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Abstract
Modeling trajectory data is a building block for
many smart-mobility initiatives. Existing ap-
proaches apply shallow models such as Markov
chain and inverse reinforcement learning to model
trajectories, which cannot capture the long-term de-
pendencies. On the other hand, deep models such
as Recurrent Neural Network (RNN) have demon-
strated their strength of modeling variable length
sequences. However, directly adopting RNN to
model trajectories is not appropriate because of the
unique topological constraints faced by trajectories.
Motivated by these findings, we design two RNN-
based models which can make full advantage of the
strength of RNN to capture variable length sequence
and meanwhile to address the constraints of topo-
logical structure on trajectory modeling. Our exper-
imental study based on real taxi trajectory datasets
shows that both of our approaches largely outper-
form the existing approaches.

1 Introduction
Cities worldwide seek to make urban living simpler, safer and
healthier. Smart mobility is one of the key objectives smart
cities want to achieve. In this paper, we focus on trajectory
modeling, one of the building blocks for many smart-mobility-
related initiatives. To be more specific, given a road network
(as defined in Definition 1) that captures the roads in a modern
city and a trajectory (as defined in Definition 2) recording the
movement of a moving object, trajectory modeling is to model
the likelihood of a given trajectory with the length k, i.e.,

P (T ) = P (r1)

k−1∏
i=1

P (ri+1|r1:i)

Definition 1 (Road Network). A road network is modeled as
a directed graph G(V,E), where V refers to the set of vertices
(i.e., crossroads) and E refers to the set of edges (i.e., road
segments). Each edge r ∈ E corresponds to a road segment
from a vertex v ∈ V to another vertex v′( �= v) ∈ V , where
r.s = v /r.e = v′ represent the start/end of the edge.

Definition 2 (Trajectory). A trajectory T in the form of r1 →
r2 → · · · → rk captures the movement of an object from r1 to

r2 and so on to rk along the road network G, where every two
consecutive road segments are connected, i.e., ∀ri, ri+1 ∈ T ,
ri, ri+1 ∈ E ∧ ri.e = ri+1.s.

Here, P (ri+1|r1:i) is transition probability which captures
the probability that a trajectory from r1 to ri takes the segment
ri+1, e.g., in front of a traffic light, a driver may have three
options, moving straight, turning left, and turning right and
probabilities of different options could be very different. It
can be regarded as routing decision in the aspect of trajectory,
as there might be multiple segments available at the end of ri.
We use the notation ra:b to denote the edge sequence from ra
to rb (including rb). Note that to simplify the problem, unlike
[Such et al., 2012], we define the problem without considering
the personality attributes.

Trajectory modeling has a large application base. For exam-
ple, it can direct self-driving taxis to move along the popular
trajectories such that the chance of locating potential com-
muters is higher; it can enable autonomous vehicles to travel
along less popular trajectories in order to relieve traffic conges-
tion; it can help recover the exact trajectory an object moves
if the original trajectories are incomplete or uncertain due to
low-sampling rate or other reasons; and it can predict the des-
tinations of moving objects in order to have a better estimation
of the traffic condition in the near future to ease the planning.

In current literatures, most works use a first-order Markov
chain to model the transition probability of trajectory, even
though it is known that using Markov chain is not sufficient
to model the trajectory [Srivatsa et al., 2013]. To the best of
our knowledge, the most relevant work to trajectory modeling
lies in the sequential decision literature where a trajectory
is modelled by Markov Decision Process (MDP) with the
reward function inferred from historical trajectory data using
Inverse Reinforcement Learning (IRL). [Zheng and Ni, 2014]

and [Ziebart et al., 2008b] are two typical works which adopt
IRL techniques to design the model specific to trajectories.
However, these models are still too shallow, as MDP adopted
by the first work is still a first-order Markov chain and the
parameters of the second work are too limited.

On the other hand, it is well-known that Recurrent Neural
Networks (RNN) is very powerful in modeling the distribu-
tion of sequences with variable length [Graves, 2013]. For
example, its Long-Short Term Memory (LSTM) variant can
well capture long-term dependency. Unfortunately, we are not
able to directly adopt RNN to model trajectory because of the
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unique constraint trajectories face. Unlike normal sequence
(e.g., sentences), trajectories capture the movements from one
edge to another while the movement is constrained by the
topological structure of road network.

Motivated by above findings, we dedicate this paper to new
models that can effectively model trajectories. Our goal is
to make full advantage of the power of RNN to capture vari-
able length sequence and meanwhile to address the constraint
of topological structure on trajectory modeling. As a sum-
mary, we make following two main contributions in this paper.
First, to the best of our knowledge, this is the first attempt
on adopting deep learning techniques to model road network-
constrained trajectories. We will demonstrate the inefficiency
of directly adopting RNN on trajectory modeling via theoreti-
cal proof, and propose two new models. Second, we conduct
comprehensive experimental study based on real datasets to
evaluate the performance and to demonstrate the significant
advantages of our new models.

