding scheme is the same). Given
the central location (x, y) and radius r, we can calculate a relative
distance range [a, b] along the edge in the road network. According
to Lemma 2, relative distances in both DDP and PDDP trees are
stored in order, i.e., for any two relative distances r1 and r2, the
path for r1 code is always in the left to the path for r2.

Lemma 2. Values of leaf nodes in both DDP-tree and PDDP-tree
are sorted in ascending order.

Proof. Given two relative distances r1 and r2 with r1 < r2, let w1

and w2 be their encoded codes using DDP-encoding and p be the
longest path that they share in the DDP tree. Let w be the corre-
sponding code of path p, and v = w[1]α[1] + . . .+w[|w|]α[|w|].
Then it must satisfy r1 − v < α[|w| + 1] < r2 − v, otherwise
p is not their longest sharing path. Then the bit for w1[|w| + 1]
should be 0 and that for w2[|w| + 1] should be 1. Therefore,
the path corresponding to w1 is to the left of the path w.r.t. w2.
Similarly, values in a PDDP tree are sorted in ascending order.
�

Therefore, instead of decompressing the binary sequence
D̊(Trv), we only need to check if there are paths in between paths
corresponding to a and b. The time complexity for this checking
operation isO(log n′), where n′ is the number of nodes in a DDP
or PDDP tree. Since the number of nodes in PDDP tree is less
than the number in DDP tree, we could improve the performance
by using PDDP tree.
• kNN(Trset, x, y, t1, t2) query. It returns k nearest trajectories
in Trset that are close to a given point (x, y) and active during a
given period of time from t1 to t2.

We first use time2T and TtoE to locate entry paths in Trset for
the given time interval [t1, t2] and get entries in E̊(Tri)[j1, j2] for
each Tri ∈ Trset. Let Can be the candidate set which keeps k
trajectory segments E̊(Tri)[j1, j2] and dk be the k-th minimum
distance between query point (x, y) and a candidate trajectory
segment in Can. For each Tri, we calculate the maximal distance
d′ from vertices along the path E̊(Tri)[j1, j2] to query point
(x, y). If d′ is larger than the current k-th best true distance
dk, we can safely prune this trajectory segment in Tri since it
cannot be closer to (x, y) than any of the k candidates preserved in
Can. Otherwise, we include it into Can to replace the candidate
with the largest distance (i.e. dk) to (x, y) and change dk to the
maximal distance in the new candidate set Can. In the refining
phase, we locate positions for each candidate trajectory segment
by invoking TtoD. We then calculate the true distance between
each candidate segment and the query point, and get segments
with k smallest true distances to (x, y). The time complexity
is O(m

22d+1 + p
22d+1

`z + c·n· log k), where c is the number of
timestamped positions in between t1 and t2.
• window(Trset, x1, y1, x2, y2, t1, t2) query. It returns all trajec-
tories in Trset that overlap with window (x1, y1), (x2, y2) and
active during a given period of time from t1 to t2.

Same as kNN, we first get entries in E̊(Tri)[j1, j2] for
each Tri ∈ Trset. We then use TtoD to get the timestamped
position (xa, ya) (and (xb, yb)) corresponding to E̊(Tri)[j1]
(and E̊(Tri)[j2]). We estimate the moving area of this trajectory
segment using (xa, ya) and (xb, yb). If this area overlaps with the
query window, we calculate the actual answer of window query.
The time complexity is O(m

22d+1 + p
22d+1

`z + c·n).

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 11

TABLE 2: Road network data sets.
Data sets # of vertices # of edges # of entries per vertex Data distribution of exit entries
Singapore 20, 801 55, 892 Average 2.68 (from 1 to 7) (≤ 3): 84.8% (= 4): 14.4% (> 4): 0.7%

Beijing 171, 504 433, 391 Average 2.52 (from 1 to 6) (≤ 3): 90.5% (= 4): 9.1% (> 4): 0.3%

TABLE 3: Trajectory data sets.
Data sets Storage of raw data # of trajectories # of edges per trajectory # of time-stamped locations per trajectory

Singapore Taxi 34.9GB 553, 414 Average 2, 985 (from 1 to 31, 478) Average 997 (from 2 to 45, 974)
Beijing Taxi 348.4MB 8, 911 Average 8, 127 (from 1 to 9, 015) Average 1, 104 (from 1 to 1, 788)

5 EXPERIMENTS

In this section, we conducted extensive experiments on two
real data sets to demonstrate our techniques.
Data Set. The experiments were based on two real data sets
namely Beijing data set and Singapore data set.

• Singapore data set. It was from a major taxi company
in Singapore, containing trajectories generated by about
15, 000 taxis in September 2011. Each taxi reported its
location every 30 to 180 seconds.

• Beijing data set. It was downloaded from Microsoft re-
search website, which contains a one-week trajectories of
10, 357 taxis. 2 Taxis reported their locations from every
1 second to about 4 minutes.

Table 3 shows the detailed information of these trajectories.
Such trajectories are mainly generated by motor vehicles (e.g.
cars, taxis, buses, and etc.) that report their timestamped locations
regularly based on the installed hardware, like GPS. We found that
in both Singapore and Beijing data sets, large percentage of data
have fixed sampling rates (time intervals). For example, Singapore
and Beijing trajectories contain 41.58% and 57.76% timestamped
positions with fixed time intervals, respectively.

