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Abstract
Organizing large scale projects (e.g., Conferences,
IT Shows, F1 race) requires precise scheduling
of multiple dependent tasks on common resources
where multiple selfish entities are competing to ex-
ecute the individual tasks. In this paper, we con-
sider a well studied and rich scheduling model re-
ferred to as RCPSP (Resource Constrained Project
Scheduling Problem). The key change to this model
that we consider in this paper is the presence of
selfish entities competing to perform individual
tasks with the aim of maximizing their own util-
ity. Due to the selfish entities in play, the goal of
the scheduling problem is no longer only to mini-
mize makespan for the entire project, but rather, to
maximize social welfare while ensuring incentive
compatibility and economic efficiency. We show
that traditional VCG mechanism is not incentive
compatible in this context and hence we provide
two new practical mechanisms that extend on VCG.
These new mechanisms referred to as Individ-
ual Completion based Payments (ICP) and Social
Completion based Payments (SCP) provide strong
theoretical properties including strategy proofness.

1 Introduction
Resource Constrained Project Scheduling Problems (RCP-
SPs) [Kolisch and Sprecher, 1996; Pinedo, 2008] have been
studied extensively in the context of manufacturing, project
management and logistics. The focus is on minimizing the
time taken to complete a set of tasks pertaining to a common
project within the context of resource constraints. Given the
NP-Hard complexity of solving RCPSPs, existing research
has focussed on methods for generating high quality solutions
efficiently [Vanhoucke and Coelho, 2016; Varakantham et al.,
2016; Schutt et al., 2013; Fu et al., 2012].

While RCPSPs represent task scheduling, they do not rep-
resent allocation and execution of tasks when multiple self-
ish individuals/companies are present. For instance, consider
the project of organizing an F1 race in a city (can be ex-
tended to any other major event or project). There are multiple
tasks (putting up barricades, organizing logistics, selling tick-
ets etc.) each of which can be done by different individuals or

companies, each having their selfish interest (typically max-
imizing profits) in performing the task. Resources on which
tasks will be performed are the roads, locations for congre-
gating crowds, etc. that are typically controlled by the city.
In order to represent such problems, we focus on a strategic
variant of RCPSP in this paper.

Apart from the underlying RCPSP, we have the following
additions in a strategic RCPSP: (i) There are multiple self-
ish agents interested in performing tasks. More importantly,
different agents can propose different durations and costs for
attending a task. Such information is not publicly available at
the time of task bidding; (ii) For the central authority, there
is a value associated with finishing the project at a certain
time. This is typically a monotonically decreasing function of
project makespan (duration to finish the project) that rewards
early finish to the project. Given these two additions, our goal
is to design a mechanism that will ensure agents truthfully re-
veal their types (durations and costs for tasks) and also finish
the project at the earliest possible time. Truthful revelation is
a desirable property to avoid delays in projects (due to wrong
reporting by agents) or unhappiness on part of agents execut-
ing tasks (due to payments that are lower than desired).

There has been a significant focus on mechanism design
for machine scheduling problems [Heidenreich et al., 2007].
The general VCG mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973] can be applied for certain basic scheduling
problems without precedence or resource constraints among
tasks. A characterisation of mechanisms for two machines
showing that only task-independent mechanisms can be truth-
ful was provided in [Dobzinski and Sundararajan, 2008].
Nisan and Ronen [Nisan and Ronen, 2001] examined lower
and upper bounds on approximation using deterministic and
randomized mechanisms for the unrelated machines schedul-
ing problem. There are multiple key differences between
work on selfish machine scheduling and the work presented
in this paper: (i) In selfish scheduling, agents are competing
for resources to finish their own job. However, in strategic
RCPSP, agents are competing to do tasks that are part of a
project. There is no competition for resources and are allo-
cated by central authority; (ii) There are temporal dependen-
cies between tasks in RCPSP; and (iii) Each task can require
multiple resources of different types and there is a capacity
for each resource type in RCPSP. In selfish scheduling, there
is typically just one type of resources.



