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ABSTRACT
Trajectory outlier detection is a fundamental building block for

many location-based service (LBS) applications, with a large ap-

plication base. We dedicate this paper on detecting the outliers

from vehicle trajectories e�ciently and e�ectively. In addition, we

want our solution to be able to issue an alarm early when an out-

lier trajectory is only partially observed (i.e., the trajectory has

not yet reached the destination). Most existing works study the

problem on general Euclidean trajectories and require accesses to

the historical trajectory database or computations on the distance

metric that are very expensive. Furthermore, few of existing works

consider some speci�c characteristics of vehicles trajectories (e.g.,

their movements are constrained by the underlying road networks),

and majority of them require the input of complete trajectories.

Motivated by this, we propose a vehicle outlier detection approach

namelyDB-TODwhich is based on probabilistic model via modeling

the driving behavior/preferences from the set of historical trajec-

tories. We design outlier detection algorithms on both complete

trajectory and partial one. Our probabilistic model-based approach

makes detecting trajectory outlier extremely e�cient while preserv-

ing the e�ectiveness, contributed by the relatively accurate model

on driving behavior. We conduct comprehensive experiments using

real datasets and the results justify both e�ectiveness and e�ciency

of our approach.
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Outlier detection, trajectory data processing, driving behavior, in-
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1 INTRODUCTION
Di�erent from traditional services that are static, location-based
services (LBSs) consider location, the key for providing valuable
services to customers. LBS has the great potential to tap into the

pulse of a city and to improve the quality of citizens’ life, in var-

ious areas such as transport, safety and security, entertainment,
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emergency management and urban planning. It is expected to add

a new dimension to smart cities. There are many building blocks to

support LBSs, including spatial data indexing, clustering, and pat-

tern mining. In this paper, we focus on trajectory outlier detection, a

common ingredient required by many LBS applications. In the data

mining literature, an outlier refers to a data object that is di�erent

from or inconsistent with the remaining objects [16]. In our con-

text, trajectory data capture the movements of vehicles (e.g., cars,

taxis) on road networks, and a trajectory outlier (or “anomalous

trajectory”, an alternative term used in some papers) represents

a trajectory that is signi�cantly di�erent from other trajectories

[4, 25], which re�ects the “few” and “di�erent” characteristic w.r.t.

the normal/majority trajectories [3, 4]. Note that for the issue of

trajectory outlier detection, each trajectory is corresponding to

a given source and destination pair (SD-pair), and an outlier tra-

jectory of a given SD pair is expected to be very di�erent from

the normal trajectories that correspond to the same SD-pair. Take

Fig. 1 as an example. It de�nes two SD-pairs, denoted as 〈S1,D1〉

and 〈S2,D2〉, and plots many trajectories moving from S1 (S2) to

D1 (D2). Note trajectories of the same color take the same route.

Trajectory R1 is an outlier w.r.t. 〈S1,D1〉 as it is very di�erent from

other trajectories moving from S1 to D1. Similarly, trajectory R2
is considered as an outlier w.r.t. 〈S2,D2〉. In addition, trajectories

corresponding to 〈S1,D1〉 will have zero impact on the detection of

outlier w.r.t. 〈S2,D2〉.

outlier w.r.t. ‹S1,D1›

outlier w.r.t. ‹S2,D2›

S2

S1

D2

D1

R1

R2

Figure 1: Example trajectory outliers.

Trajectory outlier detection has a large application base. Take

taxi fraud as an example. Complaint about dishonest drivers who

overcharge passengers by taking routes longer than necessary is

one of the most common complaints passengers make. Trajectory

outlier detection enables the passengers to �nd out whether the

route taken by the taxi driver is normal. In addition, it allows the

taxi company to monitor the movements of all the taxis and to

identify the dishonest drivers who tend to take routes longer than

usual. Take event detection as another example. When many trajec-

tory outliers with similar patterns are reported within a short time

window, it might be an alter of an abnormal event such as tra�c

accidents or a temporal close of certain road segments [23]. Last
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but not least, in terms of data pre-processing, detecting and elimi-

nating outlier is a necessary step for cleaning the trajectory data to

generate the data with better quality to support LBS applications,

such as pattern mining [7], route recommendation [5], etc.

The rich application base inspires lots of research works on tra-

jectory outlier detection. Most existing works study a more general

problem of detecting the trajectory outliers under the Euclidean

space [6, 9, 10, 21] by distance or density measure. These approaches

do not consider the special characteristics of vehicle trajectory such

as the restriction of underlying road networks and the driving pref-

erence of experienced drivers. Other works solve the problem by

supervised/semi-supervised learning [12, 13, 19]. They all need

massive manual labeling which is impractical in real applications.

Among these outlier detection approaches, [4, 25] are two typical

approaches designed for the vehicle trajectories. [4] proposes an

isolated trajectory outlier detecting approach named iBOAT, which

needs to build an inverted index for historical trajectory data, and

to query the database. [25] determines whether an input trajectory

is an outlier by matching the input trajectory to the road network

and computing the edit distance between the historical data and

the input trajectory. However, it is only able to label a complete
trajectory as normal or abnormal based on the derived anomaly

score. In other words, it is not able to locate the sub-trajectory that

is actually abnormal, or to derive the anomaly score for an incom-

plete trajectory. We claim that the capability of inferring whether a

trajectory is normal or abnormal from a partial trajectory is actu-

ally very desirable. Consider the example of taxi rides. Given the

pick-up location and the destination a customer wants to go, if we

can detect the current path taken by the taxi driver is a potential

outlier, customers would like to receive alters asap to improve the

quality of service and to minimize customers’ lost and risk.

As a conclusion, we claim that an ideal vehicle trajectory outlier

detection approach should have following desirable properties.

(1) E�ciency. The computation speed should be fast to sup-

port the throughput of the day-by-day-growing volume of

trajectory data.

(2) E�ectiveness. It should precisely detect the outliers with

low false positive rate as well as correctly quantifying the

degree of abnormality.

(3) Ability of early warning. It should support the task of early

detecting a potential outlier with a partial trajectory.

However, to the best of our knowledge, none of the existing

works is able to achieve all three properties. Motivated by this,

we try to solve the problem via a novel aspect, i.e., modeling the

human driving behavior and proposing a fast vehicle trajectory

outlier detection approach called DB-TOD. We adopt and extend

the maximum entropy inverse reinforcement learning model with

automatic feature correction mechanic to model the driving be-

havior. The e�ectiveness is guaranteed by the capability of our

model in correctly inferring the latent cost of each road segment

via the routing preferences learned from historical trajectory data

generated by experienced drivers. The e�ciency is achieved by the

model-based framework of our approach. That is to say, after train-

ing the probabilistic model, there is no need to access the trajectory

database any more. For a query trajectory, the only task required

is to compute the anomalous score from the model which is very

e�cient. Moreover, our approach can also handle the problem of

early warning of potential outliers with partial trajectory observed.

In summary, we mainly make three-fold contribution in this paper.

First, we propose a fast online trajectory outlier detection approach.