2 Related Work
Trajectory models have been adopted to solve many prob-
lems in location-based services. [Zheng and Ni, 2014] and
[Ziebart et al., 2008b] both implement route recommenda-
tion which returns, for a given destination, the trajectory
with the highest probability. [Wu et al., 2016] adopts tra-
jectory modeling alike technique to recover the missing
portions of a trajectory. [Osogami and Raymond, 2013]

uses IRL model to solve map matching problem which
is actually a trajectory model extended from [Ziebart et
al., 2008a]. Prediction tasks such as [Xue et al., 2013;
Yuan et al., 2013] also benefit from trajectory modeling by
predicting the probability of road transition.

However, most of these works use a first-order Markov
chain to model the transition probability, which is not able
to capture the long-term dependencies and meanwhile suf-
fers from sparsity problem [Wu et al., 2016]. Among these
works, [Zheng and Ni, 2014] and [Ziebart et al., 2008b] are
most relevant to trajectory modeling. Both works solve the
problem by recovering the implicit reward through a bunch
of historical actions performed by drivers which is similar to
finding out the latent features of products from the opinion
stream [Zimmermann et al., 2016]. Unfortunately, the first
piece of work relies on Bayesian Inverse Reinforcement Learn-
ing (BIRL) [Ramachandran and Amir, 2007] that is still based
on first-order Markov assumption to model the routing deci-
sions for heterogeneous destinations; the second piece of work
adopts Maximum Entropy Inverse Reinforcement Learning
(MEIRL) [Ziebart et al., 2008a] and the number of parameters
is the dimension of road features, which in turn makes the
modeling pattern varieties suffer from too few parameters.

3 RNN for Modeling Sequences
The recurrent neural network [Elman, 1990] is a neural net-
work which can process sequence with arbitrary length. For
any time step t, it feeds the input xt and produces the hid-
den state ht = φ(xt, ht−1) from previous hidden state ht−1,
where φ is a non-linear function. By recursively unfolding ht,
we will get ht = φ(xt, φ(xt−1, φ(xt−2, φ(...)))) = f(x1:t),
indicating that the hidden state of RNN is a function of

all past inputs x1:t. By introducing gating mechanism of
RNN, e.g., LSTM [Hochreiter and Schmidhuber, 1997] and
gated recurrent unit [Cho et al., 2014], which solves the gra-
dient vanishing and exploding problem [Hochreiter et al.,
2001], it can be more powerful than shallow sequence mod-
els such as Markov chains, and RNNs are popular in mod-
eling language [Graves, 2013; Sundermeyer et al., 2012;
Zaremba et al., 2014]. For language modeling task, RNN
models the distributions of next word x̃t+1 given current part
of sentence x1:t. At time t, the input is xt. After one itera-
tion in RNN layer, the hidden state of time t (i.e., ht) is pro-
duced by φ(xt, ht−1). The output layer adopts a multi-class
logistic regression, i.e., an affine transformation with weights

W ∈ R
|E|×H and biases b ∈ R

H followed by softmax func-
tion, to get the distribution of the next word. Mathematically,

p(x̃t+1 = i|x1:t) =
exp(W [i, :]�ht + b[i])∑
j exp(W [j, :]�ht + b[j])

To adopt RNN in modeling trajectory, we can regard each
edge as a word/state and a trajectory as a sentence. However,
we want to highlight that the transition from one word to any
other word is free, while only the transitions from one edge
to its adjacent edges are possible. In other words, the state
transition of trajectory is strictly constrained by the topology
of road network. Nevertheless, we still can hope RNN to be
able to learn the topological constraints and assign close-to-
zero probabilities to the transitions from one edge ri to any
edge rj that is not adjacent to ri. In the following, we will prove
that, in order for RNN to achieve above objectives, the number
of its hidden units has a lower bound that depends on the state
size |E|, the required error and the l2-norm of the weights.

Definition 3 (Legal Transition Set). A legal transition set w.r.t.
a vertex v, denoted as S+

v , is a set of edges starting from v, i.e,
S+
v = {r ∈ E|r.s = v} and set S+

v contains all the edges that
can be legally transited to, from any edge ending with vertex v.
Note S−

v = E − S+
v denotes the illegal transition set w.r.t. v.

