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Abstract
Relative similarity learning (RSL) aims to learn
similarity functions from data with relative con-
straints. Most previous algorithms developed for
RSL are batch-based learning approaches which
suffer from poor scalability when dealing with real-
world data arriving sequentially. These methods
are often designed to learn a single similarity func-
tion for a specific task. Therefore, they may be
sub-optimal to solve multiple task learning prob-
lems. To overcome these limitations, we propose a
scalable RSL framework named OMTRSL (Online
Multi-Task Relative Similarity Learning). Specifi-
cally, we first develop a simple yet effective online
learning algorithm for multi-task relative similarity
learning. Then, we also propose an active learning
algorithm to save the labeling cost. The proposed
algorithms not only enjoy theoretical guarantee, but
also show high efficacy and efficiency in extensive
experiments on real-world datasets.

1 Introduction
The objective of relative similarity learning (RSL) is to learn
similarity functions from training data with relative con-
straints, instead of the explicit labels commonly used in con-
ventional classification tasks. RSL has been extensively stud-
ied and widely used for many real-world applications, such
as web search, image retrieval, data mining [Schultz and
Joachims, 2004; Yang and Jin, 2006]. However, existing RSL
approaches usually have two main drawbacks. On one hand,
most of them are batch-based learning approaches. They may
suffer from very expensive re-training cost in the application
scenarios (e.g, online social media platforms) where new ex-
amples are continuously arriving. On the other hand, previous
RSL methods are mainly designed for the single task learn-
ing scenario, i.e., learning a single similarity function for only
one given task. When applying these methods for multi-task
relative similarity learning — a scenario which is common
for many real-world applications (e.g., learning multiple sim-
ilarity functions for different retrieval tasks), one may have
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to either learn a local similarity metric for each task inde-
pendently or learn a global similarity metric for all tasks by
combining all training data. Nevertheless, these two solutions
are often sub-optimal for solving the multi-task relative simi-
larity learning problems.

In the literature, multi-task learning has been actively stud-
ied for classification problems [Cohen and Crammer, 2014;
Gonçalves et al., 2016]. However, very few research work
has been explored for multi-task relative similarity learning.
The most relevant one is [Parameswaran and Weinberger,
2010], in which a multi-task metric learning algorithm,
namely mtLMNN, has been proposed by extending the pop-
ular LMNN algorithm [Weinberger and Saul, 2009] to multi-
task learning scenarios. mtLMNN jointly learns a global met-
ric for multiple tasks and several local metrics, each of which
is designed for an individual task. There exist several major
limitations of mtLMNN. First of all, mtLMNN is based on
batch learning, thus it is usually time consuming and difficult
to scale up for large-scale applications. Moreover, mtLMNN
enforces to learn a Positive Semi-definite (PSD) distance ma-
trix, which is computationally intensive for large-scale ap-
plications. Furthermore, in [Parameswaran and Weinberger,
2010], the mtLMNN model is built based on explicit labeling
information which is not as flexible as the relative constraints
adopted in this work.

To tackle these challenges, we propose a novel framework,
namely Online Multi-Task Relative Similarity Learning
(OMTRSL). Specifically, the proposed method simultane-
ously learns multiple similarity metrics from the relative con-
straints data via an online learning algorithm. In addition to
the high efficiency of the adopted online learning scheme, the
learned similarity matrices are also not required to be PSD.
These characteristics of OMTRSL make it much efficient and
scalable compared to existing RSL approaches. Moreover,
we also propose an extension of OMTRSL in an online ac-
tive learning setting, named as OMTRSL-Active. This ex-
tension can reduce the labeling cost and thus further improve
the efficiency of the proposed model. In this paper, we theo-
retically analyze the mistake bounds of both proposed algo-
rithms. Then, we also perform extensive experiments on real-
world datasets to demonstrate the empirical performances of
these algorithms.
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The rest of this paper is organized as follows. Section 2 re-
views the most relevant research work. Section 3 introduces
the details of the proposed algorithms, as well as their theoret-
ical analysis. Then, in Section 4, we empirically validate the
proposed algorithms in terms of both efficacy and efficiency.
Finally, Section 5 concludes this study.