To the best of our knowledge, this is the �rst work on the outlier

detection problem through the view of modeling human driving

behavior. The computation cost of our approach is linear to the

size of road segments passed by the trajectory which makes it

extremely fast for handling tremendous trajectory data streams.

Second, we extend the MEIRL model by introducing the automatic

feature correction mechanic to improve the capability of modeling

driving behaviors. Third, we conduct comprehensive experiments

based on two real datasets. The results demonstrate that DB-TOD
outperforms the existing approaches signi�cantly, in terms of both

e�ciency and e�ectiveness.

2 RELATEDWORK AND PRELIMINARY
In the literature, the trajectory outlier/anomaly detection approaches

can be mainly divided into three categories. The �rst category is

based on distance and density metrics. [9] studies the problem of

detecting distance-based outliers in multidimensional datasets. [10]

partitions a trajectory into a set of line segments, and then de-

tects outlying line segments through a distance-and-density-hybrid

approach. [6] also proposes an approach combining distance and

density to detect the fraud taxi trajectories. [21] de�nes the trajec-

tory outliers by two density-based de�nitions, i.e., point outlier and

trajectory outlier, and aims at �nding outliers from the trajectory

stream data. However, it can not quantize the outlier degree of a

trajectory and its parameter highly depends on the dataset. These

metric-based approaches often study general trajectories but ignore

the unique characteristic of vehicle trajectories. Moreover, these

approaches require accesses to the historical database for comput-

ing the density or distances of the other trajectories which further

relate to the research area of querying trajectory data in database

systems [8, 17, 20].

The second category is based on supervised/semi-supervised learn-
ing. [12] proposes an outlier detection framework on identifying

suspicious movements. The trajectories are expressed using discrete

pattern fragments and features are extracted to further support the

classi�cation algorithm. [13] proposes a conditional random �eld-

based approach for anomaly detection of GPS traces. [19] proposes

a semi-supervised learning framework for detecting trajectory with

anomalous behavior in a video surveillance scenario. However,

these supervised/semi-supervised learning-based approaches re-

quire massive manual labeling of dataset which has many restric-

tions and is impractical for real applications.

The third category is based on detecting outliers by the pattern.

These approaches are mostly designed for vehicle trajectories, be-

cause of the strong tendency of forming patterns and restriction on

the road network. Based on the “few” and “di�erent” characteristic

of trajectory outliers, [22] proposes an isolation-based approach

called iBAT which �rst maps the raw trajectory into grid series

and builds an index for historical grid trajectories, then adopts

an iForest algorithm to detect isolated trajectories. However, this

approach can only support complete trajectories. An enhanced ver-

sion namely iBOAT [3, 4] is proposed to overcome the disadvantage

of iBAT and to support online detection with a partial trajectory.
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[11] also transfers the trajectory into grid trajectories by consider-

ing the spatial, temporal and behavior characteristics. However, it

is designed for detecting anomalous maritime behavior. TPRO, pro-

posed in [24], also focuses on detecting vehicle outliers, by �nding

top-k popular trajectories of each SD-pair and deriving the outlier

scores based on the edit distances between the querying trajectory

and the popular trajectories. TPRRO, as an enhanced version of

TPRO proposed in [25], is a real-time outlier detection algorithm

as it can detect trajectories that are not in the historical trajectory

dataset. Note TPRO can only detect the outliers in the historical

data. However, both TPRO and TPRRO are able to derive the outlier

score only when the complete trajectory has been fully observed.

DB-TOD, the approach we are going to propose in this paper,

is based on a probabilistic model which models the distribution of

driving behavior in an unsupervised manner and it does not involve

any distance or density metric to avoid the access to database which

helps to improve the performance. Moreover, our approach can also

be e�ectively adapted to detect outliers from partial trajectories.

Last but not least, we introduce some basic de�nitions.

De�nition 2.1 (Road Network). A road network is modeled as a

directed graphG (V ,E), whereV refers to the vertex set representing

crossroads and E refers to the edge set representing road segments.

Each edge r ∈ E is from a vertex v ∈ V to another vertex v ′(, v ) ∈
V , where r .s = v and r .e = v ′ represent the starting vertex and the

ending vertex of the edge respectively.

De�nition 2.2 (Raw Trajectory). A raw trajectory T = {p1 →
p2 → · · · → pN } is a list of point locations with time stamps,

obtained by localization techniques such as GPS.

In this paper, we focus on vehicle trajectories generated by taxis

and cars. As the movements of taxis and cars are constrained by

the underlying road networks, we adopt the map matching algo-

rithm [15] to map the trajectory onto the road network to get the

edge trajectory de�ned as follows. To simplify our discussion, we

call an edge trajectory as a trajectory in the following and our work

is based on edge trajectories instead of raw trajectories.

De�nition 2.3 (Edge Trajectory). An edge trajectory is a route

R = {r1 → r2 → · · · → rM } which consists of list of adjacent road

segments recording the path of a raw trajectory T , i.e., ∀ri , ri+1 ∈
R, ri , ri+1 ∈ E and ri .e = ri+1.s .

De�nition 2.4 (Routing Decision). A routing decision ai = (ru →
rv ) ∈ E ×E, representing the transition from road segment ru to an

adjacent segment rv , where ru .e = rv .s . We denote the complete

set of routing decisions as A. Note that given an edge trajectory

R = {r1 → r2 → · · · → rM }, it can also be represented by the

series of routing decisions, i.e., R = {a1 → a2 → · · ·aM−1}, where

ai = (ri → ri+1). In the following sections, we will use both

notations, e.g., "a ∈ R" and "r ∈ R".

De�nition 2.5 (Outlier Trajectory). Given a SD pair 〈rs , rd 〉, a

trajectory R is an outlier if it rarely occurs and is di�erent from

other trajectories w.r.t. 〈rs , rd 〉.

3 DB-TOD
In this section, we present our Driving Behavior-based Trajectory

Outlier Detection approach, in short DB-TOD. Inspired by the prob-

abilistic/statistic model utilized by point object outlier detection [1],

we want to detect the trajectory outlier in a probabilistic way as

well. In other words, we plan to build a probabilistic model to model

the distribution of trajectory data and to return the trajectories with

low probability as outliers. To be more speci�c, given a SD-pair

〈rs , rd 〉, we report a trajectory R as an outlier if P (R |rs , rd ) < ξsd ,

where ξsd is a pre-de�ned threshold.

Leveraging the probabilistic model to detect outliers is promising

because the model can be regarded as a compressed representation

and a summarization of the historical data. Thus, for a new trajec-

tory, it only needs to go through the probabilistic model to get the

likelihood without the need of scanning the historical trajectories,

which can help boost the detection speed/throughput and hence

address the e�ciency issue. Moreover, modeling the driving behav-

ior provides a better way to understand the vehicle trajectories and

the cause of a trajectory outlier.

Outlier Detection Outlier ?