For simplicity, we absorb the bias b[i] into the weight vector
W [i, :] and denote the new weight as wi. For ht, we omit
the subscript t if there is no ambiguity. We use the super-
script w+ to denote the weights corresponding to the states
in the given legal transition set S+ (with subscript v omitted),
and w− to denote those in S−. The corresponding sets of
weights are referred to as W+ and W− respectively, with
W = W+ ∪W−. We use the subscript wmax·h to refer to the
weight having the largest inner product with a given hidden
state h, i.e., w+

max·h = argmaxw∈W+ w�h and w−
max·h =

argmaxw∈W− w�h. Moreover, ω denotes the weight having
the largest l2-norm, i.e., ω = argmaxw∈W ‖w‖2.

Theorem 1. Given a required error ε and a legal transition set
S+, in order to automatically learn the topological structure
of the road network G(V,E), i.e., to ensure ∀t the predicted
probability of any illegal state is small enough, i.e., smaller
than ε

|S−| , which in turn holds
∑

r∈S− P (r|r1:t) < |S−| ×
ε

|S−| = ε, the lower bound of the number of the hidden units
of the last layer (closest to the output layer) an RNN should

maintain is
[

1
2‖ω‖2

log
((

1
ε − 1

) ( |E|
|S+| − 1

))]2
.
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Proof. If we want to hold ∀r ∈ S−, P (r|r1:t) < ε
|S−| ,

we should ensure maxr∈S− P (r|r1:t) < ε
|S−| , which means

exp
(
w−

max·h
�
h
)

∑
w∈W exp(w�h)

< ε
|S−| . By substrating w−

max·h for each w,

|S−|
ε

<

∑
w∈W exp

((
w − w−

max·h
)�

h
)

exp
((

w−
max·h − w−

max·h
)�

h
)

=
∑

w−∈W−
exp

((
w− − w−

max·h
)�

h
)

+
∑

w+∈W+

exp
((

w+ − w−
max·h

)�
h
)

≤ |W−| · 1 + |W+| · exp
((

w+
max·h − w−

max·h
)�

h
)

Thus, according to |W−| = |S−|, |W+| = |S+| and
|S+|+ |S−| = |E|, we have

(
w+

max·h − w−
max·h

)�
h > log

((
1

ε
− 1

)( |E|
|S+| − 1

))

Since the hidden state h of RNN is activated by hyperbolic
tangent function, we can ensure, ∀i ≤ H , −1 < h[i] < 1,

where H is the dimension of h. Thus ‖h‖2 =
√∑H

i=1 h[i]
2 <√

H . Using the above inequality, we can get,

log

((
1

ε
− 1

)( |E|
|S+| − 1

))
<

(
w+

max·h − w−
max·h

)�
h

≤ ‖w+
max·h − w−

max·h‖2 · ‖h‖2 < ‖w+
max·h − w−

max·h‖2 ·
√
H

Adopting triangle inequality, we can get the lower bound of
the hidden state dimension, i.e., H , is

H >

[
1

‖w+
max·h −w−

max·h‖2
· log

((
1

ε
− 1

)( |E|
|S+| − 1

))]2

≥
[

1

‖w+
max·h‖2 + ‖w−

max·h‖2
· log

((
1

ε
− 1

)( |E|
|S+| − 1

))]2

≥
[

1

2‖ω‖2 · log
((

1

ε
− 1

)( |E|
|S+| − 1

))]2

4 Our Models: CSSRNN and LPIRNN
According to Theorem 1, it is certain that the lower bound of
hidden units of the last hidden layer in traditional RNN with a
conventional softmax output is correlated to the state size |E|,
the required error ε and the l2-norm of the weights ‖ω‖2. Note
that |S+| is always smaller than 6 according to our statistics,
which can be regarded as a constant. The expression of the
lower bound of H indicates that a larger |E| (city-scale), or a
smaller ε, or a smaller ‖ω‖2 (for regularization) will all result
in a larger H . Note the above property is not preferable and
a larger H will increase the training difficulty of the model
with more expensive memory consumption. To overcome the
weakness of traditional RNN, we propose two new models,
namely CSSRNN and LPIRNN, that are able to incorporate
the topological constraints into the model whose hidden units
number does not rely on |E|, ε or ‖ω‖2. In addition, since we
are not able to use one-hot representation as the input because
the number of states is too big, we firstly transform each state
into the distributed representation i.e., the dense embedding
vector [Mikolov et al., 2013].

4.1 Constrained State Space RNN (CSSRNN)
Our first model CSSRNN is an extension of tradition RNN.
As it is hard for the neural network to learn the topology
information automatically, we decide to manually feed such
information. This idea is similar to [Liang et al., 2016] where
the operations necessary for semantic parsing are manually fed
instead of learning with a neural network. Here, we choose to
input such information in the way of state-constrained softmax
function denoted by C(). It replaces the softmax function by
only allowing the output of neural network (i.e., the states that
current state rt is able to transit to) to go through. In detail,

∀ri ∈ E, we construct a mask vector Mi ∈ R
|E|, where

Mij =

{
1 if ri can reach rj
0 otherwise

The state-constrained softmax is actually a masked softmax,
with a mask dependent on the current state rt. Mathematically,

p(r̃t+1|r1:t) = C(Wht + b, rt) =
exp(Wht + b)�Mi

|| exp(Wht + b)�Mi||1
where � is the element-wise multiplication. By doing this, the
probabilities of the states that cannot be transited from rt will
be set to 0 externally. As a result, there is no such lower bound
for the number of hidden units to ensure correctly modeling
the topological constraints. The additional advantage of setting
the transition probabilities of illegal states to zero externally
is to allow the model to focus on only updating the weights
related to the legal states.

