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Attribute-Based Keyword Search over
Hierarchical Data in Cloud Computing

Yinbin Miao, Jianfeng Ma, Ximeng Liu, Xinghua Li, Qi Jiang, and Junwei Zhang

Abstract—Searchable encryption (SE) has been a promising technology which allows users to perform search queries over encrypted
data. However, the most of existing SE schemes cannot deal with the shared records that have hierarchical structures. In this paper, we
devise a basic cryptographic primitive called as attribute-based keyword search over hierarchical data (ABKS-HD) scheme by using the
ciphertext-policy attribute-based encryption (CP-ABE) technique, but this basic scheme cannot satisfy all the desirable requirements of
cloud systems. The facts that the single keyword search will yield many irrelevant search results and the revoked users can access the
unauthorized data with the old or outdated secret keys make this basic scheme not scale well in practice. To this end, we also propose
two improved schemes (ABKS-HD-I,ABKS-HD-II) for the sake of supporting multi-keyword search and user revocation, respectively. In
contrast with the state-of-the-art attribute-based keyword search (ABKS) schemes, the computation overhead of our schemes almost
linearly increases with the number of users’ attributes rather than the number of attributes in systems. Formal security analysis proves
that our schemes are secure against both chosen-plaintext attack (CPA) and chosen-keyword attack (CKA) in the random oracle model.
Furthermore, empirical study using a real-world dataset shows that our schemes are feasible and efficient in practical applications.

Index Terms—Searchable encryption, hierarchical structures, ciphertext-policy attribute-based encryption, chosen-plaintext attack,
chosen-keyword attack.

F

1 INTRODUCTION

C LOUD computing [1] has become a promising technol-
ogy due to its impressive features, i.e., large storage

capacity and flexible accessibility. By outsourcing the sen-
sitive data to a cloud server, individuals and enterprises
are relieved from the burden of local data management and
maintenance. However, as data owners cannot have the full
physical control over their data, data security and privacy
concerns remain significant barriers to the adoption of cloud
computing. The basic idea is to encrypt the shared data
before outsourcing them to the cloud servers, whereas the
encryption mechanism limits the flexibility of data retrieval
to some extent. In addition, it is a naive solution to down-
load all ciphertexts and decrypt them locally because this
will incur a waste of computation and bandwidth resources.
Accordingly, how to securely and efficiently retrieve cloud
data is of prime importance in the scenarios of cloud stor-
age [2], [3].

To solve the problem of searching over encrypted data,
the SE technique [4], [5], [6], [7], [8], which allows cloud
server to retrieve encrypted data on behalf of data owners
without loss of data confidentiality, has made specific con-
tributions in terms of security, efficiency and functionality.
So far, a lot of work under various security models has been
proposed in order to gain different search functionalities,
such as single keyword search, multi-keyword search, fuzzy
keyword search, etc. Although the SE technique has attract-
ed much attention in the industrial and academical fields
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Management University, 80 Stamford Road, Singapore.

over the last decade, it is still not sufficient as data owners
also want to achieve the fine-grained data sharing and
decentralized access control. To the best of our knowledge,
the traditional server-based access control mechanisms are
no longer suitable for cloud storage as the cloud server
cannot be completely trusted by data owners. At present,
the CP-ABE technology [9], which can gain one-to-many
encryption rather than one-to-one, has turned to be a viable
tool to tackle the problem of fine-grained access control.

However, the sole fine-grained access control cannot
satisfy all the desirable requirements of cloud system. Sup-
porting search over hierarchical data is also of critical im-
portance in practice. In the cloud data sharing applications,
each record itself may contain different value of informa-
tion, only the data users who have corresponding access
privileges [10] can access it according to their attributes
(e.g., position, nationality). Then, we argue this practical
issue unconsidered in most of previous work [9], [11],
[12]. In this paper, we design a novel search mechanism
over the hierarchical data with multiple access levels by
utilizing the SE and CP-ABE techniques simultaneously,
particularly in the area of healthcare and military systems.
The data owner first encrypts the hierarchical data with
the traditional symmetric encryption algorithm. Then, he
encrypts the indexes and symmetric keys by the CP-ABE
technique. When retrieving the shared data, a specific data
user delivers an attribute set and a search token generated
from his interested keyword to cloud server such that the
cloud server can locate the relevant ciphertexts, while it is
worth noticing that the specific data user can only decrypt
his authorized ciphertexts, as shown in Fig. 1.

From practical point of view, the practical solution
should support the expressive search queries as the single
keyword search may yield many irrelevant search results
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Fig. 1. An example of search scheme.

and decrease the user search experience. Besides, another
challenging problem in the dynamic practical applications
is the user revocation. For instance, when the role of a
specific data user has been changed, the attribute set S
and its corresponding secret key also need to be updated.
To guarantee that a specific data user cannot reuse his old
or outdated secret key to access the unauthorized data,
the practical scheme should address the problem of user
revocation [13], [14], which is not straightforward and trivial
in the CP-ABE scheme.

1.1 Main Contributions
To achieve the simple and fine-grained access control, a
basic scheme, namely attribute-based keyword search for
hierarchical data (or ABKS-HD, for short), has been pro-
posed by leveraging the typical CP-ABE schemes [9] and
a verifiable ABKS (or VABKS, for short) scheme [15]. Fur-
thermore, we present two enhanced schemes (ABKS-HD-I,
ABKS-HD-II) to support multi-keyword search and user
revocation, respectively. Due to the versatile properties of
our schemes, the various requirements of cloud system can
be met. Besides, the formal security analysis proves that
our schemes are secure against both the CPA and CKA in
random oracle model. Then, we conduct the experimen-
tal simulation using a real-world dataset to demonstrate
the efficiency and feasibility of our schemes in practice.
Compared with the previously proposed schemes, the main
contributions of our study can be shown as follows:

• Fine-grained search over hierarchical data. ABKS-HD
enables a specific data user to issue the search queries
for hierarchical data according to his specified key-
word without leaking the underlying data. Besides,
it also can achieve the fine-grained access privilege
control.

• Versatile search functionalities. To avoid returning
many irrelevant search results, ABKS-HD-I enables
data users to conduct multi-keyword search for the
sake of improving user search experience. In addi-
tion, ABKS-HD-II tackles the problem of user revo-
cation, which may yield unauthorized accesses with
the old or outdated secret keys.

• Efficient and feasible in practice. Superior to previ-
ously proposed schemes, our schemes can greatly
reduce the high storage and computation burden on
data users. Thus, our schemes are suitable for the
lightweight entities, i.e., sensor nodes and mobile
terminals.

1.2 Organization
The remainder of this study is organized as follows.
Section 2 presents some preliminary cryptographic back-
grounds. Then, Section 3 describes the problem formulation-
s which include system model, threat model, etc. And the
concrete constructions of our schemes are demonstrated in
Section 4, followed by Section 5 which gives the security and
performance analysis. Later on, Section 6 shows the related
work associated with our schemes. Finally, the concluding
remark of this whole paper is summarized in Section 7.

2 PRELIMINARIES

In this section, we present some cryptography backgrounds
associated with our study, i.e., DBDH (Decisional Bilinear
Diffie-Hellman) assumption, access structure and hierarchi-
cal access tree. Moreover, let G,GT be two cyclic groups
of prime order p, g be a generator of group G and e be
the bilinear map G × G → GT . Given a set S , the symbol
s ∈R S is defined as choosing an element s uniformly at
random from the set S , and [1,Λ] is denoted as an integer
set {1, 2, ...,Λ}, where Λ is an integer.

Besides, the secret sharing scheme is used in our scheme,
which is based on Lagrange interpolation method. As-
sume that the Lagrange interpolation formula is defined
as qn′(x) =

∑n′

i=0(
∏n′

j=0,j ̸=i
x−xj

xi−xj
)yi, which can be recon-

structed by n′ + 1 insertion points {(x0, y0), · · · , (xn′ , yn′)}
and Lagrange coefficient {∆i(x)}, where ∆i(x) =∏n′

j=0,j ̸=i
x−xj

xi−xj
, yi is the i-th share of secret qn′(0).

2.1 DBDH Assumption
Given the bilinear map parameters (G,GT , p, e, g) and three
elements (a′, b′, c′) ∈R Z3

p , if there is no PPT (Proba-
bilistic Polynomial Time) algorithm B that can distinguish
between the tuple (g, ga

′
, gb

′
, gc

′
, e(g, g)a

′b′c′) and the tuple
(g, ga

′
, gb

′
, gc

′
, ϑ), we can say that the PPT algorithm B does

not have an advantage ϵ in solving the DBDH problem when
the following equation holds, where ϑ ∈R GT .∣∣∣∣∣Pr[B(g, ga

′
, gb

′
, gc

′
, e(g, g)a

′b′c′) = 1]

− Pr[B(g, ga
′
, gb

′
, gc

′
, ϑ) = 1]

∣∣∣∣∣ < ϵ. (1)

Definition 1. We say that the DBDH assumption holds in
G if no PPT algorithm has a non-negligible advantage in
solving the DBDH problem.

