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Local Gaussian Processes for Efficient
Fine-Grained Traffic Speed Prediction

Truc Viet Le, Richard Oentaryo, Siyuan Liu, and Hoong Chuin Lau

Abstract—Traffic speed is a key indicator for the efficiency of an urban transportation system. Accurate modeling of the

spatiotemporally varying traffic speed thus plays a crucial role in urban planning and development. This paper addresses the problem

of efficient fine-grained traffic speed prediction using big traffic data obtained from static sensors. Gaussian processes (GPs) have

been previously used to model various traffic phenomena, including flow and speed. However, GPs do not scale with big traffic data

due to their cubic time complexity. In this work, we address their efficiency issues by proposing local GPs to learn from and make

predictions for correlated subsets of data. The main idea is to quickly group speed variables in both spatial and temporal dimensions

into a finite number of clusters, so that future and unobserved traffic speed queries can be heuristically mapped to one of such clusters.

A local GP corresponding to that cluster can then be trained on the fly to make predictions in real-time. We call this method localization.

We use non-negative matrix factorization for localization and propose simple heuristics for cluster mapping. We additionally leverage

on the expressiveness of GP kernel functions to model road network topology and incorporate side information. Extensive experiments

using real-world traffic data collected in the two U.S. cities of Pittsburgh and Washington, D.C., show that our proposed local GPs

significantly improve both runtime performances and prediction accuracies compared to the baseline global and local GPs.

Index Terms—Gaussian process, matrix factorization, spatiotemporal clustering, traffic speed, urban computing

Ç

1 INTRODUCTION

BIG data captured in densely populated urban environ-
ments can provide multi-scaled perspectives at the com-

plex behaviors of urban systems in both space and time.
Recent advances in big data technologies such as sensor net-
works and the Internet of Things (IoT) have accelerated the
pace of spatiotemporal data collection in urban settings at
ever finer-grained scale. Such wealth of data can be turned
into valuable knowledge and insights that can be used to
make cities more efficient, safer and enhance the living stan-
dard of urban residents. This is a significant utility of big data
for social good as it has been forecast that, by 2050, 66 percent
of theworld’s populationwill be urban dwellers [16].

Traffic speed is a key measure of the efficiency of a city’s
transportation system and the mobility of the urban resi-
dents. Accurate modeling and prediction of traffic speed in
a city are therefore crucial to the city’s intelligent transporta-
tion systems (ITS) [44], [48]. Traffic speed data are typically
obtained from two main sources: one from GPS trajectories
generated by moving vehicles equipped with GPS trackers
(e.g., taxicabs), and another from static traffic readers or sen-
sors located at fixed locations (e.g., traffic cameras or loop
detectors). GPS trajectories are often used as active mobile
probes that can directly measure travel times and speeds
along road segments [5], [14], [18], [31], [41]. However,

using such active probes also incurs high measurement var-
iance due to inconsistent driving behaviors and lack of con-
trol over route choices. Hence, a critical mass of probes is
needed for each road segment to obtain reliable measure-
ments. Meanwhile, static traffic sensors typically provide
sparse spatial coverage due to their high installation and
maintenance costs. This leaves many road segments uncov-
ered and unobserved and makes it hard to accurately infer
traffic speed. Indeed, recent surveys have indicated that in
most modern cities, only a few main roads have loop detec-
tors installed [6], [34]. This paper examines the latter source
of traffic data (i.e., static sensors) for fine-grained traffic
speed prediction, where “fine-grained” here means exten-
sive spatial coverage and fine temporal scales.

In this paper, we address the problem of fine-grained
traffic speed modeling and prediction in real-time. With fast
and reliable traffic prediction, travelers can optimize their
routes dynamically. Traffic management personnel can also
use such information to quickly develop proactive traffic con-
trol strategies andmake better use of the available transporta-
tion resources. Although many navigation systems currently
provide live traffic information for routing services, their cov-
erage is limited to major road segments and lacks the predic-
tive capabilities of future traffic conditions based on recent
observations and historical data [6], [31]. In addition, traffic
speed in densely populated urban areas is often subject to
short-term random fluctuations and perturbations due to
exogenous events such as weather conditions, emergencies or
traffic incidents [8]. As a result, we focus on short-term traffic
prediction in this work1 because we find the problem more
realistic and challenging.
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Gaussian processes (GPs) have been repeatedly demon-
strated to be an effective tool for modeling and predicting
various traffic phenomena such as mobility demand [8], traf-
fic congestion [25], short-term traffic volume [44], travel time
[18], and pedestrian and public transit flows in urban areas
[28]. Indeed, comparative studies on short-term traffic vol-
ume prediction showed that GPs outperform other methods
such as autoregressive integrated moving average, support
vector machine, and multilayer feedforward neural network
for the task [44], [48]. A particularly attractive feature of GPs
is their fully non-parametric Bayesian formulation, which
allows for explicit probabilistic interpretation of the model
outputs and confidence interval estimations [8], [37], [44].
Unfortunately, GPs admit cubic time complexity in the size
of the training data. This has been a major limiting factor for
the adoption of GPs to model and infer big traffic data, par-
ticularly for real-time applications [8], [25], [26], [46].

We address the problem of efficient GPs for real-time
traffic speed prediction based on the idea of clustering spa-
tiotemporal traffic data into “local” subsets of correlated
traffic patterns. We call such clustering localization [29], [37],
[47]. From each subset, a local GP can be trained to make
predictions of future traffic queries that could be heuristi-
cally mapped to it using some similarity measure. Speed in
each local subset is assumed to have similar behaviors
through space and time. To this end, we propose to use
non-negative matrix factorization (NMF) for fast localiza-
tion. The idea of using local GPs to infer data of clustered
nature is not entirely new. Indeed, Snelson and Ghahramani
[37] first proposed local GPs for non-linear regression tasks
in the biological domain, where clustering is done based on
similarity of the responses in the training data. In this work,
our adoption of the idea using NMF for efficient traffic
speed prediction is novel to the best of our knowledge. We
are able to empirically show significant improvements in
both runtime performances and prediction accuracies in
diverse urban and geospatial settings using the proposed
approach compared with baseline methods. Thus, this work
can be considered as a hybridization of [44] that uses GPs
for short-term traffic flow prediction and [37] that uses the
idea of clustering similarly behaved data to train local GPs
in order to improve their efficiencies.

In addition, we model traffic speed as spatiotemoporal
GPs on road networks, by taking advantage of the expres-
siveness of the GP kernel functions. Such expressiveness
allows us to model the topology and directedness of the
road network, as demonstrated by Yu and Chu [45] for
generic networked data. We further take advantage of the
additive kernel feature of GPs [12] to incorporate side informa-
tion into the model, where side information can be any spa-
tial feature of the road network that affects traffic speed
through it. Through empirical experiments, we show that
there exists an intrinsic tradeoff between model expressive-
ness and computational efficiency. Model expressiveness
translates into more accurate predictions at the cost of
increased runtime. In practice, one needs to consider care-
fully such tradeoff and chooses the most relevant side infor-
mation to the traffic phenomenon being modeled.

We summarize our main contributions as follows:

� We develop local Gaussian processes for efficient
traffic speed prediction in real-time by using non-

negative matrix factorization for clustering of speed
in both space and time (i.e., localization).

� We take advantage of the expressiveness of Gaussian
process kernel functions to model traffic speed
through directed road networks and incorporate
side information features via additive kernel.

