
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2018 

Every step you take, I’ll be watching you: Practical StepAuth-Every step you take, I’ll be watching you: Practical StepAuth-

entication of RFID paths entication of RFID paths 

Kai BU 
Zhejiang University 

Yingjiu LI 
Singapore Management University, yjli@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Information Security Commons 

Citation Citation 
BU, Kai and LI, Yingjiu. Every step you take, I’ll be watching you: Practical StepAuth-entication of RFID 
paths. (2018). IEEE Transactions on Information Forensics and Security. 13, (4), 834-849. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3859 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3859&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 1

Every Step You Take, I’ll Be Watching You:

Practical STEPAUTH-entication of RFID Paths
Kai Bu*, Member, IEEE, Yingjiu Li, Member, IEEE

Abstract—Path authentication thwarts counterfeits in RFID-
based supply chains. Its motivation is that tagged products taking
invalid paths are likely faked and injected by adversaries at
certain supply chain partners/steps. Existing solutions are path-
grained in that they simply regard a product as genuine if
it takes any valid path. Furthermore, they enforce distributed
authentication by offloading the sets of valid paths to some or all
steps from a centralized issuer. This not only imposes network
and storage overhead but also leaks transaction privacy.

We present STEPAUTH, the first step-grained path authen-
tication protocol that is practically efficient for authenticating
products with strict path bindings. We encode a path into a
secret with minimum path visibility disclosure between adjacent
steps. Carrying the secret, a product has to go through steps in
the exact order as in the designated path to pass authentication.
STEPAUTH enforces no tag computation and enables each step
to locally verify path secrets without pre-offloaded valid-path
sets. Toward an even higher security guarantee, STEPAUTH can
hinder an adversary capable of compromising all steps from
forging valid secrets. We make STEPAUTH practically efficient
by taking advantage of nested encryption and hybrid encryption.
To achieve a 128-bit security for a practically long path of 100
steps, STEPAUTH generates a secret around 10 KB, which can
be well supported by high-memory EPC Gen2 tags. Such secrets
take STEPAUTH less than 1 s to encode and around 10 ms to
verify.

Index Terms—RFID, path authentication, supply chain man-
agement.

I. INTRODUCTION

RADIO-Frequency Identification (RFID) paths have been

widely used to reveal counterfeit products. In RFID-

enabled supply chains, tags affixed to products carry secrets re-

lated to the paths taken by products. Enroute readers deployed

at each step (i.e., a supply chain partner) of a path verify

products via authenticating their path secrets. The motivation

for path authentication is that injected counterfeits usually take

different paths than their authentic counterparts [1]. According

to a recent report by OECD and the EU’s Intellectual Property

Office in April 2016, global trade in counterfeit products worth

almost half a trillion dollars a year, accounting for around

2.5% of global imports [2]. The type of counterfeits ranges

from cheap eggs [3] to expensive jewelry [4] and from low-

end event tickets [5] to high-tech electronic devices [6]. Such

counterfeit products may impose various threats on consumers.

K. Bu* is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China (e-mail: kaibu@zju.edu.cn).

Y. Li is with the School of Information Systems, Singapore Management
University, 80 Stamford Road, Singapore (e-mail: yjli@smu.edu.sg).

*Corresponding Author: Kai Bu.
EDICS: CYB-CP Cyber-Physical security.

For example, counterfeit luxuries cause financial loss to con-

sumers while counterfeit foods and electronic devices threat

consumers’ health and safety. Counterfeit detection based on

RFID paths is therefore practically imperative.

A. Related Work

The state of the art for RFID path authentication is quasi-

distributed and path-grained. The centralized issuer—knowing

all valid paths—offloads them to all or some steps, which act

as checkpoints. Enroute readers encode themselves into the

path secrets carried by passing tags. Checkpoints authenticate

a tag’s secret by verifying whether it can be derived by a

valid path pertaining to local valid-path sets. The pioneering

protocol, Pathchecker [1], uses the path ends as checkpoints

and enforces an O(n) authentication when deriving secrets

by one of n valid paths after another to compare with those

carried in tags. Moreover, Pathchecker requires tags to evolve

secrets, which involves complex cryptography toward security

and privacy. This makes it prohibitively computation-intensive

for low-cost tags [7]. TRACKER [7] relieves tags from compu-

tation by letting readers take over secret verification and up-

date. Cai et al. [8] and Wang et al. [9] improve upon TRACKER

by stronger privacy requirements and more compact secrets,

respectively. Mamun et al. [10] and Ray et al. [11] secure

tags against untrusted readers by reader authentication, which

again necessitates cryptographic computation requirements to

tags. Instead of waiting until the final stage of a supply chain

to reveal counterfeits, a two-level path authentication protocol

[12] segments a path and uses segment ends as checkpoints.

CHECKER [13] further generalizes this idea and enables each

reader to verify the validity of the path taken by a tag so far.

However, all these path-grained authentication protocols are

not well suited to enforce delivery regulation that requires

each product to follow a designated path. Take the build-to-

order supply chain management strategy [14] for example.

A manufacturer may need to deliver ordered or even cus-

tomized products to a specific retailer via a series of specified

distributors and wholesalers but not simply following any

other valid paths down the supply chain hierarchy. A feasible

way to adapt path-grained authentication is to augment each

reader with product-path bindings, which enable readers to

make delivery decision and verify delivery correctness. This,

however, incurs frequent issuer-reader communication upon

path update1 or distributing new products. Considering the

large volume of products in today’s supply chains (e.g., over

1For highly dynamic supply chains where paths are hard to predict, each
reader has to query the centralized issuer for online secret verification [15].
As with most related work, we focus on relatively stable supply chains.

Published in IEEE Transactions on Information Forensics and Security, 2017 October, Pages 1-16 
https://doi.org/10.1109/TIFS.2017.2768022



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 2

TABLE I
COMPARISON OF STEPAUTH WITH PATH-GRAINED AUTHENTICATION

PROTOCOLS.

Legend: NTC: No Tag Computation; CP: Checkpoint; NPS: No Path Set
Legend: MPV: Minimal Path Visibility; SG: Step-grained

Protocol NTC CP NPS MPV SG
Pathchecker [1] 7 path end 7 7 7

Mamun et al. [10]
Ray et al. [11]
TRACKER [7] 3 path end 7 7 7

Cai et al. [8]
Wang et al. [9]
Two-level [12] 3 segment end 7 7 7

CHECKER [13] 3 each reader 7 7 7

Proxy Re-signature [17] 3 path end 7 3 7

STEPAUTH 3 each reader 3 3 3

480 million products on Amazon US [16]), exporting product-

path bindings to enroute readers would cause huge overhead of

network bandwidth and reader storage. What might be of more

concern to supply chain partners is that revealing valid paths

may leak their business strategies. Burbridge et al. [17] thus

advocate minimal path visibility that limits linkage disclosure

between only adjacent readers. It is, however, challenging

to implement the adopted proxy re-signature scheme in [17]

without a trusted third party [13].

B. Our Solution and Contributions

In this paper, we present STEPAUTH as the first practically

efficient protocol for distributed and step-grained path au-

thentication with minimal path visibility. Being step-grained,

STEPAUTH enforces a product to follow a succession of

ordered steps/readers, which constitute the designated path.

The major idea is to encode the designated path into a secret.

We use nested encryption to enforce the step order. Using

nested encryption, we recursively incorporate a step’s secret

into that of its previous step. STEPAUTH encrypts path secrets

in such a way that they reveal only two reader identifiers

to each reader. One is the identifier of the reader itself for

verifying delivery correctness and the other one is its next

step for making delivery decision. Each enroute reader thus

knows only its adjacent readers and guarantees minimal path

visibility. To guarantee both security and efficiency, we lever-

age hybrid encryption that uses symmetric cryptography to

efficiently encrypt and decrypt path secrets and uses public key

cryptography to encrypt and decrypt the symmetric key. For

the public key cryptography, we generate a pair of encryption

key kei and decryption key kdi for each reader Ri. A reader’s

symmetric key ksi is randomly generated and encrypted using

the encryption key kei upon secret construction. Neither the

issuer nor readers need to store these symmetric keys. Each

reader Ri is granted with its decryption key kdi when it

joins the supply chain and registers to the issuer. Readers

can thus use decryption keys to get symmetric keys and then

authenticate path secrets, without querying the issuer. This

guarantees fully distributed authentication. Toward an even

higher security guarantee, we further explore techniques to

prevent an adversary from forging a valid secret even if the

adversary can compromise all readers.

We highlight STEPAUTH’s major contributions as follows

while comparing STEPAUTH with prior path-grained authen-

tication protocols in Table I.

• We initiate the step-grained path authentication problem.

It helps to enforce a practical supply chain management

policy that delivers a product along a designated path.

Existing path authentication protocols are not well suited

to enforce such a policy as they allow a product to take

any valid path.

• We present STEPAUTH, the first protocol for step-grained

yet distributed path authentication. It encodes paths into

secrets and stores them in corresponding tags. Such

secrets enable each reader to locally authenticate tags and

make delivery decision without querying the issuer.

• STEPAUTH requires no tag computation and thus favors

low-cost tags.

• STEPAUTH guarantees minimal path visibility by not

offloading valid-path sets to readers.

• STEPAUTH can generate compact path secrets by lever-

aging nested encryption and hybrid encryption. We in-

vestigate implementation of STEPAUTH based on the

Elliptic Curve Integrated Encryption Scheme (ECIES)

[18] and the Elliptic Curve Digital Signature Algorithm

(ECDSA) [19]. Even for a practically long enough path

of 100 steps, the generated secrets that achieve a 128-

bit security by STEPAUTH are around 10 KB, which can

be well supported by high-memory EPC Gen2 tags. For

example, Marubeni Chemix and Xerafy have produced

tags with 8 KB memory [20] and Fujitsu further pushes

the boundary to 64 KB [21]. Based on the Crypto++ 5.6.0

Benchmarks [22], [23], STEPAUTH takes less than 1 s to

generate such secrets and around 10 ms to verify them.

• STEPAUTH is practically secure and privacy-preserving.

An attacker can breach tag/step unlinkability only if it

can compromise readers’ decryption keys while it cannot

forge a valid secret even if it compromises all readers.

The rest of the paper is organized as follows. Section II

models the step-grained path authentication problem. Sec-

tion III outlines STEPAUTH framework and design challenges.

Section IV and Section V detail the design and prove security

and privacy, respectively. Section VI explores implementation

choices and evaluates performance. Section VII discusses

potential limitations and suggests countermeasures. Finally,

Section VIII concludes the paper.

II. PATH AUTHENTICATION MADE STEP-GRAINED

In this section, we define the step-grained path authenti-

cation problem. For ease of understanding, we follow con-

ventional terms and notions in literature (e.g., [1], [7], [13]).

We adopt a simpler supply chain model yet stricter solution

requirements toward striving for previous solutions’ joint

benefits without forcing their sacrifices on efficiency, security,

or privacy. In a nutshell, we envision a solution that offers

distributed, step-grained path authentication with minimal path

visibility disclosure. Being distributed and step-grained, the

solution should enable each step on a path to independently

verify the path taken by a tag so far. A reader does not

need to query a centralized, trusted party upon verification.