Reducing the computational complexity
Although CSSRNN model addresses the issue of topologi-
cal constraints, it is still time-consuming as the affine trans-
formation from the hidden state of RNN to the state space,
i.e., Wht + b, will still consume O(|E| × H) multipli-
cation and summation operations. Note |E| of a mod-
ern city is in the scale of 104 ∼ 105. In the literature,
techniques such as candidate sampling [Jean et al., 2015;
Gutmann and Hyvärinen, 2010; Mikolov et al., 2013] have
been designed to solve the huge state space problem in the
domain of NLP. However, those techniques are not preferable
to be directly adopted to the state-constrained softmax. On the
other hand, we notice that it is not necessary to compute the
affine transformation for each state since those corresponding
to illegal states will be eventually masked. Accordingly, we
introduce a speed-up strategy to train the model to reduce the
computational complexity. Since GPU is good at parallelized
computation of matrices/vectors, we try to parallel this model
to cater for GPU-based training in mini-batch.

To be more specific, we need to construct a legal transition
matrix T + and a legal transition mask M+. T + has the
dimension of |E| × A, where A = max{|S+

v ||S+
v ∈ S}

and S = {S+
v |v ∈ V }. Each row T +[i, :] records all the

legal states that ri can transit to. Since the legal transition
sets for different states have different sizes, we pad each row
with some useless states to standardize the size to A. Next,
we construct the corresponding legal transition mask M+ ∈
R

|E|×A where M+[i, j] is set to 0 if T +[i, j] is a padding
state or 1 otherwise. Let b be the batch size, Rt ∈ R

b be
the batched input states of t, and Ht ∈ R

b×H be the batched
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exp

W t

t , ( , )tW , ( , )t tW , t

Figure 1: The computation flow of the speed-up strategy. The dashed
arrow indicates the look-up operation.

hidden states. Then, the batched distributions of next states
can be derived by

exp(Ht ⊗ L(W,L(T +,Rt))� L(M+,Rt)∑
dim=2(exp(Ht ⊗ L(W,L(T +,Rt))� L(M+,Rt))

Here, L(P,Q) denotes a look-up operation. It returns an order
order(P) − 1 + order(Q) tensor by looking up the first di-
mension of P according to the elements in Q as the index and
tiling these order order(P)− 1 slices in the element order of
Q.

∑
dim=2() denotes the summation operation by reducing

the second dimension. R = P ⊗Q is a matrix-tensor multipli-
cation operator, where R[i, j] =

∑
k(P [i, k]Q[i, j, k]). Please

refer to Figure 1 for a clearer view of the computation flow.
The computation cost for this strategy is, for each sample at

each time step, the number of look-up operations is A+2 and
that of summations and multiplications is O(A×H), which
makes it independent on the state size |E|. As mentioned
before, A is no larger than 6 in most cities based on our study.
Compared with the original cost of O(|E| ×H), this strategy
significantly reduces the computation cost.

4.2 Latent Prediction Information RNN (LPIRNN)
The second model LPIRNN is constructed by multi-task learn-
ing which incorporates the topological information externally
using different tasks. In detail, the model consists of two phases.
The first phase is a shared task layer which produces interme-
diate information, namely latent prediction information, that
encodes all the information required by the next task to perform
the prediction. The second phase is to perform the prediction
by multiple individual tasks. To incorporate the topological con-
straints, for each input state r, we define an individual model
M(η, r) which predicts the distribution of next state within legal
transition set S+

r.e. The input of the model M(η, r) is the latent
prediction information η encoded by the shared task layer. The
architecture of this model is shown in Figure 2.