Another thread of interest with respect to mechanism de-
sign is in task allocation settings. In [Archer and Tardos,
2007], the problem of hiring a team of agents to perform
a project was considered and the cost of truthfulness was
evaluated. As an extension of that problem, scenarios where
the agents first form teams and then bid for as consolidated
groups rather than as individuals were examined in [Skowron
et al., 2017]. Different from our work, the problem of hiring a
team is assumed without task dependencies and resource ca-
pacity constraints. Porter et al. [Porter et al., 2008] considered
task allocations where tasks can fail. They provided mecha-
nisms where payment function is dependent on outcome of
task execution and not just on reported types. We build on
this idea in our mechanisms described later. There have been
other works on mechanism design for machine scheduling
problems, however there is a major difference. In RCPSP, the
processing of tasks might need multiple resources of different
types, rather than one machine. Therefore, the focus here is
on developing scalable mechanisms for a more general and
practically relevant project scheduling problem.

There has also been existing research on resource uncon-
strained scheduling problems in a decentralised manner using
game theory. Nash equilibria for scheduling with controllable
processing times was examined in [Agnetis et al., 2015] and
in [Estévez-Fernández, 2012], an approach for penalty and
reward sharing in projects was proposed. Our work focusses
on problems with resource capacity constraints and fixed pro-
cessing times.

We make three key contributions with respect to design-
ing mechanisms for the strategic RCPSP: (i) We formally de-
fine the strategic model and its objective. (ii) We then show
that the well known VCG mechanism is not incentive com-
patible for the strategic RCPSP. (iii) Finally, we provide two
mechanisms that build on VCG, namely SCP and ICP with
strong theoretical properties. Specifically, our ICP mecha-
nism is able to ensure that truthful behaviour is the domi-
nant strategy and also that it is better for agents to participate
in the project with their true type. One practical difference
between SCP and ICP is the timing of making payment to
agents: in SCP, payments are provided after the whole project
completes; while in ICP, an agent can get the payment imme-
diately after the allocated task(s) are performed.

2 Background: RCPSP
The Resource Constrained Project Scheduling Problem
(RCPSP) consists of a set of tasks T = {τ1, τ2, ..., τN}. Each
task τq has a duration denoted by dq where q = 1, ..., N .
There are K types of reusable resources each with a limited
capacity represented by Ck. Each task τq requires rqk units of
type k resources during execution where k = 1, ...,K. In ad-
dition, two dummy tasks τ0 and τN+1 with zero durations are
introduced to represent project source and sink, respectively.

A schedule is an assignment of start times to all tasks, i.e. a
vector (s1, s2, ...sN ), where sq represents the start time of τq .
Let eq be the end time of task τq , we then have sq + dq = eq .
The project makespan, which is the start time of the sink ac-
tivity τN+1, can be given byM = sN+1 = maxq=1,...N eq.

There are two types of scheduling constraints, namely

precedence constraints and resource constraints. Precedence
constraints specify precedence relationships between tasks.
τq precedes τz implies that τz cannot start before τq ends,
i.e., sz − sq ≥ dq. Resource constraints restrict the total re-
source consumption during project execution. A schedule is
resource feasible if at each time t, the total demand of tasks
for any resource type k does not exceed its capacity Ck.

Typically, the objective of RCPSP is to find a start time
schedule with the minimum makespan that satisfies both
precedence and resource constraints. Instead of a start time
schedule, in this paper we focus on computing an execution
policy referred to as Partial Order Schedule (POS) ([Policella
et al., 2007]) that minimizes the makespan. A POS represents
a set of partially ordered tasks such that any embedded tem-
poral feasible solution is guaranteed to be resource feasible.
One property of POS is that it can provide an online policy in
terms of when and what tasks to start. Within a POS, each task
retains a set of feasible start times thereby providing more
flexibility than a traditional schedule, where each task is re-
stricted to start at a specific time.

3 Model: Strategic RCPSP
We consider a strategic model of RCPSP where there are mul-
tiple selfish agents bidding to perform individual tasks. Un-
like in RCPSP, where the only goal is to compute an execution
strategy or start time schedule, in a strategic RCPSP, there are
three specific goals: (i) An execution strategy (POS) for tasks
to be executed; (ii) Allocation of tasks to agents; (iii) Pay-
ments to agents for performing allocated tasks. In terms of
representation, there are three key components: the underly-
ing RCPSP, valuation function associated with project com-
pletion, and models for selfish agents interested in performing
individual tasks.