We also did synthetic analysis by changing the timestamps of
each position in both Singapore and Beijing datasets. We randomly
change the timestamps and set the ratio of data with fixed time
interval from 0 to 100%.
Comparison algorithms. We compared our work with following
state-of-the-art algorithms.

• PRESS [20]. PRESS is the state-of-the-art approach for
supporting queries on compressed trajectories in road
networks and the closest work to ours. 3

• Ext.SDM [17]. Ext.SDM is the latest representative trajec-
tory compression that supports a generalized in-network
trajectory data model, however it does not support queries.

• WinZip. It is a widely used compression tool.
• SPNET [11]. SPNET is an efficient shortest-path compres-

sion of trajectories to achieve a compact index structure,
which is similar to PRESS.

• SharkDB [23]. SharkDB uses the delta encoding scheme
to encode the P-frame points by calculating the difference
between each P-frame and its closest prior I-frame point,
which supports compressing trajectory data effectively.

All the algorithms were implemented using g++ on linux. The
experiments were run on a 64-bit PC with an Intel 2.10GHz Quad
Core i3 CPU and 5.8GB memory with a 485.8GB disk, running
on ubuntu 15.04.

2. http://research.microsoft.com/apps/pubs/?id=152883
3. Thanks the authors of PRESS for sharing their source code.

5.1 Compression

(i) Compression ratios. Table 4 shows the comparison of TED
compression with PRESS compression, Ext.SDM, WinZip, SP-
NET, and SharkDB. Both WinZip and SPNET are lossless com-
pressions, whereas the others are error-bounded trajectory com-
pressions. PRESS achieved a low compression ratio even under
large error thresholds (i.e. Time Syn. Network Dis. (TSND)=100
meters and Network Syn. Time Dif. (NSTD) = 100 seconds), and
it was not comparable with WinZip. SPNET provided the low-
est compression ratio, whereas Ext.SDM and SharkDB achieved
compression ratios that are better than PRESS but worse than
TED. TED compression achieved a high compression ratio with
an error bound of 1 meter on both data sets. When the error bound
increased (e.g. η from 1m to 4m), the compression ratios of TED
compression also increased. Please note that such increasing is not
significant, so we can use a small error bound to achieve a high
compression ratio.
(ii) Compression ratios of T, E, and D. Table 5 shows that the
compression ratios of E were greater than 10 on both data sets.
When entry paths were partitioned to 6 groups (i.e., q = 6 when
partitioning matrix M), on average 70.02% bits in each base B
were 0s, so the compression ratio was improved more than 1.21
times on Singapore data set. Compression ratio of D was higher
than 5 for Singapore data set and 4.6 for Beijing data set even
for a small η (= 1 meter). In addition, compression of T achieved
very good compression ratios since most of real trajectories were
reported in regular time interval, and many pairs of time flag and
their corresponding timestamps could be reduced.

 0

 3

 6

 9

 12

97531

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Error bound (meter)

Huffman

PDDP

 0

 3

 6

 9

 12

97531

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Error bound (meter)

DDP

AddFixedBits

(a) Singapore dataset

 0

 2

 4

 6

 8

97531

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Error bound (meter)

Huffman

PDDP

 0

 2

 4

 6

 8

97531

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Error bound (meter)

DDP

AddFixedBits

(b) Beijing dataset

Fig. 11: Effect of error bounds using TED compression.

We also evaluated the compression ratio of D using different
error bounds. Fig. 11 shows that increasing error bound will not
affect the compression ratio too much. Therefore, our approach
can achieve a high compression ratio as well as good accuracy.

Recall that the compression ratio of time is highly dependent
on the assumption of fixed time intervals. Therefore, we also
performed synthetic analysis by changing the timestamps of both
data sets. Fig. 12 shows when increasing the ratios of fixed time
intervals in both Singapore and Beijing data sets, the compression
ratios increased. When there is no fixed time intervals, only the

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 12

 3

 6

 9

 12

 15

100806040200

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Ratio of fixed time intervals (%)

Path

Location

 3

 6

 9

 12

 15

100806040200

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Ratio of fixed time intervals (%)

Time

TED

(a) Singapore dataset

 3

 6

 9

 12

 15

100806040200

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Ratio of fixed time intervals (%)

Path

Location

 3

 6

 9

 12

 15

100806040200

C
o
m

p
re

s
s
io

n
 r

a
ti
o

Ratio of fixed time intervals (%)

Time

TED

(b) Beijing dataset

Fig. 12: Effect of fixed time intervals on TED Compression.

temporal compression ratio was zero, the compression ratios for
entry path and location were not affected.
(iii) Effect of encoding schemes. Fig. 11 and Table 6 report
the compression ratios under four different encoding schemes,
including Huffman encoding, adding fixed bits, DDP encoding,
and PDDP encoding for distances D when η = 1m. We used
Huffman encoding as a ground truth since it theoretically guaran-
tees the smallest space consumption and can achieve the highest
compression ratio. The compression ratio of PDDP encoding was
very close to that of Huffman encoding. For Singapore data set,
compression ratios for D under Huffman, AddFixedBits, DDP, and
PDDP were 5.68, 4.19, 5.20, and 5.44, respectively. The results
for Beijing data set were similar.
(iv) Efficiency of Compression and Decompression. Table 7
shows the results. Both TED compression and depression ran
faster than PRESS compression and Ext.SDM. This is because
our representation maintains the mapping relationship among T,
E, and D, and the whole process is based on bit operations.

