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A Combinatorial Auction for Transportation
Matching Service: Formulation and Adaptive

Large Neighborhood Search Heuristic

Baoxiang Li and Hoong Chuin Lau

Fujitsu-SMU Urban Computing and Engineering Corporate Lab, Singapore
Management University, 71 Stamford Road, 178895, Singapore

{bxli,hclau}@smu.edu.sg

Abstract. This paper considers the problem of matching multiple ship-
pers and multi-transporters for pickups and drop-offs, where the goal is to
select a subset of group jobs (shipper bids) that maximizes profit. This is
the underlying winner determination problem in an online auction-based
vehicle sharing platform that matches transportation demand and sup-
ply, particularly in a B2B last-mile setting. Each shipper bid contains
multiple jobs, and each job has a weight, volume, pickup location, deliv-
ery location and time window. On the other hand, each transporter bid
specifies the vehicle capacity, available time periods, and a cost struc-
ture. This double-sided auction will be cleared by the platform to find
a profit-maximizing match and corresponding routes while respecting
shipper and transporter constraints. Compared to the classical pickup-
and-delivery problem, a key challenge is the dependency among jobs,
more precisely, all jobs within a shipper bid must either be accepted or
rejected together and jobs within a bid may be assigned to different trans-
porters. We formulate the mathematical model and propose an Adaptive
Large Neighborhood Search approach to solve the problem heuristically.
We also derive management insights obtained from our computational
experiments.

Keywords: Pickup-and-Delivery Problem with Jobs Dependency, Win-
ner Determination Problem, Logistics

1 Introduction

In this paper, we study the winner determination problem (WDP) for an on-
line auction platform for B2B less-than-truckload transport matching. In such
platforms, we have multiple shippers with job bundles and multiple transporters
with a heterogeneous fleet participating in an auction market, and the platform
operator (auctioneer) is to perform a match of jobs with vehicles that maximizes
profits at periodic (say hourly) intervals. Such platforms are rapidly emerging
in a sharing economy with the rise of Uber-like business models.

The problem we present in this paper arises from a real-world implementa-
tion for a large urban logistics platform operator. It is a variant of the standard
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pickup-and-delivery problem with time windows (PDPTW), with additional de-
pendencies among jobs and a number of side constraints between cargo, locations
and vehicle types, as well as profitability as the objective function. Each ship-
per’s delivery request may include a group of pickup-and-delivery jobs, and such
grouping is called a shipper bid, which must either be accepted or rejected to-
gether. There are three reasons for the grouping of delivery jobs as a shipper
bid: firstly, some jobs may be unprofitable and very difficult to find a matching
transporter (due to low profit margins). But if such low-profit jobs would com-
bine with high-profit jobs as a bundle, then the bid could be more ready to find
matching transporters; secondly, some shipper companies may like to bundle
delivery jobs themselves based on their own consideration (e.g., reverse logis-
tics); thirdly, some shippers may prefer a one-stop solution rather than having
to manage separate delivery requests.

In addition, arising from grouped jobs, a shipper bid may be split in terms
of deliveries; that is, the different jobs in the shipper bid can be served by more
than one transporter bid (assuming one transporter bid includes one vehicle in
this paper). Our goal is to maximize the profit, which is calculated as total rev-
enues associated with served bids minus the total transportation costs incurred
correspondingly.

2 Literature Review

Transportation auctions are considered in the context where shippers compete
with each other in order to purchase transport services at the lowest possible
price from transporters aiming to sell their service at the highest possible price
(see [5]). [1] first proposed a transportation auction to reduce logistics costs.
Subsequently, a good number of transportation auction papers were published,
which mainly considered full truckload (FTL, i.e. one bid uses all available space
in a vehicle auction), e.g., [13]. However, not all pickup/delivery jobs could be
formed as FTL bids, and under such case, FTL auction cannot fulfill both ship-
per and transporter requirements. During the last decade, practitioners started
to test the more challenging settings of less-than-truckload (LTL) auction plat-
forms. [7] for example proposed an LTL transportation auction, where auction-
eers generate bundles of shipper requests and offers them to the transporters,
and transporters place their bids for the offered bundles.