� We perform comprehensive experiments to evaluate
our approach using real-world traffic data and dem-
onstrate significant improvements in both runtime
and prediction accuracies of using the proposed local
GPs against the baseline methods.

The rest of the paper is organized as follows. In Section 2,
we first review recent related works. Section 3 presents our
problem statement, followed by an overview of our solution
methodology in Section 4. We describe the NMF and spatio-
temporal GPs components of our methodology in Sections 5
and 6, respectively. We then present our experiments in
Section 7. Finally, we conclude in Section 8.

2 BACKGROUND AND RELATED WORK

Traffic Speed Data. Speed modeling is a diverse research area
due to a large variety of available metrics and measurement
tools (e.g., traffic cameras, GPS traces, speed sensors, etc.) as
well as modeling goals. Our work is most closely related to
the area of congestion and flow estimation. Congestion and
traffic speed estimation has been studied using various
mathematical tools, ranging from flow patterns [24] to
Markov chain forecasting [36], path oracles for spatial net-
works [33], and shortest path and distance queries on road
networks [18], [41], [51]. Among those, there are generally
two main categories of traffic flow data: (1) dynamic traffic
measurements obtained from GPS trajectories or low-band-
width cellular updates associated with individual vehicles
[5], [18], [31], [41], and (2) static traffic sensor readings asso-
ciated with fixed locations (e.g., traffic cameras or sensor
networks) [1], [3], [20]. In this respect, our work models
data of the second category.

Predictive Modeling of Traffic Speed. Spatiotemporal corre-
lation structure of traffic data can be exploited to predict the
speed over unobserved road segments at any time using the
observed data at the sensors’ locations. Existing Bayesian
filtering frameworks [7], [40] that utilize various hand-
crafted parametric models to predict traffic flows along
highway stretches can only correlate with adjacent highway
segments. Thus, their predictive performances could be
compromised when the actual spatial correlation spans
multiple segments. Moreover, their strong Markov assump-
tion makes these models ungeneralizable to arbitrary road
network topology with complex correlation structure. Exist-
ing multivariate parametric models [21], [27] do not quan-
tify uncertainty estimates of the predictions and impose
rigid and unrealistic spatial locality assumptions.

Gaussian Processes for Traffic Speed.Wemodel traffic speed
as a spatiotemporal Gaussian process that characterizes the
spatiotemporal correlation structure of the phenomenon
over a defined road network structure. A major computa-
tional advantage of GP is its fully non-parametric Bayesian
formulation. This allows for explicit probabilistic interpreta-
tion of the model outputs and estimation of predictive
uncertainty [32]. Neumann et al. [28] maintained a mixture
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of two independent GPs for traffic speed prediction, such
that the correlation structure of one GP utilizes road seg-
ment features and that of the other GP depends on manu-
ally specified relations. Xie et al. [44] used GPs to predict
the time series of traffic volume over four U.S. highways,
and asserted GPs’ superior performance over other
parametric alternatives. Liu et al. [25] used GPs to model
uncertain congestion environments for adaptive vehicle
routing. More recently, Chen et al. [8] applied GPs for urban
mobility demand sensing in a decentralized and distributed
fashion. All these GPs (except for [8]) do not scale with big
traffic data for real-time applications because of their high
levels of complexity. In contrast to the distributed GPs pro-
posed in [8], our approach is simpler and does not rely on
complex decentralized mechanism.

Spatiotemporal Clustering. Clustering techniques have
been used to analyze various traffic phenomena. For exam-
ple, Weijermars [42] applied a hierarchical clustering algo-
rithm to identify typical urban traffic patterns that serve as
basis for traffic forecasting. Jiang et al. [19] proposed a
framework to cluster the spatiotemporal mobility patterns
in urban areas by combining principal component analysis
and K-means clustering. A common theme is that they
employ hard clustering methods that assume each data
point can only belong to a cluster. In our work, we relax this
assumption by employing NMF [9], [23], which assumes
soft memberships to clusters. Indeed, Ding et al. [10] have
shown that, by imposing certain constraints, NMF translates
to “soft” K-means or spectral graph cuts. We also put NMF
into a novel application to localize training data for local
GPs, making our approach scalable to big data. Our
approach also offers a simpler and more generic alternative
to the sparsification of GP kernels [4], [37].

Local Gaussian Processes. The idea of localizing training
data by clustering in order to learn local GPs has been advo-
cated by several researchers. Snelson and Ghahramani [37]
developed a local GP approach by dividing the training
data into (disjoint) blocks via a simple farthest-point cluster-
ing. Nguyen et al. [29] proposed a local GP for online regres-
sion, where the training data are incrementally partitioned
into local regions. For each local region, an individual local
GP is trained, and prediction is performed by weighting the
nearby local models. While our approach shares similar
goals to those, our NMF-based localization is done on the
response (i.e., speed) space instead of the feature space.
Doing so enables us to build more accurate local GPs, each
specializing in a specific traffic response regime.

Urban Computing. Following the general framework of
urban computing research established by Zheng et al. [50],
in the urban sensing step, traffic speed data are obtained by
fusing public sources of information with real-time speeds
crowd-sourced from participating “floating cars”. In the
data management step, GIS shapefiles of the road networks
are merged with the collected speed readings to derive fea-
tures and responses for data analytics and modeling. In the
data analytics step, efficient local GPs are used to make real-
time inferences of unobserved and future speed values. In
the service providing step, the inferred speeds are fed into
navigation systems for efficient real-time routing and accu-
rate travel time estimates. Thus, our urban data source is a
cross-domain fusion of public sources (i.e., shapefiles for

road networks and features, historical traffic flow data from
transportation authorities) and privately crowd-sourced
speed readings from floating cars. This can be considered as
feature-level-based direct concatenation data fusion method
according to Zheng [49].

3 PROBLEM STATEMENT

A city’s road network is a system of interconnected segments
and points that represents the land transportation network
of a given urban area. A road network can thus be naturally
modeled using a graph data structure G ¼ ðV;EÞ, where the
set of edges E represents the road segments and the set of
nodes V represents the intersections (points) among those
segments. For many cities around the world, detailed road
networks are often made publicly available (typically as GIS
shapefiles) by the city’s transportation authorities. More-
over, these shapefiles typically contain useful information
about the road features such as speed limits, number of
lanes, segment length, road type, etc.

Suppose we have a road network G and a subset S � E
of road segments is installed with some form of traffic sen-
sors. Suppose we also have recent observationsD of vehicu-
lar travel speeds measured by those sensors at a certain
temporal granularity level D (i.e., the sampling interval)
along the segments in S. Let r 2 E be a road segment and~vr
be the observed speed over r, which is inherently a direc-
tional quantity (e.g., northbound or southbound).

Given D and a set Q � E of querying segments, we seek
to answer the following questions:

1) What are the expected traffic speeds along the seg-
ments in Q not covered by traffic sensors at the cur-
rent time? We call this the spatial inference task.

2) What are the expected traffic speeds along all the
segments in Q in the near future2? We call this the
temporal prediction task.

The spatial inference task arises because the spatial cov-
erage of traffic sensors in a city’s road network is typically
sparse, which may be attributed to their high installation
and maintenance costs [6], [34]. The short-term temporal
prediction task arises from many real-world applications
such as real-time vehicle routing, where new routes are con-
tinuously being calculated in light of current and predicted
traffic speed information [25], [44]. Thus, having answers to
these questions are the necessary conditions for the solu-
tions to many real-world problems in urban settings, where
accurate and fine-grained prediction of the city’s spatiotem-
porally varying traffic speed is crucial.