5.2 Performance of Answering LBS Queries on Com-
pressed Trajectories

We compared processing of LBS queries under TED compres-
sion with that of PRESS. We only report partial query results on
Singapore data set as results on Beijing data set were similar.

Fig. 13 shows the performance of using TED-based query
processing. We can see that TED can answer different types of
queries efficiently. Figs. 13(a) and 13(b) show the comparison of
using TED and PRESS for when and where queries only since
PRESS does not support the other five queries. TED-based query
processing was much faster than PRESS by over two orders of
magnitude for when. When increasing the number of trajectories,
both TED-based approach and PRESS required longer time for
query processing. PRESS also adopts R-tree to process queries.
Since PRESS needs to load the Shortest-Path table, which was
huge for Beijing dataset, TED-based query processing ran faster
than PRESS by three orders of magnitude.

5.3 Index Size
Table 8 shows index sizes for 15, 000 Singapore taxi tra-

jectories and 1, 368 Beijing taxi trajectories. TED-based index
was only 15.292MB on Singapore dataset, and the major space
cost for TED-based index is the partition tree (the depth of
partition tree was 8 for this test). The PRESS-based index was
2.842GB. PRESS uses three types of indices to support their
query processing, which are Aho-Corasick automaton, Huffman
tree, and SP-table (Shortest path table). We can see any of them
was larger than the whole TED index size. The majority space cost
for PRESS index is SP-table, which was 194.1146GB for Beijing

10
3

10
2

10
1

10
0

10
-1

10080604020

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of trajectories (%)

TED

PRESS

(a) when

 0

 30

 60

 90

 120

10080604020

Q
u

e
ry

 t
im

e
 (

m
s
)

Number of trajectories (%)

TED

PRESS

(b) where

 0

 3

 6

 9

 12

 15

10080604020

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of trajectories (%)

TED

(c) howlong

 10

 15

 20

 25

 30

 35

 40

10080604020

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of trajectories (%)

TED

(d) distance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10080604020
Q

u
e

ry
 t

im
e

 (
m

s
)

Number of trajectories (%)

TED

(e) count

 0

 20

 40

 60

 80

10080604020

Q
u

e
ry

 t
im

e
 (

m
s
)

Number of trajectories (%)

KNN
WINDOW

(f) kNN and window

Fig. 13: Performance of partial LBS queries.

10
3

10
2

10
1

10
0

10
-1

12108642

Q
u
e
ry

 t
im

e
 (

m
s
)

Depth of partition tree

Beijing

Singapore

(a) Query time

 0

 20

 40

 60

12108642

In
d

e
x
 s

iz
e

 (
M

B
)

Depth of partition tree

Beijing

Singapore

(b) Index size

Fig. 14: Depth of partition tree.

road network. The size of SP-table depends on the size of road
network but trajectories. Notice that, TED based approach does
not need shortest path to support query processing.

We also evaluated the effect of partition granularity on query
performance. Fig. 14 shows the query time by adopting different
depths of partition trees. As the depth of partition tree increased,
the query time decreases exponentially since the road network can
be partitioned into smaller regions. It is not surprising to see that
with the depth of partition tree increases, the size of index would
get larger accordingly.

6 RELATED WORK

Trajectory compression can be roughly classified into the
following categories.
Simplification-based compression. There are a bunch of com-
pression techniques for reducing the number of raw time-stamped
points. Such approaches [6], [10], [15], [21] are also called
path and line simplification, that approximate a polyline with a
subset of the vertices from the raw time-stamped points using a
simplification error to bound the accuracy.

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 13

TABLE 4: Comparison of total compression ratios.

Data sets TED PRESS Ext.SDM WinZip SPNET SharkDBError bound TSND=30m, TSND=100m, Error bound
η = 1m η = 4m NSTD=30 Sec. NSTD=100 Sec. = 4m

Singapore 10.1819 10.62143 3.18491 3.18897 4.545 4.21232 2.58518 4.46
Beijing 6.23195 7.15463 2.64732 2.65045 2.2727 3.69836 2.35793 4.46

TABLE 5: Compression ratio using TED compression.