First, we have the underlying RCPSP model as introduced
in Section 2. There are precedence constraints between tasks
of the form sz − eq ≥ Tqz , where Tqz is an non-negative
value that specifies τz can only be started when τq has already
finished for a certain time period of Tqz . The second compo-
nent that adds to the strategic nature of RCPSP is a valuation,
V (.) for completion of the project, which is typically a mono-
tonically non-increasing function over the value of project
makespan. Finally, we have a set of agents, A = {a1, ...aM}
competing for performing tasks. The set of tasks of interest
for agent i is given by Qi. Let diq(θ

i) and ciq(θ
i) represent the

duration of task q and the cost for executing that task, respec-
tively. The actual type of i is denoted by θi = (ci,di), where
ci and di are vectors of costs and durations with

ci = {ciq(θi)|q ∈ Qi} di = {diq(θi)|q ∈ Qi}.

However, the actual type is a private information when agents
express their interest in executing tasks and agents may make
false declarations for self interests.

We aim to solve the strategic RCPSP by designing mech-
anisms that can provide incentives to agents so as to reveal
truth about their types. This will ensure that individual tasks
are executed as expected by agents, which in turn guarantees a
successful project delivery. We wish to avoid situations where
individual agents indicate lower durations or lower costs to



increase the chance of executing a task (in the hope of gain-
ing revenue from the task and not executing it on time). Given
that it is hard to predict task durations accurately even for in-
dividual agents, mechanisms that over penalize (e.g., million
dollars for any wrong reporting) after realising true durations
are not applicable.

4 Mechanisms
In this work, we focus on direct revelation mechanisms. That
is, the mechanism is directly based on the type reported by
agents. Here is the flow of various steps involved in getting
a project executed: (1) Agents report types. (2) Based on
agents’ reported types, a central authority decides on the task
allocation and execution policy. (3) Agents then perform their
allocated tasks according to the execution policy. (4) Depend-
ing on the mechanism, they can receive payments/contracts
based either on reported types or on actual type (that is avail-
able after actual completion of tasks).

Let Θi denote the type space for agent i. Agent i’s reported
type θ̂i may be different from its true type θi in order to gain
a favorable outcome. A mechanism, Γ is defined as:

Γ = (Θ, g(.))

where Θ = Θ1 × · · · × ΘM . The function g(θ̂) maps the
declaration of agents, θ̂ to an output o ∈ O that is defined as:

(f(θ̂), y(θ̂),p(θ̂))

where f(θ̂) is the allocation vector with f iq(θ̂) = 1 indicating
that task τq is allocated to agent i and f iq(θ̂) = 0 otherwise.
y(θ̂) denotes the partially ordered schedule, with yqz(θ̂) = 1
representing that task τz can only start after task τq finishes.
The execution policy y can also store information about the
exact precedence lags, which is the minimum time to wait
after previous task finishes. Finally, p(θ̂) represents the pay-
ment to individual agents from the central for executing the
allocated tasks. If a task is not allocated to an agent, then both
cost and duration for that agent on the task will be zero.

One key differentiating factor in this mechanism when
compared to mechanisms for task allocation or traditional
machine scheduling problems is the presence of the execution
policy, POS. When agents provide false reports of processing
times, the deterministic schedule with fixed starting times of
tasks cannot be employed to evaluate the impact of their dec-
larations, because any wrong reporting of durations can ren-
der the schedule infeasible. However, by using a POS, we are
guaranteed to get a feasible schedule and consequently val-
ues of false reporting can be evaluated. We provide specifics
of the mechanisms employed in the next two subsections.