2.2 Access Structure
Similar to the description shown in [16], we assume that
the set {P1, · · · , Pκ} is a group of parties. A collection
A ⊆ 2{P1,··· ,Pκ} is monotone for ∀Θ1,Θ2: if Θ1 ∈ A and
Θ1 ⊆ Θ2 then Θ2 ∈ A, and the access structure is defined
as a collection A of non-empty subsects of {P1, · · · , Pκ},
i.e., A ⊆ 2{P1,··· ,Pκ}\{∅}, where the sets in A are called
the authorized sets, and the sets not in A are called the
unauthorized sets.

Generally, the data users are described by an attribute
set, and the authorized attribute sets are contained in A.
Besides, the access structure used in this work is in a
monotone form.
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Fig. 2. An example of access tree.

2.3 Hierarchical Access Tree

Let T be a hierarchical tree which describes an access
structure Γ, where Γ contains L access levels. Similar to
the description demonstrated in [11], each node of T is
denoted by a two-tuple (x, y), where x describes the row
of each node in T , y represents the column of each node
in T . To simplify the description, we first take the Fig. 2
for example, i.e., R=(1,1), A=(2,1), B=(2,2), C=(3,1), D=(3,2).
Next, we show some terms and functions as follows:

• (x, y). This symbol represents a node of T . For each
leaf node (x, y) in T , it denotes a specific attribute.
With regard to the non-leaf node (x, y) of this tree,
it denotes a threshold gate, i.e., “AND”, “OR” and
“N-of-M” (N<M).

• num(x,y). This symbol denotes the number of chil-
dren nodes of (x, y) in T . For instance, numC =
num(3,1) = 3, as shown in Fig. 2.

• th(x,y). This symbol represents the threshold value
of node (x, y) in T , and it satisfies 0 < th(x,y) ≤
numx,y . If th(x,y) = 1 and (x, y) is a non-leaf
node, the node (x, y) denotes an “OR” gate. If
th(x,y) = num(x,y) and (x, y) is a non-leaf node, the
node (x, y) denotes an “AND” gate. For example, R
represents “OR” gate, A and B denote “AND” gate.
Especially, when (x, y) is a leaf-node, we also set the
threshold value of node (x, y) as th(x,y) = 1.

• (xi, yi)(i ∈ [1,L]). This symbol denotes the access
level of node (x, y) in T , where T contains L access
levels. Notice that the hierarchies of nodes in T are
classified in descending order, such as (x1, y1) is the
highest hierarchy, (xL, yL) is the lowest hierarchy.

• parent(x, y). This symbol represents the parent n-
ode of (x, y) in T . For instance, parent(C) =
parent(3, 1) = A, as demonstrated in Fig. 2.

• Transport node. If the node (x, y) has at least a
threshold gate, then (x, y) is a transport node, such
as the nodes R and A in Fig. 2.

• Φ(x, y). This symbol denotes the threshold gate set of
transport node (x, y)’s children nodes. For instance,
Φ(R) = {A,B}, Φ(A) = {C}, as shown in Fig. 2.

• att(x, y). This symbol represents the attribute associ-
ated with the leaf node (x, y) in T .

• index(x, y). The symbol denotes an unique value
associated with the node (x, y) in T , and the index
values are uniquely assigned to the nodes in the
access structure Γ for a given key in an arbitrary

manner.
• Tx,y . This symbol represents a subtree which is root-

ed at the node (x, y), where T denotes the tree with
root node R, hence T = TR. If an attribute set S
satisfies the subtree Tx,y , we mark it as Tx,y(S) = 1,
and the value of Tx,y(S) is computed as follows. If
(x, y) is a leaf node, Tx,y(S) returns 1 if and only
if att(x, y) ∈ S. If (x, y) is a non-leaf node, Tx,y(S)
returns 1 if and only if at least th(x,y) children nodes
return 1.

3 PROBLEM FORMULATIONS

In this section, we will present the system model, threat
model, the definition of ABKS-HD scheme, security model
and design goals, respectively.

3.1 System & Threat Models

In ABKS-HD, the system involves four different entities,
namely Trusted Authority (TA), Cloud Service Provider
(CSP), data owner and data users, as illustrated in Fig. 4. TA
generates the public keys and master keys (Step 1⃝), where
the master keys are owned by itself. Data owner generates
ciphertexts (Step 2⃝) by utilizing public keys and access
policies before sending them to CSP. When data user intends
to issue a search query, he needs to obtain his secret key
(Step 3⃝) from TA by submitting his attributes. After that,
data user sends the trapdoor as well as his attributes to CSP
to gain the authorized results (Step 4⃝). Assume that there
are L records M = {m1, · · · ,mL} which are divided into
L access levels, where m1 has the highest hierarchy and mL
has the lowest hierarchy. If a specific data user can decrypt
the record mi, he can also decrypt the record mj , where
1 ≤ i < j ≤ L. Take Fig. 2 as an example, the access levels
of nodes R, A, B, C, D, E, F, G, H, I decrease in turn and each
node is associated with a record, namely (R,m1),· · · ,(I,m10).
The data user with attribute D can decrypt not only record
m5 but also records m6,m7,m8,m9,m10.

For instance, each PHR data may be divided into t-
wo parts, namely personal information M1 which contains
the patient’s gender, social security number, name, etc,
and medical record M2 which is composed of treatment
protocols, medical test results, etc. Later, a specific doctor
needs to access M1 so as to make a diagnosis, while the
chemist who focuses on studying cancer can only access the
M2. Preferably, the patient needs to encrypt the personal
information and medical record individually with different
access policies (T1, T2) to securely share his PHR data.
Unfortunately, this inevitably incurs extra computation and
storage costs. To this end, the cloud data in the same access
level can be encrypted with the integrated access policy T ,
as illustrated in Fig. 3.

Next, we give an introduction for each entity as follows:

• TA. It is responsible for generating the system pa-
rameters and secret keys of the specific data users.

• CSP. The cloud server which is assumed to have
adequate storage capacity can provide many ser-
vices, i.e., data storage, computation and retrieval.
Although it can honestly conduct data storage and
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Fig. 4. System model of ABKS-HD scheme.

retrieval operations, it will still spy out as much
sensitive information as possible.

• Data owner. The entity that has a huge amount
data to be stored and shared in cloud server is in
charge of specifying access structure and generating
ciphertexts for indexes and record key set.

• Data user. If he is proved to be a legal entity, then he
can issue search queries according to his interested
keywords and execute decryption operations.

As for TA, it is a completely trusted entity and takes
charge of system initialization. As the CSP is always sup-
ported by third-parties, it is assumed to be an honest-but-
curious entity which honestly follows the designed protocols
but may be curious to find out the valuable information. Be-
sides, the data owner is also considered to be fully trusted,
and data users who can decrypt ciphertexts cannot collude
with other malicious ones.

3.2 Overview of ABKS-HD Scheme

Based on the keyword set W = {w}, data owner first
extracts keywords from the record set M = {m1, · · · ,mL}
and builds indexes for it, as shown in Fig. 5. Then, he
encrypts each record mi with different symmetric record
key ki, where 1 ≤ i ≤ L. Finally, he encrypts the record
key set K = {k1, · · · , kL} and indexes with our proposed
ABKS-HD scheme. When a specific data user wants to
access the ciphertexts containing his intended keyword, he
must deliver his attribute set and trapdoor generated from
his queried keyword to CSP. After that, the CSP returns
the relevant ciphertexts if and only if his attribute set S (or
trapdoor) matches with the access structure (indexes). It is
worth noticing that only the authorized data user can obtain
his corresponding record keys and decrypt the returned
encrypted records.

Definition 2. The ABKS-HD scheme is a tuple of six algo-
rithms which are shown as follows:

m1

m2

m3

m4

Maths  English

Physics  English

Chemistry

Maths  Physics

Maths

Physics

Chemistry

English

1, 4

2, 4

3

1, 2

Record set: {m1, m2, m3, m4} 

Keyword set: {Maths, Physics, Chemistry, English}

En

Fig. 5. An example of building index.

(1) Setup(1k). On input the security parameter k, TA
runs this algorithm to output the public key PK and
master key MSK .

(2) KeyGen(PK,MSK,S). When gaining an attribute
set S, TA conducts this algorithm to output the secret
key SK for the specific data user.

(3) Enc(PK,W,M,K,Γ). This algorithm is run by the
data owner who has a record set M with different
access levels. Then, he generates the record cipher-
texts C, encryption key ciphertexts CT and indexes I
according to the symmetric key set K and keyword
set W . Finally, he sends the tuple (C, CT, I) to the
CSP.

(4) Trap(PK,SK, S,w′). A specific data user first con-
ducts this algorithm to generate the trapdoor (or
search token) Tw′ associated with his queried key-
word w′. Then, he delivers his attribute set S and
Tw′ to the CSP.