2 Related Work
This work is related to two main categories of research stud-
ies: online multi-task learning and similarity learning. Next,
we briefly review the most relevant work in each category.

2.1 Online Multi-task Learning
Multi-task learning aims to boost the performances of all
tasks via information sharing mechanism across all of the
tasks. The implicit assumption is that these tasks are re-
lated and the labeled data for each task is limited [Hoi et al.,
2014; Bakker and Heskes, 2003; Calandriello et al., 2014;
Cohen and Crammer, 2014; Zhang et al., 2016]. This work
is related to the multi-task learning methods under online
settings. In the literature, Cavallanti et al. proposed the
first online multi-task learning algorithms [Cavallanti et al.,
2010] based on the Perceptron algorithm [Block, 1962]. The
learned relationship matrix among tasks was fixed. In [Saha
et al., 2011], Saha et al. proposed to adaptively update the
relationship matrix via an incremental method. However,
the performances of these algorithms were usually limited
due to the adopted underlying learning scheme (i.e., Per-
ceptron) [Ammar et al., 2014; Lugosi et al., 2009]. In this
work, we adopt a superior first-order based online learning
scheme [Crammer et al., 2006]. By assuming all tasks share
a sparse basis, Ruvolo and Eaton [Eaton and Ruvolo, 2013;
Ruvolo and Eaton, 2014] proposed a series of Efficient Life-
long Learning (ELLA) algorithms. In [Ammar et al., 2014;
Calandriello et al., 2014], these ELLA algorithms were used
for reinforcement learning. Under this scenario, these algo-
rithms were interpreted as online learning algorithms to learn
the tasks one-by-one. However, it is too restrictive to collect
the entire data for one task before to learn the other tasks.
Moreover, all these algorithms are designed for conventional
classification problems. In this work, we study the online
multi-task learning for similarity learning problems.

2.2 Similarity Learning
Similarity learning has been extensively studied in machine
learning and data mining communities [Chechik et al., 2010;
Crammer and Chechik, 2012; Hao et al., 2015; Schultz
and Joachims, 2004; Shalev-Shwartz et al., 2004; Yang and
Jin, 2006]. Here, we restrict our discussions on the most
related multi-task metric learning progresses in the litera-
ture. To the best of our knowledge, the first multi-task
metric learning approach was proposed by Parameswaran
and Weinberger [Parameswaran and Weinberger, 2010], in
which a global metric and individual metric for each task
were learned together based on the large-margin neighbor-
hood scheme [Weinberger and Saul, 2009]. Based on similar
idea, Yang et al. [Yang et al., 2013] proposed to learn multiple
metrics by using von Neumann divergence among metrics.

Zhang and Yeung [Zhang and Yeung, 2010] proposed to learn
a target metric from several related source tasks via multi-task
learning approach. Moreover, there were other work applying
multi-task metric learning to network data [Fang and Rock-
more, 2015] and person re-identification application [Ma et
al., 2014]. However, these algorithms were mostly designed
for classification problems. In addition, all these algorithms
were offline methods, and the learned similarity matrices
were required to be PSD. These factors made these algo-
rithms very inefficient and unsuitable for large scale prob-
lems. Moreover, these algorithms also required explicit class
labels, which were not as flexible as the relative constraints.

3 Online Multi-Task Relative Similarity
Learning (OMTRSL)

3.1 Problem Setting
In this work, we investigate the problem of online learning
K similarity functions for K related tasks simultaneously.
More formally, we denote the similarity function for the k-
th task by Sk(x,x′), k ∈ [K], where ∀x,x′ ∈ Rd are
two instances (aka samples) from the k-th task, and [K] =
{1, . . . ,K} denotes the indices of all K tasks. We assume a
bi-linear form for the similarity function as follows

Sk(x,x′) = x>Mkx′, (1)

where Mk ∈ Rd×d is the similarity matrix learned for the
k-th task. Note that it is possible to learn a similarity matrix
between two heterogeneous spaces, where Mk ∈ Rd×d′ and
d 6= d′. For simplicity, in this paper, we simply restrict the
rest discussions by assuming d = d′.