Unlike existing path-grained solutions, the verification does

not accept a tag simply because its taken path pertains to a



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 3

set of valid paths (or their beginning segments) preloaded to

final (or intermediate) steps. We observe that a tag following

a valid path cannot guarantee that the tag follows the correct

one. In practical supply chains, it is normal that a manufacturer

distributes multiple types of product across different valid

paths, but each of which may allow only certain types of

product. From the privacy perspective, the solution should also

limit minimal path visibility between adjacent steps to, for

example, protect business strategy of supply chain partners.

A. Supply Chain Model

A supply chain consists of a series of supply chain partners

(e.g., manufacturers, distributors, wholesalers, and retailers)

that manufacture and circulate products [24]. It can be mod-

eled as a digraph G = (V,E) [7]. Each vertex v ∈ V
represents a supply chain partner. Each edge e = −−→vivj ∈ E
represents a business strategy allowing partner vi to deliver

products to partner vj . A path p of l consecutive edges

p = (e0, ..., ei, ei+1, ..., el−1) ∈ P , where ei.head = ei+1.tail
and P represents the set of valid paths, thus enforces a

policy on which partners a product can visit. Alternatively,

the above path p can be represented as l + 1 consecutive

partners p = (v0, ..., vj , vj+1, ..., vl), where −−−−→vjvj+1 ∈ E and

vj is usually called a step on the path [1]. We assume that

the designated path of a product is known as a priori. This

resonates with the build-to-order supply chain management

strategy, which favors more of customer needs and improves

manufacturer competitiveness [14]. Instead of manufacturers

aimlessly producing products to sell, they reactively schedule

production according to received product orders. For example,

if two retailers—A and B—plan to purchase some products

from a wholesaler, they need to respectively submit an order

to the wholesaler. The orders will be further submitted to a

distributor and a manufacturer. Then the manufacturer is aware

of the binding of products and paths.

RFID-enabled supply chains leverage RFID technology to

implement product tracking [1]. Each product is affixed with

an RFID tag carrying product related data. Tag genuine-

ness serves as an important indicator of product authenticity.

Deployed RFID readers interact with tags for genuineness

verification. The RFID-enabled supply chain we adopt consists

of three types of entities, that is, an issuer I, a set R of readers,

and a set T of tags.

1) Issuer I: The issuer is a manufacturer with the knowl-

edge of product-path couplings. For path authentication, issuer

I generates a secret out of each tag’s designated path and

loads the path secret to the tag. Path secrets inside tags should

vary stepwise to avoid tracking attacks. The issuer needs to

accordingly configure readers in such a way that they can

verify and update path secrets. Such reader configurations are

deemed secure because readers have sufficient storage space

and computation resources to support secure wired or wireless

communication [7].

2) Reader: Ri ∈ R, where 0 ≤ i ≤ |R| − 1. Each

step is equipped with a reader to communicate with tags

attached to products2. Reader-tag communication is against

2We use “step” and “reader” interchangeably whenever no confusion arises.

an insecure wireless channel because resource-constrained tags

can hardly afford complex cryptography [25]. For distributed

path authentication, we require that each reader locally verify

path secrets without querying a centralized party with global

knowledge of tag-path bindings. To do so, each reader should

be pre-granted by the issuer necessary data (e.g., keys) that

helps to verify the validity of path secrets. Furthermore, a

reader needs also to update path secrets for its next-hop reader,

if any, to verify.

3) Tag: Tj ∈ T , where 0 ≤ j ≤ |T | − 1. Each tag is

attached to a product, whose authenticity is implied by tag

genuineness. It features memory space and supports read and

write operations by readers. Normally, a tag stores a unique ID

as well as product related data. We in this paper focus on path

secrets. Given a set of S valid secrets, let skTj
represent the kth

secret of tag Tj , where k ≥ 0. The secret of tag Tj is initialized

as s0Tj
by the issuer. If passing a reader’s verification, it will

be updated by the reader from skTj
to sk+1

Tj
.

Based on the preceding definitions, we formalize the follow-

ing functions featured by the issuer (INITIALIZE) and readers

(READ, VERIFY, UPDATE, WRITE) [1], [13].

• INITIALIZE : T ×P → S generates the initial path secret

s0Tj
for tag Tj using its designated path pTj

.

• READ : T → S reads tag Tj’s current secret skTj
.

• VERIFY : S × R → {0, 1} verifies the validity of secret

skTj
read from tag Tj .

VERIFY(skTj
, dauxRi

) =











1, if Tj’s current step

in pTj
is Ri;

0, otherwise,

(1)

where dauxRi
represents auxiliary data of reader Ri needed

for verifying skTj
. For example, if skTj

is encrypted with

the issuer’s secret key, dauxRi
might contain the issuer’s

public key for Ri to decrypt skTj
.

• UPDATE : S × R → S updates the secret from skTj
to

sk+1
Tj

.

UPDATE(skTj
, dauxRi

) = sk+1
Tj

.

• WRITE : S → T writes the updated secret sk+1
Tj

to tag Tj .

For simplicity, we also use WRITE to denote the function

for issuer I to load initial path secrets.

Among these five functions, INITIALIZE, VERIFY, and UP-

DATE are of more design challenge [1], [13].

B. Adversary Model

We consider a global active adversary A against a path

authentication protocol’s security and privacy. Following the

assumption by existing path authentication protocols, the ad-

versary can compromise readers but cannot compromise the

issuer.

To breach security, adversary A’s primary goal is to forge

path secrets that can pass the authentication protocol3. Once

3Note that an adversary may also sabotage path authentication. For example,
it can make authentic products fail authentication through writing invalid
secrets to their attached tags. Such an attack can be mitigated by lightweight
mutual authentication schemes [26]. We, however, focus on an adversary with
more incentives to inject counterfeits into a supply chain than to subvert it.



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 4

such forged secrets are found, A can program them to tags and

attach the tags to counterfeits, which are likely circulated as

authentic ones and endanger potential customers. Adversary

A may conduct various other active attacks to increase the

chance of forging valid secrets. For example, A with physical

tampering capability can crack tag memory or even reader

memory, acquiring path secrets and keys used to update them.

Adversary A may also infer tag privacy using acquired data.

A global adversary can eavesdrop on tags’ communication or

launch its other capable attacks at all steps in the supply chain.

It might mount a subordinate adversary at each step and then

synthesize their acquired data to a centralized one. Although

the assumed global adversary overestimates practical attacking

resources, it forces us to design a more robust protocol than

when we consider a localized adversary attacking only a limit-

ed number of steps. Inferred tag privacy includes, for example,

which path a tag took [7]. We will shortly introduce specific

privacy concerns when reasoning about design requirements

for path authentication.

Throughout this paper, we assume that adversary A is

probabilistic polynomial time bounded in terms of a security

parameter such as 128 bits.

C. Step-Grained Path Authentication Problem

We advocate fine-grained RFID path authentication with

step granularity. Specifically, each product should follow a

designated path. Such a tag-path binding yields a practically

stricter requirement—an acceptable tag should visit the exact

steps in its designated path following the exact order. Previous

solutions are, however, path-grained; they accept a tag simply

if it takes any path among all valid ones. In many supply

chains, not all products can take all valid paths. Take the

pharmaceutical supply chain for example [27]. An American

pharmaceutical manufacturer might distribute its products na-

tionwide as well as export them to other countries like China.

Then packages without specific Chinese instructions on uses,

dosage, precautions, and drug interactions should be prohibited

from paths toward China, although which are valid paths. Note

that it is not practically efficient to simply issuing the bindings

of tagged products and their designated paths to steps; we will

shortly present the reasons in Section II-D.

1) Step-grained path authentication problem: Given tag

Tj’s designated l-step path of consecutive readers Ri, pTj
=

(R0, ..., Ri, ..., Rl−1), Tj can pass the step-grained path au-

thentication if it satisfies the following equation:

l−1
∏

i=0

VERIFY(siTj
, dauxRi

) = 1,

where function VERIFY is defined in Equation 1.

A feasible solution should guarantee authentication correct-

ness and security, protect participating entities’ privacy, and

promise efficiency under practical constraints.

2) Correctness: The solution should have no false neg-

atives and negligible false positives. First, a false negative

occurs when tag Tj faithfully follows its designated path pTj

but fails the authentication, that is,

∃Ri ∈ pTj
: VERIFY(siTj

, dauxRi
) = 0.

Second, a false positive occurs when a tag with invalid state

sinvalid is accepted by a reader, that is,

∃sinvalid /∈ S and ∃Ri ∈ R : VERIFY(sinvalid, d
aux
Ri

) = 1.

If Ri happens to be path end, sinvalid may make a tag pass

path authentication. We consider such false positives as an

intrinsic property of cryptography; they are proved negligible

by established cryptographic functions. Moreover, such false

positives are different from the odds for adversary A to forge

a valid secret. The latter is deemed as a security breach.

3) Security: A secure solution should guarantee that a

probabilistic polynomial time bounded adversary A cannot

forge a valid secret sadv with probability better than random

guessing, that is, for any sadv ∈ Spossible chosen by adversary

A and for any Ri ∈ pTj
:

Pr(VERIFY(sadv, dauxRi
) = 1) ≤

|S
Tj

Ri
|

|Spossible|
+ ǫ,

where S
Tj

Ri
⊆ S represents the set of valid secret(s) for tag Tj

on the (i− 1)th step Ri, Spossible ⊇ S represents all possible

but not necessarily valid secrets, and ǫ is negligible.

4) Privacy: Besides preventing security breach, the solution

should also avoid privacy leakage. Privacy concerns in the

literature fall into two categories, privacy and unlinkability [7].

Privacy protects the exact value of certain secret information

while unlinkability thwarts correlating transformed secrets

(e.g., via encryption) with tags. Both privacy and unlinkability

can be required with granularity of tag, step, or path.

• Identity/Step/Path privacy requires that adversary A can-

not disclose which ID/steps/path a tag corresponds to.

• Tag unlinkability requires that adversary A cannot corre-

late secrets with a tag.

• Step/Path unlinkability requires that adversary A cannot

tell whether two tags visit common steps or take the same

path.

Blass et al. find that 1) for a single tag, tag unlinkability is

stronger than identity/step/path privacy, and 2) for two tags,

step unlinkability is stronger than path unlinkability [7]. If the

solution can satisfy tag unlinkability and step unlinkability, it

satisfies other privacy/unlinkability requirements as well.

5) Constraints: We expect that the solution can efficiently

satisfy the preceding requirements under practical constraints.

• Tags perform no computation. Such a complexity con-

straint makes the solution affordable to widely-deployed

low-cost EPC Class 1 Generation 2 tags [28].

• Readers verify path secrets independently (or distribut-

edly). Such an architecture constraint enriches robustness

and privacy. First, at each step, not querying a centralized

server for secret verification avoids single point of failure.

Second, keeping path secrets away from a centralized

server further protects supply chain partners’ privacy. For

example, a partner may not want the centralized server

to track its transactions in real time.

• Steps limit minimal path visibility between adjacent

readers. Such a policy constraint protects supply chain

partners’ business strategies [17]. For correct product

delivery, a reader should know to which next hop to



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 5

transfer a product. Similarly, a reader should also know

from which previous hop it receives a product. More

specifically, assume that
−−−−−−−−→
Ri−1RiRi+1 is a segment of

a designated path. Minimal path visibility requires that

Ri know only Ri−1 and Ri+1 [17] rather than any other

readers on the path (e.g., Ri−2 or Ri+2) [17].