Map Matching

Raw Trajectory Road Network

Mapped Trajectory

Fully Observed Trajectory

Preprocessing Offline Model Training

Model 
Parameters

Outlier Detection

Partially Observed Trajectory

Online Outlier Detection

Online Outlier Detection

Outlier ?

Training

AFC-MEIRL
Model

Figure 2: The system overview of DB-TOD.
Fig. 2 summarizes the overview of DB-TOD. The preprocessing

phase is processed o�ine to generate the mapped trajectories as de-

�ned in De�nition 2.3 and to gather the trajectories w.r.t. the same

SD-pair. The o�ine model training phase, serving as the key part of

our system, adopts a model called AFC-MEIRL which is a proba-

bilistic model for modeling the vehicle trajectories via exploiting

the driving preference as discussed above. The model parameters

are trained o�ine based on the historical trajectories obtained in

the preprocessing phase. After the model parameters are inferred,

two online outlier detection tasks are performed. The �rst task is to

perform traditional outlier detection, i.e., judging whether a fully

observed trajectory is an outlier; while the second task is designed

to issue an alert on the potential outlier as early as possible when

the trajectory has not yet reached the destination and only a partial

trajectory has been observed. In the following, we �rst introduce

how to adopt an inverse reinforcement learning model to model the

trajectory data; we then enhance the model with a better modeling

capability; and we �nally present how to adopt this model on fast

online outlier detection for complete/partial trajectory.

3.1 Modeling Driving Behavior with MEIRL
Unlike modeling the distribution of traditional point data, the tra-

jectories are sequential data with topological constraints. Accord-

ingly, we adopt the maximum entropy inverse reinforcement learning
(MEIRL) model [26] that focuses on modeling sequential decision

policies via a set of historical action trajectories. In reinforcement

learning/sequential decision theory, there are three key elements,

i.e., state ς , action α and reward ρ. State ς ∈ S represents the state

of an agent. Action α ∈ A refers to a mapping from S to S. Action

α1 = ς1 → ς2 represents that an agent currently in state ς1, after
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performing the action α1, will be in state ς2.
1

Reward ρ refers to

the reward that will be received after performing an action, which

is often a function of states or actions. These three elements enable

the modeling of the decision process, i.e., an agent in a certain state

needs to decide which action to perform by considering the reward

it will gain, and it will be in a new state after performing certain

action. It continues doing the decision which transits the agent

from one state to another until the terminal state is reached.

To adopt MEIRL on modeling the vehicle trajectory for detect-

ing vehicle trajectory outliers, we can regard the road segments

as the states, regard the routing decision at a certain cross road

(e.g., turning left, turning right or moving straight forward) as an

action, and regard drivers as agents. Each driver moves along a road

segment, makes a routing decision at the crossroad, and then moves

along another road segment. She/he continues this process until

the destination (i.e., the terminal road segment) has been reached.

r5r3 r4

r1 r2

r10r8 r9

r6 r7

r11 r12


r1 r2

r3

r8 r9 r10

r5r4

r6 r7

r12r11





a2
a
r3 r4

r5 r6

r7
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r1 r7

r3 r4

r2 r8

r5 r6
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a3
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r2

a4
a3
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(a) The example of the road network
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r3 r4

r2 r8

r5 r6
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a1

a3
a4

r1

r2

a4
a3

ri state

action

(b) The dual graph representation

Figure 3: Example showing how to model the routing deci-
sion with decision process.

Fig. 3(a) shows a part of road network in the real world. There are

8 road segments r1, r2, · · · , r8, forming 4 bi-directional roads. We

can model the decision process by transforming the road network

to its dual graph as shown in Fig. 3(b). Then we can regard the

state ς as the road segment ri and the transition between adjacent

road segments, i.e., the routing decision ai , as the action α . For

the driving scenario, when someone makes a decision, there is

certain routing cost in his/her mind, e.g., the length of the next

road, the turning angle, the road level, etc. These routing costs are

hard to be quantized explicitly, so we regard them as the latent
cost w.r.t. an action. By doing so, we can regard the negative latent

cost as the reward since the lower the cost, the better, which is

equivalent to a higher reward. Given a complete vehicle trajectory

R = {ra → rb → · · · }, it can be represented as an action series

continuously performed by the driver with the reward continuously

collected respectively. According to the MEIRL [26], it models the

action series obeying the maximum entropy principle, i.e.,

P (R |sd ) =
exp (−cost (R))∑

R′∈<sd
exp(−cost (R′))

=
1

Zsd
exp (−cost (R)) (1)

Here,<sd captures all possible trajectories corresponding to SD-

pair 〈rs , rd 〉; Zsd is the normalization coe�cient to make sure it is a

probability; cost (R) is a function modeling the latent costs gathered

according to the actions performed in the trajectory R, and −cost (R)
refers to the reward collected by the trajectory. We can infer that the

maximum entropy principle tends to assign a very high probability

to a trajectory with low latent cost and the model will equally prefer

1
Note that we here only discuss the deterministic case, i.e., the state transition w.r.t. a

given action is deterministic.

trips with similar costs. Considering a trajectory outlier which has

the “few” and “di�erent” characteristics, as discussed in Section 1,

this model implies that the “di�erence" between the outlier and

other normal trajectories, which results in the larger latent cost, in

turn has a very low probability according to Eq. (1), re�ected by

the “few” property. Note that in the following sections, we will use

the terms “state” and “road segment” interchangeable, and terms

“action” and “routing decision” interchangeably.

According to Eq. (1), we can �nd that the latent cost function is

still undetermined. The cost function can be assumed to be a linear

combination of the explicit features of the actions, e.g., fa ∈ Rd , by

some latent cost weights θ ∈ Rd , where d refers to the dimension of

the explicit features. The explicit features can be obtained from the

road network such as the type of turning (e.g., hard-turn, soft-turn

or reverse-turn), the road type of the new state (new road segment)

that the agent will be in after performing this action and the speed-

limit, etc. Then, the latent cost of an action is the weighted sum

of features i.e., θ>fa . For the detail of what features we have used,

please refer to Table 2 in Section 4.6.

Moreover, for an action trajectory R = {a1 → a2 · · · }, the aggre-

gated latent cost of R is modeled as cost (R) =
∑
a∈R θ

>fa = θ>fR ,

where fR =
∑
a∈R fa is the feature counts, the sum of the state

features along the path R. The purpose of MEIRL is to learn the la-

tent cost weights θ from trajectories demonstrated by experts (e.g.,

experienced taxi drivers). Finally, we can compute the likelihood of

any trajectory w.r.t. an SD-pair according to Eq. (1).