4.1 Payments and Participant Utilities
We first define some of the basic terms required for com-
puting payments and utilities. Given the allocation f, POS y
and revealed type θ̂, the project makespan can be given by
M
(
f(θ̂), y(θ̂), θ̂

)
= sN+1

(
f(θ̂), y(θ̂), θ̂

)
withN+1 referring

to the sink task. Value for the central authority is denoted by

V
(
M
(
f(θ̂), y(θ̂), θ̂

))
, where V (·) is a monotonically non-

increasing function over the value of project makespan.
Given the revealed type θ̂, welfare for all participants de-

noted by W
(

f(θ̂), y(θ̂), θ̂
)

, can be defined as the center’s
value minus the cost incurred by all agents, i.e.,

W
(

f(θ̂), y(θ̂), θ̂
)

= V
(
M
(
f(θ̂), y(θ̂), θ̂

))
−
∑
i

Ci(θ̂)

where

Ci(θ̂) =
∑
q∈Qi

Ciq(θ̂), Ciq(θ̂) =

{
ciq(θ̂

i) if f iq(θ̂) = 1

0 otherwise

with Ciq(θ̂) representing the cost for agent i by performing τq
(if it is allocated to i), and V =

∑
i V

i with V i representing
the value contributed by agent i. The solution framework we
provide allow for a flexible design of the individual valuation
V i. For example, if V (.) is linear with the sole makespan, a
direct way to evaluate an agent’s contribution by performing
task τq is by determining a ratio 0 ≤ ρiq ≤ 1 which can
be calculated as the cumulative portions of the task duration
over the total makespan, divided by the number of tasks in
parallel. That is, V i = V

∑
q ρiq = V

∑
q

∑
t 1/(|Tt| · M),

where the duration of τq can be divided into diq time units and
|Tt| is the number of tasks in parallel at the tth time unit (t =
1, ...diq). Note that properties of our proposed mechanisms
(which will be introduced in later sections) hold independent
of the explicit representation of individual valuation.

Let the superscript −i on a vector denote that the term
for agent i has been omitted from the vector. For example,
θ−i = (θ1, ..., θi−1, θi+1, ...θM ). W−i() is employed to
indicate the welfare of all participants excluding i. Each
agent would receive a certain amount of payment from
the center after performing the allocated task(s). In the
following, we will present payments corresponding to three
different mechanisms: (i) VCG payment denoted by piV CG.
(ii) Social Completion based Payment denoted by piSCP .
(iii) Individual Completion based Payment denoted by piICP .

VCG Mechanism: Following VCG mechanism, payment for
i can be defined as the difference of social welfare of other
agents (denoted byW−i|iV CG) when i is present, and the optimal
welfare (denoted byW−iV CG) when i is not present. That is,

piV CG(θ̂) (1)

=W−i|iV CG

(
f(θ̂), y(θ̂), θ̂

)
−W−iV CG(f−i(θ̂−i)), y−i(θ̂−i), θ̂−i)

It should be noted that with VCG, agents would have
incentive to increase the payoff by misreporting their types,
since the utility function depends on the reported types.

SCP Mechanism: Motivated by VCG’s lack of incentive
compatibility due to dependence on reported types, we pro-
pose a payment function that depends not only on the task
allocation and execution policy (derived based on the dec-
larations θ̂), but also on the actual types (denoted by θ) of



agents at completion, which can be defined as:

piSCP (θ̂) (2)

=W−i,i
(

f(θ̂), y(θ̂), θ
)
−W−i

(
f(θ̂−i), y(θ̂−i), θ̂−i

)
whereW−i,i is a sum of welfare for other participants when
i is present and the valuation of i (denoted by V i), i.e.,

W−i,i
(

f(θ̂), y(θ̂), θ
)

=W−i|i
(

f(θ̂), y(θ̂), θ
)

+ V i (3)

Note thatW−i,i is calculated corresponding to the allocation
and POS derived based on declarations θ̂, but with durations
and costs taken from the real types. Since the truth is not pub-
licly known, this term can only be calculated after execution
of tasks and realisation of costs and durations. The second
term W−i of Eqn 2 on the other hand computes the welfare
for all agents excluding i when i is not present, according to
reported types of all other agents excluding i, i.e., θ̂−i.

In the first term of payment definition pi(θ̂) in Eqn 2, the
third attribute of welfare depends on the real types of all
agents. In other words, agent i has to wait until all tasks by
other agents have been completed to receive the payment.