For online multi-task relative similarity learning, we re-
ceive a sequence of triplet data from multiple tasks. Each
triplet contains training data information of three instances,
the relative label information, and the ID of the task in the
triplet. More formally, at the t-th round, the received triplet
is denoted as{
(xt,x

1
t ,x

2
t ; yt; tk) ∈ Rd × Rd × Rd × {−1,+1} × [K]

}
,

where xt,x
1
t ,x

2
t are three received instances at the t-th iter-

ation, tk ∈ [K] denotes the task’s ID for which the triplet
belongs to, yt indicates the relative similarity relationship be-
tween the instance pairs (xt,x

1
t ) and (xt,x

2
t ). Specifically,

yt = +1 implies that the instance xt is more similar to x1
t

than x2
t , which can be formally expressed as Stk(xt,x1

t ) ≥
Stk(xt,x

2
t ). On the contrary, yt = −1 implies that xt is

more similar to x2
t than x1

t . This can be formally expressed
as Stk(xt,x1

t ) < Stk(xt,x
2
t ). The objective of online multi-

task relative similarity learning is to simultaneously learn the
set of K similarity matrices Mk that assign higher similar-
ity scores to similar pairs and lower similarity scores to dis-
similar pairs, via an online learning approach.

3.2 Proposed Method
Formally, for any triplet denoted by zt = (xt,x

1
t ,x

2
t ; yt; tk),

an online learner is expected to optimize the set of similarity
functions in order to ensure the following constraint:

yt[S
tk(xt,x

1
t )− Stk(xt,x2

t )] ≥ 0, ∀t ∈ [T ].
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Algorithm 1 OMTRSL: The proposed algorithm for Online
Multi-Task Relative Similarity Learning.

Input: Parameters C > 0 and b > 0
Initialize: Mk

0 = Id, ∀k ∈ [K]
for t = 0, 1, 2, . . . , T do

Receive (xt,x
1
t ,x

2
t , tk)

Compute pt = w>t φt and ŷt = sign(pt)
Query yt and compute `(wt,φt) = [0, 1− ytpt]+
if `(wt,φt) > 0 then

Mk
t+1 = Mk

t + ytτtA
−1
k,tk

Xt, ∀k ∈ [K]

where τt = min
{
C, `(wt,φt)

/
‖φt‖

2
A−1

Idd

}
else
Mk

t+1 = Mk
t , ∀k ∈ [K]

end if
end for
Output: Mk

T+1, ∀k ∈ [K]

In practice, it is impossible to satisfy the above constraint for
every triplet.

For those violated cases, we introduce some loss functions
to measure the loss of the k-th similarity function on the t-th
triplet. Specifically, we adopt the hinge loss and define the
loss functions as follows:

`
(
Mtk ; zt

)
=
[
1− yt[Stk(xt,x1

t )− Stk(xt,x2
t )]
]
+
,

where [·]+ = max(0, ·). Note that other loss functions, e.g.,
logistic loss and squared loss, can also be adopted.

For simplicity, we vectorize the matrix representations by
defining wk

t = vec(Mk
t ) = [M11; . . . ;Md1; . . .Mdd] and

φtkt = vec(Xt), where Xt = xt(x
1
t − x2

t )
>. Moreover, the

whole triplet zt is represented as a (K × d× d)-dimensional
compound vector φt = (0; . . . ; 0;φtkt ; 0; . . . ; 0) ∈ RKdd×1.
The target matrices of all the K tasks are represented
as a (K × d × d)-dimensional compound vector wt =
(w1

t ; . . . ;w
k
t ) ∈ RKdd×1. Based on the compound vec-

tor representations, the loss function can be re-written as
`(wt,φt) = [1− ytw>t φt]+.

Similar to [Cavallanti et al., 2010], we adopt a task rela-
tionship matrix A ∈ RK×K , which defines the learning rate
to be used in the updating rules for each matrix Mk,

A−1 =
1

(1 + b)K


b+K b . . . b
b b+K . . . b
...