The research topics for transportation auctions mainly focus on two aspects:
the bundle generation problem and WDP. For example, [9] formulated the bundle
generation problem as a PDPTW in an iterative bid generation auction problem.
On winner determination, the interesting aspect is in coping with uncertainty.
[8] presented a double auction model for transportation service procurement in
a spot market with stochastic demand and supply. [12] proposed a tractable
two-stage robust optimization approach to solve the WDP under shipment vol-
ume uncertainty. In addition to the standard desirable properties for auctions,
transport logistics auction designers must deal with the specific challenge on
the economic sustainability of the auction platform. [15] for instance discussed
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a bi-criteria auction mechanism to achieve environmental sustainability while
ensuring economic sustainability.

The above-mentioned papers focus on improving the service quality of the
auction, whether from the strategic viewpoint (e.g., [5]) or operational view-
point (e.g., [9]). From the computational perspective, [6] addressed the concerns
of transporters bidding on an exponentially large set of bundles, and solving
the corresponding exponentially large WDP. In this paper, we focus on a com-
putationally efficient solution for an online auction platform for LTL matching.
Unlike past research, we allow multiple vehicles to serve one bundle (consisting
of multiple jobs) and each vehicle may serve jobs from different bundles (i.e.
many-to-many matching). Moreover, to avoid too many rounds of bidding (e.g.,
[10]), we propose a simple single-shot auction where each shipper submits the
bundles, each transporter submits the truck availability and cost structure; and
the auctioneer will decide the winning shippers and transporters.

3 Mathematical model

The G-PDPTW integrates the pickup and delivery problem (PDP) and the
group bundle constraints, aims to select a subset of bundled shipper jobs (bids)
and design service itineraries, and maximize the profit obtained from shipper
revenue minus transporter cost, at same time respecting shipper and transporter
constraints. We formulate the problem as a mixed-integer programming (MIP)
model in this section. First, we present notations used throughout the paper as
shown in Table 1. Jobs within a bid are defined by a set of nodes.

G-PDPTW can be defined on a complete undirected graph G = (V,E) where
V = V p ∪ V d ∪ {0} ∪ {2n + 1}. Subsets V p and V d correspond to pickup and
delivery nodes, respectively, while nodes 0 and 2n + 1 represent the dummy de-
pots (distance to other nodes, service time, and weight/volume are all equal to
0). While in the real-life auction platform there is no tracking for each vehi-
cle’s/carrier’s origin, and each vehicle/carrier needs to start serving the shipper
jobs within the jobs time window. For ease of reference, we arrange all nodes in
V in such a way that all origins precede all destinations, and the destination of
each job can be obtained as its origin offset by a fixed constant n.

Let K be the set of transporter vehicles. Each vehicle k ∈ K has a weight
capacity Qk and volume capacity Hk. The hourly cost of vehicle k is pk. Let O
be the set of shipper bids. The revenue (i.e. bid price) for delivering a shipper bid
o is represented by ro, while zo is a binary decision variable indicating whether
shipper bid o is served or not. Each shipper bid includes one or more jobs, each
job is defined by two nodes (a pickup node and a delivery node). A time window
[ei, li] is associated with node i ∈ V , where ei and li represent the earliest and
latest arrival time, respectively. Each edge (i, j) ∈ E has a travel time tij . In
addition, let λi be the loading/unloading time, wi be the weight, and ci be
the volume of node i (for a given pickup and delivery pair, wi = −wi+n, and
ci = −ci+n).
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For each arc (i, j) ∈ A and each vehicle k ∈ K, xk
ij = 1 if vehicle k travels

from node i directly to node j. For each node i ∈ V and each vehicle k ∈ K,
let τk

i be the time for which vehicle k begins to serve node i, and W k
i /Ck

i be
the weight/volume load of vehicle k after visiting node i. The integer variable
yk indicates the hours traveled by vehicle k.