D. Why Not to Adapt Path-Grained Authentication

One may consider step-grained authentication trivially solv-

able by incremental adaptation of previous path-grained so-

lutions. We acknowledge the feasibility of such an adaption

because a designated path represents only one specific instance

of valid paths. A feasible adaptation should introduce tag-path

bindings that specify which designated path a tagged product

should follow. That is, we would grant each step with an

additional list of such tag-path bindings. Only tags passing

path authentication and belonging to the list are accepted.

This incremental adaptation, however, induces heavy over-

head in terms of communication (for the issuer to populate

tag-path bindings to steps), storage (for steps to store tag-

path bindings), and time (for steps to search over tag-path

bindings). Consider, for example, when delivering n tagged

products along an l-step designated path. Each step Ri should

store the following tag-path binding:

Ri−1, Ri, Ri+1 : information of n tags from Ri−1 to Ri+1

via Ri.

The information of a tag could be its ID together with other

related product metadata. Let |taginfo| denote the size of such

information for a tag. Then the storage overhead for each

step is O(|taginfo| × n). Distributing such information to all

l steps by the issuer introduces a communication overhead of

O(|taginfo| × n× l). Upon path authentication, a step needs

to first extract useful metadata from a path secret and then to

search whether the medadata is in the issuer-granted list. This

search process costs an average time complexity of O(log n)
and a worst-cast time complexity of O(n). Considering the

huge volume of products in nowadays supply chains, the

preceding types of overhead might be heavy and reduce a

significant amount of profit.

Furthermore, the preceding storage and communication

overhead may be much higher in anonymous RFID systems

where tag IDs are not revealed to readers [29], [30]. In such

systems, a step/reader Ri cannot simply link tag IDs to a path

directive (i.e., Ri−1, Ri, Ri+1). Instead, it may need to store

expected path secrets inside incoming tags. Cryptographic

path secrets derived over tag IDs and designated paths are

much larger in size than tag IDs. They, therefore, take more

communication overhead for the issuer to grant them to readers

and take more storage overhead on readers.

STEPAUTH, on the other hand, does not suffer from the

overwhelming overhead for distributing, storing, and searching

over tag-path bindings. Besides a comparative communication

overhead for initializing reader keys as path-grained authen-

tication, STEPAUTH imposes only an O(1) storage overhead

and an O(1) search overhead on each reader, regardless of

the number of tags on the designated path and the path length

eavesdropped secret sA

fo
rg

e
d

 se
c
re

t s
f

eaeaeaeaeaeaeaeaeaeaeave

fofofofofofofofofofofofofofofo
rg

CB

Issuer D

IN
IT

IA
T

E se
c
re

t
s

A

VERIFY sA

UPDATE to sB

VERIFY sB

UPDATE to sC

VERIFY sC

end

Attacker

A

Fig. 1. STEPAUTH enables each step to locally VERIFY and UPDATE in-tag
path secrets, which also instruct a step which next step to forward the tag.
Valid secrets sA, sB, and sC can pass authentication at steps A, B, and C,
respectively. Forged (e.g., sf to step B) or misdelivered (e.g., sC to step D,
or eavesdropped sA to step D) secrets should fail the authentication.

(Section IV-E for analysis and Section VI-E for evaluation).

To the best of our knowledge, STEPAUTH takes the first step

toward a step-grained path authentication solution with all

requirements of correctness, security, privacy, and efficiency

satisfied.

III. STEPAUTH OVERVIEW

In this section, we outline STEPAUTH, a step-grained

path authentication protocol that satisfies the requirements

of correctness, security, privacy, and efficiency defined in

Section II-C. STEPAUTH follows a recursive design. For each

step, after receiving a tag, it verifies the path secret inside to

make sure that 1) it is the current step on the designated path

and 2) which is the next step, updates the path secret such

that the next step can verify it in the same way, and finally

forwards the tag with updated secret to the next step.

A. Framework

In a nutshell, STEPAUTH enforces a strict secret-step cou-

pling. That is, at any time, a valid secret would pass the

authentication only at its expected step. As shown in Figure 1,

valid secrets sA, sB, and sC can pass authentication at steps

A, B, C, respectively, rather than any other steps. STEPAUTH

enables each step to locally verify and update path secrets

without querying the centralized issuer. Forged or misdelivered

secrets should be prohibited from being authenticated. From

privacy perspective, STEPAUTH should also hinder the attacker

from correlating secrets sA, sB, and sC.

For step-grained path authentication of tag Tj , STEPAUTH

consists of two key phases (Algorithm 1). In the first phase,

issuer I generates the initial secret s0Tj
based on Tj’s des-

ignated path pTj
= (R0, ..., Ri, ..., Rl−1) and each enroute

reader Ri’s auxiliary data dauxRi
(e.g., domain parameters)

(line 3). The configuration of dauxRi
varies per specific secret

generation technique. The issuer then stores initial secret

s0Tj
to Tj (line 4) and distributes initialized Tj to the first

step/reader R0 on the designated path (line 5). STEPAUTH now

proceeds to the second phase where each reader recursively

follows the same procedures. Upon receiving tag Tj , reader

R0 reads its secret s0Tj
(line 8) for verification (line 9). If



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 6

Algorithm 1: STEPAUTH:

a STEP-Grained Path AUTHentication
Input : Tag Tj ’s designated path pTj

= (R0, ..., Ri, ..., Rl−1);
Auxiliary data dauxRi

of each Ri ∈ pTj

Output: Path authentication result of tag Tj : AUTH(Tj)
1 AUTH(Tj)← 0;
2 //the issuer generates the initial path secret;

3 s0Tj
← INITIALIZE(pTj

, ∀Ri ∈ pTj
: dauxRi

);

4 Tj ← WRITE(s0Tj
);

5 Issue Tj to the first step/reader R0;
6 //recursive operations by each reader on the designated path;
7 foreach Ri ∈ pTj

do

8 siTj
← READ(Tj);

9 if VERIFY(siTj
, dauxRi

) = 1 then

10 Ri+1, s
i+1
Tj
← UPDATE(siTj

, dauxRi
);

11 Tj ← WRITE(si+1
Tj

);

12 if i < l− 1 then

13 Ship Tj to Ri+1, which is the next step;
14 else

15 Keep Tj and sell it to a customer at the point of sale;

16 else

17 return AUTH(Tj);

18 AUTH(Tj)← 1;
19 return AUTH(Tj);

verification succeeds, R0 updates the secret from s0Tj
to s1Tj

(line 10), writes it to Tj (line 11), and ships it to the next

step R1 (line 13). Otherwise, Tj fails secret verification and

thus path authentication (line 17). R1 and subsequent enroute

readers perform the same operations (lines 7-17). For ease

of presentation, we introduce the following binary indicator

AUTH(Tj) to demonstrate authentication success with value 1

or failure with value 0.

AUTH(Tj) =

{

1, if ∀Ri ∈ pTj
: VERIFY(siTj

, dauxRi
) = 1;

0, if ∃Ri ∈ pTj
: VERIFY(siTj

, dauxRi
) = 0.

B. Challenges

Among the operations required in Algorithm 1, three are key

design challenges—INITIALIZE, VERIFY, and UPDATE. All of

them operate on path secrets and are highly correlated. On one

hand, how to VERIFY and UPDATE path secrets depends on

how INITIALIZE generates path secrets. On the other hand,

how to INITIALIZE path secrets should take into account how

to simplify VERIFY and UPDATE for imposing less resource

demand on readers and tags.

We now dissect construction requirements for path secrets.

From functionality perspective, a path secret should satisfy the

following two requirements.

• Req 1. For step-grained path authentication, secret siTj

can help reader Ri to check whether it is the current step

on the designated path.

• Req 2. For product delivery along the designated path,

secret siTj
can help reader Ri to determine the correct

next step Ri+1. (Note that a path secret does not need

to contain information for verifying previous hop, which

can be implied by secret validity.)

From a security and privacy perspective, the path secret should

satisfy three other requirements.

• Req 3. For securing the path secret, secret siTj
for reader

Ri cannot be decrypted by an adversary or other readers

without compromising reader Ri.

• Req 4. For securing the path authentication protocol, an

adversary or readers cannot forge a valid secret without

compromising any encryption keys.

• Req 5. For protecting path privacy, a path secret should

keep minimal path visibility between adjacent readers.

Note that Reqs 3-5 are not sufficient for tag/step unlinkability.

We will explore sufficient techniques for satisfying them upon

presenting STEPAUTH design.

C. Basic Design and Limitations

A basic implementation of STEPAUTH is simply chaining

path secrets for each step. Consider a three-step path
−−−→
ABC

for example. To make step A ensure that it is the current step

(Req 1) and B is the next step (Req 2), the secret for step A

should include A and B. The secret should also be kept secret

from adversaries (Req 3) and hard to forge (Req 4). We can

accordingly encrypt the secret using a secret key stored on

the secure issuer. To limit path visibility, the secret for step A

should reveal no more path information other than A and B

(Req 5). Following the similar principles for steps B and C,

we can construct the path secret for
−−−→
ABC as the following.

EnckA
(A,B)||EnckB

(B,C)||EnckC
(C), (2)

where kA, kB, and kC denote the secret keys of A, B, and C,

respectively.

As we mentioned, Reqs 3-5 are not sufficient for tag/step

unlinkability. The secret by Equation 2 applies to all tags

following the same path
−−−→
ABC. This violates both tag unlinka-

bility and step unlinkability if the encryption function Enc(·)
is deterministic.

• First, to guarantee step unlinkability, we should random-

ize secrets for tags on the same path.

EnckA
(A,B,Rand(Tj)||EnckB

(B,C,Rand(Tj))||

EnckC
(C,Rand(Tj)).

Since tag IDs are unique across all tags and usually

incorporated in path secrets for ease of identification, we

use tag Tj’s ID as the seed for randomization Rand(·)4.

• Second, to guarantee tag unlinkability, the secret of a tag

should also vary stepwise. We can introduce a pair of

encryption and decryption keys for each pair of adjacent

readers. Then a step encrypts the secret using the pair-

wise key before delivering the tag to the next step. This

way, same secrets are differently encrypted on different

steps and deter tag correlation.

The basic STEPAUTH design is limited in both efficiency

and practicality. First, repeating Rand(Tj) for step unlinka-

bility exacerbates tag memory cost. Second, it is laborious

or even insecure for the issuer to set up pair-wise keys for

each pair of neighboring readers. Reader neighborhood is less

stable in practical RFID-based supply chains. Partners may

4Rand(Tj) acts as a random initialization vector if Enc(·) is probabilistic.



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 7

become neighbors because of new transactions. Readers may

frequently join or leave in dynamic supply chains [15]. One

may consider letting two readers independently exchange keys

using, for example, Diffie-Hellman. But without a trusted third

party as a certificate authority, Diffie-Hellman key exchange

is vulnerable to the man-in-the-middle attack [31].

IV. STEPAUTH CONSTRUCTION

In this section, we construct STEPAUTH toward practically

efficient, distributed, and step-grained authentication of RFID

paths. It generates compact path secrets based on a nested

encryption technique, which frees STEPAUTH of repeating

random fields Rand(Tj) and of exchanging keys for neigh-

boring readers. We also leverage hybrid encryption to reap

both the security of public key cryptography and the efficiency

of symmetric cryptography. Each reader needs to be granted

only one decryption key for public key encryption upon the

reader’s join. Keys for symmetric encryption are included in

tag states instead. Encryption keys for public key cryptography

to construct tag states are stored on the secure issuer.