...
. . .

...
b b . . . b+K

 ,
where b is a parameter used to control to what extent the tasks
would share instances with each other. In the following sec-
tions, we denote Ai,j as the entry in the i-th row and j-th
column of matrix A.

For an incoming triplet zt, we define the multi-task
Passive-Aggressive [Crammer et al., 2006] objective function
for online learning:

1

2
‖w −wt‖2AIdd

+ Cξ

s.t. 1− ytw>φt ≤ ξ, and ξ ≥ 0,
(2)

Algorithm 2 OMTRSL-Active: The proposed algorithm for
Active Online Multi-Task Relative Similarity Learning.

Input: Parameters C > 0, b > 0 and δ > 0
Initialize: Mk

0 = Id, ∀k ∈ [K]
for t = 0, 1, 2, . . . , T do

Receive (xt,x
1
t ,x

2
t , tk)

Compute pt = w>t φt and ŷt = sign(pt)
Sample Zt ∈ {0, 1} with Pr(Zt = 1) = δ

δ+|pt| ;
if Zt = 1 then

Query yt and compute `(wt,φt) = [0, 1− ytpt]+
if `(wt,φt) > 0 then
Mk

t+1 = Mk
t + ytτtA

−1
k,tk

Xt, ∀k ∈ [K]

where τt = min
{
C, `(wt,φt)

/
‖φt‖

2
A−1

Idd

}
end if

else
Mk

t+1 = Mk
t , ∀k ∈ [K]

end if
end for
Output: Mk

T+1, ∀k ∈ [K]

where C > 0 is a parameter used to trade-off between mini-
mizing the adjustment of the model and minimizing the loss
of the new model on current triplet. In Eq. 2, AIdd ∈
RKdd×Kdd denotes A⊗Idd, where Idd is a d2 identity matrix.
The objective function enjoys a closed-form updating rule:

wt+1 = w + ytτtA
−1
Idd

φt, (3)

where τt = min
{
C, `(wt,φt)

/
‖φt‖

2
A−1

Idd

}
. For the k-th

task, Eq. (3) is essentially equivalent to

Mk
t+1 = Mk

t + ytτtA
−1
k,tk

Xt. (4)

Algorithm 1 summarizes the details of the proposed algo-
rithm OMTRSL.

3.3 An Active Learning Extension
In Section 3.2, the proposed OMTRSL algorithm only re-
quires relative label information yt that indicates which pair
of instances are more similar. This greatly reduces the label-
ing effort compared to computing the exact similarity score
between any two instances. However, the effort is still re-
quired to collect the relative label information. For many
real-world applications, this may result in a huge amount of
human labeling cost. Because the number of potential triplets
is often much larger than the number of instances in a relative
similarity learning task. To reduce the labeling cost, we pro-
pose an active learning algorithm, namely OMTRSL-Active,
based on the fully-supervised OMTRSL algorithm. Specifi-
cally, we propose a simple yet effective margin-based query
strategy [Cesa-Bianchi et al., 2006], which has been suc-
cessfully used for active learning [Cesa-Bianchi et al., 2006;
Hao et al., 2015; 2016].

A stochastic active sampling scheme is adopted to decide
whether it is necessary to query the true label yt of an incom-
ing triplet. This strategy attempts to draw a Bernoulli trial on
a random variable Zt ∈ {0, 1}, where Zt = 1 indicates the
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true label yt should be queried at the t-th step and Zt = 0
otherwise. In this paper, we define the sampling probability
at the t-th step as follows:

Pr(Zt = 1) =
δ

δ + |pt|
, (5)

where pt = w>t φt indicates the difference between the sim-
ilarity scores Stk(xt,x1

t ) and Stk(xt,x2
t ). A small value of

|pt| usually means that the t-th triplet is more difficult to be
predicated thus more informative to train the similarity func-
tion than a large value of |pt|. Therefore, this triplet has a high
probability to be queried for the true label in order to update
the similarity matrix Stk . In Eq. 5, δ > 0 is a smoothing pa-
rameter used to decide the amount of queries. The details of
the algorithm OMTRSL-Active are shown in Algorithm 2.