Table 1: Parameters and variables for the G-PDPTW model
n Number of jobs, one job includes two nodes (one origin and one destination)
K Set of vehicles, K = {1, 2, . . . , |K|}, and k ∈ K
V p Set of origins V p = {1, 2, . . . , n}
V d Set of destinations V d = {n + 1, n + 2, . . . , 2n}
V Set of nodes V = V p ∪ V d ∪ {0} ∪ {2n + 1}

{0} and {2n+1} represent the vehicle dummy origin and destination points, and i ∈ V
O Set of bids (each bid includes a group of jobs), O = {1, 2, . . . , |O|}, and o ∈ O
|Oo| Number of jobs inside bid o
ro Revenue obtained from serving bid o
wi Weight of node i
ci Volume of node i
[ei, li] Time window for node i
λi Service time at node i
tij Travel time between nodes i and j
Qk Weight capacity of vehicle k
Hk Volume capacity of vehicle k
[ιk, �k]Time window associated with dummy depot for vehicle k
pk Hourly cost of vehicle k

xk
ij Binary decision variables indicating if vehicle k goes directly from node i to node j,

it is equal to 0 if vehicle k does not travel from node i to node j direct
yk Integer variables indicating the number of hours traveled by vehicle k
zo Binary decision variables indicating if bid o is served; it is 0 if bid o is not served

τk
i Time point when vehicle k leaves node i

W k
i Weight load of vehicle k after visiting node i

Ck
i Volume load of vehicle k after visiting node i

Given these notations, the formulation of the G-PDPTW is as follows:

max
∑

o∈O

rozo −
∑

k∈K

pkyk (1)

Subject to:
∑

i∈Oo

∑

j∈V

∑

k∈K

xk
ij = |Oo|zo, ∀ o ∈ O (2)

∑

j∈V

∑

k∈K

xk
ij ≤ 1, ∀ i ∈ V P (3)

∑

i∈V

xk
0,i =

∑

i∈V

xk
i,2n+1 = 1, ∀ k ∈ K (4)

∑

i∈V

xk
i,0 =

∑

i∈V

xk
2n+1,i = 0, ∀ k ∈ K (5)

∑

j∈V

xk
ij =

∑

j∈V

xk
ji, ∀ i ∈ V p ∪ V d, k ∈ K (6)

∑

i∈V

xk
i,j+n =

∑

i∈V

xk
ij , ∀ j ∈ V P , k ∈ K (7)
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τk
j + tj,j+n + λj ≤ τk

j+n, ∀ j ∈ V P , k ∈ K (8)

(τk
i + tij + λi)xk

ij ≤ τk
j , ∀ i, j ∈ V, k ∈ K (9)

(W k
i + wj)xk

ij ≤ W k
j , ∀ i, j ∈ V, k ∈ K (10)

(Ck
i + cj)xk

ij ≤ Ck
j , ∀ i, j ∈ V, k ∈ K (11)

ei ≤ τk
i ≤ li, ∀ i ∈ V p ∪ V d, k ∈ K (12)

0 ≤ W k
i ≤ Qk, ∀ i ∈ V p ∪ V d, k ∈ K (13)

0 ≤ Ck
i ≤ Hk, ∀ i ∈ V p ∪ V d, k ∈ K (14)

τk
0 ≥ ιk, ∀ k ∈ K (15)

τk
2n+1 ≤ �k, ∀ k ∈ K (16)

(τk
2n+1 − τk

0 )/60 ≤ yk, ∀ k ∈ K (17)

xk
ij , τ

k
i , W k

i ∈ R+, ∀ i, j ∈ V, k ∈ K (18)
zo ∈ {0, 1}, ∀ o ∈ O (19)

yk,∈ Z+ ∀ k ∈ K (20)

The objective function (1) maximizes the total profit that corresponds to the
revenue obtained from bids minus the transporter costs. The cost is calculated
based on travel time (with hourly unit) and is calculated as the difference be-
tween the departure time and return time at the dummy depot. The objective
function is set for the auction platform operator, and the profit will be rebated
to the platform owner, shipper and transporter after delivery based on various
performance indicators.