Note that for each individual task model, the state size it
needs to predict is very small (no larger than A). If we directly
use the output of RNN as the latent prediction, which has the
dimension of several hundreds, it might suffer from the curse
of dimensionality. Consequently, we add a fully connected
layer on the output of RNN to perform automatic dimension
reduction. Finally, the distribution of the next legal states w.r.t.
current state rt can be written as:

p(r̃t+1 = ri|r1:t) = M(ηt, rt) = M(F (φ(rt, ht−1)), rt)

=
exp(w

(rt)
ri

�
F (φ(rt, ht−1))∑

rj∈S+
rt.e

exp(w
(rt)
rj

�
F (φ(rt, ht−1))

Shared
Task

Multiple Individual Tasks

Latent Prediction 
Information

P(r|x1)

1

P(r|x1:2)

2

P(r|x1:3)

3

P(r|x1:k-1)

k-1

Dimension Reduction

r1 r2 r3 rk-1

RNN Layer
Fully Connected Layer

M(r1) M(r2) M(r3) M(rk-1)

Figure 2: The architecture of LPIRNN model.

where ηt denotes the latent prediction information produced
at time t, F () is a feed forward fully connected layer operation
and M() is individual task model handled by a multi-class
logistic regression with class number no larger than A.

Explanation of main idea behind LPIRNN
We want the shared task layer to learn certain information
satisfying that (1) the strategy to predict such information
is homogeneous for all trajectories and (2) it is informative
enough to distinguish next state among the states in the legal
transition set. For example, the direction information of next
road segment satisfies such requirements. The shared task
layer predicts the direction information of next road given
current part of trajectory, which is a homogeneous task among
all input states. For the individual task, given the direction
information, it is not hard for a model to predict next road
among the legal transition states as they usually have different
directions in the real world. By training the whole sequence
jointly, i.e, in a multi-task learning way by regarding predicting
the probability of one transition (i.e., P (rt|r1:t−1)) as one task,
and minimizing each task loss to achieve the minimum loss
of the entire trajectory, we believe that the model can learn
to predict such homogeneous latent prediction information
while fulfilling the heterogeneous prediction tasks. In our
experimental study, we will visualize such latent prediction
information and study the correlation between this and the
direction of roads.

4.3 Difference Between CSSRNN and LPIRNN
CSSRNN model has only one weight vector for each to-be-
predicted state, i.e., state rj has only one wj regardless of
the previous state; while LPIRNN model has one weight for
each to-be-predicted state w.r.t. each input state, i.e., rj has

a w
(rk)
rj corresponding to each previous legal state rk (i.e.,

rk.e = rj .s). Thus, from the parameter view, LPIRNN has
more fine-grain weights while CSSRNN defines the weights
in a shared way. Intuitively, for a dataset with high density,
LPIRNN may perform better than CSSRNN; while for a not-
sufficient dataset, CSSRNN may be better. It is also consistent
with our experimental results to be presented later.

4.4 Incorporating Destination Information
Given the fact that the destinations of some trajectories are
known, we further extend the problem of trajectory modeling.
That is to predict a likelihood of a trajectory T for a given
destination d.

P (T |d) = P (r1|d)
∏k−1

i=1
P (ri+1|r1:i, d)
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Both CSSRNN and LPIRNN are flexible to support the
above modeling for a given d. We decide to use the distributed
representation to feed the destination information. Intuitively,
the destination has a big impact on the routing decision. Thus,
we claim that if we also train the embedding of the destina-
tion during the training of the model, the two destinations d1,
d2 embedded to two different roads that are spatially close
shall be close as well. In such a way, given d1 or d2 as the
destination, the routing decision shall be similar which is also
consistent with our everyday experience. We will visualize
the trained embedding in the experimental study to justify the
above claim. Note that we actually tried to directly input the
destination coordinate (with/without normalization), while the
result is much poorer than that under the embedding method.
We explain the reason may be that the feature size of the coor-
dinate, i.e., 2, is too small, relative to the size of embeddings,
e.g., 400 ∼ 600 in our experiment.

4.5 Training
For both models, the goal is to minimize the distribution error
between the predicted distribution and the true distribution,
thus we adopt the cross-entropy loss as the objective function.
Denoting the parameters in RNN as θ, we want to minimize

min
θ,E

−
k−1∑
i=1

|E|∑
j=1

1{ri+1 = j} logP (r̃i+1 = j|r1:i; θ, E)

min
θ,E,D

−
k−1∑
i=1

|E|∑
j=1

1{ri+1 = j} logP (r̃i+1 = j|r1:i, rk; θ, E ,D)

where 1{condition} is an indicator function and k refers to
the length of the trajectory T . The second objective function
is for the destination-given trajectory modeling task. As men-
tioned before, for LPIRNN, we adopt a multi-task learning
training style, which means we jointly train the shared task
model and individual task model to minimize the cross-entropy
loss of the whole sequence. Moreover, E and D refer to the
embeddings of input states and destinations states, which will
also be jointly trained. The model is trained by employing
the derivative of the loss w.r.t. all parameters through back-
propagation through time algorithm [Werbos, 1990].