3.4 Theoretical Analysis
Theorem 1 Let {(xt,x1

t ,x
2
t , yt, kt)|t ∈ [T ]} be a sequence

of examples where xt,x1
t ,x

2
t ∈ Rd, yt ∈ {−1,+1}, kt ∈ [K]

and ‖xt‖, ‖x1
t‖, ‖x2

t‖ ≤ R for all t. Then for any matrix
M ∈ Rd×d, the number of mistakes for Online Multi-Task
Relative Similarity Learning (OMTRSL) is bounded by:

T∑
t=1

mt ≤ max
(4(b+K)R4

(1 + b)K
, 1/C

)
×
[ K∑

i=1

‖M i‖2F

+b

K∑
i=1

‖M i − 1

K

K∑
i=1

M i‖2F + C

T∑
t=1

`(Mkt ; zt)
]

where mt = I(yt[S
tk(xt,x

1
t )− Stk(xt,x2

t )] < 0).

Remark: It can be observed that, when b = 0, this bound
corresponds to the case where all the K tasks are learnt sepa-
rately; while when b is large enough, this bound corresponds
to the case where all the tasks are treated as one. In practice,
we can tune the parameter b to achieve a good trade-off.

Theorem 2 Let {(xt,x1
t ,x

2
t , yt, kt)|t ∈ [T ]} be a sequence

of examples where xt,x1
t ,x

2
t ∈ Rd, yt ∈ {−1,+1}, kt ∈ [K]

and ‖xt‖, ‖x1
t‖, ‖x2

t‖ ≤ R for all t. Then for any ma-
trix M ∈ Rd×d, the expected number of mistakes for the
OMTRSL-Active algorithm is bounded by:

E
[ T∑

t=1

mt

]
≤ 1

δ
max

(
4(b+K)R4

(1 + b)K
, 1/C

)

×

[
(
δ + 1

2
)2

K∑
i=1

‖M i‖2F + (
δ + 1

2
)2b

K∑
i=1

‖M i − 1

K

K∑
i=1

M i‖2F

+(δ + 1)C

T∑
t=1

`(Mkt ; zt)

]

where mt = I(yt[S
tk(xt,x

1
t )− Stk(xt,x2

t )] < 0).

Here, we omit the detailed proofs due to space limitation.

4 Experiments
In this section, we present our empirical studies on two real
datatsets for evaluating both the efficacy and efficiency of the
proposed algorithms.

4.1 Experimental Settings
Datasets
The performances of the proposed methods are evaluated on
two real-world datasets: the Isolet spoken alphabet recogni-
tion dataset [Fanty and Cole, 1990] and the news20 dataset 1.
These two datasets have been widely used for multi-task
learning research. The Isolet dataset consists of 7, 797 exam-
ples, which are collected from 150 speakers who have uttered
all characters in the English alphabet twice. On average, each
speaker has contributed 52 training examples. The learning
task on this dataset is to classify which letter has been uttered
based on several acoustic features, including spectral coeffi-
cients, contour-, sonorant-, and post-sonorant features. On
this dataset, the speakers are categorized into smaller groups,
each contains 30 similar speakers. This gives rise to 5 dis-
joint groups of training examples called “Isolet1-5”. Each
group has its own classification task with 26 labels. Thus,
there are 5 learning tasks on Isolet dataset. More details of
the Isolet dataset can be found in [Fanty and Cole, 1990;
Parameswaran and Weinberger, 2010]. The news20 dataset
is for news document classification. This dataset consists of
20 classes. In total, there are 15,935 examples for training
and 3,993 examples for testing. We adopt 4 major categories
(i.e., comp, rec, sci, and talk) in this dataset to form 4 learning
tasks in our multi-task learning experiments.