Constraints (2) show that the nodes belong to the same bid o is considered to
be a bundle, i.e., they must be served or reject together. Constraints (3) indicate
that every node can be served at most once by one vehicle. Constraints (4)
and (5) are imposed to fix the origin and destination points (which are dummy
nodes, with distance to all nodes equal to 0) of vehicles. Note that an empty
route will be represented by a path with 2 stops, which starts at 0 and ends
at (2n+1). Every node except the origin and the destination of a vehicle must
have same number of preceding and one succeeding node, which is defined in
Constraints (6). Constraints (7) and (8) ensure that the job origin is visited
before the destination. Constraints (9), (10) and (11) compute the travel times
and loads of vehicles (both weight and volume dimension). The shipper node
time window constraints are defined in (12). Constraints (13) and (14) represent
the vehicle capacity constraint in both weight and volume dimension. The time
window associated with dummy depot for each vehicle is defined in Constraints
(15) and (16). Moreover, Constraints (17) define the vehicle travel time in hours
(translate from minutes based to hourly based). Finally, Constraints (19)-(20)
specify the domains of the variables.
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4 ALNS Approach

4.1 The ALNS Framework

Our heuristic is based on the ALNS described in [4,14] with simulated annealing
as the local search framework, and the pseudo-code is presented in Algorithm
1. In the algorithm, each iteration includes two subroutines: job selection and
perturbation. In particular, the request in the ALNS are treated independently
and not as a bundle in most of the job selection and perturbation operators.

Algorithm 1: Adaptive Large Neighborhood Search
Input: Initial solution s, solution sbest := s, initial probabilities

associated with the operators
1 while stopping criteria not reached do
2 s′ := s
3 Apply operator P1 for pre-process of neighborhood search
4 Apply selection operator (R1-R3) to select jobs for removal
5 Apply perturbation operator (I1-I5) to remove selected jobs from s′

and reinsert as many unserved jobs as we can into s′

6 if f(s′) > f(sbest) then
7 s := s′, sbest := s′

8 else
9 if f(s′) > f(s) then

10 s := s′

11 else
12 s := s′ with probability p(s′, s) defined in Equation (21)

13 end while
14 Remove the bids that are partly served in sbest

Output: sbest;

Let s be the current solution, s′ be the new solution, and f(s), f(s′) – the
corresponding objective values. If f(s′) is worse than f(s), we accept the solution
s with probability p(s′, s):

p(s′, s) = min{1, e(f(s′)−f(s))/T }, (21)

where T ≥ 0 is the “temperature” that starts at T0 and decreases every iteration
using the expression T := 0.9999 · T , T0 is defined in such a way that objective
value of the first iteration is accepted with a probability 0.5. The simulated
annealing structure is the same as in [4]. The search continues until the stopping
criteria is met (20000 iterations or no improvement for the last 2000 iterations).
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4.2 Solution Evaluation

Two solution evaluation approaches are used for the ALNS:
(1) ALNSF : only feasible solutions are allowed during the search;
(2) ALNSI : infeasible solutions are considered and a penalty of the violated
constraints is added to the objective.

Let c(s) be the routing profit, The solution is evaluated by c(s) plus the
penalty of timw window violation t̄(s) and load violation q̄(s):

f(s) = c(s) + αtt̄(s) + αq q̄(s) (22)

For the ALNSF , f(s) = c(s) holds, because all constraints must be satisfied and
t̄(s) and q̄(s) are equal to zero.

