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GENOME PRIVACY AND SECURITY

Tatiana Bradley | University of California, Irvine
Xuhua Ding | Singapore Management University
Gene Tsudik | University of California, Irvine

Genomic privacy has attracted much attention from the research community, because its risks are unique 
and breaches can lead to terrifying leakage of sensitive information. The less-explored topic of genomic 
security must address threats of digitized genomes being altered, which can have dire consequences in 
medical or legal settings.

A s full genome sequencing becomes increasingly 
practical and affordable, it’s not hard to imagine a 

(near) future where large numbers of people store and 
maintain their digitized genomes. Ubiquitous access to 
one’s digitized genome opens the door to a wide range of 
applications, ranging from serious (for instance, disease 
screening or paternity testing) to social (for instance, 
ancestry tracing or compatibility/dating). At the same 
time, a genome represents a veritable gold mine of 
extremely personal and sensitive information about its 
owner as well as that person’s ancestors, descendants, 
and siblings. Furthermore, as the ultimate static biomet-
ric, a leaked genome can’t be revoked or modified, thus 
exacerbating privacy concerns. Consequently, genomic 
privacy is a very timely and important subject, which 
has, in recent years, understandably attracted much 
attention from the research community. (See “Whole 
Genome Sequencing: Revolutionary Medicine or Pri-
vacy Nightmare?” for an overview of genomic privacy 
challenges.1)

With the spotlight on the privacy front, where 
moderate progress has been made, comparatively less 

attention has been devoted to genomic security. This 
is surprising because security is at least as important 
as privacy. In the context of personalized medicine, a 
modified genome can lead to wrong drugs or treatments 
being prescribed or administered. In terms of paternity 
or common ancestry testing, a modified genome can 
yield incorrect test results, which can translate into 
equally incorrect legal decisions.

Some recent work on genomic security (for instance, 
G.K. Ragesh and K. Baskaran’s “Cryptographically 
Enforced Data Access Control in Personal Health 
Record Systems”2) focused on access control for health 
records, which—though important—doesn’t prevent 
the possibility of an insider modifying genomic data. 
In particular, Ragesh and Baskaran sought to prevent, 
rather than detect, unauthorized modifications.2

One possible reason for genomic security not hav-
ing received much attention thus far is that it’s per-
ceived not to pose any new challenges. In this article, we 
show that this conventional wisdom might be unjusti-
fied. After taking a closer look at genomic security, we 
identify some new challenges that can’t be resolved by 
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naively applying current techniques. These challenges 
stem from several factors, including the size and longev-
ity of the human genome, an unconventional applica-
tion model, bandwidth and computation complexities, 
and the need to balance security with privacy.

Genomic Security
We envisage a generic application scenario with the fol-
lowing key features:

 ■ An individual—Alice—obtains her digitized genome 
from an authorized sequencing lab (SL).

 ■ Alice stores the result on her personal device, for 
instance, a laptop or smartphone.

 ■ Later on, Alice wants (or is mandated) to conduct 
a genetic test, the purpose of which might be legal, 
medical, or social.

 ■ The test requires Alice to provide some specific 
genomic data—typically, a small portion of the entire 
genomic sequence—to the application server (tester) 
that actually performs the test.

This scenario triggers various security issues for all 
stakeholders. One important issue is certification and 
periodic recertification of sequencing labs, because Alice 
clearly needs to trust the SL to correctly sequence and 
digitize her genome. This process would likely be done 
by a trusted government agency, for instance, the US  
Food and Drug Administration (FDA).

Another issue is certification of application-specific 
servers, which could be trickier due to a wide range 
of medical, legal, and social applications, each with its 
own access requirements to specific genomic excerpts. 
This would let Alice decide which parts of her genome 
should be revealed to a particular application. For 
example, a social app might be restricted to accessing 
segments that determine certain physical characteris-
tics, such as height and hair or eye color, whereas a legal 
DNA profiling app that uses the short tandem repeat 
(STR) method might be restricted to accessing Com-
bined DNA Index System (CODIS)-stipulated 13 core 
loci. This diversity calls for a well-defined policy or 
authorization syntax such that an application server can 
be certified to permit access to only a set of fixed and 
specific genomic locations or ranges thereof.

A related issue is proving rightful ownership; for 
example, if the test is conducted remotely (that is, 
over the Internet), how does Alice convince the tester 
that she supplied her own genomic data? This clearly 
requires a certification scheme that involves all three 
entities—the individual, the lab, and the tester.