Discussion. Although MEIRL seems to be already able to handle

the task of modeling driving behavior, it still has room for im-

provement. Considering trajectories R1 and R2 with similar feature

counts in Fig. 4. According to MEIRL, these two trajectories will

de�nitely be assigned the same probabilities since the latent cost is

related to the feature counts of a trajectory. However, in the dataset,

the occurrence of R1 might be actually much larger than that of R2,

which means more drivers prefer R1 than R2. This could be caused

by other factors that cannot be explicitly encoded into the feature

vector, e.g., the roads in R2 may be bumpy or the tra�c condition in

the crossroads in R2 may be more complex. The reason that MEIRL

is not able to model such tiny di�erences is that the likelihood of a

trajectory only depends on the explicit features which might not

be su�cient to correctly describe an action without a failure. This

example demonstrates some missing factors in the explicit features

while MEIRL is not capable of capturing such factors. Thus, in the

next section, we will enhance and extend MEIRL model to tackle

this shortcoming.

a1 a2

a6

a3

a5

a4
R1

R2

bumpy
road

complex traffic 
condition

40m

60m 20m

Figure 4: Example showing the failure of modeling such dif-
ference in MEIRL model

3.2 MEIRL with Automatic Feature Correction
3.2.1 Model Introduction. As discussed above, the explicit fea-

tures might not be su�cient to correctly describe a certain action
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and MEIRL is not able to capture such factors. We name such fac-

tors as latent feature bias, something that cannot be easily observed

but will a�ect the routing decisions. Thus, we extend the original

MEIRL by the idea of correcting the features automatically, yielding

the name Automatic Feature Correction MEIRL (AFC-MEIRL). In de-

tail, we introduce a learnable feature bias ∆a ∈ R into the features

of each action. Consequently, for an explicit feature of an action

a, i.e., fa =
[
f
(1)
a , f

(2)
a , · · · , f

(d )
a

]>
, the new feature vector f+a with

feature correction can be represented as

f+a =
[
f
(1)
a , f

(2)
a , · · · , f

(d )
a ,∆a

]>

Then, it gives the model the �exibility to correct the feature by

adjusting the additional feature bias ∆a according to the historical

trajectories to allow the model to �t the data better. Again taking

Fig. 4 as an example. We assume the road segment (the one if

performing a4) is very bumpy and the crossroad condition is very

complex. AFC-MEIRL, after observing the fact that the number of

occurrences of action a4 is very small from the historical dataset,

will automatically increase ∆a4 to increase the latent cost and �t

the data more reasonably.

3.2.2 Parameter Learning. In the following, we will introduce

how to learn the parameter from a set of historical trajectories

which can be regarded as the action series demonstrated by experts.

We maximize the likelihood of the set of historical trajectories

denoted by R under AFC-MEIRL model which is equivalent to

minimize the negative log-likelihood, i.e.,

θ, ∆ = argmin

θ ,∆
`(R |θ, ∆) = argmin

θ ,∆
−

∑
R∈R

log P (R |θ, ∆) (2)

= −
∑
R∈R

log

exp

[
−

(
θ>

∑
a∈R fa +

∑
a∈R ∆a

)]
∑

R′∈<
exp

[
−

(
θ>

∑
a′∈R′ fa′ +

∑
a′∈R ∆a′

)] (3)

where ∆ =
[
∆a1 ,∆a2 , · · · ,∆a |A|

]>
. Moreover, we will have the

following convexity theorem.

Theorem 3.1. The negative likelihood loss function `(R|θ ,∆) of
AFC-MEIRLmodel with summarized feature bias, i.e., Eq. (3), is convex
w.r.t. θ and ∆.

Proof. Constructing an auxiliary vector, w.r.t. a trajectory R,

hR ∈ R |A | where hR [i] = 0 if ai < R and hR [i] = 1 if ai ∈ R.

Denoting χ =

[
θ
∆

]
by concatenating the parameters θ and ∆

to be one vector and FR =
[
fR
hR

]
, the latent cost of the trajec-

tory R, i.e., cost (R) = θ>
∑
a∈R fa +

∑
a∈R ∆a , can be rewritten

as cost (R) = χ>FR . Given any χ ∈ dom `, we denote the un-

normalized probability of R w.r.t. χ as P̃χ (R) = exp(−χ>FR ). Ac-

cordingly, the loss function of a trajectory R w.r.t. χ ∈ dom ` can be

represented as `(R |χ ) = χ>FR + log
∑
R′∈< P̃χ (R

′). The gradient

can be derived by ∇`(R |χ ) = FR −
∑
R′ Pχ (R

′)FR′ . ∀x, y ∈ dom `,
according to Jensen’s inequality,

log

∑
R′ P̃y(R

′)∑
R′ P̃x(R′)

= log

∑
R′

(
P̃x(R

′) ·
P̃y(R′)
P̃x(R′)

)
∑
R′ P̃x(R′)

≥

∑
R′

(
P̃x(R

′) · F>R′ (x− y)
)

∑
R′ P̃x(R′)

Thus we have

log

∑
R′

P̃y(R
′) ≥ −

∑
R′

log P̃x(R
′) −

∑
R′

Px(R
′)F>R′ (y− x)

Appending y>FR to both sides, we can get

`(R |y) = y>FR + log
∑
R′

P̃y (R′)

≥
*.
,
x>FR +

∑
R′

log P̃x (R′)
+/
-
+
*.
,
y>FR − x>FR −

∑
R′

Px (R′)F>R′ (y − x)
+/
-

=`(R |x) + *.
,
FR −

∑
R′

Px (R′)FR′
+/
-

>

(y − x) = `(R |x) + ∇`(R |x)> (y − x)

which holds the first-order condition of convexity [2], i.e., `(R |χ ) is

convex. Since `(R) =
∑
R∈R `(R), we can get `(R) is also convex. �

Theorem 3.1 shows a desirable property of AFC-MEIRL model,

i.e, we can achieve the global optima by optimizing the loss func-

tion. Similar as [26], we adopt the exponential stochastic gradient

descent algorithm to train the model. Note that the trajectory set is

composed of many trajectories corresponding to di�erent SD-pairs.

To reduce the computation cost, we �rst partition the whole trajec-

tory dataset R according to SD-pairs into several clusters su�cing

that the trajectories in each cluster correspond to the same SD-pair.

Given a historical trajectory R ∈ Rsd w.r.t. an SD-pair 〈rs , rd 〉, the

gradient of the parameter θ and the summarized feature biases ∆
are derived as follows,

∂`

∂θ
= fR −

∑
R′∈<sd

P (R′) · fR′ = fR −
∑
a∈A

D̃a fa (4)

∂`

∂∆a
=

∑
a∈R

1{a ∈ R} −
∑

R′∈<sd

P (R′) · 1{a ∈ R′} = Da − D̃a (5)

where D̃a is the expected action performing frequencies computed

from AFC-MEIRL model w.r.t. action a and 1{conditon} is an indi-

cator function returning 1 when condition is true and 0 otherwise.

Please refer to Algorithm 1 for the details of the algorithm.

Discussion. We can see that at the minima, i.e., the gradient equals

0, the expected feature counts estimated by the model (

∑
a∈A D̃a fa )

match the true observed feature counts of the training trajectory

(fR ). Meanwhile, for each action a, its expected action performing

frequency D̃a will match the observed action performing frequency

Da . In other words, AFC-MEIRL tries to model the distribution of

the dataset by approximating the expected feature counts to the

real feature counts collected from the dataset and approximating

the performing frequency of each action. Note that for traditional

MEIRL, the gradient only includes
∂`
∂θ [26], hence MEIRL only al-

lows the model to approximate the feature counts of a trajectory

while matching between the expected action performing frequen-

cies and the true ones is not considered. This explains the reason

that MEIRL loses its generality on unobserved trajectory.