ICP Mechanism: Motivated by the potential inefficiency due
to the payment timing, the ICP mechanism relies on a pay-
ment function, piICP that agents can get payments immedi-
ately after the individual allocations are processed, i.e.

piICP (θ̂) (4)

=W−i,i
(

f(θ̂), y(θ̂), (θi, θ̂−i)
)
−W−i

(
f(θ̂−i), y(θ̂−i), θ̂−i

)
where

W−i,i =W−i|i
(

f(θ̂), y(θ̂), (θi, θ̂−i)
)

+ V i (5)

Unlike in Eqn 3, W−i,i in Eqn 5 can be calculated corre-
sponding to the allocation and POS from declarations θ̂, and
the real type of agent i only. Under ICP mechanism, the pay-
ment can be decided immediately after an individual agent
completes the allocated tasks and contracting can take place
before the entire project completion.

Irrespective of the three payment rules, utility for individ-
ual agent can be defined as the payment received minus the
cost incurred in executing the allocated tasks. That is,

ui(θ̂) = pi(θ̂)− Ci(θ̂) (6)

Utility of the centre is the difference between the center’s
value and the total payments made to all agents:

u#(θ̂) = V
(
M
(
f(θ̂), y(θ̂), θ

))
−
∑
i

pi(θ̂) (7)

where the second term can be defined by Eqn 2 or 4 based on
which mechanism is applied.

4.2 VCG and SCP
It is well known that if the utility of a participant is depend-
ing other participants’ types (because of task duration in the
context of strategic RCPSP), such interdependent valuations

are not incentive compatible to truthfully reveal the type for
VCG mechanism ([Postlewaite and McLean, 2015]). We will
use a concrete example to show that VCG is not incentive
compatible, while SCP is.

Consider a simple case with only one task and no cost in-
volved1. Let θ̂i denote the reported task duration from agent
i. After the centre receives all declarations, an allocation to-
gether with a payment are calculated. Let θ̂1 and θ̂2 represent
the lowest and second lowest reported durations, respectively.
As in most real world cases, we suppose centre’ value, V (·)
is a non-increasing function with the task duration and i is the
wining agent, i.e., θ̂i = θ̂1 < θ̂2.

According to VCG payment, an agent would be paid based
on the value increase of other agents due to its presence and
the total value with and without i are V (θ̂1) and V (θ̂2), re-
spectively. Thus, the utility of i can be presented as uiV CG =

V (θ̂1) − V (θ̂2) and utilities of all agents except the winner
would be zero. Such a mechanism is not incentive compat-
ible, because it is solely based on declaration of each agent
and the agents can report wrongly to derive higher incentive.

We overcome this barrier by designing a payment function
which is not only based on the declarations, but also on the
actual execution of tasks. Following our SCP mechanism, the
utility of the winner i can be instead represented as, uiSCP =

V (θ1)− V (θ̂2), where θ1 is the actual value of the winner i.
There are three possible declarations: truth-telling, over-

reporting and under-reporting. We show that under SCP,
agents have no incentive to misreport for each scenario.

• θ̂1 < θ̂2 < θ1. In this case, i wins by over-reporting.
Given V (·) is non-increasing, we then have uiSCP < 0
(utility is negative).

• θ̂1 < θ1 < θ̂2. Since θ1 < θ̂2, by reporting the truth,
i can secure the task. There is no incentive to report a
lower value as no utility gain can be obtained.

• θ1 < θ̂1 < θ̂2. Similar to the previous case, besides
receiving no utility gain, there is also a potential risk to
losing the task by reporting a higher value. Thus, i has
no incentive to lie.
• θ1 = θ̂1 < θ̂2. Under this scenario, i secures the task

and gets a positive utility given by V (θ1)− V (θ̂2).
In other words, truth-telling is dominant in this example under
the SCP mechanism. We show properties of SCP and ICP
with respect to incentive compatibility in later sections.

4.3 MILP for Strategic RCPSP
Another key feature of our proposed SCP and ICP is the in-
tegration of an execution policy (i.e., POS) together with task
allocation, so that an online decision is always available to tell
at each time, what tasks to be executed on which resources.
Note that online execution of the generated POS is beyond
the scope of this paper. Overall, the proposed solution frame-
work for solving strategic RCPSP contains three processes:
task allocating, task executing and payment making.

1Note that even if cost is not present, time can always be treated
as an opportunity cost. Pro-bono projects are one example of cases
where cost is irrelevant.