(5) Search(PK,S, Tw′ , CT, I). On input Tw′ and S, the
CSP issues this operation and returns the encrypted
records C′ which not only contain the keyword w′

but also can be accessed by the specific data user.
(6) Dec(PK,SK, S). The specific data user issues

this algorithm to gain the symmetric record keys
{ki, ki+1, · · · , kL} and decrypt the returned cipher-
texts C′.

3.3 Security Models
For the security of ABKS-HD scheme, the confidentiality
of record set and its symmetric encryption key set should
be guaranteed. Besides, the data user’s secret key SK is
associated with an attribute set, and the ciphertexts CT are
described by the access structure, while the security model
of our scheme requires that our scheme should resist the
CPA. Next, we will show the CPA security game between
the adversary A and challenger B as follows:

• Init. A first chooses a challenging access structure Γ∗

and delivers it to B.
• Setup. B runs the Setup(1k) algorithm to generate the

public key PK and returns it to A.
• Query phase 1. A first selects a series of attribute

sets S1, · · · , Sη to query for the secret keys. Then,
B answers these queries by running the Key-
Gen(PK,MSK,St). But there exists one restriction
that St /∈ Γ∗, where t ∈ [1, η].

• Challenge. A first selects two messages m0,m1 which
are to be challenged on. Then, B selects a random
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bit ℓ ∈ {0, 1}∗ and encrypts the message mℓ with an
access structure Γ∗. Finally, B sends the ciphertexts
CT ∗ to A.

• Query phase 2. A repeats the queries for secret keys
as the same as the queries in the query phase 1.

• Guess. A outputs a guess bit ℓ′ ∈ {0, 1}∗. If ℓ′ = ℓ, A
wins this security game; otherwise, it fails. The A’s
advantage in winning the CPA game is denoted as
AdvCPA

A (1k) = |Pr[ℓ′ = ℓ]− 1
2 |.

Definition 3. We can say that ABKS-HD scheme is secure
against the CPA if no PPT adversary A can win the
aforementioned security game.

Besides, A cannot spy out the valuable information
about the plaintext keyword without being given any
matching search token in the selective security model. We
formalize this security property via the selective CKA game
between the adversary A and challenger B.

• Setup. Given the security parameter k, B runs the
KeyGen(PK,MSK,S) algorithm to return a specif-
ic data user’s secret key SK , but A just owns the
public key PK .

• Phase 1. A adaptively asks a series of keywords
w′

1, · · · , w′
~ to the Trap oracle as follows:

B repeatedly conducts the Trap(PK,SK, S,w′
t) al-

gorithm to generate the search token Tw′
t

and sends
it to A, where t ∈ [1, ~].

• Challenge. A randomly selects two target keywords
w′

0, w
′
1 to be challenged on, but the restriction is that

the keywords w′
0, w

′
1 have not be queried in the phase

1. After that, B randomly chooses a bit ℓ ∈ {0, 1}∗
and returns the trapdoor Iw′

ℓ
to A.

• Phase 2. A continues to issue keywords
w′

~+1, · · · , w′
~+ς to the Trap oracle, but it requires

that the keywords w′
0, w

′
1 cannot be queried again.

B still runs the Trap(PK,SK, S,w′
t) algorithm to

generate the trapdoor Tw′
t

and returns it to A, where
t ∈ [~+ 1, ~+ ς].

• Guess. A outputs a guess bit ℓ′ ∈ {0, 1}∗, and he will
win this game if ℓ′ = ℓ; otherwise, he fails. Thus, the
A’s advantage in winning the CKA game is denoted
as AdvCKA

A (1k) = |Pr[ℓ′ = ℓ]− 1
2 |.

Definition 4. Our scheme is said to be secure against the C-
KA if no PPT adversaries have non-negligible advantage
in breaking the CKA security game.

4 THE PROPOSED SCHEMES

In this section, we first give some notations (as shown in TA-
BLE 1) used in the basic ABKS-HD scheme before present-
ing its concrete construction. In order to gain a broad range
of applications in practice, two enhanced schemes (ABKS-
HD-I, which can support multi-keyword search and user
revocation respectively, ABKS-HD-II) are also proposed.

4.1 Concrete Construction of ABKS-HD

In this part, we present the detailed construction of ABKS-
HD scheme as follows:

TABLE 1
Notation descriptions in basic scheme

Notation Description
S = {1, · · · , j, · · · } Data user’s attribute set
M = {m1, · · · ,mL} Data owner’s record set
K = {k1, · · · , kL} Record encryption set
C = {Ek1

(m1), · · · , EkL (mL)} Record ciphertext set
CT = {T , Ci, C

′
i, D

′′
(x,y),j

} Integrated ciphertext set
I = {σi, σ

′
i, D(x,y), D

′
(x,y)

} Encrypted index set
w′ ∈ W Data user’s queried keyword
Tw′ = (t1, t2, t3, {π̂j , π̂

′
j}) Data user’s search token

Setup(1k). Given the security level k and bilinear map
parameters (G,GT , e, p, g), TA first selects three hash func-
tions H0 : {0, 1}∗ →R Z∗

p , H1 : {0, 1}∗ → G, H2 :
{0, 1}∗ → GT and several elements (a, b, c, α, β) ∈R Z5

p .
Then, it returns the public key PK and master key MSK
by the formula 2, where θ = e(g, g).

PK = {g, ga, gb, gc, gβ , θα};
MSK = {a, b, c, α, β}.

(2)

KeyGen(PK,MSK,S). On input a specific data user’s
attribute set S ⊆ Att, TA first chooses r ∈R Z∗

p and rj ∈R

Z∗
p for each attribute j ∈ S. Then, it sets the specific data

user’s secret key SK by the formula 3, where Att denotes
the attribute set in system.

SK =

{
ϖ1 = g(ac−r)/b, ϖ2 = g(α+r)/β ;

∀j ∈ S : πj = gr ·H1(j)
rj , π′

j = grj .
(3)

Enc(PK,W,M,K,Γ). This phase, as shown in the Al-
gorithm 1, is run by the data owner and divided into several
steps as follows:

(1) Given the record set M = {m1, · · · ,mL}
and its corresponding symmetric encryption
key K = {k1, · · · , kL}, the data owner
first generates the record ciphertext set as
C = {Ek1(m1), · · · , EkL(mL)}. Then, he selects
L elements {ν1, · · · , νL} and encrypts the record key
set K by the formula 4, where νi ∈R Z∗

p (1 ≤ i ≤ L).
Notice that the M has L access levels, and each
access level has single record, as described in the
subsection 3.1.

Ci = ki · θανi , C ′
i = gβνi . (4)

(2) Based on the keyword set W = {w}, the data owner
needs to build indexes in a way shown in Fig. 5.
For certain keyword w ∈ W , the data owner first
chooses µ ∈R Z∗

p and computes ϱ = gcµ. Then,
he computes σi = ga(µ+νi)gbµH0(w), σ′

i = gbνi if
w ∈ mi; otherwise, he sets σi = 1, σ′

i = 1.
(3) The data owner selects a d(x,y)-degree polynomial

q(x,y) for each node (x, y) (including the leaf nodes)
in the T , where d(x,y) = k(x,y) − 1, k(x,y) denotes
the threshold value of node (x, y). Starting from the
root node (x1, y1) of T , the data owner first sets
q(x1,y1)(0) = ν1. Then, he selects d(x1,y1) points of
q(x1,y1) to define it completely. For other non-root
node (xi, yi), he sets q(xi,yi)(0) = νi if and only
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if (xi, yi) is a leaf-node; otherwise, q(xi,yi)(0) =
qparent(xi,yi)(index(xi, yi)), where i ∈ [2,L].
Let Υ be the leaf node set in the T , then we can
compute the tuple (D(x,y), D

′
(x,y)) according to the

access structure Γ by the formula 5, where (x, y) ∈ Υ,
h1,(x,y) = H1(att(x, y)).

D(x,y) = gq(x,y)(0), D′
(x,y) = h

q(x,y)(0)

1,(x,y) . (5)

(4) Let Ω be the transport node set in the T , and
Φ(x, y) be the threshold gate set of each transport
node (x, y)’s children nodes, where (x, y) ∈ Ω,
Φ(x, y) = {child1, · · · , childj , · · · }. For each chil-
dren node childj in the Φ(x, y), the data owner
computes D′′

(x,y),j by the formula 6.

D′′
(x,y),j = θα(q(x,y)(0)+qchildj

(0)) ·H2(θ
αq(x,y)(0)). (6)

Finally, the data owner sends the record ciphertexts C,
the integrated ciphertexts CT = {T , Ci, C

′
i, D

′′
(x,y),j} and

encrypted index set I = {σi, σ
′
i, D(x,y), D

′
(x,y)} to the CSP,

where i ∈ [1,L], (x, y) ∈ Υ, childj ∈ Φ(x, y).

Algorithm 1: Generating ciphertexts and indexes
Input: Public key PK, records M = {m1, · · · ,mL}, record keys

K = {k1, · · · , kL}, random elements {ν1, · · · , νL},
keyword dictionary W = {w}, transport nodes Ω, tree T ,
leaf nodes Υ.