5 Experiment
We use real world taxi GPS trajectory datasets from Porto
and Shanghai to conduct the evaluation. The Porto dataset is
a 1.8GB open dataset (http://www.kaggle.com/c/pkdd-15-predict-

taxi-service-trajectory-i), generated by 442 taxis from Jan. 07,
2013 to Jun. 30, 2014. The Shanghai one is generated by
13,650 taxis from Apr. 01 to Apr. 10 in 2015 with the size
of 16GB. We extract the trips occupied by passengers and
adopt hidden Markov model based map matching algorithm
[Newson and Krumm, 2009] to map the raw GPS sequences to
the road networks obtained from OpenStreetMap to generate
trajectories. For each city, we extract a large area and a small
area. Table 1 reports the statistics of the four datasets.

For each dataset, we evaluate the performances of model-
ing P (T ) and P (T |d), i.e., model a trajectory without/with
destination information. The negative log-likelihood (NLL)

# Edges # Vertices # Trajectories # Samples per edge

PTlarge 40,267 18,157 859,195 21.3
PTsmall 6,117 3,182 486,268 79.5
SHlarge 60,200 28,620 3,709,666 61.6
SHsmall 8,075 3,632 757,032 93.8

Table 1: The statistics of the datasets.

and the prediction accuracy (ACC) are adopted as the per-
formance metrics. NLL is a common metric used by many
previous works. ACC computes, the prediction accuracy of
next road by the road having the maximum probability. For-
mally, for a test set with N trajectories,

NLL = − 1

N

∑N

i=1

∑ki−1

j=1
logP (rj+1|r1:j)

ACC =
1∑N

i=1 ki

∑ki−1

j=1
1{argmaxr∈EP (r|r1:j) = rj+1}

For the hyperparameter of our models, we split the dataset
in the ratio of 8:1:1 to get the training set, validation set and
test set. We tune the model according to the validation set
and use LSTM [Zaremba et al., 2014] for the RNN layer. For
both models, we set the embedding size of input state as 400
for PTsmall and SHsmall, and 600 for SHlarge and PTlarge.
We also set the dimension of destination state embedding to
be the same as that of input state. We set the hidden unit
of LSTM to 400∼600 for different models and the dropout
rate for LSTM to be 0.1 using the strategy in [Zaremba et
al., 2014]. We train the model using RMSProp algorithm
[Hinton, 2012] with a learning rate at 1e-4 and the decay
rate at 0.9. We clip the gradient by norm to 1.0 [Gustavsson
et al., 2012] and uniformly initialize the embeddings and
parameters by [−0.03, 0.03]. For LPIRNN, we set the size of
fully connected layer to 200. The source code is available at
https://github.com/wuhao5688/RNN-TrajModel.

Baselines
N-gram. We include first, second and third-order Markov
chains as the baselines, and we use the conventional name n-
gram to name them. Laplace smoothing is adopted for sparsity
[Manning et al., 2008] which only smooths legal transition states.
To model P (T |d), we construct |E| n-grams for each state ri
and compute the statistics by the trajectory ending with state ri.
BIRL (the model proposed in [Zheng and Ni, 2014] that
adopts BIRL [Ramachandran and Amir, 2007]). BIRL does
not support the modeling of P (T ) when d is not available. In
addition, the training will become extremely slow and hence
impractical when the state space is large because of the expen-
sive value/policy iterations with tens of thousands of states.
That is the reason why we include two small datasets.
MEIRL (the model proposed in [Ziebart et al., 2008b] which
adopts MEIRL [Ziebart et al., 2008a]). Note that MEIRL does
not support the modeling of P (T ) as well.
RNN (the sequence model directly adopting traditional RNN
[Graves, 2013]). We also use LSTM as the RNN layer with
the same embedding and hidden unit size as CSSRNN and
LPIRNN.
5.1 Overall Evaluation
The first set of experiments is to evaluate the performance
of modeling P (T ) and P (T |d), with the results shown in Ta-
ble 2. All the approaches achieve better NLL and ACC when
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Task Without Destination With Destination

Dateset PTsmall PTlarge SHsmall SHlarge PTsmall PTlarge SHsmall SHlarge

Metric NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC

Bi-gram 8.32 90.43% 9.55 90.69% 9.51 83.76% 9.22 85.57% 6.20 94.15% 8.91 92.30% 7.40 88.54% 7.38 89.11%
Tri-gram 7.97 90.89% 9.15 91.15% 9.04 84.60% 8.76 86.26% 6.20 93.88% 8.92 91.99% 7.34 87.81% 7.29 88.60%
4-gram 7.75 91.21% 8.91 91.43% 8.71 85.24% 8.47 86.77% 6.21 93.57% 8.93 91.66% 7.31 87.02% 7.24 88.04%
BIRL – – – – – – – – 5.84 95.53% – – 6.67 91.42% – –