A. Nested Encryption

An intuitive way to generate a path secret that satisfies Reqs

1-5 (Section III-B) is nesting a step’s secret in that of its

previous hop. Consider a three-step path
−−−→
ABC for example.

Using nested encryption, we can initialize A’s secret as:

EnckA
(A,B,EnckB

(B,C,EnckC
(C))).

The plaintext first includes identities of A and B. This makes

A ensure that it is the current step and B is the next step (Reqs

1 and 2). Using A’s key for encryption guarantees that neither

an adversary nor other readers can decrypt its secret (Req 3).

A’s secret should also include the secret for next-hop B to

verify.

EnckB
(B,C,EnckC

(C)).

Since it is encrypted using B’s key, A cannot decrypt it and

thus cannot know which is B’s next step if any (Req 5). B
performs the same operations on the state as A does. That is,

B first verifies that it is the current step and C is the next step;

then it forwards the following updated secret to C.

EnckC
(C).

After decrypting the secret, C finds only its identifier within

and thus knows that it is the path end. Since all secrets are

encrypted with readers’ encryption keys stored on the issuer,

an attacker cannot forge a valid secret without compromising

the issuer or any encryption keys (Req 4). Furthermore, secrets

vary at each step and thus promise tag unlinkability.

The preceding design, however, should be enhanced toward

step unlinkability. If we encrypt only C’s identifier into the

secret, all tags on the same path will have the same initial

secret using deterministic encryption. This violates step un-

linkability. In addition, it is difficult to identify the tag at the

last step, which is necessary in RFID applications. To address

such an issue, we add tag ID into the secret and leverage the

uniqueness of tag IDs to randomize secrets for tags following

the same path. To avoid any ambiguity, we repeat the identifier

of the last step in the initial secret as the following.

EnckA
(A,B,EnckB

(B,C,EnckC
(C,C, Tj))). (3)

Then if a reader finds itself designated as the “next step” of its

own, the reader determines that it is the last step and terminates

product delivery.

B. Hybrid Encryption

Generating path secrets using purely public key cryptogra-

phy (Equation 3) is not practically efficient. First, the maxi-

mum length of the message to be encrypted is upper bounded

by the size of the encryption key. For example, it is well known

that a 1024-bit (128 bytes) RSA key can encrypt a message of

length up to 117 bytes following the PKCS#1 v1.5 standard

[32]. Since the length of secrets defined in Equation 3 expands

with path length, generating long enough keys in favor of long

paths would incur heavy computation overhead to the issuer

and bandwidth overhead to the issuer-reader channel. Second,

public key encryption is much less efficient than symmetric

encryption by several orders of magnitude [33]. It induces a

heavy overhead for the issuer and readers to process a large

amount of tags.

To boost authentication efficiency, we leverage the wisdom

of hybrid encryption. Specifically, hybrid encryption uses

symmetric cryptography to encrypt/decrypt a message while

the symmetric key is encrypted by public key cryptogra-

phy [34]. Let us apply hybrid encryption to generate the

last step C’s secret in the preceding example. The message

(C,C, Tj) now is encrypted using a random symmetric key

ksC—Encks

C
(C,C, Tj). To make C capable of decrypting the

ciphertext, the issuer should include ksC in step C’s secret. If

the issuer directly include the plaintext of ksC, an eavesdropper

can also decrypt the secret and breach tag/step privacy. Even

worse still, an attacker can forge a secret and breach security.

To guarantee security and privacy, the issuer therefore encrypts

ksC using an encryption key keC. The decryption key kdC
corresponding to keC is pre-loaded to step C. This way, we

can construct step C’s secret as the following.

secretC = Encke

C
(ksC),Encks

C
(C,C, Tj). (4)

Upon receiving the above secret, step C first decrypts

Encke

C
(ksC) using kdC and gets ksC. Then it decrypts the

remaining part using ksC and determines that it is the last step

because of double C’s. Similarly, B and A’s secrets can be

constructed as in Equation 5 and Equation 6, respectively.

secretB = Encke

B
(ksB),Encks

B
(B,C, secretC). (5)

secretA = Encke

A
(ksA),Encks

A
(A,B, secretB). (6)

The first step A’s secret in Equation 6 is the initial secret to be

assigned to the tag. Hybrid encryption promises efficiency for

secret generation and verification without sacrificing security

and privacy, given that the hybrid encryption is secure against

adaptive chosen ciphertext attacks [18].



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 8

C. Secret Forgery Attack Resistance

If an attacker can compromise any encryption key kei
of reader Ri, the attacker can forge a “valid” secret that

enables Ri to accept the secret-augmented product and deliver

the product to any next hop whose valid secrets have been

overheard. The attacker may compromise reader Ri to obtain

its decryption key kdi and domain parameters, with which the

encryption key kei of Ri might be derived. Take the valid

secretB of B in Equation 5 for example. Consider an attacker

that overhears secretB, compromises another reader, say D,

and derives its encryption key keD. Then the attacker can forge

the following secret so as to enable
−−−→
DBC to be accepted as a

designated path.

secretD = Encke

D
(ksD),Encks

D
(D,B, secretB),

where ksD is a randomly generated symmetric key by D. In

an extreme case, an omnipotent attacker may compromise all

readers and their encryption keys. It can generate a valid secret

for any path it wants to take as if it were the issuer.

To thwart such a secret forgery attack, we further augment

a secret with the issuer’s signature. The major enhancement is

that the issuer uses the same domain parameters to generate

a key pair (kpub, ksec), of which the public key kpub is

distributed to each reader upon it joins the supply chain and

the secret key ksec is used for the issuer to sign secrets for

each step. Upon the signature enhancement, the attacker may

generate the following secret to ensure
−−−→
DBC to be accepted

as a designated path.

secretD+ = Encke

D
(ksD),Encks

D
(D,B, secretB+),

Sigksec(Encke

D
(ksD),Encks

D
(D,B, secretB+)),

where we have

secretB+ = Encke

B
(ksB),Encks

B
(B,C, secretC+),

Sigksec(Encke

B
(ksB),Encks

B
(B,C, secretC+)),

and

secretC+ = Encke

C
(ksC),Encks

C
(C,C, Tj),

Sigksec(Encke

C
(ksC),Encks

C
(C,C, Tj)).

Since the valid secret should be signed by the issuer with its

secret key ksec, an attacker cannot forge a valid secret without

compromising the issuer. In other words, even if the attacker

compromises all readers, it can only verify or update valid

secrets instead of forging one.

Based on nested encryption, hybrid encryption, and the

preceding unforgeable signature scheme, we next detail how

to construct INITIALIZE, VERIFY, and UPDATE.

D. Design: INITIALIZE, VERIFY, and UPDATE

1) Configuration: The only configuration for STEPAUTH

to enable INITIALIZE, VERIFY, and UPDATE is assigning

and distributing keys for public key cryptography. Upon a

reader joins the supply chain and registers to the issuer,

the issuer generates a pair of encryption key and decryption

key from system-wide domain parameters for the reader. The

Algorithm 2: INITIALIZE by Issuer I

Input : Tag Tj ’s designated path pTj
= (R0, ..., Ri, ..., Rl−1);

Encryption key kei and auxiliary data daux of each Ri ∈ pTj
;

Secret key ksec of the issuer;

Output: Initial secret of tag Tj : s0Tj

1 s0Tj
← null;

2 //the issuer generates the initial path secret by calling function H;

3 s0Tj
← H(0);

4 //definition of recursive function H based on an intermediate function F;
5 H(i) = F(i), Sigksec (F(i));
6 //Sig(·) is for the issuer to sign the secret;
7 for F(i) do

8 ksi ← a random symmetric key the issuer generates for Ri;
9 if i = l− 1 then

10 F(i) = Encke

l−1
(ks

l−1
),Encks

l−1
(Rl−1, Rl−1, Tj);

11 else

12 F(i) =
Encke

i
(ksi),Encks

i
(Ri, Ri+1,F(i+ 1), Sigksec (F(i+ 1)));

13 //Enc(·) is performed with auxiliary data daux;

14 return s0Tj
;

issuer keeps the encryption key and securely transmits the

decryption key and domain parameters to the reader. An

alternative and lighter way is to let each reader generate a

key pair using the same domain parameters chosen by the

issuer. Then each reader sends its encryption key only to the

issuer through a secure channel, and the issuer can use the

domain parameters to verify each encryption key following

public key cryptography standard. In this case, the issuer does

not know readers’ decryption keys; it thus promises an even

higher security guarantee to prudential supply chain partners.

Against the secret forgery attack (Section IV-C), the issuer

further generates a pair of public key and secret key. The

issuer’s public key is also transmitted to each reader. Readers’

encryption keys and the issuer’s secret key will be used for the

issuer to INITIALIZE path secrets, which are then written to

corresponding tags. Key distribution and secret initialization

are all what the issuer needs to do. The readers themselves

will locally VERIFY and UPDATE path secrets carried in tags.

Besides the same set of domain parameters, each reader should

also be informed of reader-ID length |Ri|. That is, domain

parameters and |Ri| constitute the auxiliary data dauxRi
. Since

dauxRi
is identical across all readers, we hereafter use daux for

brevity.

2) INITIALIZE: The issuer generates initial secret s0Tj
by

calling a recursive function H (Algorithm 2). Its main design

principle is nested encryption, which should be fed with

identifiers of tag Tj and each reader Ri on the designated

path as well as encryption key kei for each reader Ri and the

secret key ksec of the issuer. Readers’ encryption keys and

the issuer’s secret key are secure on the issuer. Corresponding

decryption key kdi of reader Ri and public key kpub of the

issuer are used for future secret verification by reader Ri.

As for symmetric keys ksi ’s for each Ri toward efficient

hybrid encryption, the issuer generates them randomly upon

initializing secrets. The issuer does not need to remember any

of them after their usage.

Although secret verification starts from the first step (Algo-

rithm 1), H composes s0Tj
starting from the last step. For ease

of presentation, we introduce another intermediate function F



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 9

(lines 7-13), which is called by H as the following (line 5).

H(i) = F(i), Sigksec(F(i)).

The repetition of two Rl−1’s (line 10) helps Rl−1 to determine

that it is the last step on the designated path. Rl−1 thus has no

next hop to forward the product. Finally, H(0) is assigned to

initial secret s0Tj
(line 3), which is written to Tj by the issuer.

3) VERIFY: To verify the validity of secret siTj
(Algorith-

m 3), Ri first verifies the issuer’s signature Sigksec(F(i)) using

the issuer’s public key kpub (line 1). Only if the signature

verification succeeds can secret verification proceed as follows.

Ri first truncates the verified signature Sigksec(F(i)) from

siTj
(line 2). Ri then decrypts the first field of siTj

using its

decryption key kdi to get the symmetric key ksi (line 3). We

then use ksi to decrypt the second field of siTj
(lines 4-5).

Let Plain(siTj
) denote the corresponding decrypted plaintext.

Assume that Tj takes the designated path. If Ri is the last

step (i.e., Rl−1), Plain(siTj
) is (Rl−1, Rl−1, Tj). Otherwise,

Plain(siTj
) is (Ri, Ri+1,F(i + 1)), Sigksec(F(i + 1))), that

is, (Ri, Ri+1,H(i + 1)). In both cases, Ri matches with the

first |Ri| bits of Plain(siTj
). Based on this observation, we

compare Ri with the leftmost |Ri| bits of Plain(siTj
) for

verifying siTj
(line 5). If a match is found, it means that

Ri is the correct current step and secret verification succeeds

(line 8). Otherwise, Ri is not supposed to be the current step

and secret verification fails (line 10). Verification success and

failure respectively return 1 and 0 according to the definition

of VERIFY (Equation 1).