Output: Ciphertexts C, CT , index I .
1 for i = 1 to L do
2 Compute ci = Eki

(mi) ;
3 if w ∈ mi then
4 Compute {σi, σ

′
i} ;

5 for (x, y) ∈ Υ do
6 Compute {D(x,y), D

′
(x,y)

} ;

7 for (x, y) ∈ Ω do
8 Set Φ(x, y) = {child1, · · · , childj , · · · };
9 Compute D′′

(x,y),j
;

10 Return ciphertexts C = {Ek1
(m1), · · · , EkL (mL)}, integrated

ciphertexts CT = {T , Ci, C
′
i, D

′′
(x,y),j

}, and index
I = {σi, σ

′
i, D(x,y), D

′
(x,y)

}.

Trap(PK,SK, S,w′). When a specific data user wants
to access the encrypted records which contain his queried
keyword w′, he can issue a search query by delivering a
search token Tw′ and an attribute set S. Then, he chooses
s ∈R Z∗

p and computes Tw′ by the formula 7.

Tw′ =

{
t1 = gasgbsH0(w

′), t2 = gcs, t3 = ϖs
1;

∀j ∈ S : π̂j = (πj)
s, π̂′

j = (π′
j)

s.
(7)

Search(PK, C, S, Tw′ , CT, I). In this phase, the CSP is-
sues the search operations and returns the relevant results
to the specific data user, as demonstrated in Algorithm 2.
After gaining the trapdoor Tw′ and an attribute set S,
the CSP first checks whether S matches with the access
structure Γ. If the specific data user is a legal entity, the
CSP employs a recursive algorithm, which is similar to the
CP-ABE scheme [9], to compute Ψ(x,y).

Algorithm 2: Process of ciphertexts retrieval
Input: PK, (C, CT, I), (S, Tw′ ), T .
Output: Search results C′.

1 for Each node (x, y) ∈ T and (x, y) ∈ Υ do
2 if (x, y) = j ∈ S then

3 Compute Ψ(x,y) =
e(π̂j ,D(x,y))

e(π̂′
j ,D

′
(x,y)

)
;

4 for Each node (x, y) ∈ T and (x, y) /∈ Υ do
5 Mark th(x,y)-sized children nodes as λ(x,y) ;
6 if Each node τ ∈ λ(x,y) then
7 Compute Ψτ ̸= null ;

8 Compute Ψ(x,y) =
∏

τ∈λ(x,y)
Ψ

∆i,λ′
(x,y)

(0)

τ ;

9 Mark Ψ(x,y) = Ψ(xi,yi)
= θrsνi ;

10 Check e(σi, t2)
?
= e(ϱ, t1)Ψ(xi,yi)

e(t3, σ′
i) ;

11 if Above formula holds then
12 Return results C′ ;

13 Send C′ to the specific data user.

(1) If (x, y) is a leaf node and satisfies (x, y) = j ∈ S,
the value of Ψ(x,y) can be gained by the formula 8. If
the leaf node satisfies (x, y) /∈ S, we set Ψ(x,y) =⊥.

Ψ(x,y) =
e(π̂j , D(x,y))

e(π̂′
j , D

′
(x,y))

= θrsq(x,y)(0). (8)

(2) If (x, y) is a non-leaf node, Ψ(x,y) is defined as
follows. For each children node τ of (x, y), the CSP
computes the output value Ψτ . Let λ(x,y) be an arbi-
trary th(x,y)-sized children node set, thus Ψτ ̸= null.
If there is no such set, then Ψτ = null; other-
wise, we can gain Ψ(x,y) by the formula 9, where
λ′
(x,y) = {index(τ) : τ ∈ λ(x,y)}, i = index(τ).

Ψ(x,y) =
∏

τ∈λ(x,y)

Ψ
∆i,λ′

(x,y)
(0)

τ

=
∏

τ∈λ(x,y)

(θrsqτ (0))
∆i,λ′

(x,y)
(0)

=
∏

τ∈λ(x,y)

(θrsq(x,y)(i))
∆i,λ′

(x,y)
(0)

= θrsq(x,y)(0).

(9)

Based on the aforementioned description, the access
level of (x, y) is defined as (xi, yi). If the highest hier-
archy which can be accessed by the specific data user
is (xi, yi), then we can gain Ψ(x,y) = Ψ(xi,yi) = θrsνi .
After that, the CSP checks whether the indexes I
match with the trapdoor Tw′ with the formula 10. If
the formula 10 holds, the CSP will return the relevant
ciphertext set C′ to the specific data user; otherwise,
it returns ⊥.

e(σi, t2) = e(ϱ, t1)Ψ(xi,yi)e(t3, σ
′
i). (10)

Dec(PK,SK, S). If the attribute set S satisfies part of
the whole access levels, we can gain θrsνi by the formula 9.
Afterwards, the specific data user computes φi via the
formula 11, where i ∈ [1,L].

φi = e(C ′
i, ϖ2)/(Ψ(xi,yi))

1/s = θανi . (11)
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Fig. 6. The framework of ABKS-HD scheme.

According to the hierarchical access structure, if the
attribute set S contains the lower authorization nodes, the
specific data user can compute φ(i+1),j for each children
node childj by employing the value of D′′

(xi,yi),j
, as shown

in the formula 12, where childj ∈ Φ(xi,yi). Thus, the specific
data user can gain the values of θανi , θανi+1 , · · · , θανL .

φ(i+1),j = D′′
(xi,yi),j

/(φ
1/s
i ·H2(φ

1/s
i ))

= θα·qchildj
(0)(j = 1, 2, · · · ).

(12)

Next, the specific data user can deduce the record key
set {ki, ki+1, · · · , kL} by the formula 13.

Ci/φi = (ki · θανi)/θανi = ki. (13)

Finally, the specific data user can decrypt the cipher-
texts C′ with the corresponding symmetric decryption keys
{ki, ki+1, · · · , kL}.

Remark. Based on the queried keyword, the CSP can
locate the intended search results of the specific data user.
Thus, our proposed ABKS-HD scheme can not only save
the computation and bandwidth resources, but also achieve
the fine-grained access control by specifying different data
access levels. The framework of ABKS-HD scheme is shown
in Fig. 6.

In the following subsections two improved schemes are
proposed to address the problems of multi-keyword search
and user revocation respectively. As a result, our proposed
schemes can satisfy the various demands of practical ap-
plications. Different from the notations shown in TABLE 1,
we give other symbol descriptions used in ABKS-HD-I and
ABKS-HD-II schemes, as illustrated in TABLE 2.

TABLE 2
Notation descriptions in improved schemes

Notation Description
W ′ = {w′

1, · · · , w′
d} Data user’s queried keyword set

LW ′ = {fl}l∈[1,d] Location set of W ′ in W
TW ′ = (t0, t1, t2, t3, {π̂j , π̂

′
j}) Data user’s trapdoor

SK = (ϖ1, ϖ2, {πj , π
′
j}) Data user’s secret key

4.2 The Proposed ABKS-HD-I Scheme

As ABKS-HD scheme just supports the single keyword
search, it will yield many irrelevant search results and poor
user search experience. Along this direction, we attempt
to improve the basic ABKS-HD scheme to support multi-
keyword search. Thus, the improved ABKS-HD-I scheme
can greatly save the computation and bandwidth resources.

To simplify the description, we just present the modified
algorithms in ABKS-HD-I scheme. Given a fixed keyword
dictionary W = {w1, · · · , wn}, the data owner calls the Enc
algorithm to set σi,j = ga(µ+νi)gbµH0(wj), σ′

i = gbνi if wj ∈
mi; otherwise, he sets σi,j = 1, σ′

i = 1, where j ∈ [1, n].
When a specific data user issues the multi-keyword

search query W ′ = {w′
1, · · · , w′

d}, he first performs the Trap
algorithm to output the search token TW ′ by the formu-
la 14. Then, he sends the tuple (TW ′ , S) and the location
LW ′ = {fl}l∈[1,d] set of queried keywords in W to the CSP,
where the function fl denotes mapping the location l in W ′

to corresponding location in W and fl ∈ [1, n].

Tw′ =


t0 = gasd, t1 = gbs

∑d
l=1 H0(w

′
l);

t2 = gcs, t3 = ϖs
1;

∀j ∈ S : π̂j = (πj)
s, π̂′

j = (π′
j)

s.

(14)

After gaining the trapdoor TW ′ and the specific data
user’s attribute set S, the CSP conducts the same processes
in the Search algorithm as those of ABKS-HD scheme apart
from the matching formula 15.

e(
d∏

l=1

σi,j , t2) = e(ϱ, t0t1)(Ψ(xi,yi)e(t3, σ
′
i))

d. (15)

Remark. Thus, our proposed ABKS-HD-I scheme can
quickly locate the intended search results without incur-
ring high computation burden. More specifically, in Trap
algorithm a specific data user just performs extra hash
operations OH0 which is much more efficient than other
cryptographic operations. In addition, ABKS-HD-I scheme
yields d multiplication operations and one exponentiation
in Search algorithm, while it will not impose much compu-
tation overhead on the CSP.