Computing D̃a. From Eq. (4) and Eq. (5), we can see that the gra-

dient computation requires the computation on expected action

performing frequency D̃a . Directly enumerating all possible tra-

jectories corresponding to a given SD-pair 〈rs , rd 〉 is impractical

for its exponential time complexity. We solve this problem by dy-

namic programming. Let Z
(=t )
si be the summation of all exponential

negative costs of all trajectories w.r.t. a given SD-pair 〈rs , rd 〉 in

exactly t steps, i.e., Z
(=t )
si =

∑
R∈<si& |R |=t exp(−cost (R)). In addi-

tion, let Z
(≤t )
jd refer to the ones w.r.t. a given SD-pair 〈rs , rd 〉with at

most t steps, i.e., Z
(≤t )
jd =

∑
R∈<jd& |R | ≤t exp(−cost (R)). Through



CIKM’17, November 2017, Singapore Hao Wu, Weiwei Sun, and Baihua Zheng

dynamic programming which is actually similar to the famous

forward-backward algorithm [18], we can derive the recursion

equation as follows, where the computation of Z
(=t )
si is conducted

in the forward pass and Z
(≤t )
jd is computed in the backward pass.

Z
(=t )
si = 1{ri = rs } +

∑
ri′ ∈in (ri )

Z
(=t−1)
si′ exp(−cost (ai′→i ))

Z
(=t )
jd = 1{r j = rd } +

∑
r j′ ∈out (r j )

Z
(=t−1)
j′d exp(−cost (aj→j′ ))

Z
(≤t )
jd = Z

(=t )
jd + Z

(≤t−1)
jd

As the number of possible trajectories in<sd is in�nite, we only

consider those no longer than T steps, and thus we will get the

approximated action performing frequency as

D̃ai→j =
1

Z ≤Tsd

T−1∑
t=1

(
Z
(=t )
si exp(−cost (ai→j ))Z

(≤T−t−1)
jd

)
ALGORITHM 1: Parameter Learning for AFC-MEIRL

1: Randomly initialize θ and ∆, t ← 0;

2: while not convergent do
3: for random Rsd do
4: Compute D̃a for each a ∈ A ;

5: for trajectory R ∈ Rsd do
6: fR ← Collect feature counts of each action;

7: for action a ∈ A do
8: Compute

∂`
∂∆a

according to Eq. (5);

9: ∆a ← ∆a exp
(γ
t ·

∂`
∂∆a

)
;

10: Compute
∂`
∂θ according to Eq. (4);

11: θ ← θ exp

(γ
t ·

∂`
∂θ

)
, t ← t + 1;

12: return θ and ∆;

3.3 Outlier Detection with Full Observation
As mentioned in the beginning of Section 3, we label a trajectory

R as an outlier if P (R |sd ) < ξsd . Since P (R |sd ) = 1

Zsd
P̃ (R |sd ),

we can change the criterion of detecting the outlier to “judge

whether the un-normalized negative log-likelihood (U-NLL), i.e.,

˜`(R) = − log P̃ (R |sd ), is larger than a given threshold ζsd = log (Zsd ξsd )”.
According to Eq. (1), U-NLL of a trajectory R can be computed by

˜`(R) = θ>
∑

a:(ri→ri+1 )∈R

fa +
∑

a:(ri→ri+1 )∈R

∆a (6)

Hence, when the parameters of AFC-MEIRL model have been in-

ferred from historical data, given a complete trajectory R which

has been fully observed, the computation cost for computing Eq. (6)

is O ( |R |) since we only need to sum up the features and the biases

along the trajectories. Notice that ξsd is a pre-de�ned parameter

which can be easily decided via the historical data and Zsd can be

cached when training the model. Hence, given a complete trajec-

tory, our approach has the linear computation complexity w.r.t. the

number of road segments passed by the trajectory and does not

require any database access
2
, which almost reaches the minimum

2
If the threshold ζsd is stored in the database, one database access is required to get

the value of ζsd .

complexity theoretically since at least we should spare O ( |R |) to

read in the trajectory.

3.4 Outlier Detection with Partial Observation
As mentioned in Section 1, it’s desirable for an outlier detection

system to be able to identify a potential outlier when the trajectory

has only been partially observed. More formally, suppose we have

known the destination the driver wants to go (since the outlier is

de�ned w.r.t. an SD-pair), and the partial trajectory Rst from rs to

rt (but not yet rd ) has been observed, we want to judge whether

Rst is a potential outlier or not, corresponding to 〈rs , rd 〉. Note that

with the elapse of the time, more proportion of the trajectory is

revealed and we want an outlier detection approach to report the

outlier as early as possible.

To achieve such a goal, we �rst introduce the minimum U-

NLL for all the sub-trajectories corresponding to 〈rt , rd 〉 (where rt
refers to the current state of the partial trajectory), i.e.,

˜`(R∗td ) =

minR′∈<td
˜`(R′). Thanks to the summation property of U-NLL

w.r.t. feature counts of actions according to Eq. (6),
˜`(R∗td ) can be

computed by constructing the dual graph G ′ of the original road

networkG according to Fig. 4, and assigning each edge (i.e., routing

decision a) the weight of θ>fa + ∆a . Leveraging shortest path al-

gorithms (e.g. dijkstra algorithm), the value can be easily achieved.

Realizing the fact that

˜`(Rsd ) = θ
> *.
,

∑
a∈Rst

fa +
∑

a′∈Rtd

fa′
+/
-
+
*.
,

∑
a∈Rst

∆a′ +
∑

a′∈Rtd

∆a′
+/
-

= ˜`(Rst ) + ˜`(Rtd ) ≥ ˜`(Rst ) + ˜`(R∗td ) = LB (`(Rsd ), rt )

we can get the lower bound of U-NLL, i.e., LB (`(Rsd ), rt ), of the

complete trajectory Rsd when it is observed till rt . Thus, when

LB (`(Rsd ), rt ) exceeds the outlier threshold ζsd , it can ensure that

U-NLL of the complete trajectory will de�nitely exceed ζsd , thus

an outer alert will be reported by the algorithm.

Note that if we run the shortest path algorithm to compute

˜`(R∗td ) whenever a partial trajectory moves to a new road segment,

it will be time consuming when the action size is very large. Here,

we introduce a strategy to reduce the computation cost. Since the

destination is �xed when judging a certain trajectory, we can run a

single-sink shortest path algorithm once to locate the shortest path

from all nodes to the destination, at the beginning of the trajectory.

Then,
˜`(R∗td ) can be easily obtained by looking up from the pre-

computed results. Note that there is no need to compute
˜`(R∗td ) for

all states. When we run the single-sink shortest path algorithm, we

should in advance stop the algorithm when the current smallest

U-NLL popped by the heap is already larger than ζsd .