4) UPDATE: If secret siTj
passes verification, Ri needs to

update it to si+1
Tj

for the next step Ri+1 if any (Algorithm 4).

Ri first checks whether it is the last step, that is, whether

there is a next step Ri+1. For the last step Rl−1, Plain(siTj
)

derived in Algorithm 3 (line 5) would be Rl−1, Rl−1, Tj . It

repeats the identifier Rl−1 twice. Based on this observation,

we can determine that Ri is the last step if the leftmost two

consecutive |Ri| bits are identical (line 3). Last step Rl−1 may

update the secret as the tag ID Tj (line 5). If Ri has a next

step Ri+1, it first determines the identifier of Ri+1 by the

second |Ri| bits of (lines 7-8). After removing Ri and Ri+1

from Plain(siTj
), the remaining part H(i + 1) is assigned to

si+1
Tj

(line 9). Ri now can forward Tj with updated secret

si+1
Tj

to Ri+1. In the same way, Ri+1 follows Algorithm 3

and Algorithm 4 to verify and update si+1
Tj

, respectively.

E. Discussions

1) Complexity: Table II provides the complexity of

STEPAUTH functions. When the issuer generates the initial

secret for an l-step path, INITIALIZE calls a recursive function

that casts a step’s secret into that of its previous step. For

each step, the computation involves a symmetric encryption,

a public key encryption, and a signature computation, which

account for an O(1) complexity. INITIALIZE thus takes an

O(l) complexity to generate the initial secret for an l-step path.

Upon the secret arrives at each reader, the reader performs

signature verification, decryption, and string comparison for

VERIFY and string truncation for UPDATE. Both take an O(1)
complexity.

Algorithm 3: VERIFY by Reader Ri

Input : Secret siTj
;

Ri’s decryption key kdi and auxiliary data daux;

The issuer’s public key kpub (stored on each reader);
Output: Verification result: 1 if success, 0 if failure

1 if siTj
.Sigksec(F(i)) is verified by kpub then

2 siTj
← siTj

with rightmost Sigksec (F(i)) removed;

3 ksi ← Dec
kd
i
(siTj

.F(i).Encke
i
(ksi));

4 siTj
← siTj

with leftmost Encke
i
(ksi) removed;

5 Plain(siTj
)← Decks

i
(siTj

);

6 //Dec(·) is performed with auxiliary data daux;

7 if Ri matches with leftmost |Ri| bits of Plain(siTj
) then

8 return 1;
9 else

10 return 0;

11 else

12 return 0;

Algorithm 4: UPDATE by Reader Ri

Input : Plain(siTj
) and reader-ID length |Ri| derived from daux

Output: Next-step ID Ri+1 and secret si+1
Tj

for Ri+1 to verify

1 Ri+1 ← null;

2 si+1
Tj
← null;

3 if the leftmost two consecutive |Ri| bits of Plain(siTj
) is identical then

4 Ri is the last step;

5 si+1
Tj
← Plain(siTj

) with leftmost 2|Ri| bits removed;

6 else

7 Plain(siTj
)← Plain(siTj

) with leftmost |Ri| bits removed;

8 Ri+1 ← leftmost |Ri| bits of Plain(siTj
);

9 si+1
Tj
← Plain(siTj

) with leftmost |Ri+1| bits removed;

10 return Ri+1 and si+1
Tj

;

2) Key Distribution: STEPAUTH imposes on each reader

only its decryption key, the issuer’s public key, and corre-

sponding domain parameters. In practical supply chains, it is

common that a reader locates on more than one designated

paths. For example, a wholesaler may purchase several types

of products from different distributors and then sell them to

different retailers. For a passing tag, the wholesaler verifies

its secret solely according to whether it is specified as the

current step, no matter which path the tag is traveling. More

specifically, the wholesaler holds a one-to-one mapping with a

step instead of one or more paths. Thus, each step of a supply

chain requires only one decryption key for it to verify step

correctness and update secrets. Since both secret verification

and update need no tag computation, STEPAUTH assigns no

keys to tags.

3) Scalability and Privacy: The length of an initial secret is

linear with path length. Our analysis (Section VI) demonstrates

that secrets for practically long paths can be well supported

by high-memory EPC Gen2 tags. For example, our imple-

mentation of STEPAUTH using ECIES and ECDSA costs 896

bits of secret size per step. A path secret for dozens of steps

can perfectly suit for the memory capacity of, for example,

Marubeni Chemix and Xerafy 8 KB tags [20] and Fujitsu

64 KB tags [21].

Besides, path secrets leak privacy of path length. Longer

secrets indicate longer paths. Given a secret, it is possible to



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 10

TABLE II
COMPLEXITY FOR THE ISSUER TO INITIALIZE THE STATE FOR AN l-STEP

PATH AND FOR EACH ENROUTE READER TO VERIFY/UPDATE IT.

Issuer Reader
Function INITIALIZE VERIFY UPDATE

Complexity O(l) O(1) O(1)

infer how many steps left for the tag to travel. For example,

the length of a last-step secret is fixed (line 7 in Algorithm 2).

Such a privacy leakage can be easily addressed by adapting

STEPAUTH. Since secret update at each step removes a certain

number of bits from a secret, we can append equal amount of

dummy bits to the secret. To disguise secret-length difference

of paths with different lengths, we can predicate a long enough

path and use its secret length as a baseline. Secrets of shorter

paths can be stretched to the baseline length by appending

dummy bits. For simplicity, we omit appending such dummy

bits in later discussion. We focus more on the privacy of tag

unlinkability and step unlinkability as in the literature.

4) State Extensibility: Current STEPAUTH design encodes

only two identifiers of current- and next-step readers for a

reader to verify. It is straightforward to extend it to encode

additional information in a path secret. For example, a secret

may incorporate an expiration time by which a reader should

process the product. This is useful in a supply chain of short

life-cycle products.

V. SECURITY AND PRIVACY ANALYSIS

In this section, we prove the security and privacy of

STEPAUTH. It turns out to evaluate against what attack

capabilities STEPAUTH can satisfy security and privacy re-

quirements in Section II-C. Security proof demonstrates that

an attacker cannot forge a valid state to pass authentication

without compromising the issuer’s secret key, even if it

can compromise all readers’ encryption and decryption keys.

Privacy proof demonstrates that an attacker cannot breach

tag unlinkability and step unlinkability unless it compromises

readers’ decryption keys. We do not analyze identity/step/path

privacy and path unlinkability as they can be implied by tag

unlinkability and step unlinkability, respectively [7].

A. Security

STEPAUTH can satisfy the security requirement if an at-

tacker cannot obtain the issuer’s secret key for signing path

secrets. That is, the probability for the attacker to forge a valid

path secret is no better than random guessing (Section II-C).

Actually, it might be impossible for any path authentication

protocols to defend against an attacker that have all keys used

for generating valid secrets. We thus design STEPAUTH in

such a way that critical encryption keys are stored in the more

secure issuer. Even if all readers are compromised, an attacker

can only verify and update a path secret instead of forging one.

This renders our protocols more robust than most of existing

path authentication protocols.

Theorem 1. If the hybrid encryption used in STEPAUTH is se-

cure against adaptive chosen ciphertext attacks, a probabilistic

polynomial time bounded attacker without compromising the

issuer’s secret key for signing a valid path p’s secret cannot

Tj

E

D

CA B

Tk

Tj

Tk

Fig. 2. Paths of two tags Tj and Tk with common steps A, B, and C.

forge a valid secret for path p to pass STEPAUTH with

probability better than random guessing.

Proof. Because the signature scheme used in STEPAUTH

should be secure against adaptive chosen ciphertext attacks,

it is non-malleable against adaptive chosen ciphertext attacks

[18]. That is, without knowing the issuer’s secret key for

generating the signature for the secret of path p, a probabilistic

polynomial time bounded attacker cannot forge any valid se-

cret for path p with a probability better than random guessing,

even if the attacker is provided with any polynomial number

of valid secrets selected by the attacker.

B. Privacy: Tag Unlinkability and Step Unlinkability

STEPAUTH can guarantee both tag unlinkability and step

unlinkability against an attacker with only eavesdropping

capability (Theorem 2). But both privacy properties will be

breached by a stronger attacker that can compromise any

readers’ decryption keys (Theorem 3).

Theorem 2. Given that no polynomial-time attacker can

break public key cryptography, an attacker with global eaves-

dropping capability cannot breach tag unlinkability and step

unlinkability of STEPAUTH.

Proof. We sketch the proof using two tags with common steps.

As shown in Figure 2, tag Tj takes path
−−−−→
ABCD while tag Tk

takes path
−−−−→
ABCE. Let sATj

, sBTj
, sCTj

, and sDTj
represent the

secret of Tj at steps A, B, C, and D, respectively. Similarly,

let sATk
, sBTk

, sCTk
, and sETk

respectively denote the secret of Tk

at steps A, B, C, and E. We assume that all these eight secrets

may be eavesdropped by an attacker.

Tag unlinkability requires that the attacker cannot correlate

eavesdropped secrets with tags. Note that for the example in

Figure 2, Tj and Tk have same-length paths. They therefore

have same-size secrets at steps A, B, and C. Without loss

of generality, we discuss that among the four secrets—sBTj
,

sCTj
, sBTk

, sCTk
—eavesdropped at steps B and C, whether the

attacker can infer which of sCTj
and sCTk

is derived from sBTj
.

For STEPAUTH, we have

sBTj
=(Encke

B
(ksB),Encks

B
(B,C, sCTj

),

Sigksec(Encke

B
(ksB),Encks

B
(B,C, sCTj

))).

If the attacker can determine the preceding equality, it can

correlate sCTj
with sBTj

and breach tag unlinkability. Deter-

mining the preceding equality necessitates the knowledge of

encryption key keB of step B, which cannot be inferred by the

attacker. STEPAUTH thus provides tag unlinkability.

Step unlinkability requires that the attacker cannot tell

whether two tags have more than one common step. Note

that it is trivial for the attacker to know that the tags whose



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 11

secrets are eavesdropped at the same step have at least one

common step. Consider, for example, the four eavesdropped

secrets sBTj
, sCTj

, sBTk
, and sCTk

at steps B and C again. sBTj

and sBTk
eavesdropped at step B show that the two tags have

a common step B. To further determine their common step C,

the attacker needs to correlate sCTj
eavesdropped at step C with

sBTj
and sCTk

with sBTk
. This indicates the attacker’s ability of

breaching tag unlinkability and contradicts with the preceding

proof. Therefore, STEPAUTH provides step unlinkability.

Theorem 3. An attacker capable of compromising any read-

ers’ decryption keys can breach tag and step unlinkability of

STEPAUTH.

Proof. We still use the example in Figure 2 to ease discussion.

For STEPAUTH, compromised decryption key kdB at step B

enables the attacker to correlate sCTj
with sBTj

and breach

tag unlinkability. Specifically, the attacker uses kdB to decrypt

the first field of sBTj
(i.e., Encke

B
(ksB)) and obtains ksB. Then

the attacker uses ksB to decrypt the second field of sBTj
(i.e.,

Encks

B
(B,C, sCTj

)) and obtain sCTj
. Furthermore, the attacker

can use kdB to decrypt the following sBTk
as well.

sBTk
=(Encke

B
(ksB),Encks

B
(B,C, sCTk

),

Sigksec(Encke

B
(ksB),Encks

B
(B,C, sCTk

))).