Data sets Entry path E (lossless) Distance D Time T
One base Multi bases (η = 1m) (lossless)

Singapore 10.5684 12.8543 5.10769 37.626
Beijing 10.5886 14.2471 4.69909 16.9946

TABLE 6: Compression ratios of distance compression.
Data sets Huffman AddFixedBits DDP PDDP
Singapore 5.67953 4.18699 5.20357 5.43879

Beijing 4.07673 3.09538 3.86785 4.04217

Douglas-Peucker Algorithm [6] constructs a compressed tra-
jectory T ′ by repeatedly removing points from T until the max-
imum spatial error becomes smaller than τ . Based on Douglas-
Peucker Algorithm, Top-Down Time Ratio (TD-TR) [15] also
considers the temporal error. Opening Window algorithms [10]
slides a window over the points in the original trajectory to
approximate each trajectory, so that the resulting spatial error is
smaller than a bound τ . Dead Reckoning [21] stores the location
and velocity of the point location to compress the trajectory within
a threshold τ . In a nutshell, these algorithms and their variants
use a subset of the trajectory points to compress the trajectory
within a given error bound. Recently, DPTS [14] introduces the
notion of direction preserving trajectory simplification to support a
broader range of applications than traditional position-preserving
trajectory simplification. SharkDB [23] proposes a frame-based
structure to store and compress trajectories. It allocates one sample
point in each frame by adding/removing sample points and stores
each frame into column-oriented data structure. Furthermore, it
uses delta encoding to compress trajectory data. Both DPTS and
SharkDB use a simplification error to bound the accuracy.
Geographical-embedded compression. Studies [9], [19], [20],
[24], [25] on geographical embedded compression increase sig-
nificantly based on the observation that most trajectories are
associated with geographical networks. Techniques mainly focus
on two directions: one is to link GPS raw data to a network
requiring matching a time-stamped point with a map (i.e. map
matching), and the other is to compress trajectories in geographical
network once the raw data is mapped to the network.

Both indoor [25] and outdoor matching algorithms have been
proposed to link GPS raw data to a network in recent years.
In a road network scenario, point-to-point and point-to-curve
algorithms are presented to match a time-stamped point against
a vertex and an edge in the road network, respectively. Since
a high accuracy can be achieved in road network [24], recent
techniques [9], [19], [20] are developed to compress trajectories
that are embedded in a road network.

The closest work to ours is PRESS [20], which separates the
spatial representation of a trajectory from the temporal represen-
tation. It adopts Huffman encoding to compress spatial path based
on the assumption that moving objects tend to take shortest paths.
The representation of temporal information is storage consuming,
therefore, it provides an error-bounded temporal compression.
Semantic-based Compression. STC [19] presents a semantic
trajectory compression for compressing trajectories in transporta-

tion networks, where only semantically crucial points are kept
to achieve the minimal storage requirement. The algorithm is
bounded by a given threshold and is mainly developed for
relatively high sampling rate, low speed, and short trajectories
generated by human. while we focus on the massive long-lasting
vehicle trajectories. Moreover, it only uses 18 real trajectories with
less than 200 sample points to evaluate the compression ratio. The
data size is too small to demonstrate the scalability of compression
algorithm. It is bounded by a given threshold.
Dictionary-based Compression. [13] treats a time-series as the
string, “segments” are analogous to “words,” and timestampled
points are similar to “characters.” It adopts Lempel-Ziv compres-
sion to compress time-series. [18] proposes an adaptive trajectory
(lossy) compression algorithm based on learnt dictionary matrix.

In addition, [4] proposes an adaptive storage system for large
trajectory data sets even it is not based on a road network. Our
TED representation and compression on trajectories embedded
in a road network can achieve a high compression ratio. The
maximum difference between a real relative distance and its
encoded code could be derived, so our distance compression is
bounded, which is much smaller and can be fixed; while all the
other compression algorithms, to the best of our knowledge, take
this bound as an input (with much larger values).

7 CONCLUSIONS

We proposed our TED-representation for trajectories embed-
ded in road networks. This representation has the inherent advan-
tage that contains large number of duplicate information, which
makes it achieve a lower entropy compared with existing represen-
tations, thereby drastically cutting the storage cost. Based on the
presentation, we devised compression approaches to achieve high
compression ratios. In addition we showed that LBS queries can
be directly performed on compressed trajectories. Experimental
study on real datasets shows the effectiveness and efficiency of
the TED compression. We obtained around 10 compression ratio
with an error bound of 1m only, i.e. the compressed trjactory is
around 10% of the original trajectories. We also test the efficiency
of direct queries on compressed trajectories. Note that trajectories
are usually added in an append manner (i.e. appending new time-
stamped data in a trajectory or adding a new trajectory) and our
TED-representation can easily support such incremental compres-
sion since all compressed codes are organized in bit strings, which
are stored in bytes. We can use our current technique on the
appended bytes. Due to space reason, we do not discuss the detail.
In addition, we would like to consider another kind of incremental
compression for new trajectories in future work.

REFERENCES

[1] S. E. Anderson. Bit twiddling hacks, May 2005.
[2] A. Colantonio and R. D. Pietro. Concise: Compressed ‘n’ composable

integer set. Inf. Process. Lett., 110(16):644–650, 2010.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press and McGraw-Hill, Reading, Massachusetts, 2nd
edition, 2001. (book).

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 14

TABLE 7: Compression and Decompression time (Min.).