Despite the obvious importance of all of the above, 
we focus in this article on more basic issues: the authen-
ticity and integrity of Alice’s genomic data in the context 

of diverse applications. At first glance, this seems eas-
ily addressable via textbook security techniques, such 
as hash functions and digital signatures. However, as 
we discuss, the problem is a bit more challenging than  
it appears.

Genome Representation
In general, the human genome is a sequence of  
3.2 3 109 base pairs—two letters chosen from the tiny 
four-letter alphabet: {adenine (A), cytosine (C), gua-
nine (G), and thymine (T)}. The simplest way to repre-
sent it digitally is to use an array of three-bit blocks, each 
representing the first letter of a base pair at the corre-
sponding absolute position. (An additional bit might be 
needed to account for sequencing errors, for example, 
a symbol “X” where a base letter was unreadable). The 
second letter doesn’t need binary representation as it 
can be deduced from the first one using the base-pairing 
rule (www.biology-pages.info/B/BasePairing.html).

However, because human genomes have a high 
degree of similarity, an individual’s genome is often rep-
resented as a set of differences with respect to a fixed 
reference genome. In practice, only approximately  
3 3 106 base pairs are needed for most genetic applica-
tions. Hence, although a full and complete representa-
tion of a single genome might take up to 200 Gbytes, a 
compact version based on a reference representation, for 
instance, using the 1,000 Genomes Project variant call 
format (www.internationalgenome.org/wiki/Analysis 
/vcf4.0), occupies only about 120 Mbytes. For simplic-
ity’s sake, we assume the genome reference representa-
tion is a list of 3 3 106 tuples of the form: (x, Lx), where 
Lx is the base pair at position x. In practice, Lx might 
contain more complex genomic data regarding position 
x. Nonetheless, the value of Lx doesn’t impact the secu-
rity issues discussed later.

Stakeholders and Trust Model
Again, the stakeholders in the aforementioned scenario 
include the individual—Alice, the SL, and the appli-
cation server—tester. For now, we assume that the SL 
operates mostly offline, whereas Alice and the tester 
interact over the Internet or another similarly insecure 
communication channel. Given proper and timely cer-
tification by a higher authority (for instance, the FDA), 
we assume that everyone trusts the SL. However, the 
tester doesn’t trust Alice regarding the authenticity and 
integrity of her genomic data. At the same time, Alice 
doesn’t trust the tester with any of her genomic infor-
mation beyond that which the latter is authorized to 
access for the particular test.

In the future, the SL’s role might be replaced by a per-
sonal sequencing device. Such devices, though certainly 
not affordable today, are already available from vendors 
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such as Illumina. In the extreme, we can imagine a 
world in which individuals own and operate their own 
sequencing devices, perhaps as part of or as an attach-
ment to a smartphone. Naturally, it would be crucial 
for such a device to be equivalent to an SL in terms of 
both functionality and trust. In particular, it would have 
to be certified by a trusted authority and would need to 
incorporate secure hardware coupled with some degree 
of tamper resistance as well as a means of secure logging 
and auditing.

Requirements
The first requirement is an efficient means for Alice to 
convince the tester of her genomic data’s integrity and 
authenticity.

The second requirement is privacy of Alice’s genome: 
because a typical genomic test uses only a small portion 
of the entire genome, the rest must be kept secret from 
the tester. Ideally, information revealed by Alice mustn’t 
allow the tester to learn anything else about Alice’s 
genome. However, this is unrealistic from the outset 
because a genome isn’t random; information that cor-
responds to certain loci might allow the tester to infer 
(with absolute certainty, or at least with nonnegligible 
advantage over a random guess) contents of other loci. 
Although privacy is a key goal, the inference problem is 
beyond the scope of this article.

The third requirement is performance: minimal stor-
age, communication, and computation overheads in-
curred by all stakeholders. This is of highest importance 
for Alice who might be using a resource-constrained 
personal device. Of course, following current trends, 
Alice could outsource storage and computation of her 
genomic data to a cloud service provider (CSP), which 
has vastly greater resources than her device. There’s still 
an incentive to minimize all costs, due to the CSP’s very 
large scale of both storage and computing. Outsourcing 
neither changes the trust model above nor invalidates 
the requirements. The other two stakeholders—the SL 
and the tester—are expected to be commercial entities 
with ample computing, storage, and communication fa-
cilities. (An exception would be peer-to-peer social ge-
nomic applications, in which a tester might be another 
personal device.) Nonetheless, it’s always desirable to 
reduce their overheads.