MERIL – – – – – – – – 7.84 93.70% 8.87 93.23% 7.28 91.19% 6.59 92.00%
RNN 7.77 92.27% 9.97 92.21% 8.92 86.60% 11.52 86.99% 3.74 97.13% 5.63 96.65% 5.27 93.58% 5.67 94.42%

CSSRNN 7.00 92.32% 8.13 92.36% 8.11 86.56% 7.93 87.83% 3.21 97.16% 3.96 96.89% 4.21 94.10% 3.97 94.9%
LPIRNN 6.98 92.33% 8.27 92.31% 7.91 86.81% 7.94 87.84% 3.12 97.21% 3.98 96.97% 4.22 94.15% 3.96 94.88%

Table 2: The results of two trajectory modeling tasks under four datasets.

the destination is known. This indicates that the routing decision
is dependent on the destination which is consist with the expec-
tation. For n-gram model, it is observed that when the dataset is
split by the destination, the performance enhancement w.r.t. the
increase of n is limited which indicates that the dataset sparsity
occurs and such a memory-based statistics can not handle the
task very well. BIRL performs better than n-gram since it takes
into consideration the future rewards generated w.r.t. the destina-
tion state when modeling the probability to transit to next state.
However, it uses MDP which is actually a first-order Markov
chain and hence BIRL fails to capture the long term dependency
in the past. MEIRL performs not very well, as it models the
likelihood of the trajectory based on the maximum entropy crite-
ria, i.e., the likelihood is exponentially proportion to the feature
count of the trajectory. It also assumes the feature count is a
linear combination of the feature of each state, and hence the pa-
rameter of this model is too small (only 20) such that it restricts
the representation ability of this model. RNN is a deep model
and it can capture the long-term dependency in the past when
using LSTM as the RNN layer. Consequently, it outperforms
the other shallow models. However, as we have proved that it
is hard for traditional RNN to capture the constraints because
of the requirements of the size of hidden units, its performance,
especially NLL, is far below that of our models. That is to say,
traditional RNN tries very hard to predict the distribution rightly
but it fails to assign zero probabilities to the illegal states. The
performance gap between traditional RNN and our models in
the large scale datasets is even more significant than that in the
small scale which further justifies our claim.

On the other hand, both CSSRNN and LPIRNN outper-
form all the competitors with significant advantages. We can
observe from the results that LPIRNN performs better than
CSSRNN for PTsmall and SHsmall. As both PTsmall and
SHsmall have relatively high density according to Table 1, our
findings are consistent with the claims made in Section 4.3.
When PTlarge that has the lowest density is tested, CSSRNN
model which implements the weight sharing strategy outper-
forms LPIRNN.

5.2 Impacts of the Number of Hidden Units in RNN
We have proved in Theorem 1 that the lower bound of hidden
units in the last hidden layer of a traditional RNN is correlated
with the required error and the state size. According to that,
when the state size is very large (e.g., 104 ∼ 105 for a city),
if we want RNN to perform well, we have to increase the
number of hidden units in RNN which increases the compu-
tation cost and the training difficulty. Here, we conduct the
experiments to prove the correctness of the theorem. We adopt

# Hidden units 50 100 200 400

NLL 19.90 8.04 6.90 5.27
ACC 84.38% 92.24% 93.55% 93.58%

Table 3: The results of a traditional RNN by varying the number of
hidden units.

the SHlarge dataset since it has the largest state size among
the four datasets. Table 3 lists the results, showing that the
performance of a traditional RNN greatly reduces with the
decreasing of the hidden units. Thus, for an RNN to achieve
a good performance given a large size of states, the number
of hidden units in the last hidden layer should be increased
which justifies our theorem.

5.3 Impacts of the Initialization Strategy
Since our approach is inspired by the language model and
the input of our data is also transformed into the distributed
representation, a natural question is that whether pretraining
the embedding vectors will enhance the performance of our
models. Thus, we conduct the experiments on the initializa-
tion of the embeddings. We adopt the well-known word2vec
pretraining approach which is often adopted in NLP models
[Mikolov et al., 2013]. We use the skip-gram version of the
word2vec and set the embedding dimension to 400. We report
the NLL and ACC performances of CSSRNN and LPIRNN
in Table 4, under the random initialization strategy and the
word2vec pretraining strategy respectively. We can find out
that using word2vec pretraining strategy to initialize the em-
beddings of the road segments does not have a significant
impact on the performance of both models. This could be
caused by the difference between the trajectory data and the
natural language. A word in a sentence can be easily changed
to another word. For instance, considering the sentence “I’m
eating an apple/orange”, the pretrained embedding of word
“apple” and that of “orange” should be very close via word2vec.
This is because in the most situations, these two words are
exchangeable which indicates that in the corpus there must
be many sentences having the similar contexts of these two
words. By pretraining based on the context window, the se-
mantical closeness of words can be modeled. However, for
trajectory data, for a given context, the middle road segment in
the context is deterministic as road segments have topological
constraints. Consequently, in the trajectory data, it is very
hard for two road segments having the same/similar contexts,
which does not allow context-based pretraining to capture the
semantical closeness of road segments. Hence, as a result, we
recommend to adopt the randomized initialization strategy.
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Dateset PTsmall SHsmall