4.3 The Proposed ABKS-HD-II Scheme

However, the ABKS-HD-I scheme does not consider the
problem of user revocation in the dynamic settings, where
the role of a specific data user may dynamically change.
For security concerns, the practical scheme should prevent
the specific data user from using his old or outdated secret
key to access the unauthorized data. Aiming to solve this
problem, we present ABKS-HD-II scheme to support user
revocation as well as multi-keyword search.

Based on ABKS-HD-I scheme, our basic idea is to gen-
erate a version number zu for each data user u in KeyGen
algorithm. Next, the modified algorithms which are differ-
ent from those of ABKS-HD-I scheme are shown as follows:

KeyGen(PK,MSK,S). For a specific data user u with
an attribute set S, TA first picks a version number zu ∈R Z∗

p

and outputs u’s secret key SK by the formula 16. Then, it
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sends the tuple (idu, zu) to the CSP. It is worth noting that
the CSP cannot collude with the revoked data users.

SK =

{
ϖ1 = g(ac−r)/b, ϖ2 = g(α+r)/β ;

∀j ∈ S : πj = (gr ·H1(j)
rj )zu , π′

j = grjzu .
(16)

Search(PK, C, S, Tw′ , CT, I). Different from ABKS-HD-
I, the CSP computes Ψ(x,y) by the formula 17, while the
other processes remain unchanged.

Ψ(x,y) =
e((π̂j)

1/zu , D(x,y))

e((π̂′
j)

1/zu , D′
(x,y))

= θrsq(x,y)(0). (17)

Remark. With regard to the computation costs, the
KeyGen and Search algorithms both bring in extra 2|S|
exponentiation operations, where |S| denotes the number
of u’s attributes. However, in practice, ABKS-HD-II is still
feasible as the value of |S| is very small. When the attribute
set of a specific data user has been changed, TA first generate
a new version number z′u ∈R Z∗

p (z
′
u ̸= zu) for the new

attribute set. Then, it sends the new tuple (idu, z
′
u) to the

CSP. Finally, the CSP will obtain Ψ(x,y) = θrsq(x,y)(0)zu/z
′
u ,

but it cannot correctly check whether the trapdoor matches
with the index. As a consequence, ABKS-HD-II scheme can
efficiently avoid the specific data user to access the sensitive
information with an outdated secret key.

4.4 ABKS-HD based Cloud System Architecture
As a matter a fact, data storage issue is an important part
in the field of “Service Computing”, and the term “Storage-
as-a-Service” previously proposed has gained much atten-
tion in both academic and industrial fields. For example,
a large number of enterprises outsource their data storage
to cloud service provider and can issue search queries over
a high speed network. This makes search over outsourced
storage an important capability of cloud computing which
includes various kinds of service, such as Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-
as-a-Service (SaaS). In this paper, we are committed to solve
the secure search in data outsourcing services which can
be considered as “security-as-a-service”. The relationship
between “Security-as-a-Service” and cloud computing can
refer to schemes [17], [18]. The cloud system architecture
of our scheme is shown in Fig. 7, where the information
transmission security can be guaranteed by SSL/TLS (Se-
cure Sockets Layer/Transport Layer Security) protocols [19],
[20].

5 SECURITY AND PERFORMANCE ANALYSIS

In this section, we first prove that the security of ABKS-HD
scheme can be guaranteed by two theorems. Next, we give
its performance analysis in terms of theoretical and practical
computation complexities.

5.1 Security
The security of ABKS-HD scheme has two aspects, namely
CPA security and CKA security, which can be proved by
the following two theorems, respectively. As for the CPA
security, our scheme can guarantee the confidentiality of
record encryption key.

Theorem 1. ABKS-HD scheme is CPA secure in the random
oracle model on the condition that the DBDH problem is
intractable.

Proof: Assume that the advantage A has a non-
negligible advantage ϵ = AdvCPA

A (1k) in breaking the
CPA security of ABKS-HD scheme, then we construct a
simulator B which can distinguish between the DBDH tuple
and a random tuple. Given the bilinear map parameters
(G,GT , e, p, g), the challenger first chooses (a′, b′, c′) ∈R

Z3
p , ℓ ∈ {0, 1}∗, ϑ ∈R GT , where g is the generator of group

G. Then, he sets V = e(g, g)a
′b′c′ if ℓ = 0; otherwise, he

defines V = ϑ. Finally, he sends the tuple (g, ga
′
, gb

′
, gc

′
, V )

to the simulator B that will paly his role in the CPA secu-
rity game. On input the record mi and its corresponding
encryption key ki, the data owner generates the ciphertexts
CT = {T , Ci, C

′
i, D

′′
(x,y),j}, where 1 ≤ i ≤ L. Next, the CPA

security game between A and B is conducted as follows:

• Init. A first chooses an access structure Γ∗ to be
challenged on. Then, he sends it to B.

• Setup. B first selects α′ ∈R Z∗
p and defines α =

α′ + a′b′. Then, he computes θ = e(g, g)α =
e(g, g)α

′
e(g, g)a

′b′ and defines gβ = gb
′
. Finally, he

returns the partial public key PK = {θ, gβ} to A.
• Query phase 1. In this phase, A can issue the se-

cret key SK query by delivering an attribute set
S∗ = {j∗|j∗ ∈ Γ} (while j∗ /∈ Γ∗) to B. Later, B first
selects an element r ∈R Z∗

p and defines r = r∗ − a′.
Then, B can achieve ϖ2 = g(α+r)/β = g(α+r∗−a′)/β .
In addition, B picks rj ∈R Z∗

p for each attribute
j∗ ∈ S∗ and computes πj = gr

∗−a′
H1(j)

rj , π′
j = grj .

Finally, B sends a part of SK to A.
• Challenge. A sends two records m0,m1 to B. B selects

a random bit ℓ ∈ {0, 1} and calls the Enc algorithm
to generate the ciphertexts CT ∗ = {Cℓ, C

′
ℓ}, where

C ′
ℓ = gβνℓ = gβc

′
, Cℓ = mℓ ·θανℓ = mℓ ·θ(α

′+a′b′)c′ =
mℓ · V θα

′c′ . Afterwards, B sends CT ∗ to A.
• Query phase 2. This phase is the same as the processes

of Query phase 1.
• Guess. A returns a guess bit ℓ′ ∈ {0, 1}. If ℓ′ = ℓ,

B outputs “0” indicating V = θa
′b′c′ ; otherwise,

he returns “1” which indicates that V is a random
element ϑ in group GT .

If V = θa
′b′c′ , B has an advantage 1

2 + ϵ in generating
the valid ciphertexts CT ∗ by the formula 18, where ϵ is the
A’s advantage in returning a right guess bit.

Pr[B(g, ga
′
, gb

′
, gc

′
, V = θa

′b′c′) = 0] =
1

2
+ ϵ. (18)

If V = ϑ, we can say that Cℓ is independent with A’s
view. Thus, the inequation ℓ′ ̸= ℓ holds with an advantage
1
2 , as shown by the formula 19, but A has nothing to do with
the distribution on ℓ′.

Pr[B(g, ga
′
, gb

′
, gc

′
, V = ϑ) = 0] =

1

2
. (19)

At last, the B’s advantage in the CPA security game can
be defined by the formula 20.

AdvB =
1

2
· (1

2
+ ϵ) +

1

2
· 1
2
− 1

2
=

ϵ

2
. (20)
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Fig. 7. Cloud system architecture of our scheme.

From above analysis, we can gain that our proposed
ABKS-HD is secure against the CPA on condition that
the DBDH assumption holds. This completes the proof of
Theorem 1.

Without being given any matching trapdoor, A cannot
deduce the sensitive information from the keyword cipher-
texts in the selective security model. Thus, we formalize the
security of ABKS-HD scheme by the CKA security game.
That is to say, our scheme can resist the CKA in random
oracle model.
Theorem 2. ABKS-HD scheme is secure against the CKA

in the generic bilinear group model, where H0 is treated
as a one-way hash function, H1 is modeled as a random
oracle.

Proof: In the CKA game, A will try to distinguish
ga(µ+νi)gbµH0(w

′
0) from ga(µ+νi)gbµH0(w

′
1). Given an element

ε ∈R Z∗
p , the adversary A’s advantage in distinguishing

ga(µ+νi)gbµH0(w
′
0) from gε is the same as that of distin-

guishing ga(µ+νi)gbµH0(w
′
1) from gε. If the A’s probability

of breaking the CKA game is ϵ, it has an advantage ϵ/2
in distinguishing ga(µ+νi)gbµH0(w

′
0) from gε. Thus, we can

consider an modified CKA game in which A can distinguish
ga(µ+νi) from gε. This modified CKA game is demonstrated
as follows:

• Setup. B first picks (a, b, c) ∈R Z3
p . Then, he sends the

tuple (G,GT , e, g, p, g
a, gb, gc) to A. Next, A chooses

a tree T ∗ and sends it to B. Finally, B issues the
simulation as follows. If the attribute j has not been
queried before, B first selects ρj ∈R Z∗

p . Then, he
adds (j, ρj) to the list OH1 and outputs gρj ; other-
wise, B outputs gρj by directly picking out ρj from
OH1 .