At the end of each iteration, the values of the parameters αt, and αq are
modified by a factor 1+δ, with 0 < δ ≤ 1. If the current solution is feasible with
respect to load constraints, the value of αq is divided by 1 + δ. Otherwise, it is
multiplied by 1 + δ.

To compute the profit of each route, we need to compute the revenue minus
the cost of the route. However, since a shipper bid may be assigned to multiple
vehicles, it is impossible to precisely calculate the revenue of a single route during
search. As a heuristic, we break the bundles and split the price of a bid to the
jobs according to their weights/volumes. For the route cost, which is a function of
the route duration in hours, we first set the vehicle k to depart from the depot
at ιk, and compute the total waiting time W along the route. If no violation
of time window can be found, we postpone the departure time by adding W .
After that, we check the feasibility of the route, once an upper time window
violation is found, the departure time is adjusted by deducting the upper time
window violation value. The algorithm iterates until no time window violations
can be found. Finally, we recalculate the route duration. For details we refer to
Algorithm 2.

Algorithm 2: Travel time duration calculation
Input: Route R := (0, 1, . . . , 2n + 1), departure time τ0 := ιk, whole route

waiting time W , index m ← 1, and postponed time
u0 ← W + 1, u1 ← W

1 while um < um−1 do
2 τ0 ← ιk + um

3 for each i ∈ R do
4 τi ← max (τi−1 + λi−1 + t(i−1,i), ei)
5 Until τi > min(li, �k), um+1 ← (um − τi + min(li, �k))
6 m ← m + 1

7 end while
Output: τ2n+1 − τ0;
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4.3 Initial Solution

An initial solution is constructed by a basic greedy insertion heuristic. The
heuristic randomly chooses a job, and inserts it to the best position in the routes
(with the highest profit added). Afterwards, the ALNS heuristic is implemented
to improve the initial solution. Simulated annealing is applied during the ALNS
update process.

4.4 Adaptive weight adjustment procedure

The choice of the selection and perturbation heuristics is governed by a roulette
wheel mechanism. We have three selection operators and six perturbation opera-
tors. On the one hand, we diversify the search by combining different operators.
On the other hand, a good balance between the quality of the solution and the
running time can be reached by choosing a suitable operator at every iteration.

We define P t
d as the probabilities of choosing operator d at iteration t. Starting

from a predefined value, they are updated as P t+1
d := P t

d(1−ρ)+ρχi/ζi, where ρ
is the roulette wheel parameter, χi is the score of operator i, and ζi is the number
of times it was used during the last 200 iterations. The score of an operator is
updated as follows. If the current iteration finds a new best solution, the scores
related to the used operators are increased by π1; if it finds a solution better than
the previous one, their scores are increased by π2; if it finds a non-improving yet
accepted solution, their scores are increased by π3. Every 200 iterations, new
weights are calculated using the scores obtained, and all scores are reset to zero.

4.5 Pre-process for neighborhood search (P1)

Once a new best solution been found and without partly served bid, we optimize
the route (sbest and f(sbest)) by sequentially removing job from the route and
reinserted in the best position so as to maximize the profit.

For some instances, there always exist some bids may never be fully served
during all the iterations, remain them in the selection sets seldom lead to better
served solution. Therefore, from the 100 iterations of the ALNS, there is a 50%
of chance for low win probability bids involved for the next iteration search, the
low win probability criteria is set as below: shipper bid that has been served less
than 45 times in the last 100 iterations, and transporter bid (vehicle) that serve
less than 2 jobs on average in the last 100 iterations.

4.6 Jobs Selection

At each iteration, jobs are selected and added to a perturbation set C (set C
initially includes the unserved jobs). Three selection operators are used, details
shown as follows:

– Random job based (R1): This operator randomly selects a number of
jobs.
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– Random bid based (R2): This operator random selects a number of bids.
– Partly served bid based (R3): Let U be the set of all partly served bid

jobs (only part of jobs in a bid been served by vehicles), then, this operator
randomly selects 50% − 70% jobs from set U .