Data sets TED (bound: η = 1m) PRESS (bound: 30m, 30 Sec.) Ext.SDM (bound: 4m) WinZip
Compression Decompression Compression Decompression Compression Decompression Compression Decompression

Singapore 367.40 244.61 700.47 512.23 571.23 257.31 72.33 30
Beijing 22.95 15.28 462.61 330.24 36.18 15.33 3.95 2.04

TABLE 8: Index size to support queries.
TED (15.292MB)

EntryTable EncodingTree PartitionTree
Singapore 112KB 689B 15.18MB
data set PRESS (2.842GB)

Aho-Corasick automaton Huffman SP-table
17.2MB 25.1MB 2.8GB

TED (8.066MB)
EntryTable EncodingTree PartitionTree

Beijing 866KB 461B 7.2MB
data set PRESS (194.1146GB)

Aho-Corasick automaton Huffman SP-table
22.7MB 36.9MB 194.055GB

[4] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive storage
system for very large trajectory data sets. In ICDE, 2010.

[5] F. Deliège and T. B. Pedersen. Position list word aligned hybrid:
optimizing space and performance for compressed bitmaps. In EDBT,
pages 228–239, 2010.

[6] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Cartographica: The Intl. J. for Geographic Info. and Geovisualization,
10(20):112–122, 1973.

[7] F. Fusco, M. P. Stoecklin, and M. Vlachos. Net-fli: On-the-fly com-
pression, archiving and indexing of streaming network traffic. PVLDB,
3(2):1382–1393, 2010.

[8] D. Hankerson, G. A. Harris, and P. D. Johnson. Introduction to
Information Theory and Data Compression. Chapman and Hall/CRC,
Reading, Massachusetts, 2nd edition, 2003. (book).

[9] G. Kellaris, N. Pelekis, and Y. Theodoridis. Map-matched trajectory
compression. Journal of Systems and Software, 86(6):1566–1579, 2013.

[10] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for
segmenting time series. In ICDM, pages 289–296, 2001.

[11] B. B. Krogh, C. S. Jensen, and K. Torp. Efficient in-memory indexing
of network-constrained trajectories. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems, GIS 2016, Burlingame, California, USA, October 31
- November 3, 2016, pages 17:1–17:10, 2016.

[12] J. Krumm. Trajectory analysis for driving. In Computing with Spatial
Trajectories, pages 213–241. 2011.

[13] W. Lang, M. D. Morse, and J. M. Patel. Dictionary-based compression for
long time-series similarity. IEEE Trans. Knowl. Data Eng., 22(11):1609–
1622, 2010.

[14] C. Long, R. C. Wong, and H. V. Jagadish. Direction preserving trajectory
simplification. PVLDB, 6(10):949–960, 2013.

[15] N. Meratnia and R. A. de By. Spatiotemporal compression techniques
for moving point objects. In EDBT, pages 765–782, 2004.

[16] J. Niedermayer, A. Zfle, T. Emrich, M. Renz, N. Mamoulis, L. Chen, and
H.-P. Kriegel. Probabilistic nearest neighbor queries on uncertain moving
object trajectories. PVLDB, 7(3):205–216, 2013.

[17] I. S. Popa, K. Zeitouni, V. Oria, and A. Kharrat. Spatio-temporal
compression of trajectories in road networks. GeoInformatica, 19(1),
2015.

[18] R. K. Rana, M. Yang, T. Wark, C. T. Chou, and W. Hu. Simpletrack:
Adaptive trajectory compression with deterministic projection matrix for
mobile sensor networks. CoRR, abs/1404.6151, 2014.

[19] K.-F. Richter, F. Schmid, and P. Laube. Semantic trajectory compres-
sion: Representing urban movement in a nutshell. Journal of Spatial
Information Science, pages 3–30, 2012.

[20] R. Song, W. Sun, B. Zheng, and Y. Zheng. PRESS: A novel framework
of trajectory compression in road networks. PVLDB, 7(9), 2014.

[21] G. Trajcevski, H. Cao, P. Scheuermanny, O. Wolfsonz, and D. Vaccaro.
On-line data reduction and the quality of history in moving objects
databases. In MobiDE, pages 19–26, 2006.

[22] S. J. van Schaik and O. de Moor. A memory efficient reachability data
structure through bit vector compression. In SIGMOD, 2011.

[23] H. Wang, K. Zheng, X. Zhou, and S. W. Sadiq. Sharkdb: An in-memory
storage system for massive trajectory data. In SIGMOD, 2015.

[24] C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching
algorithms for personal navigation assistants. Transportation Research
Part C Emerging Technologies, 1(6):91–108, 2000.

[25] X. Xie, H. Lu, and T. B. Pedersen. Efficient distance-aware query
evaluation on indoor moving objects. In ICDE, pages 434–445, 2013.

[26] X. Xie, M. L. Yiu, R. Cheng, and H. Lu. Scalable evaluation of trajectory
queries over imprecise location data. TKDE, 26(8):2029–2044, 2014.

[27] B. Yang, C. Guo, Y. Ma, and C. S. Jensen. Toward personalized, context-
aware routing. VLDB J., 24(2):297–318, 2015.

[28] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving
directions with taxi drivers’ intelligence. TKDE, 2012.

Xiaochun Yang is a professor in the School of
Computer Science and Engineering, Northeast-
ern University, China. She received her PhD
degree in computer science from Northeastern
University, China, in 2001. Her research inter-
ests include data management, string process-
ing, data quality, and data privacy. She is a mem-
ber of the ACM, the IEEE, and a senior member
of the CCF.