• Phase 1. In this phase, A issues the OKeyGen and
OTrap oracles as follows:
OKeyGen: After gaining the A’s attribute set S∗, B
first picks r∗ ∈R Z∗

p and computes ϖ1 = g(ac+r∗)/b.
Then, he selects r∗j ∈R Z∗

p and computes πj =

gr
∗
gρjr

∗
j , π′

j = gr
∗
j . Finally, he returns the part

(S∗, ϖ1, {πj , π
′
j}j∈S∗) of secret key SK to A.

OTrap: B first queries the OKeyGen oracle to gain
the tuple (S∗, ϖ1, {πj , π

′
j}j∈S∗). Then, he chooses

an element s∗ ∈R Z∗
p and generates the search

token Tw′ = (t1, t2, t3, {π̂j , π̂
′
j}j∈S∗) according to

the queried keyword w′, where t1 = gas
∗
gbs

∗H0(w
′),

t2 = gcs
∗
, t3 = ϖs∗

1 , π̂j = πs∗

j , π̂′
j = (π′

j)
s∗ . If the

attribute set S∗ satisfies the access tree T ∗, B adds
w′ to the keyword list Lw.

• Challenge. Given two challenging keywords (w′
0, w

′
1)

with equal length, B first chooses µ ∈R Z∗
p and

νi ∈R Z∗
p for each access level. Then, he picks

a random bit ℓ ∈ {0, 1}. If ℓ = 0, he output-
s the tuple (ϱ, σi, σ

′
i, {D(x,y), D

′
(x,y)}(x,y)∈Υ), where

ϱ = gcµ, σi = gε, σ′
i = gbνi , D(x,y) = gq(x,y)(0),

D′
(x,y) = gρjq(x,y)(0), att(x, y) = j; otherwise, the

challenger sets σi = ga(µ+νi) and sends the tuple
(ϱ, σi, σ

′
i, {D(x,y), D

′
(x,y)}(x,y)∈Υ) to A.

• Phase 2. This phase has the same processes as Phase
1.

If A can construct θχa(µ+νi) for some gχ which can
be comprised by the outputs in the Phase 1 or Phase 2,
we can say that A is able to distinguish gε from ga(µ+νi),
whereas we still need to demonstrate that A can construct
θχa(µ+νi) for some gχ with a negligible advantage. In other
words, A cannot break the CKA game with a non-negligible
advantage.

Given the groups G = {ϕ0(ς)|ς ∈ Z∗
p}, GT = {ϕ1(ς)|ς ∈

Z∗
p}, where ϕ0, ϕ1 are two random injective maps from the

field Z∗
p into a set of p3 elements in the generic group

model [9], A has a negligible advantage in guessing the
image of ϕ0 and ϕ1. Thus, we need to consider the A’s
advantage in constructing θχa(µ+νi) for some χ ∈R Z∗

p from
the aforementioned outputs.

As the element µ only appears in the term cµ, χ should
contain the factor c so as to construct θχa(µ+νi). That is,
χ = χ′c and A wants to construct θχ

′ca(µ+νi). Hence, A
still needs to gain acνiχ

′ by leveraging the terms bνi and
(ac+ r∗)/b. Although A can gain acνi + r∗νi, he still needs
to cancel r∗νi by using the terms ρj , r∗ + ρjr

∗
j , q(x,y)(0),

ρjq(x,y)(0). However, A cannot construct these terms as r∗νi
can be constructed if and only if the attributes correspond-
ing to r∗j satisfy the access tree T ∗. Thus, we can say that
A has a negligible advantage in breaking the CKA game.
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That is, ABKS-HD scheme is secure against the CKA in the
generic bilinear group model. This completes the proof of
Theorem 2.

In addition, our improved ABKS-HD-I and ABKS-HD-
II schemes are also secure against the CPA and CKA in
random oracle model. In here, we omit the security proofs
as the security analysis of these two schemes is similar to
that of ABKS-HD scheme.

5.2 Performance

In this section, we analyze the efficiencies of our proposed
schemes in terms of theoretical analysis and actual perfor-
mance with the state-of-the-art ABKS-UR [21] scheme. For
the theoretical analysis, we mainly focus on the storage and
computation costs.

Given the element lengths in LG, LGT
1 and LZp , re-

spectively, we show the public key size, master key size,
secret key size and trapdoor size of aforementioned schemes
in TABLE 3, and we notice that our schemes have much
less storage costs than that of the ABKS-UR [21] scheme
as |S| ≪ |Att|. Furthermore, except for the index size, our
enhanced ABKS-HD-I and ABKS-HD-II schemes do not
increase the storage costs when compared with the basic
ABKS-HD.

For comparison convenience, we mainly consider several
time-consuming operations, i.e., bilinear pairing operation
OP which maps two elements in group G to group GT ,
hash operation OH1 which maps the arbitrary string to
group G, exponentiation operation OE in group G and
exponentiation operation OET in group GT . In TABLE 4 we
assess the computation overhead of KeyGen algorithm, Enc
algorithm, Trap algorithm and Search algorithm, respective-
ly.

TABLE 4 shows that our schemes are much more efficient
than the ABKS-UR [21] scheme in the KeyGen algorithm,
Trap algorithm and Search algorithm, while we emphasize
that we just analyze the computation costs of building
indexes. Although we notice that the Enc algorithm in our
schemes has higher computation burden, it does not affect
a specific data user’s search experience as it is just one-time
cost. In conclusion, our schemes enjoy better performance
in the secret key generation, trapdoor generation and ci-
phertexts retrieval phases. Compared with the basic ABKS-
HD scheme, our improved ABKS-HD-I and ABKS-HD-
II schemes can achieve more practical features (including
multi-keyword search and user revocation) without incur-
ring a great amount of computation overhead. Although
the ABKS-UR [21] scheme solves the problems of user
revocation and keyword search simultaneously, it brings in
a large amount of storage and computation cost and cannot
satisfy the requirements of cloud storage as ours. Thus, our
schemes are feasible in a broad range of applications.

However, to evaluate the actual performance of afore-
mentioned schemes, we need to present the experimental
simulations using real-world Enron Email Dataset2 which
includes half a million records from 150 users. This public
email dataset used in many SE schemes contains half a

1. In this paper, the element length in GT is the same as that of G.
2. http://www.cs.cmu.edu/∼enron/

million records from about 150 users, mostly senior man-
agement of Enron, and the Enron corpus contains a total
of about 0.5M message. The experiments are implemented
on an Ubuntu Server 15.04 with Intel Core i5 Processor
2.3 GHz by using C and Paring Based Cryptography (P-
BC) Library. In PBC Library, the Type A is denoted as
E(Fq) : y2 = x3 + x, the group G and group GT of order
p are subgroups of E(Fq), where the parameters p and q
are equivalent to 160 bits and 512 bits, respectively. Then,
we have LZp = 160 bits, LG = LGT = 1024 bits. For com-
parison convenience, we set |Att| ∈ [1, 100], |S| ∈ [1, 50],
L ∈ [1, 10000], n ∈ [1, 1000] in accordance with the CP-ABE
scheme [9], and all of the experimental results are averages
of 100 trials. Meanwhile, to compare with the state-of-the-
art ABKS-UR [21] scheme, we just show the experimental
results of KeyGen, Enc, Trap and Search algorithms as
follows.

For comparison, we fix the value of |Att| as 100 and
vary the number of a specific data user’s attributes |S|. As
illustrated in Fig. 8 (a), we notice that our proposed schemes
can greatly improve the efficiency of KeyGen algorithm. In
addition, the computation overhead of secret key generation
increases almost linearly with the number of data user’s
attributes, while that of the ABKS-UR scheme gradually
increases with the number of attributes in system (|Att|).
Due to |S| ≪ |Att|, the more computation costs of KeyGen
algorithm in our schemes can be saved. For instance, the key
generation time in our schemes and the ABKS-UR scheme is
1.28s and 0.47s when |S| = 20, and the saved computation
cost in our schemes is 63.2% approximately. The saving rate
jumps from 41.9% to 9.9% when |S| ranges from 30 to 50.
Due to |S| ≪ 50 in practice, the efficiencies in our schemes
are improved in terms of key generation time.

In TABLE 3, the secret key size of our schemes and the
ABKS-UR scheme is (2|Att|+1)LG+LZp and (2+2|S|)LG,
respectively. Thus, our schemes have less storage costs than
the ABKS-UR scheme. In Fig. 8 (b), the storage costs of our
schemes follow a linear relationship approximately as the
value of |S| grows, while that of the ABKS-UR scheme is
affected by the value of |Att|. By setting |Att| = 100, the
approximate storage cost of secret key of in the ABKS-UR
scheme is equal to 25.1KB, while those of our schemes are
13KB even when |S| = 50. Hence, our schemes incur less
storage costs on data users, particularly for the bandwidth-
limited sensor nodes and mobile terminals.