Table 1 summarizes the important notations used in the
paper as well as their relations.

4 SOLUTION OVERVIEW

We address the efficiency issues of using spatiotemporal
GPs for learning and predicting large-scale speed data. We
draw inspiration from Tobler’s first law of geography—
“Everything is related to everything else, but near things are
more related than distant things” [39] to cluster the recently

2. “Near future” or “short-term” prediction is subjectively defined
in this paper as less than 10 sampling intervals.
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observed traffic speeds in both space and time into “local”
sets of training data. Each of those subsets corresponds to a
local GP. We call such clustering localization for short.

Let Q ¼ fðr; tÞg be a set of querying road segments at a
future time t. For each segment r 2 Q, we just need to learn
a local GP using the segments “near to” r w.r.t. the observed
speeds in order to make a good enough inference of r. Like-
wise, given a future time t, we just need to know the data
points that are “related to” t (w.r.t. the speed) in order to
predict those at t. We use clustering to quantify such near-
ness and relatedness in space and time. We propose to use
non-negative matrix factorization for localization as spatio-
temporal clustering is naturally obtained through factoriz-
ing the matrix of observed speeds D. The meaning of
“local” here is the subset of segments and time points in D
that are assumed to have similar speeds to ðr; tÞ.

The gain in efficiency comes from the use of a much
smaller subset of training data for each local GP, which
could be further sped up using parallelization. In addition,
usingmore relevant training data could even improve predic-
tion as will be demonstrated. Fig. 1 illustrates the proposed
framework for efficient spatiotemporal inferences for big
traffic data using local GPs. The framework consists of two
components: learning and prediction.

Learning. Let D ¼ ðyijÞ be a matrix of dimension N �M,
where yij is an observed speed value along segment i at

time discrete time step j, N ¼ jSj is the total number of road
segments, and M ¼ jT j is the total number of regular inter-
vals sampled per day by traffic sensors. The learning pro-
cess consists of three steps:

Step 1 We factorize D into matrices W 2 RN�K
�0 and

H 2 RK�M
�0 , where K � N;M. We call K the

number of spatial/temporal clusters of D. That
is, we could divide the road segments in S intoK
spatial clusters of similar traffic patterns through-
out T and, likewise, we could divide T into K
temporal clusters of similar traffic patterns

throughout S. Thus, there areK2 such spatiotem-
poral clusters, each corresponding to a local
training set of a local GP.

Step 2 We normalize W row-wise. For each row wi

ð1 � i � NÞ of W that corresponds to a road
segment ri, we probabilistically assign ri to
one of K spatial clusters using the probability
vector wi. Each ri also has a vector of spatial
features fi that is used for spatial clustering
mapping.

Step 3 We normalize H column-wise. For each column
hj ð1 � j �MÞ of H that corresponds to a time
step tj, we probabilistically assign tj to one of K
temporal clusters using the probability vector hj.
We call this step temporal cluster mapping.

Step 2 and 3 perform “soft assignment” (i.e., probabilistic
mapping) of each road segment and time interval to their
respective cluster member. In this respect, NMF is essen-
tially analogous to performing simultaneous clustering on
the rows and columns of D, and probabilistically assigning
each row and column vector of D to their respective cluster
member. Because the rows of D represent the observed traf-
fic patterns over T at specific road segments, we interpret
Step 2 as spatial clustering of road segments according to the
similarities of traffic patterns over time. Likewise, each col-
umn of D represents the observed traffic pattern over S � S
at certain time interval. Therefore, Step 3 can be interpreted
as temporal clustering of time intervals according their simi-
larities of traffic patterns over space. Because the same K is
used for both spatial and temporal clustering, we conceptu-
alize such localization as binning the training data D into
K �K partitions, where each of the partitions (shown as
grid cells) is a “local” set of training data that have similar

TABLE 1
Summary of Notations Used in the Paper

Notation Description

G; V;E; S Road network G ¼ ðV;EÞ, and subset of segments
S � E that have traffic sensors installed

S; T Set of spatial contexts (S 	 E) and temporal contexts
(e.g., time of the day), respectively

D;W;H Matrix of observed speeds and its factors,
i.e.,D 
W�H

N;M;K Dimensions ofD ðN �MÞ,W ðN �KÞ and
H ðK �MÞ, where N ¼ jSj andM ¼ jT j

Q Set of traffic speed queries:Q ¼ fðr; tÞg,
where r 2 E and t 2 T

X Space of spatiotemporal contexts: X ¼ S � T
Y Observed speeds inD, i.e.,D ¼ ðyijÞ
Si; Tj Spatial and temporal cluster label ð1 � i; j � KÞ
k,KðX;XÞ GP kernel function and covariance matrix
fu, fðu;vÞ Side information: node-wise (fu) and edge-wise (fðu;vÞ)
D,W Temporal interval and sliding window

Fig. 1. The proposed framework for efficient spatiotemporal inference of traffic speed using NMF and local GPs.
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traffic pattern in space and time. This concept of localization
is illustrated in Step 1 of Fig. 1.

Prediction. Given a query pair ðr; tÞ 2 Q, where t is some
future time, prediction involves the following steps:

Step 1 We compare the spatial feature vector fr of r with
each fs of s, 8s 2 S using the Euclidean distance.
We choose the nearest segment s� 2 S to r. From
Step 2 in Learning, we know which spatial cluster
s� belongs to, here denoted as Si ð1 � i � KÞ. We
deterministically assign r to Si. We call this step
nearest neighbor mapping.

Step 2 Given t 2 T , we simply look up which temporal
cluster label Tj (1 � j � K) it belongs to using the
temporal cluster mapping (derived in Step 3 of
Learning) and deterministically assign t to Tj.

Step 3 Given the cluster labels Si and Tj of ðr; tÞ, we
retrieve the corresponding local training set
ðSi; TjÞ, train the local GPði; jÞ model and make a
spatiotemporal inference for ðr; tÞ.

For convenience, we shall hereafter use the term
“spatiotemporal inference” to collectively refer to both
the spatial inference (of unobserved segments) and the
temporal prediction (of future traffic speed). Each local
GPði; jÞ can be further extended to consider the network
structure and topology in its spatial “locality”, as well as
incorporate side information of the road segments via the
its kernel function (see Section 6). We shall also use the
term “global GP” to refer to the GP model whose training
set is sampled uniformly at random from D without
localization.

5 NON-NEGATIVE MATRIX FACTORIZATION FOR

LOCALIZATION

5.1 Preliminaries

Non-negative matrix factorization is a popular technique for
decomposing data into latent (hidden) components with
physical meaning and interpretations [9], [23]. It has been
widely used in dimensionality reduction, object detection,
latent clustering, and blind source separation, involving
image, text and signal data [9], [35], [38]. In this work, we
use NMF to decompose matrix D into two non-negative
matrices W and H that represent the spatial and temporal
clusters of speed values in D, respectively. These two matri-
ces are then used for the localization of GPs during the
training and prediction phases.