4.7 Jobs Perturbation

After the procedure of jobs selection, five perturbation heuristics have been im-
plemented.

– 1-by-1 (I1): The selected jobs are sequentially removed one by one and
reinserted into the best position (the highest improvement for the current
objective value).

– Global all-at-once (I2): The operator repeatedly inserts jobs in the best
position of all the routes. The difference with I1 is that all jobs are removed
at once, then inserted again one by one.

– Balanced all-at-once (I3): All jobs are removed out from the route at
once. Then, for every job, we choose a route with the lowest profit value to
insert. It tends to generate a relatively balanced solution.

– Tabu 1-by-1 (I4): This operator implements a diversification strategy sim-
ilar to the tabu search. Suppose that job i is removed from some route k,
the job is then prohibited to be reinserted into route k. The ban can only be
canceled if insertion into route k leads to a better routing profit compared to
the best-known routing profit of route k with i inside. For the job that has
never been served before, skip the removal step and only do the insertion.

– Local all-at-once (I5): Suppose, job i is removed from some route k, it
tries to insert the job i into the same route k again but in a better position.

5 Computational Experiments

In this section, we first test our algorithm on benchmark instances, and then
analyse the result for instances of moderate size. Our ALNS approach is imple-
mented in Java, and executed on an Intel Xeon E5-2667v4 8C/16T (3.2GHz) 16
core CPU 32 GB RAM machine. The parameters used in the ALNS are shown
in Table 2, chosen by the tuning strategy proposed by [4]. Each time only one
single parameter is adjusted, while the rest are fixed. The setting with the best
average behavior (in terms of average deviation from the best-known solutions)
is chosen. This process iterates through all parameters once.

5.1 Performance Comparison on PDPTW Benchmark instances

To evaluate the effectiveness of the proposed ALNS approach, we first apply it to
solve the PDPTW benchmark instances.1 For detailed descriptions, we refer the
reader to [3]. Due to the difference between G-PDPTW and PDPTW, essential
1 See https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark.
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changes must made to the ALNS and instances: 1) we assume every job stands
for a bid in the benchmark instances; 2) we change the objective to minimize
the travel distances and the number of used vehicles; 3) ALNSI is used, penalty
is added to the objective value to ensure all the jobs must be served. The overall
performance of the ALNS shows as Table 3, the results show 0.55-7.85% gap
(best results of 16 runs) to the best benchmark results. Main reason is that the
ALNS is tailored for G-PDPTW, and slight changes of the model may lead to
quite different solution, e.g., if we only minimize the travel distance (without
minimizing the number of vehicles as benchmark instance settings), we observe
149 improved solutions.

Table 2: Parameters used in the ALNS

Description values

Number of selection jobs 5%-25%
Roulette wheel parameter, ρ 0.50

Score of a global better solution, π1 6.00
Score of a better solution, π2 1.00

Score of a worse solution but accept, π3 2.00
P 0

dR
used for selection operators 0.33

P 0
dI

used for perturbation operators 0.17

Table 3: Results comparison against the benchmark instances in [3]

# Nodes Gaps Running times (minutes)
100 0.55% 1
200 0.82% 3
400 3.09% 17
600 5.86% 42
800 6.87% 79

1000 7.85% 106

5.2 Relationship between bid features and win probability

Moving from computational performance, we next present our insights that
give shippers and transporters some indication of the factors that may affect
their probability of winning a bid. For this purpose, we run three groups of
auctions. Each group includes 1000 instances. In the first group, one vehicle
can serve 22 nodes on average. While in the second group, each vehicle may
visit 11 nodes on average, and the ratio reduces to 7 for the third group. Bids
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with different prices, time windows, sizes, weights, and volumes are generated;
for more details, we refer the reader to Table 4. All the test instances can be
found at https://unicen.smu.edu.sg/pickup-and-delivery-problem-time-window-
g-pdptw. Moreover, for the sake of notational consistency, we use “SBid”/“TBid”
to represent shipper bid and transport “bid” (which is simply the capacity, avail-
ability and cost associated with a vehicle) respectively.
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Fig. 1: Histogram for weight (kg) and volume (m3)