By varying the value of |Att| from 1 to 100, we evaluate
the computation burden in both our schemes and the ABKS-
UR scheme. As shown in Fig. 8 (c), we can find that the
computation overhead of aforementioned four schemes in
Enc algorithm is approximately following a linear relation-
ship with the number of attributes in system (|Att|). With
encrypting the additional record encryption key set, our
proposed schemes yield higher computation burden than
the ABKS-UR scheme. For example, the ABKS-UR scheme
takes 752s to conduct ciphertexts generation operation,
while our ABKS-HD scheme needs 1635s when |Att| = 60.
However, the Enc algorithm is one-time cost and will not af-
fect the user search experience. Besides, as each record in our
proposed ABKS-HD-I and ABKS-HD-II schemes includes
multiple keywords, the ciphertexts generation time of these
improved schemes has slightly higher computation burden
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TABLE 3
Storage costs in various schemes

Schemes Public key size Master key size Secret key size Index size Trapdoor size
ABKS-UR [21] (3|Att|+ 1)LG + LGT

(3|Att|+ 1)LG (2|Att|+ 1)LG + LZp (2|Att|+ 1)LG + LGT
(2|Att|+ 1)LG + LZp

ABKS-HD 5LG + LGT
5LG (2 + 2|S|)LG 2(|Att|+ 1)LG (2|S|+ 3)LG

ABKS-HD-I 5LG + LGT
5LG (2 + 2|S|)LG (2|Att|+ 2 + n)LG (2|S|+ 4)LG

ABKS-HD-II 5LG + LGT
5LG (2 + 2|S|)LG (2|Att|+ 2 + n)LG (2|S|+ 4)LG

Note. “LG”: Length of element in G; “LGT
”: Length of element in GT ; “LZp”: Length of element in Zp;

“|Att|”: Number of attributes in system; “|S|”: Number of data user’s attributes; “n”: Number of keywords in W .

TABLE 4
Computation costs in various schemes

Schemes KeyGen algorithm Enc algorithm Trap algorithm Search algorithm
ABKS-UR [21] (2|Att|+ 1)OE + 2OET

(|Att|+ 1)OE +OET
(2|Att|+ 1)OE (|Att|+ 1)OP +OET

ABKS-HD (2|S|+ 3)OE + |S|OH1 (2L+ 2|Att|+ 1)OE + |Att|OH1 (2|S|+ 4)OE (2|S|+ 3)OP +OET

ABKS-HD-I (2|S|+ 3)OE + |S|OH1 (2L+ 2|Att|+ n)OE + |Att|OH1 (2|S|+ 4)OE (2|S|+ 3)OP + 2OET

ABKS-HD-II (2|S|+ 3)OE + |S|OH1 (2L+ 2|Att|+ n)OE + |Att|OH1 (2|S|+ 4)OE (2|S|+ 3)OP + 2|S|OE + 2OET

Note. “L”: Number of records or access levels.
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Fig. 8. The actual performance analysis in various schemes: (a) Computation costs in KeyGen algorithm; (b) Storage costs in KeyGen algorithm;
(c) Computation costs in Enc algorithm; (d) Computation costs in Trap algorithm; (e) Storage costs in Trap algorithm; (f) Computation costs in
Search algorithm.

than that of the basic ABKS-HD scheme. For example,
the ciphertexts generation time in ABKS-HD scheme and
two enhanced schemes (In Enc algorithm, the computation
overhead of ABKS-HD-I is similar to that of ABKS-HD-II
scheme) is 2355s and 2385s when |Att| = 100, respectively.
In conclusion, the improved schemes do not incur extra
computation burden when compared with the ABKS-HD
scheme. Hence, our schemes are still feasible in practice.
Unfortunately, as our schemes need to encrypt the record
key set by utilizing the CP-ABE technique, these schemes
inevitably add much more storage costs than the ABKS-
UR scheme. In here, we will omit the analysis about the
storage cost of ciphertexts. With outsourcing the ciphertexts
storage to the CSP, the data owners can be freed from the
high storage burden.

As the computation overhead of Trap algorithm in the
ABKS-UR scheme and our schemes is affected by two var-
ious factors, namely |Att| and |S|. For comparison conve-
nience, we set |Att| = 100 and vary the value of |S| from
1 to 50. As presented in Fig. 8 (d), the computation costs of
our schemes increase almost linearly with |S|, but that of the
ABKS-UR almost remains unchanged. Notably, our schemes
have much less computation costs in terms of search token
generation than the ABKS-UR scheme because of |S| ≪ 100.
To gain extensive applications in practice, our improved two
schemes, namely ABKS-HD-I and ABKS-HD-II schemes,
can support multi-keyword search. As OH0 is much more
efficient than other operations, these two enhanced schemes
will not bring in extra computation overhead. For example,
ABKS-HD scheme needs 236ms to issue Trap algorithm,
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and our improved schemes just take 240ms to generate
search token according to multi-keyword query.

Besides, we analyze the storage costs of trapdoor by
setting |Att| = 100, |S| = 50 and ranging the number of
queried keywords from 1 to 50, as shown in Fig. 8 (e). As the
ABKS-UR scheme and our basic scheme ABKS-HD scheme
cannot support multi-keyword search, the storage costs of
trapdoor in these schemes grow almost nearly with the
submitted keywords, whereas ABKS-HD has less storage
cost than the ABKS-UR scheme. For each queried keyword,
the storage cost of ABKS-UR scheme adds LZp , and that
of ABKS-HD scheme increases LG. However, the storage
costs of search tokens in our improved schemes (ABKS-
HD-I, ABKS-HD-I) remain unchanged as there schemes
just need to store a single element t1 = gbs

∑d
l=1 H0(w

′
l)

when supporting multi-keyword search. Furthermore, our
proposed schemes can greatly save the storage costs of
trapdoor, which are suitable for the storage resource-limited
data users.

With the same reason shown in the Trap algorithm, we
demonstrate the computation overhead of Search algorithm
by setting |Att| = 100, |S| ∈ [1, 50]. As illustrated in
Fig. 8 (f), the computation overhead of our schemes in
this algorithm increases almost linearly with the number
of a specific data user’s attributes and that of the ABKS-
UR scheme keeps unchanged. When |S| ≤ 40, our schemes
are still more efficient than the ABKS-UR scheme. However,
when 50 ≥ |S| > 40, the computation cost of ABKS-HD-II
scheme is higher than that of other schemes, as ABKS-HD-
II scheme needs to perform additional 2|S|OE for the sake
of supporting user revocation. Besides, ABKS-HD-I scheme
needs two OET , while ABKS-HD scheme just needs one
OET . Thus, our improved schemes have higher computation
burden than the basic ABKS-HD scheme during ciphertexts
search process, whereas our schemes are still efficient as
the value of |S| is very small in practice. For example,
ABKS-UR scheme, ABKS-HD scheme, ABKS-HD-I scheme
and ABKS-HD-I scheme take 552ms, 445ms, 455ms, 527ms,
respectively in Search algorithm when |S| = 40.

Above all, we draw that the performance evaluation
using a real-world dataset is completely in accord with the
computation complexity shown in TABLE 4. In comparison
with the state-of-the-art ABKS-UR scheme, we can verify
that our schemes are efficient and feasible in practice.

6 RELATED WORK

To data, the explosive expanding of data sharing leads to
a trend that the data owners tend to remotely outsource
their sensitive data to the cloud server without worrying
the burden of local data maintenance and management. For
data security concerns, the encryption mechanism is used
to prevent the cloud server from gaining the underlying
knowledge of cloud data, while data encryption makes it
impossible for cloud server to conduct data retrieval opera-
tions [22]. To achieve data retrieval without leading valuable
information to the honest-but-curious cloud server [23], the
SE mechanism [24], [25], [26], which enables data users
to securely search and selectively retrieve files of interest
according to specified keywords, has gained much attention

in the academic and industrial fields. Since Boneh et al. pro-
posed the first public key encryption with keyword search
scheme (PEKS) [4], a considerable number of SE schemes
enriched with various functionalities have been proposed,
such as multi-keyword search [27], [28], ranked search [29],
[30], [31], etc. Last but not least, secure data sharing and
retrieval is of prime importance as the cloud data is out of
data owner’s directly physical control. The SE technique,
with no doubt, can protect the data confidentiality and
achieve the flexibility of data retrieval.

However, most of the existing SE schemes focus on
the data privacy, while less attention is paid to the fine-
grained access control [32] which is always considered as
the first line of defense. Based on the fuzzy identity based
encryption (IBE) [33], Goyal et al. first presented the ABE
scheme [16]. According to whether the access policy is
related to ciphertexts or secret key, the ABE schemes can
be roughly divided into two variants, namely CP-ABE [9]
and key policy ABE (KP-ABE) [16]. Among the various
cryptographic techniques, the CP-ABE technique gradually
becomes a very promising technique for secure data sharing.
In the CP-ABE scheme, the ciphertexts are described by an
access policy, while the data user’s secret key is associated
with an attribute set, a specific data user can decrypt the
encrypted data if and only if there is a match between
attribute set and access policy. As far as we know, the
ciphertext sizes of the CP-ABE scheme are linear to the
number of attributes, while the computation complexity
of its access policy is independent of the number of data
users. Even with aforementioned nice properties, there are
still some challenging issues when directly applying the
state-of-the-art CP-ABE scheme to the dynamic real-world
applications, i.e., expressiveness [34] of access policy and
user revocation.