Since both sBTj
and sBTk

’s plaintexts include steps B and C,

the attacker can determine that their corresponding tags have

at least two common steps B and C. This breaches step

unlinkability.

VI. IMPLEMENTATION AND PERFORMANCE

In this section, we study an implementation of STEPAUTH

based on the Elliptic Curve Integrated Encryption Scheme

(ECIES) [18] and the Elliptic Curve Digital Signature Algo-

rithm (ECDSA) [19]. ECIES is a hybrid encryption scheme

proven secure against chosen-plaintext and chosen-ciphertext

attackers. We choose ECIES because it is faster with shorter

keys yet guarantees the same level of security in comparison

with other choices with longer keys. To achieve a 128-bit

security, ECIES requires only a 256-bit key while RSA needs

a much longer key of 3072 bits [18]. We choose ECDSA as

the digital signature scheme as it can use the same set of

domain parameters with that of ECIES. Our analysis shows

that the STEPAUTH implementation can generate path secrets

hard to forge yet with sizes affordable to high-memory EPC

Gen2 tags. It imposes minor computation and storage overhead

to the issuer and readers. Comparison results demonstrate that

STEPAUTH is much more efficient than incremental adaptation

of path-grained authentication solutions.

A. ECIES Background

We first sketch how ECIES performs encryption and de-

cryption [35]. A set of domain parameters is shared between

two communicating entities, say A and B. Among the domain

parameters, two critical ones for key generation are generator

point G and the order n of G. Without loss of generality, let

us consider the case when A transmits an encrypted message

to B. We need to generate a pair of keys for B’s public key

cryptography. The private/decryption key kB ∈ [1, n − 1] is

chosen at random. Then the public/encryption key is derived

via scalar point multiplication KB = kBG. Following the

principle of public key cryptography, the encryption key KB

is known to A while the decryption key kB is secret on B.

1) Encryption: To encrypt a message m, A first generates

a random number r ∈ [1, n − 1] and calculates S = rG and

P = (Px, Py) = rKB , where Px and Py are affine coordinates

of point P . A then feeds Px and S to a key derivation function

(KDF) that is constructed from a hash function and generates

two symmetric keys kE and kM. The former is for symmetric

encryption of m as c = EnckE
(m). The latter is for HMAC

of the encrypted message c as t = HMACkM
(c) toward CCA

security. Finally, the ciphertext A sends to B is (S, c, t), where

S is a compact representation of the elliptic curve point S
under point compression [36].

2) Decryption: Toward correct decryption, B needs also

the two symmetric keys kE and kM, which are derived

from P = (Px, Py) = rKB with the randomly chosen

r unknown to B. B, however, can evolve the equation as

P = (Px, Py) = rKB = rkBG = kBrG = kBS, of which

both factors are known to B as B can recover S from S.

B now can use the same KDF and Px to derive kE and

kM. B first verifies the integrity of the encrypted message by

computing t′ = HMACkM
(c) and check the equality of t′ = t.

If the equality check passes, B further decrypts the encrypted

message as m = Enc−1
kE

(c).

B. STEPAUTH Implementation using ECIES and ECDSA

1) Key establishment: The issuer chooses a set of domain

parameters for ECIES. Upon a reader Ri’s registration, the

issuer sends the domain parameters to Ri. Again, to more of

our interest are the generator point G and the order n of G. Ri

first chooses its decryption key kdi at random from [1, n− 1].

kdi : ∈ [1, n− 1].

Then it sets its encryption key kei using kdi and G.

kei = kdi G.

Ri then sends its encryption key kei to the issuer, which

can verify the encryption key with the domain parameters.

Meanwhile, the issuer uses the same set of domain parameters

for ECDSA, which generates keys for signing Ri’s path

secrets. The issuer first chooses its secret key ksec at random

from [1, n− 1].

ksec : ∈ [1, n− 1].

Then the issuer generates its public key kpub using ksec and

G as the following.

kpub = ksecG.

The issuer locally keeps the secret key ksec for signing path

secrets. It sends the public key kpub to all readers for verifying

secret signatures. The issuer and readers communicate through

a secure channel.



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 12

TABLE III
MEMORY COST BY STEPAUTH USING 256-BIT ELLIPTIC CURVE DOMAIN PARAMETERS SECP256R1 WITH 128-BIT AES AND 128-BIT MD5, GIVEN |R|

64-BIT INDEXED READERS (I.E., |Ri| = 64) AND A 128-BIT INDEXED TAG (I.E., |Tj | = 128) STORING SECRET OF AN l-STEP PATH.

Protocol Issuer Reader Tag
STEPAUTH |secp256r1|+ 256(|R|+ 1) < (|secp256r1|+ 512 + log |Ri|+ log |Tj |) 1024 + 896(l − 1)
Notes: |secp256r1| denotes the size of domain parameters. It is around 1546 bits.

2) INITIALIZE (Algorithm 2): Besides encryption key kei
of each enroute reader Ri and secret key ksec of the issuer, the

issuer needs also Ri’s symmetric key ksi to generate the initial

secret s0Tj
. Following the ECIES design, the issuer chooses at

random ri ∈ [1, n − 1] and derives ksi out of rkei . The issuer

constructs s0Tj
starting from the last step Rl−1 of an l-step

path as the following.

sl−1
Tj

= Sl−1,Encks

i
(Rl−1, Rl−1, Tj), tl−1, (7)

where Si is point-compression representation of Si = riG
that encrypts symmetric key ksi . Different from ECIES, tl−1 in

Equation 7 is no longer an HMAC of Encks

i
(Rl−1, Rl−1, Tj).

Instead, it is the issuer’s signature on the first two items using

its secret key ksec under ECDSA.

tl−1 = Sigksec(Sl−1,Encks

i
(Rl−1, Rl−1, Tj)).

The signature by ECDSA also ensures CCA-security. Follow-

ing the recursive design of INITIALIZE, we can generate s0Tj

by calling the following function.

siTj
=

{

s
l−1
Tj

, if i = l− 1;

Si,Encks
i
(Ri, Ri+1, s

i+1
Tj

), ti, if 0 ≤ i ≤ l− 2,
(8)

where we have ti = Sigksec(Si,Encks

i
(Ri, Ri+1, s

i+1
Tj

)). Note

that siTj
corresponds to the secret received by Ri.

3) VERIFY (Algorithm 3): Upon receiving siTj
, Ri first

checks whether it is signed by the issuer. To this end, Ri de-

crypts ti and compares the decryption result with the ECDSA-

hash digest of Si and Encks

i
(Ri, Ri+1, s

i+1
Tj

). If the check fails,

Ri rejects the tag. Otherwise, Ri removes ti from siTj
and

recovers Si from Si according to domain parameters. Then it

derives the symmetric key ksi using kdi Si and removes Si from

siTj
. Ri further decrypts the remaining Encks

i
(Ri, Ri+1, s

i+1
Tj

)

using ksi and gets Plain(siTj
). Ri accepts the tag if the first

|Ri| bits of Plain(siTj
) match Ri’s identifier.

4) UPDATE (Algorithm 4): Let Ri+1 represent the second

|Ri| bits of Plain(siTj
). If it happens to be Ri+1 = Ri, Ri

is the last step. It simply updates the secret by removing two

Ri’s from Plain(siTj
), which leaves Tj as the final secret. On

the other hand, if Ri+1 6= Ri, Ri+1 would be the designated

next step of Ri. Again, Ri updates the secret by removing the

leftmost 2|Ri| bits from Plain(siTj
). The remaining content

si+1
Tj

would be the secret for Ri+1, which continues to run

VERIFY and UPDATE toward step-grained path authentication.

C. Memory Cost

The memory cost imposed by STEPAUTH on different

entities (i.e., the issuer, readers, and tags) depends on the

specific configuration of ECIES and ECDSA. Specifically,

we choose the 256-bit Elliptic Curve domain parameters

secp256r1 that provides a 128-bit security [37]. Both of the

issuer’s public key and secret key are 256 bits. Both of the

encryption and decryption keys for each reader are no longer

than 256 bits. The parameter Si is 256 bits. Using 128-bit

AES-CBC without initial vector for symmetric cryptography,

the derived symmetric key is 128 bits. Using ECDSA for

generating secret signature, ti is 512 bits. Table III summarizes

the corresponding memory cost, which is derived next.

The issuer needs to maintain the Elliptic Curve domain

parameters, its 256-bit secret key, and encryption keys of

all |R| readers. According to the specification of secp256r1

[37], the domain parameters take around 1546 bits and yield

encryption keys up to 256 bits in the compact form under point

compression. The memory overhead for the issuer to support

STEPAUTH is thus less than 1546+256(|R|+1) bits. Note that

the issuer may also maintain the sets of reader/tag identifiers

and other supply chain management related information. Such

information is intrinsic for supply chain functioning and thus

not considered as overhead imposed by our STEPAUTH. In

practice, we suggest to choose the size of reader ID |Ri| = 64
bits and the size of tag ID |Tj | = 128 bits. In such case, we

have log |Ri| = 6 and log |Ti| = 7.

Each reader needs to keep auxiliary data mainly including

the domain parameters, a decryption key, and the issuer’s

256-bit public key. Using the secp256r1 domain parame-

ters, a decryption key is no longer than 256 bits. Besides,

the auxiliary data includes also the size of reader identifier

Ri and of tag identifier Tj . A reader requires allocating

additional log |Ri| bits and log |Tj | bits to store reader-ID

size and tag-ID size, respectively, a reader thus takes less

than |secp256r1| + 512 + log |Ri| + log |Tj | bits to support

STEPAUTH.

Tag memory cost is our major concern. Each tag needs

to store a path secret generated by STEPAUTH using the

path the tag should take. If secrets for long paths way

exceed the storage capacity of tags, STEPAUTH would be

impractical. Per STEPAUTH design, the initial secret of a given

l-step path is the longest among all secrets corresponding

to enroute readers. Since STEPAUTH constructs the initial

secret from the last step. We now analyze the size of the

initial secret from backward. The secret for the last step is

sl−1
Tj

= (Sl−1,Encks

i
(Rl−1, Rl−1, Tj), tl−1). Note that we use

AES-CBC mode, which guarantees security without initial

vector when used with a random encryption key. Given 64-bit

reader IDs and 128-bit tag IDs, we derive the size of sl−1
Tj

as:

|sl−1
Tj

| = 256 + (64 + 64 + 128) + 512 = 1024 (bits).

For one previous step after another, the secret expands with

one Si, two reader IDs Ri and Ri+1, and one ti (Equation 8),

which account for 256 + 64 + 64 + 512 = 896 bits. Then the

size of Ri’s secret is derived as the following.

|siTj
| = 1024 + 896((l − 1)− i) (bits).



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 13

TABLE IV
COMPUTATION COST BY STEPAUTH USING SECP256R1 WITH 128-BIT AES AND 128-BIT MD5. THE METRICS ARE THE TIME FOR THE ISSUER TO

GENERATE THE INITIAL SECRET FOR AN l-STEP PATH AND FOR EACH ENROUTE READER TO VERIFY THE SECRET.