Table 4: Design of experimental instances
Number of instances 3000, 3 groups, each group includes 1000 instances, in the

first group instances, the ratio between number of nodes and
vehicles equals to 22, while the ratio equals to 11 and 7 for
the second and third group instances, respectively

Shipper jobs time windows Randomly choose from 1, 2, 3 and 9 hours
SBid size (number of jobs Randomly choose from (1-6)

inside a SBid)
Base price per SBid, ζ Randomly chosen from $15, $30, $45, $60
SBid weight&volume Weight value randomly choose from (0-1000) kg, then, find the

corresponding volume, histogram graphs show as Figure 1a and 1b
Shipper job service time 15 minutes
Number of vehicles Randomly choose a number from (2-21)
Vehicles capacity 2500 kg, 7 m3

Vehicles available time period 9:00-18:00
Vehicles unit cost Randomly choose from $10, $20, $30, $40 per hour

Additionally, we calculate the bid price using equation (23), which is mainly
based on the number of jobs, and adjusted according to the weight/volume of
the cargo. Let ζ and α be the per job price and number of jobs within a shipper
bid, respectively. β, χ, and δ denote the number of small size (with cargo lighter
than 10 kg), medium size (with cargo lighter than 100 kg but heavier than 10
kg), and large size (with cargo heavier than 100 kg) jobs inside a bid. In addition,
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the total weights of medium and large size cargo are represented as φ and ϕ.

price = ζα − 1.71β − 4χ + 4.7δ + 0.09φ + 0.007ϕ (23)

Considering that running 3000 instances is time-consuming, we only apply
the ALNS once with 5000 iterations for each instance, and ALNSF is applied. We
analyze the effect of the shipper bid size (the number of jobs inside a bid), ship-
per bid unit price, shipper job time window, and transporter bid unit (hourly)
cost on the win probability. By checking the win bids features, we calculate the
relationship of the bid win probability and corresponding feature X by applying
Bayes theorem:

P (win|X) = P (X|win)P (win)/P (X) (24)

where P (win|X) is the probability of a winning bid characterized by feature
X, P (win) is the prior probability of observing a win, and P (X) represents the
prior probability of observing X as a winning outcome. For a specific bid, we
calculate its win probability based on a naive Bayes network, as shown in Figure
2.

Win Probability

Sbid Time 
Window

Sbid 
Weight&Volume

Sbid Size

Sbid Per Job 
Price

Ratio of Sbid 
and Tbid

Tbid 
Avalibility 

Tbid Cost 

Sbid Spatial 
Distribution

Fig. 2: Naive Bayes network

One can observe from Figure 3 that the SBid median win probability ranges
from 25% to 87%, depends on the total number of SBid involved in an auction,
the lower the ratio, the higher the win probability. On the contrary, the TBid
median win probability varies from 56% to 100%, the higher the ratio, the higher
the win probability.

In Figure 4a, we check the SBid win probability versus bid size, it addresses
that the SBid include 1 or 2 jobs tend to win regardless other factors (e.g., price,
time window, cost). However, if the ratio between SBid and TBid is high, the
win probability is always low due to high demand and low supply. Assuming
that the number of shipper bids is fixed, an unassigned SBid may win with an
increasing the number of transporter bids.