Challenge
A prominent challenge stems from the conflict between 
security and privacy requirements. On one hand, Alice’s 
privacy implies that she should control her genomic 
information revealed to the tester. On the other hand, 
the tester demands authenticity and integrity, which 
means that Alice must be unable to modify (or delete 
parts of) her digitized genome.

This issue is exacerbated by the compact reference 
representation. Consider a simple example. Suppose 
that the tester requests a sequence of X base letters, 
starting at position Y. We assume that Alice’s genome 
has just one difference in this range: an A at position Y9 
(for Y9 – Y , X). The next difference is a C at position 
Ynxt  Y 1 x, while the previous difference is a G at 
position Yprv , Y. An honest Alice would send the tes-
ter a single tuple: (Y9, A). She would also attain maxi-
mal privacy by revealing nothing beyond the minimum 
required by the tester.

Alternatively, a malicious Alice could cheat and 
send an empty string, thus claiming that her genome 
and the reference have no differences in the range  
[Y,Y 1 X]. If we assume that each difference is some-
how individually authenticatable (for example, signed 
by the SL at sequencing time), Alice can’t create base 
letter differences where none exist. However, she can 
easily omit actual differences from the requested range. 
In the database security literature, this is sometimes 
called the range query completeness problem, where 
a more generic term “records” is used instead of “dif-
ferences.” It also has a trivial solution: adjacent differ-
ences must be securely (cryptographically) bound, 
that is, authenticating a difference at position Y9 must 
allow the tester to securely determine that previous 
and next differences occur at positions Yprv and Ynxt, 
respectively.

This method is readily applicable in our context; for 
example, for each difference at position Y9 involving a 
base letter LY9, SL could sign a tuple: (Y9, LY9, Yprv, Ynxt) 
where Yprv and Ynxt are as defined before, with two spe-
cial symbols (for instance, –inf and 1inf) indicating 
the start and end. For each difference in the requested 
range, Alice would send the tester one such signed 
tuple, and any cheating on her part would be trivially 
detectable. If Alice really had no differences in the entire 
[Y,Y 1 X] range, there would necessarily exist either 
(or both) the closest previous or next closest difference, 
represented as a distinct signed tuple. It’s easy to see 
that if Alice provides an SL-signed tuple correspond-
ing to either position, the tester can verify it and thereby 
determine that Alice’s genome has no differences in the  
[Y,Y 1 X] range.

Although secure, this approach sacrifices some of 
Alice’s genomic privacy. Note that, in the above exam-
ple, the tester learns (potentially a lot) more than it’s 
entitled to learn. Specifically, regardless of the number 
of differences in the [Y,Y 1 X] range, the tester learns 
the positions of two other differences: Yprv and Ynxt. 
There seems to be no easy solution to this.

As this discussion illustrates, reconciling privacy and 
security isn’t obvious, at least if reference representa-
tion is used. In the rest of this article, we discuss ways to 
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simultaneously attain integrity, authenticity, and com-
pleteness for the tester as well as privacy for Alice.

Naive Approaches
We start with some very naive approaches to authentic-
ity and integrity. Though not quite practical, they pro-
vide insights into ensuing design challenges and lead us 
to a somewhat practical baseline technique.

No Privacy
In the no privacy (NoP) approach, after sequencing, the 
SL signs the compact genome representation and refer-
ences its owner’s identity (Alice) and/or the owner’s 
public-key certificate. Thereafter, Alice can easily prove 
authenticity and integrity to the tester by transferring 
the whole signed genome and authenticating herself 
in the process. This incurs for Alice the lowest possible 
costs for storage (just the cleartext genome) and com-
putation (almost none). In return, Alice has no privacy 
whatsoever, while communication overhead is maxi-
mal. The tester’s costs are similar to Alice’s, albeit storage 
is needed only temporarily, up to signature verification.

Finer-Grained Privacy
In the finer-grained privacy (FGP) approach, the SL 
partitions Alice’s genome sequence into segments and 
separately signs each, using some unique identifier to 
tie all the segments together as well as to bind them to 
Alice. This way, Alice sends the tester the smallest set 
of signed segments that contain necessary/requested 
positions and base letters. One possibility is to pick 
uniform-size segments, which makes for easier process-
ing and storage. Alternatively, genomic specialists can 
determine segments of variable lengths according to 
the application needs; for example, standard test types 
might call for specific fixed ranges. We don’t pursue this 
further as it’s orthogonal to our study. This approach 
offers weak privacy for Alice because it leaks extra (not 
strictly required) information to the tester. The actual 
amount of leakage depends on the segmentation algo-
rithm and the specific tester application.