Protocol Function Cryptographic Operation Computation Time using Different Benchmarks (ms)
Windows [22] Linux [23]

STEPAUTH Issuer.INITIALIZE (ECIES Encryption + ECDSA Signature)× l (5.65 + 2.88)× l = 8.53l (2.58 + 1.31)× l = 3.89l
Reader.VERIFY ECDSA Verification + ECIES Decryption 2.88 + 8.53 = 11.41 4.07 + 1.75 = 5.82

We, therefore, derive the size of the initial secret s0Tj
as

|s0Tj
| = 1024 + 896(l − 1) (bits).

Such secret lengths can be practically supported by available

high memory EPC Gen2 tags such as 8 KB tags by Marubeni

Chemix and Xerafy [20] and 64 KB tags by Fujitsu [21]. Even

for a practically long enough path of 100 steps, the initial

secret generated by STEPAUTH is up to 1024+ 896× (100−
1) = 89728 bits = 10.95 KB, which perfectly suits for the

capacity of high memory tags.

D. Computation Cost

We estimate the computation cost brought by STEPAUTH

using the Crypto++ 5.6.0 Benchmarks under both Windows

(Vista 32-bit with Intel Core 2 1.83 GHz) [22] and Linux

(with AMD Opteron 8354 2.2 GHz) [23] environments. Rather

than UPDATE that involves simple string operations, we fo-

cus more on INITIALIZE and VERIFY that enforce complex

cryptographic computation. More specifically, we measure the

computation cost by the time for the issuer to generate the ini-

tial secret for an l-step path and the time for an enroute reader

to verify its corresponding secret. To incorporate a step into the

secret, the issuer performs two cryptographic operations, one

for ECIES encryption and one for ECDSA signature. It thus

takes the issuer (ECIES Encryption + ECDSA Signature)× l
operations to generate the initial secret for an l-step path.

When a reader verifies a secret, it processes data related to only

one step. The reader first performs signature verification and

then ECIES decryption. Table IV summarizes STEPAUTH’s

computation cost. It takes less than 1 s to generate the initial

secret for a 100-step path and around 10 ms to verify a secret.

E. Comparison with Incremental Adaptation of Path-Grained

Authentication

Finally, we quantify the performance gap between the

baseline solution based on incremental adaptation of path-

grained authentication (Section II-D) and STEPAUTH. Among

the existing path-grained authentication protocols listed in

Table I, we choose CHECKER [13] to adapt because its path

secret supports distributed verification. A secret generated by

CHECKER has a constant size of 960 bits; it is verified and

updated step wise. To support a step-grained authentication

of a designated path, the adaptation of CHECKER should pre-

assign a tag’s step-wise secret to each corresponding step along

the designated path (Section II-D). Both the overall commu-

nication overhead for the issuer to transmit these secrets to

readers and the overall storage overhead on readers can be

approximated as the following.

n× l × 960 bits,

step length

0 10 20 30 40 50 60 70 80 90 100

c
o

m
m

u
n

ic
a

ti
o

n
/s

to
ra

g
e

 o
v
e

rh
e

a
d

: 
b

it
s ×108

0

0.5

1

1.5

2

STEPAUTH: n = 500, 1000, 2000

Incremental Adaptation: n = 500

Incremental Adaptation: n = 1000

Incremental Adaptation: n = 2000

Fig. 3. Comparison of communication/storage overhead on readers between
STEPAUTH and incremental adaptation of CHECKER. STEPAUTH uses 256-bit
Elliptic Curve domain parameters secp256r1 with 128-bit AES and 128-bit
MD5, given |R| 64-bit indexed readers (i.e., |Ri| = 64) and a 128-bit indexed
tag (i.e., |Tj | = 128). CHECKER uses 960-bit secrets.

where we have n tagged products to be delivered along

paths with an average number l of steps. The communication

overhead affects how much time the issuer takes to prepare all

readers with necessary information for secret verification. That

is, it affects the initialization time. Moreover, the storage over-

head on readers affects how much time a reader takes to verify

a secret. The more secrets a reader stores, the longer time it

will take to verify whether a secret is locally stored. On the

other hand, the above overall communication/storage overhead

for our STEPAUTH is as the following (Section VI-C).

l × (|secp256r1|+ 512 + log |Ri|+ log |Tj |) bits.

It is regardless of the number n of tags as STEPAUTH stores

secrets in tags instead of readers.

We compare the overhead of STEPAUTH and the incre-

mental adaptation of CHECKER in Figure 3. The efficiency

superiority of STEPAUTH over the incremental adaptation

intensifies as path length and tag number increase.

VII. LIMITATIONS

In this section, we discuss limitations of STEPAUTH and

provide countermeasures. As our discussions will show, some

limitations affect all path authentication protocols.

A. Hardness of Constant-size Secret

We find it hard for a step-grained authentication solution

to construct constant-size path secrets regardless of the path

length. An ideal constant-size path secret has a fixed size,

whether the corresponding path is as short as one step or as

long as, say, 100 steps. This way, we not only save tag memory

but also protect path privacy in terms of its length. Simply

extending all secrets to the length of the longest path’s secret

by padding dummy bits (Section IV-E) preserves path-length

privacy but consumes tag memory.

We now investigate the impossibility of constant-size path

secrets using the information theory. We deduce the conclusion



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 14

by contradiction whereby we first assume that a constant-

size path secret regardless of path length exists. For ease of

discussion, we consider the entropy of the constant-size path

secrets smaller than a large enough constant C. Take an n-

step path Pn = (R0, R1, ..., Ri, ..., Rn−1) for example. The

initial secret for path Pn should contain sufficient information

for each enroute reader Ri to derive its corresponding path

segment (i.e., (Ri, Ri+1) for 0 ≤ i < n−1 and (Rn−1, Rn−1)
for i = n− 1). Let H(Pn) and H(Ri) represent the entropies

of path Pn’s initial secret and each reader Ri’s corresponding

path secret, respectively. By the Source Coding Theorem [38],

we have the following equation.

H(Pn) ≥
n−1
∑

i=0

H(Ri) ≥ nd,

where 0 < d ≤ min{H(Ri) | 0 ≤ i ≤ n − 1}. Given

the assumption that a constant-size path secret exists and its

entropy is less than a constant C, we have C > nd for path Pn

with any length of n. This is contradictory if n is large enough.

Therefore, it is unreasonable to assume that a constant-size

path secret regardless of path length. In other words, we have

proven the impossibility of constant-size secret construction

for step-grained path authentication.

B. Impact of Replay/Clone Attack

An attacker may replay eavesdropped valid secrets. Such

a replay attack resonates with clone attacks, which flash

compromised data of a genuine tag to a clone tag. Then

the clone one can behave exactly the same as its genuine

counterpart during authentication. We consider the clone attack

as a concern for not only STEPAUTH but also any other path

authentication solutions. Most clone attacks deploy clone tags

at different places than that of their genuine counterparts [39],

[40]. We find that STEPAUTH can intrinsically filter such clone

tags. STEPAUTH enforces step-grained path authentication.

That is, a secret is deemed valid only at its expected step.

Take state sBTj
of Tj at step B in Figure 2 for example. It will

fail authentication at any other steps rather than step B.

A sophisticated attacker may replay a clone tag with the

valid secret at where it is eavesdropped. There are protocols

to detect clone tags colocating with their genuine counter-

parts [30]. However, a smarter attacker would delay replay-

ing/deploying a clone tag, say, with state sBTj
at step B after

Tj is shipped away. To detect such clone tags, each step should

maintain a list of authenticated secrets. Then before authen-

ticating each upcoming tag, the reader first checks whether

its secret is already in the list. If yes, the tag is suspicious

and discarded. We suggest how to reduce time and storage

overhead below and leave design details for future work. To

reduce time overhead, a Bloom filter can be introduced to track

secrets in the list [41]. A Bloom filter helps to quickly verify

that a secret is not in the list. Since a secret not in the list

can also be regarded as in the list with a (controllable) slight

probability, we need to search over the list for in-secrets to

avoid mis-regarding genuine tags as clones. To reduce storage

overhead, we can limit the effectiveness of tag secrets within

a certain time duration. Specifically, we divide the time to

epochs and assign each epoch with a unique index. We then

enclose each tag secret with an index of the corresponding

time epoch. A step needs to store authenticated secrets within

only recent epochs.

C. Tolerance of Alternative Paths

It is possible that the only designated path for a product

encounters step failures. When a step failure occurs, we need

alternative paths to deliver the affected product. Alternative

paths come into play upon two cases. The first case is

concerned with dynamic supply chains where new readers may

join and existing readers may leave during products are trav-

elling across the supply chain. In this case, paths are hard to

predict and therefore challenging to pre-generate path secrets.

To our knowledge, there is only one existing work by Cai et

al. [15] to study path authentication in dynamic RFID-enabled

supply chains. The solution therein requires each reader to

query the centralized issuer for online secret verification. All

the other path authentication solutions concentrate on static

supply chains where all valid paths are fixed. The second case

for alternative paths is therefore in such static supply chains.

Since we generate very compact path secret (i.e., 896 bits

per step), it is practical for high-memory tags with dozens

of kilobytes to accommodate hundreds of steps’ secrets. We,

therefore, suggest generating a secret for each of the alternative

paths and store all the secrets in the tag. Then no matter

which path the tag follows, step-grained authentication can

be performed.

We would like to further emphasize that we do not propose

step-grained authentication to replace existing path-grained

authentication. Instead, we consider the proposed solution

much more practically efficient for scenarios where products

do follow designated paths. Typical examples are build-to-

order supply chains and express delivery services for expensive

products. In such scenarios, intermediate readers/steps should

be highly reliable. In other words, even if alternative paths

need to be considered, the number of them should be limited.

We, therefore, consider the size of multiple paths’ secrets

affordable to tag memory; at least we can attach multiple tags

to a product when necessary.

D. Vagueness of Tag-Product Binding

Another concern of STEPAUTH is that incorrect tag-product

binding may make a product delivered toward an unexpect-

ed destination. Consider for example two products A and

B with designated paths of (R0, R1, R2) and (R0, R3, R4),
respectively. We first generate two path secrets. The secret for

product A is stored in tag TA and the other secret in tag TB.

If we attach tag TA to product B by mistake, then product

B will be delivered along A’s designated path (R0, R1, R2),
instead of the expected (R0, R3, R4).

We consider the preceding concern as an intrinsic limitation

of RFID-based supply chain management. It affects not only

any path authentication solution but also other management

operations. The key reason is that in an RFID-enabled supply

chain, tag genuineness is regarded as product authenticity. It

is said that in supermarkets or shopping malls, a customer



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 15

could replace tags on expensive products with those on cheap

ones. This way, the customer can buy expensive products at

lower prices. To put it another way, the information carried

in tags serves as the credential for authenticating products.

Generalizing this to a larger context of authentication, a valid

credential makes any entity pass authentication if the credential

is the solely required factor.

One feasible countermeasure is to attach fragile RFID tags

to products [42], [43]. If an attacker peels off a fragile RFID

tag from the attached product, the tag IC would be completely

destroyed (i.e., break on removal). It is thus impossible for tag

replacement to work. Another feasible countermeasure needs

to introduce additional factors for authentication. Back to the

RFID-enabled supply chain management, product specifics

(e.g., appearance) could be leveraged to strengthen RFID-

based authentication. Take the preceding tag replacement

feasibility for instance again. If the customer sticks a tag

removed from a hundreds-of-dollars TV screen to another

more expensive thousands-of-dollars one, a cautious cashier

would find it suspicious when the customer checks out and

the price prompt on the computer is unreasonably low.