Figure 4b shows the SBid win probability against the per job price of SBid
(named “SBid Unit Price”), it indicates that the SBid win probability is not
sensitive to per job price. Take “Nodes/Vehicles = 11” as an example, even if
the price increases from 15 to 60, the SBid win probability only increases from
50% to 59%. The reason is that the SBid win probability is a determining by
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multiple factors, and the price is not a main factor. However, in real-life context,
high bid price may attract more TBid to involve in the platform, subsequently,
the SBid win probability will improve.

Figure 4c depicts the shipper job win probability against the time win-
dow. Suppose that the shipper submit a job with one hour time window for
“Nodes/Vehicles = 7” group, the result is not so promising. However, if the
time window width increases to 9 hours, the shipper bid win probability in-
creases from 30% to around 40%. Moreover, the win probability of groups that
“Nodes/Vehicles = 11” and “Nodes/Vehicles = 22” seems not affected by the
time window. The reason is that different shipper jobs with different time win-
dows are randomly bundled together, so the win probability not only depends on
single job time window, but also relies on the groups time window. For instance,
if the time window of all jobs in a given bid are 3 hours, then, the results are
totally different from the situation that the half jobs time window equal to 1
hour and another half jobs time window equal to 5 hours.

(a) SBid win probability (b) TBid win probability

Fig. 3: Overall win probability

From Figure 4d, one can see the vehicles win probability seems not affected by
unit cost under the case of “Nodes/Vehicles = 22”. However, with the increasing
of the vehicles number, the cheap vehicles (with low unit cost) have higher win
probability compare to expensive vehicles (with high per unit cost). At the same
time, even if the vehicles number is much lower than the shipper jobs number,
the vehicle win probability does not reach to 100%, an explanation is that some
vehicles cost is too high comparing to the shipper bid price, it is better to fail
those bids as unprofitable to serve them.

As the objective function is based on profit, we cannot use the win probability
as criteria to evaluate the performance the algorithm. However, the win prob-
ability can be used to provide suggestions for both shippers and transporters,
which is one means to improve the auction platform financial sustainability. For
instance, a shipper bid with one job (time window equals 2 hours, unit price
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(b) SBid win probability versus average
SBid job price
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(c) Shipper job win probability versus ship-
per job time window

0%

20%

40%

60%

80%

100%

10 20 30 40

W
in

 P
ro

ba
bi

lit
y

TBid Unit Cost

(d) TBid win probability versus TBid unit
cost

equals to 15) win probability is approximately 50% (obtained from naive Bayes
network). In contrast, by increasing the tight time window to 9 hours, and in-
crease the price to $45 per job, the win probability can reach almost 100%.

In summary, the win probability depends on multiple factors drawn from both
demands and supplies. Generally, most factors are independent of one another.
Where some factor may depend on others, advanced machine learning techniques
should be applied to predict the win probability.

6 Conclusion

In this paper, we investigate the winner determination problem with bundled
jobs, which is an variant of the PDPTW. From the academic perspective, this
work raises many new challenges. From a data analytics point of view, we find
that the win probability may not be high when shippers/transporters randomly
submit bids. Therefore, mechanisms should be properly designed to improve the
win probability, such as moving from single-shot to multi-round iterative auc-
tions, allowing the failed bid owner increase/decrease their bid price or relax some
constraints. Besides that, we see the following broad areas for future research: 1)
extending the current model by addressing heterogeneous vehicle routing with
a mixture of cost structures (e.g., some traditional logistic companies prefer
cost structure based on weight, volume, number of visited locations, or travel
distance); 2) extending the current model to multi-objective, for example, the
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platform may need to achieve high match rate in addition to maximizing profit;
3) evaluating the impact of relaxing some constraints; for example, imposing a
penalty cost for violating some rules instead of rejecting an order completely
may benefit all stakeholders (shipper, transporter, and sharing platform owner);
4) profit sharing with the stakeholders in the form of rebates post-auction, which
may incentivise more users to participate in the platform. In this regard, a fair
and stable profit sharing mechanism was proposed in [11] that encourages coali-
tion formation among multiple logistics providers for vehicle routing.
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