Input: r,C,T, θ̂
Output: f, y

max
f,y

V (sN+1)−
∑
i

Ci(θ̂)

Ci(θ̂) =
∑
q∈Qi

Ciq(θ̂) ∀i (8)

Ciq(θ̂) = ciq(θ̂
i) · f iq(θ̂) ∀q, i (9)

dq =
∑
ai∈A

f iq(θ̂) · diq(θ̂i) ∀q (10)

∑
ai∈A

f iq(θ̂) = 1 ∀q (11)

eq = sq + dq ∀q (12)
sz ≥ eq + Tqz −M · (1− yqz) ∀q, z (13)

xkq,z ≤ min{rqk, rzk} · yqz ∀q, z, k (14)∑
z

xkq,z =
∑
z

xkz,q = rqk ∀q 6= 0, N + 1, k (15)∑
z

xk0,z =
∑
z

xkz,N+1 ≤ Ck ∀k (16)

yqz ∈ {0, 1} ∀q, z (17)
yqz + yzq ≤ 1 ∀q, z (18)

Table 1: ALLOCPOS()

We build on the idea of generating POSs for RCPSP/max
using a flow-based continuous time linear model in [Fu et
al., 2016; Varakantham et al., 2016] and provide an MILP
formulation in Table 1 to determine the optimal allocation
and POS. Given the declarations from agents, temporal and
resource constraints among tasks, the objective of the MILP is
to generate the best task allocation and execution policy POS,
where ’best’ here is characterized with respect to maximizing
welfare for all agents based on the revealed types.

Eqns 8 - 9 compute the actual cost of agent i by process-
ing τq and if it is allocated to i by allocation f . The duration
of τq is represented by Eqn 10. Eqn 11 guarantees that for
each τq , only one agent is assigned to it. Eqns 12 - 18 are for
POS generation. The resource flow variable xkq,z represents
the number of resource k transferred directly from τq to τz .
The sequencing variables yq,z are for POS construction. Note
that in the MILP, start time variables are only used for policy
computing. Eqn 13 links starting times of τq and τz with yqz .
It is active when yqz = 1 which enforces the precedence rela-
tionship. If τq precedes τz , the maximum resource flow from
τq to τz is forced to bemin{rqk, rzk}, as in Eqn 14. Eqns 15 -
16 are flow conservation constraints. Eqn 18 covers the three
relationships between two tasks, either one task precedes an-
other, or both being executed in parallel. All constraints in the
optimization model are linear. If V is linear or quadratic, the
model can be solved using solvers like CPLEX. In fact, as in-
dicated in [Fu et al., 2016], problems with up to 30 activities
can be executed efficiently when minimizing makespan.

θi Actual type of agent i
θ̂i Reported type of agent i
θ−i Actual types of agents except i, (θ1...θi−1, θi+1...θM )
θ (θi, θ−i)

θ̂ (θ̂i, θ̂−i)

θ̄ (θi, θ̂−i)

θ̃ (θ̂i, θ−i)

f∗, y∗ arg maxf,y W
(

f(θ), y(θ), θ
)

f∗−i, y∗−i arg maxf,y W−i
(

f(θ−i), y(θ−i), θ−i
)

f̂
∗
−i, ŷ∗−i arg maxf,y W−i

(
f(θ̂−i), y(θ̂−i), (θ̂−i)

)
f̂
∗
, ŷ∗ arg maxf,y W

(
f(θ̂), y(θ̂), (θ̂)

)
f̄∗, ȳ∗ arg maxf,y W

(
f(θ̄), y(θ̄), (θ̄)

)
f̃
∗
, ỹ∗ arg maxf,y W

(
f(θ̃), y(θ̃), (θ̃)

)
f∗i=φ f∗−i ∪ (fi = φ)

Table 2: Notations in Property Proofs

To summarize, the overall flow of the strategic RCPSP
works as follows: (i) Agents bid for tasks of interest by re-
porting certain types. (ii) The central will then compute a task
allocation together with a POS for project execution using the
MILP model in Table 1. (iii) Agents perform allocated tasks
following the POS. (iv) Payments are then made to individual
agents (at different timings as in SCP and ICP).