In practice, the shared data may have the characteristic
of multilevel hierarchy, while the hierarchical data structure
is not taken into account in the most of existing CP-ABE
schemes. Since Wang et al. showed the hierarchical ABE
scheme [35] to establish access control and revoke access
rights by employing the hierarchical IBE scheme [36], other
hierarchical ABE schemes [37], [38] with specific features
have been proposed. For instance, Wan et al. [37] realized
the scalable, flexible and fine-grained access control via the
hierarchical CP-ABE scheme, which relieved the increasing
security and privacy concerns. Then, Deng et al. [12] pre-
sented a versatile ciphertext-policy hierarchical ABE scheme
to gain efficient data sharing among hierarchically orga-
nized large groups. However, the aforementioned works
focus on the data users’ hierarchical access rights rather
than the hierarchical data. Moreover, these schemes can-
not support keyword search without leaking the data and
search query contents. To explore keyword search notion
in the context of ABE schemes, Zheng et al. [15] and Sun
et al. [21] successively put forward the notion of ABKS,
whereas they still could not solve other open issues, such
as user revocation and access control of hierarchical data,
etc.

Motivated by these issues, we propose a basic ABKS-
HD scheme to tackle both the problems of data re-
trieval and fine-grained access control over cloud da-
ta. Moreover, we improve this scheme and present two
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TABLE 5
Functionality comparisons in various schemes

Schemes F1 F2 F3 F4

FH-CP-ABE [11] !

CP-ABKS [15] !

ABKS-UR [21] ! ! !

KSF-OABE [39] ! !

SCP-ABE [40] ! !

ABKS-HD ! !

ABKS-HD-I ! ! !

ABKS-HD-II ! ! ! !

Notes. F1: Single keyword search; F2: Multi-keyword search;
F3: Hierarchical data; F4: User revocation.

enhanced schemes (ABKS-HD-I, ABKS-HD-II) to realize
multi-keyword search and user revocation, respectively.
Compared with other existing schemes [11], [15], [21], [39],
[40] which are based on the CP-ABE, our schemes have ver-
satile features and can solve the problem of access priorities
for hierarchical data, as shown in TABLE 5.

From TABLE 5, we notice that KSF-OABE [39] and SCP-
ABE [40] schemes both support user revocation, but these
schemes just achieve single keyword search, thereby bring-
ing in many irrelevant search results. Though ABKS-UR [21]
can implement multi-keyword search, it still cannot spec-
ify access priorities for hierarchical data. On the contrary,
the FH-CP-ABE [11] scheme has explored the hierarchy
structure of shared records, while it is far from enough in
the field of information retrieval. Unfortunately, our basic
ABKS-HD scheme does not tackle the problems of multi-
keyword search and user revocation. Based on the FH-CP-
ABE [11] scheme and CP-ABKS [15], our improved ABKS-
HD-I scheme and ABKS-HD-II scheme address the afore-
mentioned two problems respectively. Moreover, ABKS-
HD-II scheme can simultaneously support all the four
functions. Hence, our schemes can be applied in practical
applications with various requirements.

7 CONCLUSIONS

In this paper, we first propose a versatile SE scheme (ba-
sic scheme) over hierarchical data to efficiently share and
search encrypted data by leveraging the CP-ABE tech-
nique. Then, two improved schemes, which support multi-
keyword search and user revocation respectively, are pre-
sented in order to gain extensive applications in practice.
Next, we formally prove that our schemes are secure against
the CPA and CKA in random oracle model simultaneously.
Meanwhile, we conduct experimental simulations using a
real-world dataset to demonstrate the storage and compu-
tation costs of our schemes. The experimental results show
that the computation overhead of our schemes is affected
by the number of data user’s attributes rather than the
number of attributes in system. Thus, our proposed schemes
are feasible and efficient in practice. As part of our future
work, we try to explore the expressive search, such as fuzzy
keyword search, range search, etc.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (No. 61702404, No. 61472310), the
China Postdoctoral Science Foundation Funded Project (No.
2017M613080), the Fundamental Research Funds for the
Central Universities (No. JB171504), the National High Tech-
nology Research and Development Program (863 Program)
(No. 2015AA016007), the 111 project (No. B16037).

REFERENCES

[1] Q. Jiang, J. Ma, and F. Wei, “On the security of a privacy-aware
authentication scheme for distributed mobile cloud computing
services,” IEEE Systems Journal, 2016.

[2] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and fine-
grained attribute-based data storage in cloud computing,” IEEE
Transactions on Services Computing, 2016.

[3] Y.-J. Ren, J. Shen, J. Wang, J. Han, and S.-Y. Lee, “Mutual verifiable
provable data auditing in public cloud storage,” Journal of Internet
Technology, vol. 16, no. 2, pp. 317–323, 2015.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Internet Conference
on Theory and Applications of Cryptographic Techniques (EUROCRYP-
T’04), vol. 3027, 2004, pp. 506–522.

[5] H. Li, D. Liu, Y. Dai, and T. H. Luan, “Engineering searchable
encryption of mobile cloud networks: When qoe meets qop,” IEEE
Wireless Communications, vol. 22, no. 4, pp. 74–80, 2015.

[6] Z. Fu, X. Sun, S. Ji, and G. Xie, “Towards efficient content-aware
search over encrypted outsourced data in cloud,” in Proc. IEEE in-
ternational conference on Computer communications (INFOCOM’16),
2016, pp. 1–9.

[7] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation.” in Proc. Annual
Network and Distributed System Security Symposium (NDSS’14),
vol. 14, 2014, pp. 23–26.

[8] D. Cash and S. Tessaro, “The locality of searchable symmetric
encryption,” in Proc. Annual International Conference on the Theo-
ry and Applications of Cryptographic Techniques (EUROCRYPT’14),
2014, pp. 351–368.

[9] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. IEEE Symposium on Security
and Privacy (S&P’07), 2007, pp. 321–334.

[10] S. Tabibian, A. Akbari, and B. Nasersharif, “A fast hierarchical
search algorithm for discriminative keyword spotting,” Informa-
tion Sciences, vol. 336, pp. 45–59, 2016.

[11] S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie, “An
efficient file hierarchy attribute-based encryption scheme in cloud
computing,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 6, pp. 1265–1277, 2016.

[12] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, and
W. Shi, “Ciphertext-policy hierarchical attribute-based encryption
with short ciphertexts,” Information Sciences, vol. 275, pp. 370–384,
2014.

[13] P. Zhang, Z. Chen, K. Liang, S. Wang, and T. Wang, “A cloud-based
access control scheme with user revocation and attribute update,”
in Proc. Australasian Conference on Information Security and Privacy
(ACISP’16), 2016, pp. 525–540.

[14] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, “User collusion
avoidance cp-abe with efficient attribute revocation for cloud
storage,” IEEE Systems Journal, 2017.

[15] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: verifiable attribute-
based keyword search over outsourced encrypted data,” in Proc.
IEEE international conference on Computer communications (INFO-
COM’14), 2014, pp. 522–530.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proc. ACM conference on Computer and communications security
(CCS’06), 2006, pp. 89–98.

[17] Y. Yang, X. Liu, R. H. Deng, and J. Weng, “Flexible wildcard search-
able encryption system,” IEEE Transactions on Services Computing,
2017.

[18] V. Varadharajan and U. Tupakula, “Security as a service model
for cloud environment,” IEEE Transactions on network and Service
management, vol. 11, no. 1, pp. 60–75, 2014.



1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2757467, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[19] H. Krawczyk, “A unilateral-to-mutual authentication compiler for
key exchange (with applications to client authentication in tls
1.3),” in Proc. ACM Conference on Computer and Communications
Security (CCS’16), 2016, pp. 1438–1450.

[20] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of
the tls protocol: A systematic analysis,” in Proc. Annual Cryptology
Conference on Advances in Cryptology (CRYPTO’13), 2013, pp. 429–
448.

[21] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: verifiable attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 27, no. 4, pp. 1187–
1198, 2016.

[22] Z. Xia, X. Wang, L. Zhang, Z. Qin, X. Sun, and K. Ren, “A privacy-
preserving and copy-deterrence content-based image retrieval
scheme in cloud computing,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 11, pp. 2594–2608, 2016.

[23] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized
search over encrypted outsourced data with efficiency improve-
ment,” IEEE transactions on parallel and distributed systems, vol. 27,
no. 9, pp. 2546–2559, 2016.

[24] Z. Fu, F. Huang, X. Sun, A. Vasilakos, and C.-N. Yang, “Enabling
semantic search based on conceptual graphs over encrypted out-
sourced data,” IEEE Transactions on Services Computing, 2016.

[25] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
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