Baseline: Extreme FGP
Taking FGP to the extreme, we can obtain an optimal 
mix of security and privacy at the expense of storage. 
In this case, called extreme FGP (eFGP), the SL uses 
the full genome representation, instead of the com-
pact (reference-based) version—that is, it individually 
signs every single base letter along with its position. 
As a result, Alice attains optimal privacy because only 
data corresponding to requested (and, presumably, duly 
authorized) positions is revealed. For its part, the tester 
can individually authenticate each position/base-letter 
pair and verify ownership.

eFGP’s tradeoff is in performance: all parties 
incur much higher costs than NoP. SL has to com-
pute 3.2  3  109 signatures. With RSA, the minimum 
near-term safe key/modulus size is 2,048 bits (antici-
pated to be secure until 2030), while elliptic curve cryp-
tography (ECC) needs 224 bits for roughly the same 
security. (Both 2,048-bit RSA and 224-bit ECC are 
believed to offer 112 bits of security.) We can discount 
the SL’s computation complexity because, as a commer-
cial entity, it has ample resources and can always find 
a way to pass the extra costs onto its customers. Alice 
doesn’t need to verify individual base-letter signatures; 
at delivery time, the SL can supersign the whole genome 
separately, and Alice can verify just that one signature.

Of more concern is storage, that is, space complex-
ity: even if we ignore storage for position metadata, sig-
natures themselves result in data expansion of two to 
three orders of magnitude, depending on the signature 
type. This translates into hundreds of gigabytes (ECC) 
or nearly a terabyte (RSA) per genome. For Alice, stor-
ing this much data on a personal device, and commu-
nicating it, is likely to be prohibitive in the near future. 
On the other hand, assuming that a typical test involves 
only 0.1 percent of the genome (which approximates 
the typical difference between any two humans), Alice’s 
communication with the tester would be commensu-
rately less intensive, that is, 1,000 times less.

For the tester, eFGP requires as many signature 
verifications as the number of base letters requested 
from Alice. This is where the choice of the signature 
scheme matters most. For instance, it’s well known that, 
with small public exponents, RSA is generally 10 to 30 
times faster than elliptic curve (EC) digital signature 
algorithm (DSA) for verification. The next question is 
whether the extra bandwidth consumed by RSA signa-
tures is outweighed by faster verification. The answer 
depends on several variables, such as network speed and 
requested plaintext size.

Consider the following example. On a commodity 
2015 MacBook Pro, OpenSSL reports signature veri-
fication speeds of 15,702/s and 1,540/s for RSA and 
ECC, respectively. We assume a 1-Gbps network and 
equally capable interfaces for Alice and the tester. Also, 
the tester can pipeline signature verification, that is, 
verify each base-letter signature immediately on receipt. 
We set k 5 3.2 3 106, which corresponds to 0.1 per-
cent of the genome, and RSA and ECC sizes of 2,048 
and 224 bits, respectively. Then, RSA transfer delay 
is estimated as (2,048 3 3.2 3 106)/109 ≈ 6.5 s, and 
DSA as (224 3 3.2 3 106)/109 ≈ 0.7 s. These delays are 
clearly dwarfed by signature verification times: 3.2 3  
106/15,702 ≈ 203.8 s for RSA and 3.2 3 106/1,540 ≈ 
2,078 s for ECC. If we pick a much smaller k 5 1,000, 
signature verifications would be 0.064 s for RSA and 
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0.65 s for ECC, while transfer delays remain relatively 
insignificant: 0.002 s for RSA and 0.0002 s for ECC.

Consequently, at least for the time being, RSA has 
a clear performance advantage. It’s easy to see that the 
gap would grow significantly larger with bigger key 
sizes, for example, 3,072 and 256 bits. Although other 
tester CPUs could yield very different results, it seems 
unlikely (though not impossible) that ECC would out-
perform RSA, unless congestion or other factors dras-
tically reduce network speed. Today, very low network 
speeds can be encountered if Alice and the tester com-
municate over a 2G or 3G cellular network; however, 
gigabit cellular is already available and will probably 
become pervasive in a few years.