More formally, NMF seeks to approximate D 2 RN�M
�0 by

a product of W 2 RN�K
�0 and H 2 RK�M

�0 (i.e., D 
W�H),

where K is the number of clusters. Note that usually
K � minðN;MÞ. The non-negativity constraint imposed on
the two matrices serves to provide meaningful interpreta-
tions for the spatial and temporal clusters. That is, each
row of W can be interpreted as the degrees of membership to
K different spatial clusters. Likewise, each column of H
represents the degrees of membership toK different tempo-
ral clusters.

5.2 Optimization Objective

The quality of approximating D by W�H can be measured
through various distance functions. In this work, we use the

Frobenius norm, which leads to the optimization problem
of minimizing the loss function L

L ¼ 1

2
jjD�WHjj2F ¼

1

2

X
i;j

Di;j �
X
k

Wi;kHk;j

" #2
; (1)

where i 2 f1; . . . ; Ng, j 2 f1; . . . ;Mg, and k 2 f1; . . . ; Kg.
To arrive at meaningful spatial and temporal clusters, we

further impose sparsity constraints to W and H via L1-norm
penalty. This yields the following regularized loss

L ¼ 1

2
jjD�WHjj2F þ �

X
i;k

Wi;k þ
X
j;k

Hk;j

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L1�norm penalty

; (2)

where � > 0 is the regularization parameter (set to
� ¼ 100). Enforcing sparse W and H leads to sparse mem-
bership to different clusters, thus improving the model
interpretability while retaining approximation quality.

It is also worth noting that L is convex with respect to
the individual matrix W or H, but not both. As a result,
one can only expect to find a stationary point of L, which
is not necessarily a globally optimal solution. In the fol-
lowing section, we describe a fast coordinate descent
algorithm to find a stationary solution to the optimization
problem (2).

5.3 Coordinate Descent Learning

The key idea of the coordinate descent (CD) method is to
update one variable at a time, while keeping the others
fixed. The efficiency of the CD procedure has been demon-
strated in several state-of-the-art machine learning methods
[13], [15]. For NMF, the conventional ways of learning W
and H are largely based on the alternative non-negative
least squares (ANLS) framework [30], which converges to
stationary points provided each sub-problem can be solved
exactly. However, the ANLS-based methods usually take a
significant amount of time to find an exact solution for each
sub-problem. In contrast, the CD method can efficiently
compute reasonably good solution for each sub-problem
and move on to the next round [15].

Without loss of generality, we shall focus on the coordi-
nate descent update for entries in W; the update for entries

in H can be similarly derived, i.e., by replacing D with D>

and swappingWwith H>. The CD method solves each sub-
problem by the following one-variable Newton update:

Wi;k  max 0;Wi;k �
ð5WLÞi;k
ð52

WLÞi;k

 !
; (3)

where 5 and 52 denote the gradient (i.e., first derivative)
and curvature (i.e., second derivative), respectively. The
truncationmaxð0; xÞ serves to ensure non-negativeW.

With respect to the regularized loss (2), it is easy to show
that the gradient5WL resolves to

5WL ¼WHH> �DH> þ �; (4)
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and in turn the curvature52
WL is

52
WL ¼ HH>: (5)

Consequently, the CD update in (3) can be written as

Wi;k  max 0;Wi;k �
ðWHH> �DH>Þi;k þ �

ðHH>Þi;k

 !
: (6)

It can be seen from (6) that the regularization parameter �
plays a role in shifting the new Wi;k to a smaller (possibly
negative) value. As such, a larger � would foster more
(zero) truncation and therefore result in a sparser solution.

Using the update rule (6), we carry out a cyclic coordinate
descent. That is, we first update all entries in W in cyclic
order, and then update entries inH, and so on. With respect
to W, we traverse every cluster k, in which we update each
variable Wi;k using (6). The same applies to each Hk;j, with

W swapped with H>. The procedure is repeated until a
maximum number of iterations (set to 200) is reached.

5.4 Efficiency Considerations

The aforementioned CD procedure can be carried out effi-
ciently if certain quantities are pre-computed. Specifically,
we calculate and store the matrix products DH> and HH>

prior to entering the one-variable update loop for W. (Simi-

larly, we pre-compute D>W and W>W before updating H).
These would incur an additional memory with an order of

O ðN þMÞ �Kð Þ and O K2ð Þ, respectively. As such, the
total memory complexity of the CD procedure is
O ðN þM þKÞ �Kð Þ. This, however, is still much smaller
than the dimensionality ofD (i.e., N �M).

Meanwhile, thanks to caching, the time complexity of the
CD procedure is linear with respect to N and M. In particu-
lar, the time needed to update all entries in W within a CD

iteration is O N �K2ð Þ. Similarly, the time for updating H

is O M �K2ð Þ. Thus, the overall time complexity is thus

O ðN þMÞ �K2 � Tmaxð Þ (where Tmax is the maximum
number of iterations). As K and Tmax are typically small,
fixed values that are independent of the problem size, we
conclude that the CD procedure is efficient. We empirically
demonstrate its efficiency in Section 7.4.

5.5 DeterminingK

One practical problem in applying NMF is to determine the
optimal number of clusters K. In this work, we use 10-fold
cross validation (CV) procedure to determine K. Specifi-
cally, we randomly split all entries yij of D into 10 mutually
exclusive folds, and for each CV iteration f , we use fold f as
validation set for NMF, and the remaining (nine) folds as
training set. We then determine the optimal number of clus-
ters by choosing K that gives the highest fraction of explained
variance score [11] averaged over 10 validation sets.

For a target (speed) variable y and predicted (speed) vari-

able ŷ, the fraction of expected variance R2ðy; ŷÞ is

R2ðy; ŷÞ ¼ 1� Var½y� ŷ
Var½y ; (7)

where Var½y ¼ E½y2 � ðE½yÞ2 is the variance of y.

Notably, the fraction of explained variance is a popular
metric commonly used to evaluate a regression model [11].
For an optimal regression model ŷ that perfectly matches
the target variable y, the variance Var½y� ŷ will be zero,

which in turn implies R2ðy; ŷÞ ¼ 1. On the other hand, the
most na€ıve regression model is a constant function, which

gives Var½y� ŷ ¼ Var½y and thus R2ðy; ŷÞ ¼ 0. In this case,
the prediction ŷ tells us nothing about the target y, in the
sense that ŷ does not covary with y.

6 SPATIOTEMPORAL GAUSSIAN PROCESSES FOR

TRAFFIC SPEED MODELING

6.1 Preliminaries

Let S denote the space of spatial contexts (i.e., S 	 E in this
paper) and T denote the space of temporal contexts (e.g.,
information about time of the day). We model the speed
over road segment r 2 E under varying t 2 T via the func-
tion f : S � T 7! R�0 that outputs a non-negative speed
value for a given ðr; tÞ pair.