Setup and Metrics
On both datasets, we used standard 5-fold cross validation
for evaluation, in which 80% of the data are used for train-
ing, and the remaining 20% are used for testing. We report
the averaged results on the 5 test sets. In each fold, the triplet
data streams used in the experiments were generated based
on the training set. Specifically, to generate the t-th triplet
(xt,x

1
t ,x

2
t ; yt), we first randomly choose two examples xa

and xb which belong to the same class, and another example
xc from another different class. We then flip a coin to decide
the value of yt. If yt = +1, we assign the third example xc
to x2

t in the triplet, and assign the rest two examples from the
same class to xt and x1

t , respectively. If yt = −1, the third
example xc is assigned to x1

t , and the rest two are assigned
to xt and x2

t , respectively. Note that under the online ac-
tive learning setting, yt is only disclosed to the online learner
upon receiving the query request by the online active learner
OMTRSL-Active.

The performances of all algorithms are evaluated using
precision at top k, a standard measure for ranking algorithms.
For each query instance in the test set, all other test instances
are ranked according to their similarities to the query instance
calculated using Eq. (1). Among the top k instances, the per-
centage of instances from the same class with the query in-
stance can be computed, and then averaged over all test in-
stances. So that, we can obtain the average precision at-top-k,
denoted by AP@k. Moreover, we also compute the mean Av-
erage Precision at top k, denoted by mAP@k. This measure
that has been widely used in the information retrieval com-
munity. It considers the number of instances whose classes
are the same with the query instance, as well as the ranking

1Available on the LIBSVM Machine Learning Repository.
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order of the retrieved instances. For both of the AP@k and
mAP@k measures, k ∈ [10] are considered.

4.2 Comparison Schemes
We compare the proposed algorithms with the state-of-the-art
multi-task learning algorithms.

• mtLMNN [Parameswaran and Weinberger, 2010]: This
is the state-of-the-art multi-task similarity learning algo-
rithm. Although it was originally proposed for classifi-
cation, it implicitly outputs distance metrics for similarity
learning.

• OGRSL [Chechik et al., 2010]: This algorithm combines
all the tasks into a single task to yield a global similarity
matrix.

• OSTRSL [Chechik et al., 2010]: This is a online single
task relative similarity learning method, which treats each
task independently.

• OMTRSL-Random: This is the random query version of
OMTRSL for active learning. It randomly decides when
to query the true label of an incoming triplet.

• OMTRSL: This is the proposed online multi-task relative
similarity learning method (Algorithm 1).

• OMTRSL-Active: This is the proposed active variant of
the OMTRSL algorithm (Algorithm 2).

For each evaluated algorithm, the optimal parameter are cho-
sen by using cross-validation.

4.3 Evaluation on Efficacy
In this section, we evaluate the proposed OMTRSL algorithm
on the test set, in terms of AP@k and mAP@k, where k
varies from 1 to 10. Figure 1 and Figure 2 show the average
performances over all tasks achieved by different methods on
the isolet dataset and news20 dataset, respectively. Based on
these results, we make the following observations:

• The online global relative similarity learning algorithm
OGRSL consistently performs much worse than the other
algorithms. This indicates that it is necessary to learn a
model for each task, rather than learn one global model for
all tasks.

• The proposed online multi-task learning algorithm
OMTRSL consistently outperforms the single task learn-
ing algorithm OSTRSL which learns each similarity met-
ric independently. This is consistent with the findings
in [Caruana, 1997; Parameswaran and Weinberger, 2010].
Moreover, it also confirms that the proposed OMTRSL
algorithm could improve the overall performances of all
tasks by sharing information between related tasks.

• The performances of all algorithms decrease when k grad-
ually increases. This is consistent with our intuition that
the task becomes harder when the list of retrieved instances
becomes longer. In addition, we also notice that mtLMNN
can achieve higher performance when k is small. One
possible reason is that, in the learning process, for each
query instance, mtLMNN tries to make sure its top k clos-
est instances are from the same class.This learning strategy
makes mtLMNN outperform other methods when k ∈ [2].
However, for larger k, the proposed OMTRSL algorithm
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Figure 1: Performance with varied k on isolet datasets (left: AP,
right: mAP).
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Figure 2: Performance with varied k on news20 datasets (left: AP,
right: mAP).

consistently achieve better results than the mtLMNN algo-
rithm, on both datasets.