3.5 Complexity analysis
For the training phase, computing D̃ (a)s for all the actions takes

O (AT ) time. The complexity of learning parameters by seeing each

sample once is O (ATP +
∑
R∈R |R |), where the former O (ATP ) in-

cludes the computation of D̃ (a) w.r.t. all SD-pairs (i.e., P refers to

the number of di�erent SD-pairs in the training set) and the latter

O (
∑
R∈R |R |) is the cost for collecting feature counts of each tra-

jectory. For the online outlier detection with full observation, as

analyzed in Section 3.3, the complexity is O ( |R |) where the number

of edges |R | is often a small number (e.g., < 100). For the case with
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partial observation, when a new edge is observed, we should com-

pute
˜`(R∗td ) which introduces a single-sink shortest path algorithm

whose complexity depends on the shortest path algorithm, e.g.,

O (E + V logV ) for the dijkstra algorithm with a Fibonacci heap.

Note that actual time cost is far smaller than O (E +V logV ) since

it can be in advance stopped as introduced in Section 3.4.

4 EXPERIMENT
Dataset. We conduct our experimental study on two real-world

taxi trajectory datasets. The �rst one is generated by 442 taxis in

Porto from Jan. 07, 2013 to Jun. 30, 2014 and the average sampling

rate is 15s/point. The other one is collected in Shanghai from Apr.

01 to Apr. 10 in 2015 by 13,650 taxis with the sampling rate at

10s/point. We select the area with the highest trajectory density to

ensure there are enough trajectories w.r.t. SD-pairs to conduct the

experiment. The Porto dataset contains 486,268 trajectories while

Shanghai dataset contains 757,032 trajectories. Notice that we only

extract the trips occupied by passengers.

Ground Truth. Existing works tend to label the outlier manually.

However, we claim that this may not be an ideal solution, because i)

it is hard to manually label a large amount of data thus the testing

samples may not be su�cient to show the average performance

of an algorithm; ii) manual labeling requires domain expert, i.e.,

experienced drivers who are very familiar with the road network,

which disquali�es many volunteers; and iii) the label might not be

reliable if we can not �nd su�cient volunteers. As a solution, our

experiment requires zero manual labeling. We leverage the drivers

from the dataset itself to be the “volunteers". To be more speci�c, we

partition the dataset according to SD-pairs, and we pick up those SD-

pairs with su�cient historical trajectories, i.e., |Rsd | > Nsuppor t .

For the trajectories in Rsd , we adopt complete-linkage clustering

algorithm to hierarchically cluster the trajectories with similar

paths. The distance metric of two mapped trajectories R1 and R2 is

de�ned as the length-weighted Jaccard similarity, i.e., 1−
len (R1∩R2 )
len (R1∪R2 )

.

Note that if the maximum distances of each pair of clusters all

exceed a threshold η, the clustering algorithm terminates which

ensures the distance between every two trajectories in the same

cluster is bounded byη. We name each cluster formed by trajectories

with similar paths a pattern P . Note that outliers are “few” and

“di�erent”. Since we have clustered the trajectories, trajectories

belonging to di�erent patterns are expected to be di�erent. Hence,

the ratio
|P |
|Rsd |

can be regarded as the popularity of a pattern, and all

the patterns with the ratio smaller than a given thresholdψ will be

labeled as outliers. We empirically set Nsuppor t to 100, η to 0.2 and

ψ to 3% by visualizing several testing samples and judging whether

this setting is reasonable or not. Under such settings, we obtain 114

valid SD-pairs and in total 20, 920 trajectories from Porto dataset for

testing, where 5% trajectories are reported as outliers. In Shanghai

dataset 88 SD-pairs and 14, 740 trajectories are extracted for testing.

About 7% trajectories appear to be outliers in the dataset.

Baselines. We include two typical works, i.e., TPRRO [4] and

iBOAT [25], as the competitors. To our best knowledge, they are

the state-of-the-art trajectory outlier detecting approaches speci�-

cally designed for vehicle trajectories which also consider e�ciency.

TPRRO summaries the historical trajectories w.r.t. an SD-pair by k
most popular ones and computes the outlier score by calculating

the edit distances from the querying trajectory to these k trajecto-

ries. iBOAT maps the trajectory to sequence of grids and detects

the outliers by how the querying trajectory, in the form of grid-

sequence, di�ers from the patterns of historical grid sequences.

Note iBOAT supports the mapping from raw trajectory to any dis-

crete sequences; while DB-TOD and TPRRO both take the edge

trajectories as input. For fairness, iBOAT in our implementation

also takes in edge trajectories. Thus, we rename original iBOAT

that takes in grid trajectories as iBOAT-grid and the one using the

edge trajectories as iBOAT-edge. All the parameters of di�erent

models have been tuned to achieve the best performance.

4.1 Ranking Evaluation
Outlier detection algorithms rely on the outlier scores derived by

the algorithms. They use a threshold to “give a cut” to the ranked

trajectories by reporting the half with outlier score exceeding the

threshold as outliers and the remaining half as the normalcies.

Our �rst set of experiments evaluates the ranking accuracy of

di�erent algorithms. Note that if the ranking is accurate, we have

the �exibility to set thresholds to cater for di�erent application

scenarios.

Note we have clustered trajectories into patterns and the outlier

detecting approach is expected to rank these patterns according

to their outlier scores. The ground truth order is ranked by their

pattern frequencies in the ascending order. We de�ne rank∗ (i )
to be the ith pattern in the ground truth order, i.e., |rank∗ (1) | ≤
|rank∗ (2) | ≤ · · · ≤ |rank∗ (k ) |. For example, suppose there are four

patterns generated within a given SD-pair, |P1 | = 40, |P2 | = 1,

|P3 | = 80, and |P4 | = 3. Accordingly, rank∗ (1) = P2, rank∗ (2) = P4,

rank∗ (3) = P1 and rank∗ (4) = P3. In addition, rank (i ) refers to the

ith pattern in the order reported by an outlier detection approach.

In information retrieval, the discounted cumulative gain (DCG)

is often used to measure the e�ectiveness of a ranking algorithm

w.r.t. the relevance [14], with DCG =
∑k
i=1

2
r el (rank (i ))−1
log

2
(i+1) . Here,

rel (rank (k )) is a relevance scoring function de�ned in [0, 1] repre-

senting the degree of relevance of the object rank (i ). In the case

of outlier detection, the larger the degree of an outlier, the larger

the value of relevance. Thus, we de�ne it to be rel (rank (i )) =

1 −
log |rank (j ) |

log

∑k
j=1 |rank∗ (j ) |

. If the pattern has fewer occurrences, the rel

will be larger, meaning the relevance to an outlier is larger. From

DCG we can see that when a normal trajectory is ranked in the

front of the list, the denominator loд2 (i + 1) will be large and the

relevance will be small, i.e., it will penalize the situation of wrongly

ranking a normal trajectory as an outlier, which satis�es our need.