We define a spacetime process as a stochastic process
indexed by road segments r 2 S and temporal labels t 2 T

ffðr; tÞ : r 2 S; t 2 T g: (8)

Thus, for a fixed spacetime location ðr; tÞ, fðr; tÞ is a random
variable. It is a fundamental nature of spatiotemporal data
that observations at nearby locations in space and time are
similar [32]. We need a mathematical model to quantify the
extent to which things are related over space and time. Ker-
nel functions provide such an elegant model. For example,
given two spacetime locations ðr; tÞ and ðr0; t0Þ, the radial
basis function (RBF) kernel has the following form:

kððr; tÞ; ðr0; t0ÞÞ ¼ e�kðr;tÞ�ðr
0;t0Þk=l2 : (9)

A spatiotemporal Gaussian process is a stochastic pro-
cess over an index set X ¼ S � T . It is entirely defined by a
mean function m : X 7! R�0 and a covariance (kernel) func-
tion k : X� X 7! R. These two functions are chosen such
that they jointly define a multivariate normal distribution
whenever we draw f jX from a GP(m; k) on a finite set of
spacetime locations X ¼ fx1; . . . ; xTg

f jX � NðmðXÞ; KðX;XÞÞ; (10)

where mðXÞi ¼ mðxiÞ and ½KðX;XÞij ¼ kðxi; xjÞ.
By this construction, mðXÞ is a T -dimensional non-

negative vector and KðX;XÞ 2 RT�T is a positive semidefin-
ite covariance matrix. We now assume that f is sampled
probabilistically from a GP prior f � P ðfÞ [32]. A GP prior
is fully specified by its mean function

mðr; tÞ ¼ E½fðr; tÞ;

its covariance (or kernel) function

kððr; tÞ; ðr0; t0ÞÞ ¼ E½ðfðr; tÞ � mðr; tÞÞðfðr0; t0Þ � mðr0; t0ÞÞ
¼ Covððr; tÞ; ðr0; t0ÞÞ;

and observation noise with variance s2.
A major computational benefit of GPs is that the poste-

rior can be computed in a closed form. Suppose we have
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collected recent speed observations Y ¼ ½y1; . . . ; yT > at
X ¼ ½ðr1; t1Þ; . . . ; ðrT ; tT Þ. We can write the posterior distri-
bution of f given X and Y also as a GP with mean

mY;Xðr; tÞ ¼ mðr; tÞ þ k̂Xðr; tÞ>ðK̂Y;X þ s2IÞ�1ðdYÞ> (11)

and covariance kY;Xððr; tÞ; ðr0; t0ÞÞ ¼

kððr; tÞ; ðr0; t0ÞÞ � k̂Xðr; tÞ>ðK̂X þ s2IÞ�1k̂Xðr0; t0Þ; (12)

where dY is the deviation of Y from its prior mean

dY ¼ ½y1 � mðr1; t1Þ; . . . ; yT � mðrT ; tT Þ>;

k̂Xðr; tÞ is a column vector of the kernel values between ðr; tÞ
and each observed location in X

k̂Xðr; tÞ ¼ ½kððr1; t1Þ; ðr; tÞÞ; . . . ; kððrT ; tT Þ; ðr; tÞÞ> 2 RT ;

and K̂X is the Gram matrix of all locations in X

K̂X ¼ ½kððri; tiÞ; ðrj; tjÞÞi;j2½1;...;T  2 RT�T :

The posterior variance of fðr; tÞ is kY;Xððr; tÞ; ðr; tÞÞ.
Inference of continuous values with GP prior is known as

GP regression (or kriging). When concerned with a general
GP regression, it is assumed that for a GP f observed at
location ðr; tÞ, fðr; tÞjQ is just one sample from the multivar-
iate normal distribution of dimension jXj, where Q is the set
of hyper-parameters of the kernel function kððr; tÞ; ðr0; t0ÞÞ.
Thanks to its non-parametric nature, training a GP reduces
to estimating Q via the marginal likelihood function. Hav-
ing identifying Q, spatiotemporal inference fðr0; t0Þ becomes
a matter of sampling from the posterior distribution. A

major computational bottleneck of GP is its OðjXj3Þ time
complexity, which makes it impractical for large-scale spa-
tiotemporal data [8], [26], [32].

6.2 Kernel Functions for Road Networks

Let G ¼ ðV;EÞ be a directed graph representing a road net-
work. G is directed because traffic on a road segment could
possibly be one-way. On two-way segments, the corre-
sponding links of G become bidirectional. Let
Y ¼ fyðu;vÞ : ðu; vÞ 2 Eg be the speed values that we wish to

model. An important nature of networks is that Y are highly
correlated on known node and edge features. Following Yu
and Chu [45], let f : V � V 7! R�0 be a GP(m; k), then the
kernel function between ðu; vÞ and ðu0; v0Þ can be written as

kððu; vÞ; ðu0; v0ÞÞ ¼ kðu; u0Þkðv; v0Þ; (13)

where k : V � V 7! R is some kernel function between the
nodes. Since a random function f drawn from GPðm; kÞ is
generally asymmetric, i.e., fðu; vÞ 6¼ fðv; uÞ, traffic directions
along the links in G are automatically modeled.

Let u; v 2 V be identified by their respective pair of longi-
tude and latitude coordinates ðux; uyÞ and ðvx; vy), then
equation (13) becomes

kððu; vÞ; ðu0; v0ÞÞ
¼ kððux; uyÞ; ðu0x; u0yÞÞkððvx; vyÞ; ðv0x; v0yÞÞ:

(14)

For spatiotemporal data, a natural way to formulate a
spacetime kernel is to multiply the spatial kernel ks and the
temporal kernel kt together. This feature is referred to as sep-
arable kernel of GPs [26], [32]. Let r ¼ ðu; vÞ; r0 ¼ ðu0; v0Þ 2 E
and t be a time label, from (14), we have

kððr; tÞ; ðr0; t0ÞÞ
¼ ksððux; uyÞ; ðu0x; u0yÞÞksððvx; vyÞ; ðv0x; v0yÞÞktðt; t0Þ:

(15)

6.3 Incorporating Side Information

We define side information as any spatial features of the
nodes and edges of G other than the longitude and latitude
coordinates of the nodes of G, which precisely specify the
geolocation of a given edge ðu; vÞ and quantify its geospatial
nearness to another edge ðu0; v0Þ. Therefore, side information
could be any other spatial features of the nodes and edges of
G that can be derived from the given GIS shapefile of the
road network. We then classify side information into two
types: node-wise and edge-wise side information, where
node-wise side information contains the spatial features of
the nodes of G and edge-wise side information contains the
spatial features of the edges of G.

For each road segment r ¼ ðu; vÞ, let fu and fv denote the
vectors of node-wise side information of r, which are neces-
sarily of the same length. Likewise, let fðu;vÞ denote the vec-

tor of edge-wise side information of r. The set of all side
information of r is denoted as fr ¼ ðfu; fv; fðu;vÞÞ. We take

advantage of the additive kernel feature of GPs [12] to incor-
porate side information into the kernel function. Following
(15), the kernel function between ðr; tÞ and ðr0; t0Þ knowing
their side information fr and fr0 is given by

kððr; t; frÞ; ðr0; t0; fr0 ÞÞ
¼ kððr; tÞ; ðr0; t0ÞÞ þ

X
i

kðfðiÞu ; f
ðiÞ
u0 Þkðf

ðiÞ
v ; f

ðiÞ
v0 Þ

þ
X
j

kðfðjÞðu;vÞ; f
ðjÞ
ðu0;v0ÞÞ;

(16)

where i and j are the indices of the set of node-wise and
edge-wise side information, respectively.