Note that although virtually all modern signature 
algorithms use the well-known hash-and-sign tech-
nique, our earlier discussion ignores the cost of hash-
ing, because it’s assumed to be negligible compared to 
that of signature verification. In addition, all signatures 
in eFGP are computed on distinct plaintexts, because 
each “message” includes a base letter, its position, and 
a reference to Alice’s identity (and/or her public-key 
certificate).

An auxiliary issue is storage (disk) read speed on 
Alice’s device. Although disk read speeds of modern 
smartphones don’t yet match top network speeds, 
commodity laptops easily reach gigabits/second disk 
read speeds, for example, MacBook Pro in 2015. We 
can safely assume that smartphones will catch up in a 
few years. Note that storage write speed on the tester’s 
side is less important because of presumably abundant 
resources.

In summary, eFGP offers a useful baseline: it 
achieves the best balance between security for the 
tester and privacy for Alice. Its main drawback is 
performance.

Performance Optimizations
Here we consider some means of improving the base-
line eFGP’s performance.

Batch Verification
One natural way to speed up the tester’s computation is 
by using batch signature verification. This way, Alice still 
sends the same data to the tester, which accumulates all 
plaintext hashes and all signatures and verifies the entire 
collection at the cost of one signature verification. (In 
other words, an accumulated hash is verified against an 
accumulated signature.) The best-known example is the 
batch version of full-domain hash (FDH)-RSA,3,4 an 
RSA variant that requires an FDH—a cryptographic 
hash function that yields digests of the same bit size as 
the RSA modulus. However, batch FDH-RSA requires 
computing separate accumulators of message hashes 

and signatures, which costs 2k modular multiplications, 
where k is the number of signatures.

Because plain RSA signatures can be used safely 
with a fixed small public exponent of 3, each signature 
verification (without batching) entails two modular 
multiplications, resulting in the same 2k total. There-
fore, there appears to be no performance gain for the 
tester in using batch FDH-RSA. In fact, the latter might 
be more expensive because FDH can be slower than a 
plain hash function.

Though batch techniques aren’t unique to RSA, most 
others either require different public–private exponents 
per message or are applicable to batching signatures by 
multiple signers.

Condensed and Aggregated Signatures
Another potential optimization is condensed signa-
tures,5 which is very similar to batch verification, except 
that it’s Alice who accumulates all signatures (by the 
same signer) into a single condensed signature and 
sends it, along with all plaintexts, to the tester. The lat-
ter accumulates all plaintext hashes and verifies one 
signature. Condensed signatures appear to be a perfect 
match for RSA because of its comparatively large signa-
ture size. Similar to batch, an FDH-RSA variant must be 
used here. Assuming a small public exponent, the tester 
computes only k (rather than 2k in batch RSA) modular 
multiplications, although Alice is now forced to com-
pute the other k to produce the condensed signature.

There are also more general techniques, such as 
aggregated signatures, exemplified by the BGLS (Boneh, 
Gentry, Lynn, and Shacham) signature scheme.6 BGLS 
and its follow-ons allow k signatures produced by k 
signers over k distinct messages to be aggregated into 
one signature. By verifying this signature against all k 
messages, each message’s authenticity and integrity are 
ascertained. (As mentioned earlier, all base-letter mes-
sages are unique.) Also, BGLS doesn’t require signers 
to be distinct; in fact, it’s more efficient when all aggre-
gated signatures are by the same signer. Aggregation 
performed by Alice requires k EC multiplications. As 
with condensed RSA, bandwidth overhead is minimal. 
The tester’s verification requires k EC multiplications 
and one signature verification (pairing).

On one hand, k modular or EC multiplications 
performed by Alice is a costly endeavor, because her 
personal device might be computationally weak. On 
the other hand, Alice can precompute a condensed or 
aggregated signature. Furthermore, bandwidth sav-
ings can be substantial, for example, close to 6 s for k 5  
3.2 3 106 in our example above. It thus remains unclear 
whether there’s a performance incentive as far as using 
condensed signatures, unless bandwidth complexity 
must be minimized or precomputation by Alice is free.
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Merkle Hash Tree
A popular tool in computer security, a Merkle hash tree 
(MHT) is a data structure for efficient authentication 
of any member or subset of a large set. It’s a (typically, 
binary) tree where leaves are hashes of individual set 
members, and each interior node is the hash of its two 
children. Assuming a suitable cryptographic hash func-
tion, the tree root is the collective indirect hash of all 
leaves. The root node’s signature thus authenticates the 
entire tree. In an MHT with n leaves, given an O(log n)-
size co-path, any set element (leaf) can be authenticated  
as being part of the tree by hashing upward toward the 
root and verifying the root signature. Constructing an 
MHT takes O(2n) hashes and one signature. It’s nec-
essary to store only the leaves and the (signed) root 
because all interior nodes can be reconstructed with 
O(n) hashes. One notable application for MHTs is effi-
cient certificate revocation checking.