4.4 Evaluation on Efficiency

We also study the efficiency of the evaluation algorithms. Ta-
ble 1 shows the time costs of these algorithms on both isolet
dataset and news20 dataset.

Table 1: Time (s) cost on training the algorithms.

Data mtLMNN OGTRSL OSTRSL OMTRSL
isolet 241.3 12.5 12.6 14.7

news20 5371.4 111.2 114.9 126.4

From Table 1, we can observe that the offline algorithm
mtLMNN takes more than 16 times learning time compared
to other online algorithms on isolet dataset, and more than
40 times learning time on news20 dataset due to the high di-
mension. In addition, it also should be noted that we im-
plement our algorithms with pure Matlab language, and the
mtLMNN algorithm provided by the author 2 is implemented
by a combination of Matlab and C languages. These observa-
tions indicate that online algorithms are more advantageous,
in terms of time cost. Moreover, the proposed online algo-
rithm OMTRSL takes a little extra time compared to other
two online algorithms (OGRSL, OSTRSL), due to updating
several tasks simultaneously on each triplet. However, con-
sidering the efficiency of the online learning scheme, this ex-
tra time could be ignored. These observations confirm the
efficiency of the proposed OMTRSL algorithm, which makes
it very suitable to large-scale similarity learning problems.

2http://www.cs.cornell.edu/∼kilian/code/code.html
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Figure 3: Performance with different parameters on validation set of isolet dataset.

4.5 Parameter Sensitivity Analysis
In this section, we study the sensitivity of the model parame-
ters. Figures 3 (a), (b) and (c) show the sensitivity of param-
eters in the OMTRSL, OSTRSL and mtLMNN algorithms,
respectively. From Figure 3 (a), we can observe that the per-
formance of the OMTRSL algorithm is not sensitive to the
settings of parameter b. However, we can also observe that
the performance decreases as b increases. This is consistent
with our theoretical analysis in Section (3.3). Moreover, the
OMTRSL algorithm is a little sensitive to the choice of pa-
rameter C. An empirical setting of C is 1. In Figure 3 (b),
we can make similar observations as in Figure 3 (a). A too
small value of C can make the performance of the OSTRSL
algorithm decrease. In addition, Figure 3 (c) indicates that a
large value for any of γ and γ0 would make the performance
of the mtLMNN algorithm decrease. This is consistent with
the findings in [Parameswaran and Weinberger, 2010].

4.6 Experiments of Active Learning
In the experiments, we also evaluate the performance of the
proposed active learning algorithm OMTRSL-Active. Fig-
ure 4 shows the results on isolet dataset. From Figure 4, we
can notice that the proposed OMTRSL-Active method con-
sistently outperforms the random version OMTRSL method,
i.e., OMTRSL-Random. The active learning approach
achieves more than 5% better performance than the random
approach with less than 20% query ratio. More impressively,
using around 40% of training data, the active learning ap-
proach (i.e., OMTRSL-Active) can achieve highly compara-
ble performance with the OSTRSL and mtLMNN algorithms,
which use all of the training data. These results demonstrate
the effectiveness of the proposed active learning approach in
reducing labeling cost. Similar observations can be made on
news20 dataset, and we omit the results due to space limita-
tion.

5 Conclusion
This paper investigates online multi-task learning techniques
for relative similarity learning tasks. In particular, we pro-
pose a novel Online Multi-Task Relative Similarity Learning
algorithm (OMTRSL), which overcomes the drawbacks of
existing approaches that are often of low efficacy and inef-
ficiency. To further reduce the human labeling effort, we
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Figure 4: Performance of varied query ratios on isolet dataset.

develop an active variant of OMTRSL, namely OMTRSL-
Active, to avoid labeling of each incoming triplet. We theo-
retically analyze the mistake bounds of both OMTRSL and
OMTRSL-Active algorithms, and empirically conduct exten-
sive experiments on real datasets. We have found very en-
couraging results by comparing with the state-of-the-art al-
gorithms. For future work, we would like to sparse multi-
task learning for similarity problems [Yao et al., 2015] and
design adaptive relationship matrix method for online multi-
task RSL.
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