6.4 Complexity of Local GPs

For each local GPði; jÞ, without incorporating side informa-

tion, the time complexity is OðjXijj3Þ ¼ OðjSij3 � jT j3j Þ. The
original sizes of S � E and the space of temporal contexts T
from matrixD are N andM, respectively. Due to clustering,
each local training set ðSi; T jÞ has E½jSij ¼ N=K and
E½jT ij ¼M=K training data points on expectation. Thus,
the expected time complexity of each local GPði; jÞ is

OððNM
K2 Þ3Þ. If the prediction phase in Fig. 1 can be done in

parallel for each spatiotemporal cluster ðSi; T jÞ, then

OððNM
K2 Þ3Þ is the expected time complexity to predict an arbi-

trary set of queries Q ¼ fðr; tÞg. Otherwise, if it is done seri-

ally, then the worst-case time complexity is K2OððNM
K2 Þ3Þ ¼

OðK2ðNM
K2 Þ3Þ ¼ OððNMÞ3

K4 Þ, which is still a significant improve-

ment over the original OððNMÞ3Þ time complexity of global
GPs without side information.

For GPs with side information, the total time complexity
is added by the complexity of the kernel function of each
“piece” of side information, each having complexity of
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OðN3Þ and Oðð N
K2Þ3Þ for global and local GPs, respectively.

We will empirically demonstrate in the next section the
effects of having side information on the “wall-clock” run-
time performances of both local and global GPs.

7 EMPIRICAL EVALUATION

7.1 Datasets

Traffic Message Channel (TMC) is a technology used to
broadcast traffic information in real-time to vehicles through
the radio waves. TMC allows for silent delivery of dynamic
traffic information, and is often integrated directly into the
vehicle’s navigation system for real-time estimation of speed
and route calculation.We have acquired, through a commer-
cial vendor of navigation systems, rich TMC datasets that
record the average speeds along certain road segments in the
two U.S. cities of Pittsburgh, Pennsylvania (P.A.), andWash-
ington, D.C. Our TMC datasets cover a total of 1,190 and
1,091 unique road segments in the city’s road network of
Pittsburgh and Washington, respectively. Each record is an
average speed measurement over a road segment every 5
minute interval (i.e., D ¼ 5 minutes) everyday for the whole
summer month3 of August, 2014. Each speed value also has
a direction indicator (e.g., northbound, southbound, east-
bound or westbound). Thus, our dataset is a close approxi-
mation to the city’s traffic sensor network.

TMC technology fuses real-time traffic information from
crowd-sourced networks of “floating cars” and mobile devi-
ces with public sources of information (e.g., from historical
data or transportation authorities). Under normal condi-
tions, when no incidents are reported from crowd-sourced
devices, TMC data capture publicly available sources of
traffic information. Under irregular conditions, such as traf-
fic incidents or congestion, crowd-sourced information is
collected and broadcast to alert drivers in real-time. Still,
TMC data can be missing for certain road segments when
routing services are not usually called for. This happens
typically in the late night or early morning hours. Hence,
our data are temporally sparse for each road segment, i.e.,
there are many missing values in the temporal dimension.

We downloaded the shapefiles4 representing the two
cities’ road networks and constructed a connected directed
graph G ¼ ðV;EÞ for each. Our datasets cover

approximately 5 and 8 percent of the city’s road network for
Pittsburgh and Washington, respectively. We extract useful
spatial features of the road segments in G from the retrieved
shapefiles and the network structure of G. Table 2 summa-
rizes those spatial features. The table also shows two net-
work centrality measures of G: (node) degree and (edge)
betweenness. Node degree is the (all) degree of a node in
the directed network. Edge betweenness is the number of
shortest paths from all pairs of nodes in the network that
pass through a given edge [2]. Network centralities have
been shown to greatly influence on the flow of information
and traffic through diverse networked settings [2], [17], [22].

Fig. 2 visualizes the speed distribution over the road seg-
ments covered by our TMC data in downtown Pittsburgh
on a typical weekday. Speed value along a segment is aver-
aged over observations on all the weekdays in the month at
8 a.m. The figure shows smaller segments in the downtown
area tend to have lower speeds during the morning rush
hour. Larger segments, on the other hand, are reasonably
observed with higher speeds and faster flows.

Fig. 3 shows the time series of the average speed on all
observed road segments in Pittsburgh during all the week-
days and weekends in the month. The figure clearly shows
that traffic speed on the weekend is, on average, faster and
less variable than that on the weekday. It also shows the
rush hours effects on the weekday: average speed dips
around 8 a.m. (morning rush hour) and 5 p.m. (evening
rush hour) when people commute to work and go home,
respectively. The traffic between those two rush hours is
generally much slower than in the late evening and early

TABLE 2
The Extracted Spatial Features f of the Road Segments in Pittsburgh and Washington

Feature Description

Longitude, latitude Longitude and latitude coordinates of the two endpoints (nodes) of a segment.
Segment length Length (in miles) of a segment.
Number of lanes The number of lanes a segment has in each direction.
Direction Direction of a segment: northbound, southbound, eastbound, or westbound.
Degree Degree of two end nodes of an edge (segment).
Betweenness Edge betweenness centrality of a segment.
One-way Is this segment one-way?
Road type One of the 10 defined types: avenue, boulevard, bridge, lane, place, ramp, road, street, tunnel, and way.

Fig. 2. Visualization of the speed distribution along road segments cov-
ered by our TMC dataset in downtown Pittsburgh on a typical weekday
in August, 2014 at 8 a.m.

3. Traffic pattern typically remains the same during a season[31],
which justifies our choice of data.

4. The shapefile of Pittsburgh’s road network can be downloaded
from: http://pittsburghpa.gov/dcp/gis/gis-data-new, and
Washington’s from: http://opendata.dc.gov
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morning. On the weekend, by contrast, traffic is generally
slower during the day when people tend to go out. The data
of Washington, D.C., exhibit very similar patterns.

7.2 Experimental Design

Following the observations in Fig. 3 and the established pro-
cedures in modeling human mobility patterns in urban
areas [14], [19], [44], [48], we split the data of each city into
two sets: weekday (Monday through Friday) and weekend
(Saturday and Sunday). We design the following experi-
ments to measure the performances of our local GP models
in diverse spatiotemporal settings using both sets.

For each city, we designate Thursday, August 28, 2014
and Sunday, August 31, 2014 as the test weekday and week-
end, respectively. We choose Thursday as a test weekday as
previous studies have suggested the inherent differences in
urban mobility patterns between Friday and the rest of the
weekdays [14], [19], [31]. We call either date the test day. For
each hour t 2 f0; 1; . . . ; 22; 23g on each test day (of each
city), we designate the test time to be 1-6 intervals ahead of t,
i.e., test time is tþ i� D, where D ¼ 5 minutes and
1 � i � 6. There are 24 trials per test day, where each trial
predicts six test cases. We call each test case an i-step ahead
prediction and simply denote the test time as tþ i.

We adopt the “sliding window” method proposed in [44]
to collect the training data for each trial t, denoted as Dt.
Given a test time tþ i, Dt is the observations collected from
time t�W up to (and including) t, where W is the length of
the window of observations. For weekday, W is a period of
exactly five previous weekdays, i.e., W ¼ 5� 24� 12 ¼
1; 440 intervals. For weekend, W is a period of exactly three
previous weekend days, i.e., W ¼ 3� 24� 12 ¼ 864 inter-
vals. We empirically choose such W for both sets in order to
avoid the “cold start” problem5 in matrix factorization [23]
due to the temporal sparsity problem of our data. For each
trial,Dt is the observed speeds averaged over the days inW .