4.4 Mechanism Properties
In this section, we outline the key properties of our SCP and
ICP mechanisms: First, we show that SCP with payment
rule in Eqn 2 is Bayes Nash incentive compatible, i.e., an
agent always receives the highest utility by reporting its
true type when all other agents are truth reporting. We then
show that ICP is more powerful than SCP, as it allows for
individual rationality and strategy proofness (or general
incentive compatibility). Strategy proofness implies that
being truthful is the dominant strategy irrespective of what
other agents report. Finally, we show that both SCP and ICP
ensure center’s rationality and economic efficiency. The key
notations in mechanism properties are summarized in Table 2.

Bayes Nash Incentive Compatibility of SCP
Consider an arbitrary agent i. Let the optimal allocation

based on the true types θ = (θi, θ−i) denoted by f∗(θ), or f∗.
From the design of SCP, f∗ optimizes the total welfare, given
θ. Let f∗−i denote the optimal allocation based on θ−i. From
Eqns 2, 3, and 6, the utility of agent i by reporting θi is:

ui(θ) = piSCP (θ)− Ci(θ)

=W−i,i
(

f∗, y∗, θ
)
−W−i

(
f∗−i, y

∗
−i, θ

−i
)
− Ci(θ)

=W−i|i
(

f∗, y∗, θ
)

+ V i − Ci(θ)−W−i
(

f∗−i, y
∗
−i, θ

−i
)

=W
(

f∗, y∗, θ
)
−W−i

(
f∗−i, y

∗
−i, θ

−i
)

(19)

where W is the optimal welfare based on θ and W−i is the
total welfare of all agents except i when i is not present.



We then consider the case when agent i reports θ̂i, and
other agents declare true types θ−i. Let f̃

∗
denote the opti-

mal allocation based on θ̃ = (θ̂i, θ−i). Similarly in Eqn 19,
the utility of agent i under allocation f̃

∗
can be represented as:

ui(θ̃) =W
(

f̃
∗
, ỹ∗, θ

)
−W−i

(
f∗−i, y

∗
−i, θ

−i
)

(20)

where f̃
∗

is derived based on declarations θ̃, while the welfare
calculation involves true types θ. Thus, from Eqns 19 and 20,

ui(θ)− ui(θ̃) =W
(

f∗, y∗, θ
)
−W

(
f̃
∗
, ỹ∗, θ

)
(21)

Since (f∗, y∗) optimizes the welfare based on θ, we then have
ui(θ) ≥ ui(θ̃). That is, given other agents are truthful, by
truthfully declaring its type, agent i can get higher utility.

Individual Rationality of ICP
Individual Rationality requires that no agent would lose by

participating with the true value, no matter what other agents
declare. Consider agent i with its true type θi, and the re-
ported types of other agents except i denoted by θ̂−i. Let
θ̄ = (θi, θ̂−i) and the optimal allocation based on θ̄ denoted
by f̄∗(θ̄), or f̄∗. From Eqns 4 - 6, the utility of agent i is:

ui(θ̄) = piICP (θ̄)− Ci(θ̄)

=W−i,i
(

f̄∗, ȳ∗, θ̄
)
−W−i

(
f̂
∗
−i, ŷ

∗
−i, θ̂

−i
)
− Ci(θ̄)

=W−i|i
(

f̄∗, ȳ∗, θ̄
)

+ V i − Ci(θ̄)−W−i
(

f̂
∗
−i, ŷ

∗
−i, θ̂

−i
)

=W
(

f̄∗, ȳ∗, θ̄
)
−W−i

(
f̂
∗
−i, ŷ

∗
−i, θ̂

−i
)

(22)

whereW−i is the total welfare of all agents except i when i
is not present and the optimal allocation f̂

∗
−i is derived based

on θ̂−i. Note that inW−i, since i is not involved, the welfare
remains unchanged if we append an empty allocation for i to
f̂
∗
−i, with f̂

∗
i=φ = f̂

∗
−i ∪ (f̂i = φ). That is,

ui(θ̄) =W
(

f̄∗, ȳ∗, θ̄
)
−W

(
f̂
∗
i=φ, ŷ

∗
i=φ, θ̂

−i
)