By denoting the DCG value of the reverse order of the ground truth

as wDCG (worst DCG) and the one w.r.t. the order of ground truth

as iDCG (ideal DCG), we can get the normalized DCG value as

NDCG = DCG−wDCG
iDCG−wDCG ∈ [0, 1]. The NDCG value achieves 1 if the

order sorted by the algorithm is exactly the same as the ground

truth and reaches 0 if the order is the reverse of the ground truth.

Table 1 lists the NDCG values of all approaches. “Random” refers

to the NDCG value under a random order. First, we can �nd in both

datasets, iBOAT-edge outperforms iBOAT-grid. This is because

when a trajectory is transferred into a grid sequence, it loses some

information and the grid representation is fuzzy and coarse-grained.

On the other hand, edge representations do not have such problems
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Table 1: The result of NDCG

DB-TOD iBOAT-grid iBOAT-edge TPRRO Random

Porto 0.953 0.879 0.899 0.851 0.697

Shanghai 0.903 0.816 0.877 0.875 0.718

since each edge passed by a trajectory is accurate. Next, TPRRO

is slightly worse than iBOAT-edge. This might be because that

TPRRO is not a historical database-based approach. Thus, it should

summarize the information of historical trajectory data. Although

non-database based approaches are more e�cient (like DB-TOD),

they have to bear the risk of not summarizing the historical infor-

mation probably. If the information loss is signi�cant, we have to

balance the trade-o� between the e�ectiveness and the e�ciency.

Here, TPRRO obviously sacri�ces its e�ectiveness for its e�ciency,

which will be analyzed further in Section 4.3. Surprisingly, the ran-

dom sorting achieves a not too low value. The potential reason

could be, given an SD-pair, after clustering corresponding trajec-

tories to patterns, there will be some outlier patterns sharing the

same count (such as only 1 trajectory passed by in the historical

dataset). Therefore, randomly sorting these patterns with the same

historical frequencies will not reduce the NDCG value. Last but not

least, DB-TOD achieves the highest NDCG score, indicating it can

more accurately rank the trajectories w.r.t. their popularity than

other competitors, which justi�es the e�ectiveness of modeling the

driving behavior.

4.2 Outlier Detection with Complete Trajectories
The second set of experiments evaluates the performance of

detecting the outliers of fully observed trajectories. We collect the

counts of true positive (TP), false positive (FP), true negative (TN),

and false negative (FN). TP refers to the number of outlier tra-

jectories reported as outliers, FP refers to the number of normal

trajectories that are reported as outliers, TN refers to the number of

outlier trajectories reported as normal, and FN refers to the number

of normal trajectories reported as normal. Then, we report the com-

mon metrics precision p, recall γ , and F-score F , with p = TP
TP+FP ,

γ = TP
TP+FN , and F =

2·p ·γ
p+γ . The thresholds to separate normalcies

and outliers for outlier detection approaches are selected to have

the best F-score performance. The results are shown in Fig. 5. We

can �nd in both datasets, DB-TOD outperforms the competitors un-

der all metrics. This is because, as compared with other approaches,

DB-TOD incurs a much higher TP but a much lower FP, which fur-

ther demonstrates the e�ectiveness of our approach. iBOAT-edge

performs slightly better than iBOAT-grid, remaining a similar trend

as reported in previous ranking evaluation. Moreover, TPRRO is in-

ferior to iBOAT-grid in Porto dataset and superior to iBOAT-grid in

Shanghai dataset, which can be also inferred from the performance

of ranking. This phenomena proves that the performance of outlier

detection is strongly correlated with ranking accuracy.

4.3 E�ciency Evaluation
The third set of experiments evaluates the e�ciency of detecting

outliers. Fig. 6 plots the results w.r.t. SD-pairs of di�erent distances.

We can observe that two iBOAT approaches are much slower than

DB-TOD and TPRRO. This is because although iBOAT has reduced

the computation cost by inverted indexing, it still requires accesses

to the historical data and checks how many trajectories containing

the current windows being scanned. iBOAT-edge is several times
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Figure 5: Performance of detecting outliers with fully ob-
served trajectories
faster than iBOAT-grid. The reason is that for each road segment,

it may cross several grids which makes the number of grids in a

grid trajectory much larger than the number of edges in an edge

trajectory. Accordingly, iBOAT-edge is much more e�cient than

iBOAT-grid. TPRRO is much faster than iBOAT as it requires zero

access to all data w.r.t. the given SD-pair. It only needs to fetch k
most popular trajectories in the historical dataset, and computes

the edit distances between the querying trajectory and the popular

trajectories online. However, even compared with TPRRO which

summarizes the historical dataset via top-k typical trajectories,

DB-TOD still runs about 3∼5 times faster, demonstrating superior

performance of our approach. Moreover, we can observe that with

the increase of the distance of SD-pairs, the computation cost of all

approaches increases. This is because as trajectories become longer,

they include more edges/grids and involve more index accessing,

edit distance computation as well as U-NLL computation which

increases the computation cost. Our approach is linear to the num-

ber of road segments passed by the trajectory which furthermore

proves the capability of our approach on supporting the throughput

of tremendous trajectory stream data.
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Figure 6: Detection time cost vs. distances of SD-pairs

4.4 Outlier Detection with Partial Trajectories
The fourth set of experiments evaluates the performance on detect-

ing potential outliers when the trajectory Rst has not yet reached

the destination (i.e., rt , rd ). We simulate the process as follows.

For a complete trajectory R = {r1,r2, · · · ,rn} w.r.t. 〈r1,rn〉, we set rt
to r1 �rst, r2 second, and so on until rt = rd = rn . Assume len(R)
stands for the length of a trajectory R, and Rst stands for the partial

trajectory that triggers an alarm issued by the respective detec-

tion algorithm. We split the trajectories into two disjoint sub-sets,

Ro capturing all the outlier trajectories and Rn preserving all the

normal ones. For trajectories in Ro , we prefer Rst to be shorter

for early warning, and hence report positive alarm rate (=
len(Rst )
len(R) )

which means a smaller positive alarm rate indicates the ability to

alarm the outlier earlier; if an alarm is triggered only when the

destination rn is reached or no alarm is triggered at all, its positive

alarm rate is set to 1, the worst value. For trajectories in Rn , no
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alarm shall be issued at all, and hence we report false alarm rate
(= 1−

len(Rst )
len(R) ); if no alarm is issued, its false alarm rate is set to 0.

Fig. 7 reports the results. Note TPRRO is excluded from this set of

experiments as its input must be complete trajectories.

For outlier trajectories, DB-TOD has the smallest positive alarm

rate value, as shown in Fig. 7(a). It means DB-TOD can detect an

outlier trajectory much earlier than two iBOAT-based approaches,

mainly contributed by the fact that DB-TOD is able to model the

road latent costs accurately. Between two iBOAT-based approaches,

iBOAT-edge performs better because a grid may overlap with multi-

ple road segments, including both popular ones and unpopular ones.