We can easily adopt the MHT construct to the prob-
lem at hand, as follows. The SL constructs Alice’s MHT 
with the ordered sequence of base letters serving as 
the leaves, then signs the root. Alice reveals a genomic 
segment—a sequence of contiguous base letters—to 
the tester. To do so, Alice provides the segment and a 
co-path consisting of all sibling nodes on the path(s) 
from the root to the common ancestor(s) of the seg-
ment. The tester reconstructs the Merkle tree’s root and 
verifies the SL’s signature. Co-path length is bounded by 
the MHT height of approximately 32 ≈ log2 3.2 3 109. 
Thus, Alice sends the tester up to 32 hashes (8 Kbits 
total at 256 bits/hash) and a root signature in addition 
to the requested base-letter segment.

For a k-long segment, this method involves negli-
gible bandwidth overhead and only requires the tes-
ter to perform a single signature verification as well as  
2k 1 32 – log k hashes.

One issue is Alice’s storage: the entire tree takes 
more than 200 Gbytes with a 256-bit hash function. 
A well-known way to cut the storage cost by half is for 
Alice to reconstruct the tree at runtime. Then, Alice’s 
storage would be the same as in NoP. However, the 
downside is the need to compute 3.2 3 109 hashes on 
demand, which is impractical.

Another issue is Alice’s privacy: Alice reveals only 
what’s absolutely necessary—that is, the requested 
segment base letters. Unfortunately, the co-path gives 
away additional information. Consider the example in 
Figure 1: leaves 2 through 6 correspond to the base- 
letter segment CGATA. The accompanying co-path 
would include nodes 1 and 12, but not base letters in 
positions 1, 7, and 8. However, knowledge of node 1 
allows the tester to learn G, and node 12 can be used 
to learn T and G in positions 7 and 8, respectively. This 
is due to the low entropy of individual base letters; 

there are only four possibilities for 1, and 16 possibili-
ties for 7 and 8, which makes exhaustive searching easy. 
Of course, a co-path node’s height exponentially influ-
ences the complexity of an exhaustive search. Given 
an interior node at height z, 4(2z  1)/2 trials are neces-
sary, on average, to learn its descendant leaf base letters. 
Therefore, an exhaustive search is practical up to about  
z 5 5, implying that up to 32 extra base letters might be 
learned by the tester.

Salted Merkle Tree
The natural next step is to prevent privacy leakage in 
MHT. This can be achieved using a salted Merkle hash 
tree (sMHT). For each base letter Li at position i, the 
SL generates a pseudorandom salt si. The correspond-
ing leaf LFi is computed as Fsi

(Li, i), where F() is a keyed 
pseudorandom function indexed on si, for instance, 
HMAC. An alternative is LFi 5 H(si, Li, i) where H() is 
a cryptographic hash function.

The rest of the tree is constructed as before. All salts 
are given to Alice by the SL as part of the initial digitized 
genome transfer. Salt bit size should be sufficient to rule 
out brute-force attacks, that is, at least 128. Then, Alice 
sends the tester all requested base letters along with 
their salts. This is in addition to the signed root and the 
co-path.

sMHT offers the same privacy for Alice, as well as 
the same integrity and authenticity guarantees for the 
tester, as eFGP. However, sending salts consumes addi-
tional bandwidth, comparable to eFGP without con-
densed or aggregated signatures. Unlike signatures, salts 
can’t be compressed or accumulated. Salts also impose 
much higher storage overhead for Alice. There is a trivial 
way to avoid it if the SL generates all salts using a keyed 
pseudorandom function with a key Ka, for instance,  

Figure 1. Merkle hash tree (MHT) leakage example. Knowledge of node 1 
directly reveals leaf G, and knowledge of node 12 lets the tester know the  
leaves T and G for position 7 and 8, respectively.
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si 5 F9Ka (i), and shares Ka with Alice as part of the 
initial transfer. Then, Alice can easily recompute, on 
demand, all salts corresponding to the leaves in the 
revealed base-letter segment.