Metric NLL ACC NLL ACC

CSSRNN (random) 3.17 97.16% 4.21 94.10%
CSSRNN (pretrain) 3.19 97.13% 4.77 93.70%
LPIRNN (random) 3.12 97.21% 4.22 94.15%
LPIRNN (pretrain) 3.17 97.23% 4.20 94.13%

Table 4: The results of pretrain initialization and random initializa-
tion.

state size 10K 20K 30K 40K 50K 60K

No speed-up (#traj/sec) 662 334 221 166 131 109
With speed-up (#traj/sec) 4563 4555 4588 4556 4582 4578

Speed-up Ratio 6.89 13.64 20.76 27.45 34.98 42.00

Table 5: The results of speed-up strategy under different sizes of
states. The evaluation metric is the number of trajectories the model
can process per second.

5.4 The Efficiency of Speed-up Strategy in CSSRNN
Recall that in CSSRNN, we propose a strategy for fast com-
puting the state-constrained softmax function. Table 5 shows
the result of with/without this strategy in the forward com-
putation of the model. For the hardware environment, we
use one Nvidia GTX 1080 GPU and an Intel Core i7-6700K
CPU to run the model. The result demonstrates the efficiency
of our speed-up strategy while showing that the computation
complexity is irrelevant to the state size.

5.5 Understanding Latent Prediction Information
To have a better understanding of the latent prediction informa-
tion in LPIRNN, we collect the latent prediction information
computed by LPIRNN of all the transition samples that are
transited from certain state rt. We adopt Principal Compo-
nent Analysis (PCA) to reduce the dimensions of the latent
prediction information and visualize them. Figure 3(b) plots
the result. Each point in the figure represents the latent predic-
tion information w.r.t. an historical transition from the given
road rt and the number shown on the point is the next state
rt transits to in that sample. We can infer that as discussed
in Section 4.2, LPIRNN does predict some latent information
like the direction of next road. E.g., road 5924 and road 3670
have totally opposite directions while their latent prediction
information is also distant from each other. Meanwhile, roads
2747 and 4373 have the similar directions while in the latent
space, they are also close to each other, even though we have
not fed the model with any direction information.

5.6 Visualizing the Embedding of Destination
As mentioned in Section 4.4, we adopt the distributed rep-
resentation to feed destination information and jointly train

2747
3670

43735924

rt

(a) The directions of roads (b) The distribution of latent pre-
diction information via PCA

Figure 3: The visualization of latent prediction prediction.

719

4026

5713

8054

5714

4819

4823

4732
4815

5703

(a) Roads in the map (b) Trained destination embeddings

Figure 4: Visualization of the trained destination embeddings.

this embedding when training the model. Here, we visual-
ize the well-trained embedding of destination states using
t-SNE [Maaten and Hinton, 2008] algorithm which is popular
for reducing the dimension of embedding vectors. Figure 4(b)
visualizes some destination embedding corresponding to their
road ids. Figure 4(a) shows the location of these roads in
the real world. First, we can see, the roads in Figure 4(b), a
tiny screenshot in the huge embedding space, are clustered in
the embedding space, while they are also close to each other
spatially. Second, the relative spatial correlations can also be
learned by this embedding, e.g., roads 4823, 4815 and 4819
are close to each other while they are relatively far away from
roads 719 and 8054. More interestingly, roads 5713 and 5714
are spatially close but are relatively far away in the embed-
ding space. We then draw the directions of the roads which
show that these two roads actually have the opposite directions,
which may slightly affect the routing decision, indicating that
the model can even learn such information correctly. In con-
clusion, for trajectory data, using embedding for destination
does make sense. The model can perfectly learn certain spatial
correlations and directions between states, although we have
not fed any spatial and direction information to the model.
This is because the routing decision is highly correlated with
the position and the direction of destination road and hence
the embeddings of spatially close destinations should also be
close in order to produce the similar hidden output of the RNN
to make the similar routing decisions.

6 Conclusion
To leverage the strength of RNN to model the sequences and
the consideration of trajectories’ specific property, we propose
two RNN-based models in this paper to model trajectories
with/without destination information. The CSSRNN incorpo-
rates the topological constraints into the softmax layer and the
LPIRNN leverages multi-task learning to address this specific
problem. Experiments based on real datasets demonstrate the
superiority of our models. Moreover, the visualizations of the
result illustrate that our models are able to even learn some
interesting spatial and direction information.
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