Bin Wang is an associate professor in the School
of Computer Science and Engineering, North-
eastern University, China. He received his PhD
degree in computer science from Northeastern
University, China, in 2008. His research inter-
ests include design and analysis of algorithms,
queries processing over streaming data, and dis-
tributed systems.

Kai Yang is a master student in the School of
Computer Science and Engineering, Northeast-
ern University, China. He received his Bachelor
degree in computer science from Northeastern
University, China, in 2015. His research inter-
ests include trajectory processing and similarity
search.

Chengfei Liu received his PhD degrees in com-
puter science from Nanjing University, China, in
1988. Currently, he is a professor in the Swin-
burne University of Technology, Australia. His
research interests include keywords search on
structured data, query processing, and refine-
ment for advanced database applications, query
processing on uncertain data and big data, and
data-centric workflows. He is a member of the
IEEE and the ACM.

Baihua Zheng is an associate professor in
the School of Information Systems, Singapore
Management University. She received her PhD
degree in computer science from Hong Kong
University of Science and Technology. Her re-
search interests include data management and
mobile/pervasive computing. She has published
more than 100 technical papers in these areas.
She is a member of the IEEE.

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 15

APPENDIX A
PROOF OF THEOREMS

A.1 Proof of Theorem 1

Proof. We prove Theorem 1 by giving a reduction from the
Traveling Salesman Problem to our matrix transformation problem
in polynomial time. Given a directed graphG(V,E) withm nodes
and m(m−1) edges, we construct a matrix Mn×m. Each column
vector ~vi in Mn×m corresponds to a vertex vi in the graph. Let
all the outcome edges from each node vi have the same weights.
For each edge e from vertex vi to vertex vj in the graph, we
construct the i-th column vector ~vi that contains the same number
of 0s as the weight value of the edge. A path v1 → v2 → . . . vm
corresponds to a matrix M = (~v1 ~v2 . . . ~vm).

Then there is a minimal travel path with k edges that cover all
vertices in G if and only if there is an alignment with k columns.
We call such matrix M ′′. Thus the problem of transforming M to
M ′′ is NP-hard. In M ′′ there could be more than one duplicate
columns in the alignment, we keep the most left column and
remove the others (e.g. we change . . . ~vi ~vj ~vi . . . to . . . ~vi ~vj . . .).
We can do it in O(m) time. For each row in the remaining matrix,
we can find a boundary such that cells in the right part to the
boundary contain only 0s and cells in the left part to the boundary
contain either 0 or 1. Let value c be the number of cells in the
right part. We then rank each row in M ′′ in ascending of c values
of each row in O(n) time to generate the final matrix M ′.

In summary, the main time cost of our matrix transformation
problem is the problem of choosing an alignment to generate M ′′,
which is equivalent to the problem of choosing a shortest path to
cover all the vertices in the original graph. Thus our problem is
NP-hard. �

A.2 Proof of Theorem 2

Proof. For ease of representation, we use a matrix Dz×z to
represent these z boundary points, and each cellD(i, j) represents
the corresponding area axy in M ′ (see Figure 15). Then if we
choose q − 1 boundary points to partition entry paths into q
groups, the summation of their gains will repeatedly count the
areaD(1, z) for q times and the areasD(1, q−1) andD(2, q) for
q− 1 times. So we do not need to consider these areas. Then gain
for each boundary point is changed to the one shown in Fig. 15(b).

Dz×z

to (i1, j1)

q1 2

1

1

2

2

q−1

q−1

(a) Gain(ix, jx) =
∑x

i=1

∑z
j=x D(i, j)

...

...

corresponds to (iz, jz)

(b) Gain(ix, jx) =
∑x

i=1

∑z−q+1
j=x D(i, j)

corresponds

q′ = q−1Dz×z

z−q′

D(i, j) = axy

⇒

Fig. 15: Maximizing partition.

Then we prove Theorem 2 by giving a reduction from the
Knapsack Problem to our partition problem in polynomial time.
Given a set of z items, we construct a matrix Dz×z . We first rank
items in ascendant order of their weights as w1, . . . , wz . We then
assign values of different cells iteratively as follows. For the first

item with weight w1, let cells from D(1, 2) to D(1, z − q′) be
either 0 or 1 such that

∑z−q′
j=1 D(1, j) < w1 and let D(1, 1) =

w1 −
∑z−q′
j=1 D(1, j). For the second item with weight w2, let

cells from D(2, 3) to D(2, z − q′ + 1) be either 0 or 1 such
that

∑z−q′
j=1 D(1, j)+

∑z−q′+1
j=2 D(1, j) < w2 and let D(2, 2) =

w2 −
∑z−q′
j=1 D(1, j)−∑z−q′+1

j=2 D(1, j).
Similarly, for the i-th item (2 ≤ i ≤ z) with weight wi, let

cells from D(i, i + 1) to D(i, z − q′ + i − 1) be either 0 or 1
such that

i∑

l=max(1,i−(z−q′−1))

min(z,z−q′+l−1)∑

j=l

D(i, j) < wi

and let

D(i, i) = wi −
i∑

l=max(1,i−(z−q′−1))

min(z,z−q′+l−1)∑

j=l

D(i, j).