To evaluate the spatiotemporal inferences of our models,
we randomly select 40 percent of the segments out of the
total number of segments as the training set and test on
all the segments. Hence, each Dt is a ð476� 288Þ- and

ð436� 288Þ-dimensional matrix for Pittsburgh andWashing-
ton, respectively. Fig. 4 illustrates our experimental design.

The following models are considered in our experiments:

1) GP—global GP without side information;
2) GPþ—global GP with side information;
3) LGP—NMF-based local GPwithout side information;
4) LGPþ—NMF-based local GP with side information;
5) LGR—grid-based local GP without side information;
6) LGRþ—grid-based local GP with side information.
All the above models implement spatiotemporal GPs

defined on road networks (as described in Section 6.2) and
use the RBF kernel functions. We use a global GP (with or
without side information) as the baseline for each NMF-
based local GP counterpart. For each global GP, exactly
Tmax ¼ 600 observations sampled uniformly at random
from Dt are used as its training set. We heuristically choose
such value of Tmax based on the observed tradeoff between
training time and prediction error. That is, too large Tmax

would induce impractically long training time for real-time
purposes, whereas too small Tmax would unacceptably
increase the prediction error rate of global GPs (i.e., the
under-fitting problem). The training set for each local GP
consists of minfTmax; jSljg observations sampled uniformly
at random from the corresponding local subset Sl induced
by the localization of Dt. This is to ensure fairness when
comparing prediction accuracies and runtime performances
between global GPs and their local counterparts.

We also include two grid-based local GPs whose localiza-
tions are based on partitioning each city’s road network into
uniform spatial grids. Each local GP is learned only from the
data points belonging to a given grid cell. We then compare
each grid-based local GP with its NMF-based counterpart.
For fair comparisons, we set the number of grids (for the
grid-based local GPs) as K2, i.e., the same number of clus-
ters used by the NMF-based local GPs.

Table 3 summarizes all the six models evaluated in our
experiments. All the spatial features listed in Table 2 are
used as side information, except for longitude and latitude
coordinates, which are used to define the spatiotemporal

Fig. 3. Time series of the average speed along road segments in Pitts-
burgh every 5-minute interval in August, 2014.

Fig. 4. The adopted “sliding window” experimental design:
t 2 f0; 1; . . . ; 22; 23g on the test day, tþ i ð1 � i � 6Þ denotes the test
time. W is the length of the sliding window: 5 days for weekday and 3
days for weekend. Dt denotes the training data containing the features
Xt and the observed speeds Yt in Dt averaged over 24-hour periods
inW .

5. The cold start problem invalidates the factorization of D if there
exists either an entire row of column of D that admits all missing
values.
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kernel function. Linear kernel functions are used for cate-
gorical variables (direction, one-way, and road type); other-
wise, RBF kernels are used.

7.3 Evaluation Metrics and Configuration

We use the root mean square error (RMSE), the mean abso-
lute error (MAE), and the mean absolute percentage error
(MAPE) to evaluate the models. The three metrics are
respectively defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1
ðŷi � yiÞ2

vuut ; (17)

MAE ¼ 1

N

XN
i¼1
jŷi � yij; (18)

MAPE ¼ 1

N

XN
i¼1

ŷi � yi
yi

����
����; (19)

where ŷi and yi are the predicted and observed speed over
road segment i, respectively, and N is the total number of
road segments in the test set.

We also measure the runtime performances by looking at
the “wall-clock time” (in seconds) for each model to train
and make predictions at test time. This includes, whenever
possible, matrix factorization, temporal cluster mapping,
nearest neighbor mapping, and training and prediction
time for each GP model. All our experiments were con-
ducted on a CentOS Linux machine with 7-core Intel(R)
Xeon 2.6 GHz processor and 70 gigabytes of RAM.

Finally, to evaluate the significance of the improvements
due to local GPs, if any, we use the non-parametric Wil-
coxon signed-rank statistical test [43]. The Wilcoxon test
provides a robust alternative to the pairwise t-test when the
measures cannot be assumed to be normally distributed.

7.4 Localization

Following the procedure described in Section 5.5, we find
the optimal number of clusters K� by taking K that gives

the highest explained variance R2. To this end, we perform
10-fold CV with K varying from 1 to 10, and then look for

the “elbow” point that corresponds to the highest R2 aver-
aged over 10 folds. Fig. 5 shows the results. We see that the
optimal K� (i.e., the “elbow”) for Pittsburgh are five for
weekday and two for weekend. The optimal K� for Wash-
ington are three for weekday and two for weekend. The
higher K� for weekday suggests that the traffic patterns on
the weekday are more complex than those on the weekend.

To verify the convergence of the CD algorithm, we also
monitor the residual error jjD�WHjj2 (i.e., the first term in
Equation (2)) over different training iterations. Fig. 6 shows

the convergence plots of jjD�WHjj2 for different datasets.
Here, we zoom into the first 30 training iterations (out of a
total of 200 iterations as per Section 5.3) in order to see more

clearly the convergence of jjD�WHjj2. Indeed, jjD�WHjj2
converges rapidly within 10 iterations and no longer
decreases substantially afterwards. This shows that the CD
algorithm offers an efficientmethod for trainingNMF.

Fig. 7a illustrates the time series of the average speed
along the clusters of road segments every 5-minute interval
on a typical weekday in Pittsburgh. Our NMF method has
clustered the road segments into different types, each hav-
ing different throughput and daily speed distribution. For
example, for clusters 2, 3, and 4, we can see clearly the rush
hour effects observed earlier in Fig. 3 to different levels.
These clusters mostly contain road segments leading to
(and away from) the business areas in the downtown. The
other clusters with slower speeds contain mostly small seg-
ments in the residential areas, or those that are in the busi-
ness areas but do not lead to the residential areas.

TABLE 3
GP Models Evaluated in the Experiments

Model Baseline NMF-based Side Info Grid-based

GP X

GPþ X X

LGP X

LGPþ X X

LGR X X

LGRþ X X X

X means ‘Yes’; blank means ‘No’.

Fig. 5. Results of our parameter search procedure for determining K for
each dataset.

Fig. 6. The convergence of the coordinate-descent training in NMF using
the best number of clustersK� for each dataset.
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Fig. 7b presents a heatmap visualization of the temporal
cluster mapping derived from the column-wise normalized
matrix H on a typical weekday in Pittsburgh. The result
shows clear temporal patterns of the traffic speed in the
city, whereby the probabilistic assignment of the temporal
clusters is sparse. That is, at a given time step, only a few

clusters (darker shades) have substantially higher probabil-
ity value than the rest (lighter shades). In this case, we can
identify rush hours by looking at rapidly changing cluster
assignments that occur within a fairly short period of time.

It is worth noting that because of the temporal sparsity
problem mentioned in Section 7.1, each Dt of each dataset
has a significant number of missing values. NMF solves this
problem by optimally imputing those missing values while
imposing non-negativity and sparsity constraints.

7.5 Evaluation Results

Table 4 shows the summary statistics of the NMF-based
localization runtime. We can see that, on average, NMF-
based localization is sufficiently fast for most real-time
applications (much less than 1 second) for all datasets.