(23)

where the last term represents the total welfare of all agents
(including i with zero contribution) based on allocation f̂

∗
i=φ

(derived from θ̂−i). Given f̂
∗
i=φ, the welfare function remain

unchanged irrespective of the type of agent i. Thus, we have,

ui(θ̄) =W
(

f̄∗, ȳ∗, θ̄
)
−W

(
f̂
∗
i=φ, ŷ

∗
i=φ, θ̄

)
(24)

Since (̄f∗, ȳ∗) optimizesW given θ̄, we then have ui(θ̄) ≥ 0.
That is, agent i’s utility, no matter what other agents report,
if it truthfully declares its type, is always non-negative.

Strategy Proofness of ICP
Consider i reports θ̂i and other agents declare θ̂−i. Accord-

ing to Eqn 4 and similar derivations from Eqns 22 to 24, the
utility of i in ICP mechanism based on θ̂ = (θ̂i, θ̂−i) is,

ūi(θ̂) =W
(

f̂
∗
, ŷ∗, θ̄

)
−W

(
f̂
∗
i=φ, ŷ

∗
i=φ, θ̂

)
(25)

And the utility based on θ̄ = (θi, θ̂−i) can be represented as,

ūi(θ̄) =W
(

f̄∗, ȳ∗, θ̄
)
−W

(
f̂
∗
i=φ, ŷ

∗
i=φ, θ̄

)
(26)

Note that the last items in Eqns 25 and 26 are the same, given
agent i has empty allocation. Thus,

ūi(θ̄)− ūi(θ̂) =W
(

f̄∗, ȳ∗, θ̄
)
−W

(
f̂
∗
, ŷ∗, θ̄

)
(27)

Since (̄f∗, ȳ∗) is the optimal allocation based on θ̄, we
then have ūi(θ̄) ≥ ūi(θ̂). In other words, no matter what
declaration other agents provide, by telling the truth, agent i
can get the highest utility.

Center’s Rationality and Economic Efficiency
A mechanism is said to satisfy center’s rationality and eco-

nomic efficiency if it guarantees that center has non-negative
utility and the welfare is optimal if all participants are truth-
ful, respectively. If all agents are truthfully declaring their
types, there would be no difference between SCP and ICP in
terms of center’s utility and social welfares achieved. Thus,
we only prove center’s rationality and economic efficiency
for the SCP mechanism and omit the proof for ICP.

From Eqn 7, the center’s utility is the difference between
the total value created by agents from attending the allocated
tasks and the total payments made to agents. Consider all
agents are truth reporting. From Eqn 2, the center’s utility is,

u#(θ) = V −
∑
i

piSCP (θ)

= V −
∑
i

(
W−i,i

(
f∗, y∗, θ

)
−W−i

(
f∗−i, y

∗
−i, θ

−i
))

=
∑
i

(
W−i

(
f∗−i, y

∗
−i, θ

−i
)
−W−i|i

(
f∗, y∗, θ

))
(28)

whereW−i|i is the welfare of participants except i when i is
present, f∗ and f∗−i are optimal allocations based on θ and θ−i,
respectively. Since f∗−i optimizes the welfare of all agents but
i, we then have u#(θ) ≥ 0. That is, if all agents are truthful,
the mechanism guarantees the center a non-negative utility.

Since f∗ optimizes the total welfare W based on θ, eco-
nomic efficiency can be directly achieved. That is, the wel-
fare of all participants is optimal if all agents are truthfully
declaring their types.

5 Conclusion
Existing research in RCPSP assumes that a central authority
is equipped with all related data of the problem (e.g., process-
ing times of tasks) and is asked to derive a scheduling solu-
tion that optimises a certain criteria (e.g. project makespan)
with both temporal and resource constraints satisfied. But in
the real world project scheduling, decisions might be taken
by several individual economic units or agents, aiming at
optimising their own objectives rather than the project per-
formance. As such, agents may lie and declare values other
than the truth for self interests. In this work, we first define
a strategic RCPSP model and then propose mechanisms for
the strategic RCPSP, that ensures agents are incentivised to
reveal truth about their types and thereby executing the tasks
on time to guarantee a successful project delivery.
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