Then there are q items with value k if and only if there are q
chosen boundary points in M ′ with gain k. Thus our problem is
NP-hard. �

A.3 Proof of Theorem 3
Proof. Let q′ = q−1 be the number of chosen boundary points

in M ′ that can partition D into q groups.
(i) When PARITION chooses only one boundary point (i.e. q′

= 1), OPT
OPT∗ = 1.

(ii) When q′ = z − 1, OPT
OPT∗ = 1.

(iii) When 1 < q′ < z − 1, the OPT solution will try to
make the covered area as large as possible by choosing scattered
boundary points, and the OPT solution could cover at most z ·(z−
q′) − z

q′+1 areas in M ′ (see Fig. 15). Whereas PARTITION can

cover at least q′

q′+1 · z · (z − q′) areas by choosing consecutive q′

boundary points. Then

OPT

OPT ∗
≤
z · (z − q′)− z

q′+1

q′

q′+1 · z · (z − q′)
<
q′ + 1

q′
.

Since 2 ≤ q′ < z − 1, and q′+1
q′ is monotonically decreasing, we

get OPT
OPT∗ <

3
2 . �

A.4 Proof of Theorem 4
Proof. Let W = {w1, . . . , wg} be a set of binary codes that

satisfy the prefix condition and Tr be its corresponding DP-tree.
Let w be a prefix of code wi, so W ∪ {w} does not satisfy
the prefix condition. Now we expand w to w′ via algorithm
EXPANSION.

Assume there is another code w′′ 6∈ W (w′′ 6= w′, |w′′| <
|w′|), such that w′′ and w represent the same relative distance and
W ∪ {w′′} satisfies the prefix condition. Then, we add a path in
Tr to represent w′′, and let d′′ = |w′′| − |w|. Since w is a prefix
of wi, and w and w′′ represent the same relative distance, w′′ and
wi must share a common ancestor node na such that the path from
root to na represents code w and the path from na to the leaf node
n′′ corresponding to w′′ must consist of d′′ edges labeled as 0s.

Let d′ = |w′| − |w| and n′ be the node corresponding to
w′. According to the algorithm EXPANSION, we know there must
exist a code wj ∈ W such that w′ and wj share a common
ancestor node n′a and n′a is the parent node of n′. According to

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 16

 0

 30

 60

 90

1000800600400200

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Length of trajectories

Path

Distance

Time

TED

(a) Singapore dataset

 0

 20

 40

 60

 80

1000800600400200

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Length of trajectories

Path

Distance

Time

TED

(b) Beijing dataset

 0

 5

 10

 15

 20

1000800600400200

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Length of trajectories

SharkDB

SPNET

 0

 5

 10

 15

 20

1000800600400200

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Length of trajectories

TED

RRESS

(c) Singapore dataset

 0

 5

 10

 15

 20

1000800600400200

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Length of trajectories

SharkDB

SPNET

 0

 5

 10

 15

 20

1000800600400200

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Length of trajectories

TED

RRESS

(d) Beijing dataset

Fig. 16: Effect of trajectory length.

the assumption that |w′′| < |w′|, the path representing w′ must
belong to the path corresponding to wj , then W ∪ {w′′} does
not satisfy prefix condition, which contradicts the assumption.
Therefore, the assumption is not valid, and the proof completes.
�

APPENDIX B
MORE EXPERIMENTAL RESULTS

B.1 Effect of Trajectory Length on Compression Ratios
We also test the compression ratio under different lengths of

trajectories, with the results reported in Fig. 16. The experiments
show that with the increase of length of trajectories, the com-
pression ratio does not change obviously. The compression ratios
for entry path and distance did not change when increasing the
trajectory length, while the ratio for time varied a little bit since
some of time slots were not reported regularly. The comparisons
of our TED compression with other approaches are shown in
Figs. 16(c) and 16(d). Again, TED achieves the best performance
in terms of compression ratio.

B.2 Effect of Error Bounds
Then we investigate the accuracy of compression with regard

to the error bounds. We set the error bounds to 1m, 3m, . . . , 9m
as mentioned in Section 5.1, and report the accuracy performance
for three different types of queries (i.e., count queries, window
queries, and kNN queries) in Fig. 17. As reported in Figs. 17(a)
and 17(b), the error rates corresponding to different types of
queries are always below 0.3% for Singapore dataset and below
0.2% for Beijing dataset. In Figs. 17(c) and 17(d), we evaluate
the average difference of time for howlong and when queries, and
results show that the average difference is less than 1.5 seconds
for Singapore and 2 seconds for Beijing datasets. Then we test
the average difference of distance for distance and where queries.
As we can see, the difference is less than 6 meters and 8 meters
for Singapore and Beijing datasets. Obviously, the higher the error
bound is, the lower the accuracy is. This is because increasing
the error bounds will result in a more significant loss of the
information of datasets, which will decrease the accuracy when
decompressing datasets for queries.