Another issue with both MHT and sMHT is the 
number of contiguous segments revealed to the tester. 
Our discussion above assumed only one such segment 
of variable size. It’s quite possible that some genetic 
tests require many segments from disparate places 
in the genome. In that case, bandwidth and compu-
tational complexity of eFGP (with or without con-
densed/aggregated signatures) is unaffected, whereas  
tree-based techniques would require multiple par-
tial (up to the height of the least common ancestor 
of all segment-formed subtrees) co-paths, one for  
each segment.

Redactable Signatures
An alternative approach for balancing authenticity and 
integrity for the tester with privacy for Alice is to replace 
standard signatures (for instance, RSA or EC-DSA) 
with specialized methods. One attractive concept is 
redactable signatures (RS), introduced more-or-less 
concurrently by both Robert Johnson and his col-
leagues and Ron Steinfeld and his colleagues.7,8 An RS 
scheme allows authorized “cryptographic redactions” of 
a signed message. In other words, given a redactable sig-
nature with a signed message, an authorized party can 
redact the message and obtain a new valid signature, 
without knowledge of the signer’s signing key. In the 
context of RS, we can view a base-letter segment as a 
“redaction” of the full genome, in which all other data 
is crossed out. SL computes a redactable signature over 
Alice’s genome. This signature is then redacted to suit 
the specific segment to be sent to the tester.

Because RS is a very general concept, both eFGP and 
sMHT can be viewed as redactable signature schemes; 
indeed, very similar approaches are described by John-
son and his colleagues.7 (We note that they also suggest 
salted MHTs.7 However, because they’re computed in 
a special way, salts for revealed base letters don’t need 
to be transmitted, as they can be recomputed by the 
tester.) Several RS variations have been proposed, for 
example, hiding sizes of redacted areas9 and RS over 
nonstring data.10 However, these features appear irrel-
evant to the context of genomic security.

Signature Aggregation and Chaining
The final approach we discuss is digital signature aggre-
gation and chaining (DSAC).11,12 It’s a very simple 
technique, similar to the one sketched out earlier for 
secure range queries. It provides authenticity, integrity, 
and completeness. The basic idea is to construct signa-
tures over a sequence of elements such that it becomes 

easy to demonstrate authenticity, integrity, and com-
pleteness of a reply to any range query. Given a genomic 
sequence {L1, …, LN}, the SL computes a signature 
chain in two steps, for 0 , i # N :

 ■ R0 5 s0, Ri 5 [Li, i, si, H(Ri1, si1)] and
 ■ si 5 Fsig(Ri),

where Fsig is any suitable hash-and-sign signature func-
tion, {s0, …, sN} are N 1 1 pseudorandom salts (same 
as in sMHT), and H() is a hash function. Without get-
ting into further details, it’s easy to see that to authenti-
cate and verify integrity and completeness of a reply to a 
range query [i, j], it suffices to produce H(Ri–1, si1) as 
well as {Li, …, Lj},{si, …, sj} and sj.

From the bandwidth perspective, this is a particu-
larly appealing technique due to its minimal overhead. 
However, DSAC’s most attractive aspect is the verifica-
tion cost: (j – i) hashes with salts and one signature vali-
dation of sj. The downside of DSAC is its storage cost, 
which is as large as eFGP.

Limitations of Current Techniques
We gave an overview of several fairly simple approaches 
to genomic security. All offer roughly equivalent secu-
rity (authenticity and integrity) for the tester. As far as 
Alice’s privacy, eFGP, sMHT, and DSAC offer the best 
privacy by revealing only the required information. As 
far as performance, eFGP with condensed/aggregated 
signatures has the lowest possible bandwidth overhead, 
although computation overhead amounts to O(k) mul-
tiplications for Alice and the tester. sMHT has very 
low computation overhead dominated by O(2k 1 32) 
hashes and a signature verification, while its bandwidth 
overhead is slightly higher, unless many disparate (non-
contiguous) segments are involved. Finally, DSAC also 
offers very low bandwidth overhead coupled with the 
only k hashes and one signature verification.

To compare performance, Table 1 estimates several 
overhead factors, including the number of signatures 
the SL computes, the number of signatures the tester 
verifies, the number of bits Alice stores and transmits, 
and the number of cryptographic operations Alice 
performs.

As Table 1 shows, although all schemes except 
NoP offer optimal security and privacy, none incurs 
overheads close to the lower bounds. For example, in 
the case of sMHT, Alice stores approximately 214,000 
times and transfers approximately 28 times more data; 
this is in addition to the 32-fold computation cost.