Consequently, the pattern represented by grids is less accurate than

that represented by edges. For normal trajectories, DB-TOD again

performs the best as it has the smallest false alarm rate.
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Figure 7: Performance of detecting potential outliers of par-
tially observed trajectories (the lower the values, the better)
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Moreover, we report an interesting case study in Fig. 8. Two tra-

jectories w.r.t. 〈S,D〉 are plotted, where the solid line trajectory is a

normal one that has occurred 107 times in the historical dataset, and

the dash line trajectory is an outlier occurring only once. According

to the road network, there are two routing decisions available in

location A, i.e., driving into the tunnel or continuing moving on

the road, denoted as actions at and ar respectively. Suppose the

partial trajectory RSA from S to A is known, as plotted in Fig. 8.

DB-TOD estimates the lower bound of the whole trajectory to be

13.17, smaller than the preset threshold ζSD = 14.625. If the driver

performs action ar , the lower bound of the partial trajectory will

be increased to 26.12 and an alarm will be issued. To explain why

DB-TOD is able to issue an alarm early, we plot the street views

w.r.t. several locations in Fig. 8. We can observe the solid line route

from A to D via B is a very smooth route inside the tunnel, while

the dash line route fromA toD via E andC involves many turns and

passes mainly uni-directional road segments with one narrow lane.

Once the driver performs action ar , she will miss the tunnel and

be forced to move along a very uncomfortable route which in turn

increases the lower bound of the U-NLL of the whole trajectory.

4.5 Visualization of Latent Cost Weights
Recall that in AFC-MEIRL model, the latent cost weights θ will be

learned from the historical data to model the preference of drivers

w.r.t. di�erent features. Fig. 9 plots the weights w.r.t. di�erent speed

features and turning angle features under two datasets. We can

observe that with the increase of the historical average speed of

a road, the weight largely reduces, which is consistent with our

expectation as drivers tend to take the route on expressway or major

roads with higher speed limit. Fig. 9(b) shows the weights w.r.t. the

turning angle formed by two consecutive road segments. Assuming

a turning is from r1 to r2, the turning angle is arccos(vec (r1.s →
r1.e ) ·vec (r2.s → r2.e )). We can observe the weight is nearly 0 when

the angle is smaller than 45
◦

which can be re�ected by the fact

that drivers tend to move straight forward. With the increase of the

turning angle, the weights also increase which is also reasonable,

since it gradually moves from “going straight” to “turning left”. The

cost weight drastically increases when angle feature is between

180
◦

and 225
◦
, which implies that drivers are very reluctant to

perform a U-turn. Afterwards, the weight again drops signi�cantly

because angle feature in the range of 270
◦ ∼ 315

◦
indicates a right

turn and 360
◦

(i.e., 0
◦
) again indicates moving straight forward with

a weight close to 0. Note that the weights trained by AFC-MEIRL

from two datasets are very similar, which is also consistent with

common knowledge, as drivers in di�erence places do share similar

driving preferences of turning and road speed. This phenomena

implies that the latent cost weights θ learned from one dataset

provides a good initial value for the latent cost weights of another

dataset to reduce the iterations of gradient decent algorithm.
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Figure 9: The learned latent cost weights w.r.t. speed and an-
gle features. A smaller weight indicates a lower cost and a
higher preference.
4.6 Comparison BetweenMEIRL and AFC-MEIRL
Note that our AFC-MEIRL is extended from MEIRL by adding the

new capability of modeling trajectories with unobserved features.

In our last set of experiments, we study the performance of AFC-

MEIRL and MEIRL on modeling trajectory. For a probabilistic model,

the negative log likelihood (NLL) of the dataset assigned by the

model is a common metric which is computed as Eq. (2). A smaller

NLL means the model can assign a larger likelihood to the dataset

which implies a better capability of modeling the data. Table 3

lists the result. We can observe that AFC-MEIRL has a much lower

NLL than MEIRL, which demonstrates the superior capability of

AFC-MEIRL for modeling trajectories.

Moreover, to further demonstrate the superior modeling capabil-

ity of AFC-MEIRL model, we visualize a real case which is shown in

Fig. 10. This case shows an action a : r1 → r2 with the feature show-

ing in the text box in the �gure. Table 2 lists all the features used in
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Table 2: The features of the action a : r1 → r2

Historical Average Speed Road Level Turning Angle Feature Bias

Feature low medium high 0 1 2 3 4 5 6 7 45 90 135 180 215 270 315 360 ∆a
Weight 9E-4 3E-4 1E-6 0.1 5E-3 4E-3 3E-3 2E-3 2E-3 7E-4 2E-7 2E-06 0.10 0.27 0.57 1.49 0.06 0.13 3E-6 1.0

Value 504.5 0 0 0 504.5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3.64

Table 3: The NLL of two models (the lower the better)
Dataset Porto Shanghai

AFC-MEIRL 4.75 6.23
MEIRL 7.84 7.28

our experiment. Speci�cally, the more major the road is, the higher

the level will be, which can be obtained from the OpenStreetMap

data. We also list the trained weights corresponding to each feature

in the table. For the action a in Fig. 10, its corresponding feature

vector can be constructed as the “value” row in Table 2. If we do not

include the additional feature bias ∆a , which is what the traditional

MEIRL model does, its latent cost is θ>fa = 3.22. However, if we

add the automatic feature correction mechanic, the AFC-MEIRL

model learns the latent feature bias ∆a as 3.68 which sets the �nal

latent cost of action a to 6.9. From the �gure we can �nd that if we

perform the action, it will take a round to r1 which is obviously a

meaningless action. Moreover, the road of r2 is also very narrow

with many cars parking on both sides which makes people reluctant

to drive on. However, the feature de�ned in Table 2 can not capture

such information thus MEIRL fails to correctly model this situation.

Supposing there exists another straight road r3 connecting to r1
with the same length, level, average speed and turning angle as

r2. By traditional MEIRL, the latent cost of the action a′ : r1 → r3
will be the same as a, which is obviously unreasonable as a′ seems

more natural than a. Fortunately, such information can be success-

fully captured through historical data by AFC-MEIRL model which

further justi�es its superiority.

a

Turning angle: 315°
Historical speed: low
Road Level: 1 (Residential)
Length: 504.5m

r1

r2

r3 (fake)

Figure 10: Case study. The left photo is the street view of the
corresponding place in r2.

5 CONCLUSIONS
In this paper, we propose DB-TOD, a probabilistic-model based

vehicle trajectory outlier detection approach. It requires zero access

to the database storing the historical trajectories when detecting

outliers online. The detecting complexity is linear to the number

of road segments passed by a trajectory which guarantees the

e�ciency of our algorithm. We model the driving behavior by

AFC-MEIRL model which is extended from MEIRL model. It models

the latent cost of routing decision via the explicit feature counts

and the latent feature biases. Our model has the convex objective

function which ensures the global optima can be achieved. We

conduct comprehensive experiments using two real datasets. The

results show that DB-TOD signi�cantly outperforms the state-of-

the-art approaches on both e�ectiveness and e�ciency.
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