 0

 0.1

 0.2

 0.3

97531

A
v
e

ra
g

e
 e

rr
o

r
ra

te
 (

%
)

Error bound (meter)

count

window

 0

 0.1

 0.2

 0.3

97531

A
v
e

ra
g

e
 e

rr
o

r
ra

te
 (

%
)

Error bound (meter)

kNN

(a) Singapore dataset

 0

 0.05

 0.1

 0.15

 0.2

97531

A
v
e

ra
g

e
 e

rr
o

r
ra

te
 (

%
)

Error bound (meter)

count

window

 0

 0.05

 0.1

 0.15

 0.2

97531

A
v
e

ra
g

e
 e

rr
o

r
ra

te
 (

%
)

Error bound (meter)

kNN

(b) Beijing dataset

 0

 0.5

 1

 1.5

97531

A
v
e

ra
g

e
 d

if
fe

re
n

c
e

 (
S

e
c
.)

Error bound (meter)

howlong

When

(c) Singapore dataset

 0

 0.5

 1

 1.5

 2

97531

A
v
e

ra
g

e
 d

if
fe

re
n

c
e

 (
S

e
c
.)

Error bound (meter)

howlong

When

(d) Beijing dataset

 0

 2

 4

 6

97531

A
v
e

ra
g

e
 d

if
fe

re
n

c
e

 (
m

e
te

r)
Error bound (meter)

distance

Where

(e) Singapore dataset

 0

 2

 4

 6

 8

97531

A
v
e

ra
g

e
 d

if
fe

re
n

c
e

 (
m

e
te

r)

Error bound (meter)

distance

Where

(f) Beijing dataset

Fig. 17: Effect of error bounds.

 0

 0.5

 1

 1.5

1000800600400200

C
o

m
p

re
s
s
io

n
 t

im
e

 (
S

e
c
.)

Length of trajectories

TED

Distance

 0

 0.5

 1

 1.5

1000800600400200

C
o

m
p

re
s
s
io

n
 t

im
e

 (
S

e
c
.)

Length of trajectories

Time

Path

(a) Singapore dataset

 0

 1

 2

 3

 4

 5

1000800600400200
C

o
m

p
re

s
s
io

n
 t

im
e

 (
S

e
c
.)

Length of trajectories

TED

Distance

 0

 1

 2

 3

 4

 5

1000800600400200
C

o
m

p
re

s
s
io

n
 t

im
e

 (
S

e
c
.)

Length of trajectories

Time

Path

(b) Beijing dataset

 0

 10

 20

 30

10080604020

C
o

m
p

re
s
s
io

n
 t

im
e

 (
S

e
c
.)

Number of trajectories (%)

TED

Distance

 0

 10

 20

 30

10080604020

C
o

m
p

re
s
s
io

n
 t

im
e

 (
S

e
c
.)

Number of trajectories (%)

Path

Time

(c) Singapore dataset

 0

 2

 4

 6

 8

10080604020

C
o

m
p

re
s
s
io

n
 t

im
e

 (
S

e
c
.)

Number of trajectories (%)

TED

Distance

 0

 2

 4

 6

 8

10080604020

C
o

m
p

re
s
s
io

n
 t

im
e

 (
S

e
c
.)

Number of trajectories (%)

Path

Time

(d) Beijing dataset

Fig. 18: Compression time.

B.3 Compression Performance

Last but not the least, we evaluate the compression time cost
and space cost as follows.

We evaluated the compression time with the increase of length
and number of trajectories in Fig. 18. As we can see from
Figs. 18(a) and 18(b), the compression time is almost linear with
the length of trajectories (varied from 200m to 1000m). Figs. 18(c)
and 18(d) show that compression time is nearly linear with the
number of trajectories (from 20% to 100%).

The space cost is reported in Fig. 19. We record the memory
footprint for T, E and D respectively when compressing. As
expected, increasing the length or number of trajectories will

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2776927, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 17

 0

 50

 100

1000800600400200

S
p

a
c
e

 (
M

B
)

Length of trajectories

Distance

Time

 0

 50

 100

1000800600400200

S
p

a
c
e

 (
M

B
)

Length of trajectories

Path

(a) Singapore dataset

 250

 300

 350

1000800600400200

S
p

a
c
e

 (
M

B
)

Length of trajectories

Distance

Time

 250

 300

 350

1000800600400200

S
p

a
c
e

 (
M

B
)

Length of trajectories

Path

(b) Beijing dataset

 0

 400

 800

 1200

10080604020

S
p

a
c
e

 (
M

B
)

Number of trajectories (%)

Distance

Time

 0

 400

 800

 1200

10080604020

S
p

a
c
e

 (
M

B
)

Number of trajectories (%)

Path

(c) Singapore dataset

 100

 200

 300

 400

 500

10080604020

S
p

a
c
e

 (
M

B
)

Number of trajectories (%)

Distance

Time

 100

 200

 300

 400

 500

10080604020

S
p

a
c
e

 (
M

B
)

Number of trajectories (%)

Path

(d) Beijing dataset

Fig. 19: Space cost.

increase the space cost in compression stage. Similar to the time
cost, the space cost is almost linear with the length and nearly
linear with the number of trajectories. An interesting observation
is that there is not much difference between the space costs when
compressing time and path.

	A novel representation and compression for queries on trajectories in road networks
	Citation

	tkde-2776927-pp.pdf