Improving Efficiency
Further work is needed to reduce computation over-
head. One obvious step is to avoid the full genome 
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representation, which takes a heavy storage toll. Ideally, 
the SL would sign a reference representation of Alice’s 
genome and grant Alice the ability to redact arbitrary 
portions of this representation, which are outside the 
range requested by the tester, as well as efficiently prove 
that nonredacted portions (all properly signed by the 
SL) are complete—that is, Alice hasn’t omitted any-
thing from the requested range.

We sketch out one possible approach that satis-
fies these requirements and offers an optimal tradeoff 
among security, privacy, and efficiency. The main idea 
is for the SL to sign all pairs of adjacent mutations, 
similar to the trivial method we described earlier. How-
ever, actual positions and contents of mutations aren’t 
revealed; instead, the SL signs cryptographic commit-
ments to both contents and positions of adjacent muta-
tions. Each signed tuple contains two commitments. A 
reference representation with k mutations would need 
k  1  1 signed tuples. Note that two dummy sentinel 
mutations are needed to demarcate the beginning and 
end of the genome. When the tester requests all muta-
tions in a specific range, Alice supplies one or more 
tuples. If the positions of both mutations in a tuple are 
within range, Alice decommits their locations and con-
tents. (The tester can easily verify correctness.) If the 
lower-indexed mutation is within range and the higher 
one isn’t, Alice decommits only the former. She then 
proves (in zero knowledge) that the other mutation’s 

committed value (position) is greater than the upper 
range limit. A similar process is followed if a signed 
tuple’s higher-indexed mutation is in the range while the 
lower one isn’t. In the case in which the requested range 
contains no mutations, Alice releases a single signed 
tuple, wherein the lower-indexed mutation is below 
the lower range limit, and the higher-indexed mutation 
is above the upper range limit. She then provides two 
zero-knowledge proofs, each showing that committed 
positions are outside the requested range. Proving that a 
committed (and secret) integer is within a specific range 
is both possible and quite efficient, using techniques 
such as those offered by Fabrice Boudot.13

Due to length restrictions for the present article, we 
don’t elaborate on this approach.

Anonymity
In the context of some genetic (for instance, parentage) 
tests, Alice might want to hide her identity from the tes-
ter. For pseudonymity, it suffices for the SL to tie Alice’s 
genome to a random pseudonym or a pseudonymous 
public-key certificate. Alice can then communicate with 
the tester over some anonymous channel, such as Tor. 
Stronger privacy (that is, anonymity) requires that any 
two genetic tests must be unlinkable. Clearly, none of 
the methods described above is unlinkable. However, 
there is some hope for redactable signatures, which 
can be made unlinkable, as shown in “Composable 

Table 1. Performance comparison of a realistic sample set of variable values: N 5 3.2 3 109; Nr 5 3.2 3 106; k 5 1,000;  
ss 5 2,048; sh 5 256; and ss 5 128.*

Approach

Sequencing 
lab (no. of 
signatures 
computed)

Tester 
(no. of 
signatures 
verified)

Alice’s workload

Storage (bits) Communication (bits)
Computation (no. 
of hash operations)

No privacy 1 1 3Nr 1 ss 3Nr 1 ss
–

Extreme finer-grained 
privacy (eFGP)

N k 3N 1 ssN 3k 1 ssk –

eFPG 1 aggregation N 1 3N 1 ssN 3k 1 ss O(k)

Merkle hash tree (MHT) 1 1 3N 1 2shN 1 ss 3k 1 sh log N 1 ss
O(log N)

Salted MHT 1 1 3N 1 2shN 1 ssN 1 ss 3k 1 ssk 1 sh log N 1 ss
O(log N)

Digital signature 
aggregation and chaining

N 1 3N 1 ssN 1 ssN 3k 1 ssk 1 ss
–

Lower bound 1 1 3Nr 1 ss 3k 1 ss –

*N is number of base pairs in full genome representation; Nr is number of base pairs in reference representation; k is number of base pairs requested by the tester; 

ss is signature bit size; ss is bit size of salt; and sh is bit size of hash function digest.
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and Modular Anonymous Credentials: Definitions and 
Practical Constructions.”14

W e argue that genomic security has been under-
appreciated in favor of privacy. We believe 

security is vital to adoption of emerging and future 
personal genomic applications. The interesting mix of 
integrity, authenticity, and privacy requirements for 
multiple parties translates into a research challenge. 
We explored several fairly intuitive approaches, none 
of which satisfies all ideal security and performance 
requirements. Clearly, much remains to be done. 
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