Fig. 8 shows the prediction evaluation results of the six
GP models listed in Table 3 for both Pittsburgh (PGH) and
Washington (WAS) across the three evaluation metrics
(MAE, MAPE, and RMSE) averaged over all the trials on
both test weekday (WD) and weekend (WE). For Pittsburgh
(top row), it can be seen that global GPs without side infor-
mation always have the highest error rates. Grid-based local
GPs perform better than global GPs; however, the

Fig. 7. (a) Time series of the average speed along clustered road seg-
ments for weekday data in Pittsburgh. Horizontal axis shows the 5-min-
ute intervals. (b) Heat map of the column-wise normalized matrix H that
visualizes the temporal clustering for weekday data in Pittsburgh. Bolder
shade means closer to 1 and lighter means closer to 0.

TABLE 4
Runtime Statistics (in Seconds) of NMF-Based Localization

for Pittsburgh (PGH) and Washington (WAS) on
Weekday (WD) and Weekend (WE)

City (day) Mean Median Stdev

PGH (WD) 0.3137 0.2676 0.1243
PGH (WE) 0.1889 0.1621 0.1043
WAS (WD) 0.2597 0.2050 0.1071
WAS (WE) 0.1395 0.1146 0.0490

Fig. 8. Evaluation of speed prediction across the six models using the metrics: MAE, MAPE, and RMSE. Datasets evaluated are: Pittsburgh (PGH)
and Washington (WAS) on weekday (WD) and weekend (WE).
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predictions with the lowest errors come from NMF-based
local GPs. Having side information always improve predic-
tion accuracies with weekdays having stronger effects than
weekends. Side information has the strongest effects on
global GPs, which is not surprising given its largely diffuse
training set. All the three metrics display consistent obser-
vations with MAPE having the highest variance. Our pair-
wise Wilcoxon tests between global GPs and NMF-based
local GPs (with/without side information) and between
NMF-based local GPs and grid-based local GPs (with/with-
out side information) are all significant at the 5 percent
level, except for LGPþ and LGRþ for weekday data evalu-
ated using MAPE. It can be argued that NMF-based local
GPs with side information is the best-performing model
overall. This demonstrates the effects of learning from a
smaller, but more relevant local subsets of training data [37].

For Washington, similar observations can be seen in Fig. 8
(bottom row). Global GPs without side information almost
always have the highest error rates. Grid-based local GPs
yield high variances and, at the same time, perform much
worse than those in Pittsburgh (when compared to global
GPs). This showcases the inability of simple spatial grid parti-
tioning to adequately model more complex traffic patterns in
a completely different urban setting. Having side information
invariably reduces error rates for all the models. Similar pair-
wise Wilcoxon tests were performed, all of which are signifi-
cant at the 5 percent level, except for the three pairs: GP
versus LGP, GPþ versus LGPþ, and LGPþ versus LGRþ for
weekend data evaluated using MAPE due to high variances.
It can thus be concluded that NMF-based local GPs with side
information is the best-performing model for weekday data.
It is, however, inconclusive for weekend data.

Fig. 9 shows the evaluation of runtime performances for all
the models. For Pittsburgh (top row), NMF-based local GPs
significantly outperform global GPs by more than 10 folds
(i.e., NMF-based local GPs are more than 10 times faster) for
weekday, with and without side information. Higher K� sig-
nificantly reduces the runtime of local GPs as evidenced by
shorter runtime on the weekday compared to that on the
weekend. Apart from that, we see a similar pattern for week-
end: both local GPs significantly outperform global GPs in
terms of runtime, andNMF-based local GPs are more than six
times faster. Having side information invariably improves
prediction accuracies, but also increases runtime for all

models. This is particularly true for grid-based local GPs,
which suggests that the chosen set of side information induces
more complex correlation structure (hence, parameter esti-
mates) for GP learning. All Wilcoxon pairwise tests are statis-
tically significant at the 5 percent level.

For Washington, Fig. 9 (bottom row) shows similar obser-
vations: local GPs are faster than global GPs and having side
information increases runtimes. What is interesting,
however, is the observations that NMF-based local GPs with
side information have significantly higher runtimes than
grid-based local GPs. This might be due to the need of LGPþ

to model more complex local subsets that results from non-
uniform partitioning of training data than LGRþ. We further
discuss this observation in the following section. All Wil-
coxon pairwise tests are significant at the 5 percent level.

7.6 Discussion

For all datasets, global GPs incur high runtimes and have
low prediction accuracies, which render them impractical
for real-time applications. Local GPs thus become viable sol-
utions to real-time traffic prediction with significantly lower
runtime costs, with and without side information. Local
GPs with side information can give more accurate predic-
tions but at increased time costs, and thus are more suitable
for longer-horizon applications. On the other hand, local
GPs without side information are more suitable for shorter-
horizon applications, where decisions are to be made fast.

In most cases, NMF-based local GPs predict significantly
better than grid-based local GPs, as shown in Fig. 8. We
have also seen that, for the same set of side information fea-
tures, different localization methods can result in signifi-
cantly different runtimes for training local GPs. This is due
to our uniform (and uninformed) selection of the same set
of side information listed in Table 2 for both cities. Different
cities induce different traffic phenomena and optimization
problems (and complexities). It is unreasonable that the
same set of side information is able to model those distinct
phenomena equally effectively and efficiently. Discrimina-
tory feature selection should have been exercised. Feature
selection is an entire different issue and often relies on
domain knowledge; thus, it is out of scope of this paper.

In practice, one needs to trade off between model expres-
siveness (i.e., incorporating side information) and efficiency
depending on one’s sensitivity to accuracy and time. How
to select side information also matters. In this respect, it is
important to consider the most relevant side information
(and the smallest subset of such) to the traffic phenomenon
being modeled in order to maximize its benefits. Such
knowledge also belongs to the domain expert.

Finally, Fig. 10 visualizes the spatiotemporal inferences of
traffic speed on the entire road network of Pittsburgh (zoomed
into the downtownarea) on the testweekday at three test times:
8:15 a.m., 2:15 p.m., and 8:15 p.m. NMF-based local GPs with
side informationwereused tomake the inferences. The training
sets were derived using the sliding window method at time
t 2 f8; 14; 20g hours. Each test time is a three-step ahead pre-
diction. At each test time, the observed speeds cover 5 percent
of the whole network (while prediction makes for the entire of
it). Fig. 10 shows clearly the morning rush hour effect at 8:15
a.m., where themain roads leading to the downtown and other
business areas become highly congested (with lower speed

Fig. 9. Evaluation of the total runtime performances across six models
for the two cities of Pittsburgh (PGH) and Washington (WAS) on week-
day (WD) and weekend (WE).
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distribution). At 2:15 p.m., congestion becomes more localized
to the business areas because of office hours, while the main
roads have become visibly more cleared of traffic. At 8:15 p.m.,
traffic on the whole gets visibly faster with main roads leading
to and from the business areas having apparently much faster
flows, and congested areas have nowbecomemore localized to
the nightlife areas in downtown.

8 CONCLUSION

This paper addresses an important problem in urban com-
puting: real-time traffic speed modeling and prediction. To
this end, we propose the novel idea of localizing spatiotem-
poral Gaussian processes using non-negative matrix factori-
zation. In addition, we make use of the expressiveness of
GP kernel functions to model traffic speed through directed
links of a road network and incorporate side information
via additive kernel. Extensive empirical studies using real-
world traffic data collected in diverse geospatial settings
have demonstrated the efficacy of our proposed approach,
in terms of both computational efficiency and prediction
accuracy, against the baseline global and local GPs. We also
show that a tradeoff exists between model expressiveness
and runtime performance when side information is taken
into account. It is therefore important to consider the most
relevant side information for that matter.
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