E. Reliance on Secure Channel

As with most RFID path authentication protocols,

STEPAUTH assumes a secure channel for issuer-reader com-

munication. Certainly, it is more practical to remove this

assumption. While existing solutions do not wrestle with an

insecure channel, the focus is how to generate secure and

efficient secrets for path authentication given established keys.

We suggest a lightweight enhancement of the key estab-

lishment process for STEPAUTH. The enhancement imposes

only one more round of communication. The motivation is

to leverage public key cryptography, which is designed for

secure communication over a potentially insecure channel.

Since STEPAUTH requires the issuer to first transmit its public

key kpub and domain parameters to a reader, the goal of

the enhancement is to protect the secrecy of kpub and the

domain parameters. Later messages from the reader to the

issuer can be encrypted using kpub and only the issuer can

decrypt them. To protect the initial issuer-to-reader message,

the reader generates a pair of public key kpubR and secret key

ksecR under any proven secure public cryptography scheme. The

reader manages to obtain a public key certificate for its public

key kpubR and transmits it to the issuer. The issuer verifies the

certificate and if it is correct, uses kpubR to encrypt its message

to the reader, which can decrypt the message using ksecR . After

establishing keys for ECIES and ECDSA, the reader no longer

needs to store kpubR and ksecR . We turn to ECIES and ECDSA

after then because of their high efficiency.

VIII. CONCLUSION

We have proposed the first step-grained RFID path au-

thentication protocol called STEPAUTH toward combating

counterfeit products in supply chains. Different from prior

path authentication protocols, STEPAUTH enforces a practical

deliver regulation that requires products be delivered along

designated paths. Such a regulation is critical for scenarios like

build-to-order supply chain management and express delivery

service where products are delivered to specific receivers.

STEPAUTH encodes the path into an in-tag secret, which

enables each reader to locally authenticate tag validity and

make delivery decision. What makes STEPAUTH shine more

is that it limits minimal path visibility disclosure between

only adjacent readers. This protects supply chain partners’

privacy such as transaction strategy. Most traditional path

authentication protocols, however, leak more path visibility as

they usually offload path sets to readers. To make STEPAUTH

practically efficient, we leverage nested encryption and hybrid

encryption to quickly generate and verify path secrets. The

generated secrets naturally suit for the storage capacity of

available high-memory EPC Gen2 tags. STEPAUTH guarantees

tag unlinkability and step unlinkability against attackers that

cannot compromise decryption keys on readers. Furthermore,

we prove that STEPAUTH can prohibit an attacker from forging

valid secrets even if it can compromise all readers.

ACKNOWLEDGMENT

This work is supported in part by the National Science

Foundation of China under Grant No. 61402404. We also

thank Editors and Reviewers of IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, Yutian Yang, and

Avery Laird for their review efforts and helpful feedback.

REFERENCES

[1] K. Ouafi and S. Vaudenay, “Pathchecker: An RFID application for
tracing products in supply-chains,” in RFIDSec, 2009.

[2] Global trade in fake goods worth nearly half a trillion
dollars a year - OECD & EUIPO. [Online]. Avail-
able: https://www.oecd.org/industry/global-trade-in-fake-goods-worth-
nearly-half-a-trillion-dollars-a-year.htm

[3] In China, Fear of Fake Eggs and ’Recycled’ Buns. [Online]. Available:
http://www.nytimes.com/2011/05/08/world/asia/08food.html

[4] Counterfeit watches and jewelry are the new counterfeit handbags.
[Online]. Available: https://qz.com/376249/counterfeit-watches-and-
jewelry-are-the-new-counterfeit-handbags/

[5] Officials Tell Fans How to Spot Fake Super Bowl Tickets.
[Online]. Available: http://www.nbcdfw.com/news/sports/Officials-Tell-
Fans-How-to-Spot-Fake-Super-Bowl-Tickets-412602683.html

[6] Counterfeit electronics can be ’highly dangerous’. [On-
line]. Available: http://www.cbc.ca/news/canada/toronto/counterfeit-
electronics-can-be-highly-dangerous-1.2744581

[7] E.-O. Blass, K. Elkhiyaoui, R. Molva, and E. S. Antipolis, “Tracker:
security and privacy for RFID-based supply chains,” in NDSS, 2011.

[8] S. Cai, R. H. Deng, Y. Li, and Y. Zhao, “A new framework for privacy
of RFID path authentication,” in ACNS, 2012, pp. 473–488.

[9] H. Wang, Y. Li, Z. Zhang, and Y. Zhao, “Efficient tag path authentication
protocol with less tag memory,” in ISPEC, 2016, pp. 255–270.

[10] M. S. I. Mamun and A. Miyaji, “RFID path authentication, revisited,”
in IEEE AINA, 2014, pp. 245–252.

[11] B. Ray, M. Chowdhury, and J. Abawaiy, “Puf-based secure checker
protocol for networked RFID systems,” in IEEE ICOS, 2014, pp. 78–83.

[12] H. Wang, Y. Li, Z. Zhang, and Z. Cao, “Two-level path authentication
in epcglobal network,” in IEEE RFID, 2012, pp. 24–31.

[13] K. Elkhiyaoui, E.-O. Blass, and R. Molva, “Checker: On-site checking
in RFID-based supply chains,” in ACM WiSec, 2012, pp. 173–184.

[14] A. Gunasekaran and E. W. Ngai, “Build-to-order supply chain manage-
ment: a literature review and framework for development,” Journal of

operations management, vol. 23, no. 5, pp. 423–451, 2005.
[15] S. Cai, Y. Li, and Y. Zhao, “Distributed path authentication for dynamic

RFID-enabled supply chains,” in IFIP International Information Security

Conference, 2012, pp. 501–512.
[16] (2015) How Many Products Does Amazon Sell? [Online].

Available: https://export-x.com/2015/12/11/how-many-products-does-
amazon-sell-2015/



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2768022, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2017 16

[17] T. Burbridge and A. Soppera, “Supply chain control using a RFID proxy
re-signature scheme,” in IEEE RFID, 2010, pp. 29–36.

[18] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve

cryptography. Springer Science & Business Media, 2006.
[19] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital

signature algorithm (ecdsa),” International Journal of Information Se-

curity, vol. 1, no. 1, pp. 36–63, 2001.
[20] A Flurry of High-Memory Tags Take Flight. [Online]. Available:

http://www.rfidjournal.com/articles/view?8295
[21] Fujitsu Develops World’s First 64KByte High-Capacity

FRAM RFID Tag for Aviation Applications. [Online].
Available: http://www.fujitsu.com/global/about/resources/news/press-
releases/2008/0109-01.html

[22] Crypto++ 5.6.0 Benchmarks (Windows). [Online]. Available:
https://www.cryptopp.com/benchmarks.html

[23] Crypto++ 5.6.0 Benchmarks (Unix). [Online]. Available:
https://www.cryptopp.com/benchmarks-amd64.html

[24] R. Angeles, “RFID technologies: supply-chain applications and imple-
mentation issues,” Information systems management, 2005.

[25] S. Sarma, “Introductory Talk: Some issues related to RFID and security,”
in Workshop on RFID Security, 2006.

[26] R.-I. Paise and S. Vaudenay, “Mutual authentication in RFID: security
and privacy,” in ACM AsiaCCS, 2008, pp. 292–299.

[27] R. Koh, E. W. Schuster, I. Chackrabarti, and A. Bellman, “Securing
the pharmaceutical supply chain,” White Paper, Auto-ID Labs, Mas-

sachusetts Institute of Technology, pp. 1–19, 2003.
[28] Class-1 Generation-2 UHF RFID. [Online]. Available:

www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2 1 2 0-standard-
20080511.pdf

[29] M. Kodialam, T. Nandagopal, and W. Lau, “Anonymous tracking using
RFID tags,” in IEEE INFOCOM, 2007, pp. 1217–1225.

[30] K. Bu, X. Liu, J. Luo, B. Xiao, and G. Wei, “Unreconciled collisions
uncover cloning attacks in anonymous RFID systems,” IEEE Transac-

tions on Information Forensics and Security, vol. 8, no. 3, pp. 423–439,
2013.

[31] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta et al.,
“Imperfect forward secrecy: How diffie-hellman fails in practice,” in
ACM CCS, 2015, pp. 5–17.

[32] RFC 2313 - PKCS #1: RSA Encryption Version 1.5 - IETF Tools.
[Online]. Available: https://tools.ietf.org/html/rfc2313

[33] N. Ferguson, B. Schneier, and T. Kohno, Cryptography engineering:

design principles and practical applications. John Wiley & Sons, 2011.
[34] R. Cramer and V. Shoup, “Design and analysis of practical public-key

encryption schemes secure against adaptive chosen ciphertext attack,”
SIAM Journal on Computing, vol. 33, no. 1, pp. 167–226, 2003.

[35] Integrated Encryption Scheme. [Online]. Available: http-
s://en.wikipedia.org/wiki/Integrated Encryption Scheme

[36] A. Jivsov, “Compact representation of an elliptic curve point,” 2014.
[37] M. Qu, “Sec 2: Recommended elliptic curve domain parameters,” 1999.
[38] D. MacKay, Information theory, inference, and learning algorithms,

1st ed. Cambridge University Press, 2003.
[39] D. Zanetti, L. Fellmann, and S. Capkun, “Privacy-preserving clone

detection for RFID-enabled supply chains,” in IEEE RFID, 2010.
[40] K. Bu, M. Weng, Y. Zheng, B. Xiao, and X. Liu, “You can clone but you

can’t hide: A survey of clone prevention and detection for rfid,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1682–1700,
2017.

[41] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[42] The World’s Best Anti-counterfeit RFID Label Supplier. Fragile label,
Easy Shredding. [Online]. Available: https://tinyurl.com/y7b5gutd

[43] Disposable Printed Fragile RFID Tag Label For Loyalty System, 3M
Adhesive Layer. [Online]. Available: https://tinyurl.com/y9dpu7rx

Kai Bu received the B.Sc. and M.Sc. degrees in
computer science from the Nanjing University of
Posts and Telecommunications, Nanjing, China, in
2006 and 2009, respectively, and the Ph.D. de-
gree in computer science from The Hong Kong
Polytechnic University, Kowloon, Hong Kong, in
2013. Currently, he is an Assistant Professor with
the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China. His research
interests include networking and security. He is a
Member of the ACM, the IEEE, and CCF. He is a

recipient of the Best Paper Award of IEEE/IFIP EUC 2011 and the Best Paper
Nominees of IEEE ICDCS 2016.

Yingjiu Li is currently an Associate Professor in
the School of Information Systems at Singapore
Management University (SMU). His research inter-
ests include RFID Security and Privacy, Mobile and
System Security, Applied Cryptography and Cloud
Security, and Data Application Security and Privacy.
He has published over 130 technical papers in inter-
national conferences and journals, and served in the
program committees for over 80 international con-
ferences and workshops. Yingjiu Li is a senior mem-
ber of the ACM and a member of the IEEE Comput-

er Society. The URL for his web page is http://www.mysmu.edu/faculty/yjli/.


	Every step you take, I’ll be watching you: Practical StepAuth-entication of RFID paths
	Citation

	T-IFS-07263-2017.dvi

