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Abstract
This paper presents AudioSense, the system to monitor
user-item interactions inside a store hence enabling
precisely customized promotions. A shopper’s smartwatch
emits sound every time the shopper picks up or touches an
item inside a store. This sound is then localized, in 2D
space, by calculating the angles of arrival captured by
multiple microphones deployed on the racks. Lastly, the 2D
location is mapped to specific items on the rack based on
the rack layout information. In our initial experiments
conducted with a single rack with 16 compartments, we
could localize the shopper’s smartwatch with a median
estimation error of 15.9 cm in 2-dimensional space.

Author Keywords
Sound Localization, TDoA, AoA, Trajectory Tracking, Audio
Sensing

ACM Classification Keywords
H.1.2: [Shopper Behavior]: Models and Principles: User
Machine Systems Human Information Processing

Introduction
Shoppers view, touch, and pick various items while they
shop. Such interaction with items strongly reflects shop-
pers’ needs and preferences. Accordingly, real-time moni-
toring of shopper-item interaction will enable useful new ap-
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plications. For instance, when a shopper picks up a printer
cartridge at a stationery store, an associated 30% discount
on a bundle of A4 papers can be sent to the shopper along
with its location; the papers and cartridges are located dis-
tantly, and shoppers usually do not take the deal despite a
high discount rate.

Location to 
Item mapper

2D Location 
Estimator

AoA
Estimation

Pickup/Touch 
Gesture 

Recognizer

Sound

(Items)

(x , y)

Figure 1: AudioSense Modules

Recently, a few systems were proposed to detect shop-
pers behaviour and mobility [4, 2, 1]. However, most prior
systems have focused on detecting course-grain mobility,
i.e. which section the shopper is located in; whereas Au-
dioSense detects fine-grained interaction, i.e. which item
inside the section the shopper is interacting with. For ex-
ample, IRIS [2] tracks aisle level movements of a shopper
and estimates the time spent by the shopper in a vicinity
of the items and away from the items (non-aisle areas). Al-
though it detects item picking gestures yet it doesn’t deter-
mine which particular item has the shopper picked. Shop-
miner [4] uses RFID tags attached to items to understand
user-item interactions. The system captures the changes
in RF signals between RFID readers and a tag caused by
user-item interaction. The accuracy of this system depends
on the density of RFID readers, and the readers are often
costly. There has been a more closely related work, Third-
Eye [3], which focused on detecting shoppers’ interaction
with items using smart glasses worn by the shopper. The
video feed from the glasses is used to identify when and
which item the shopper is picking. However, smart glasses
are not yet prevailing due to many reasons such as severe
privacy concerns, the inconvenience of use, the limited bat-
tery power.

To address the challenges in enabling real-time monitor-
ing of shopper-item interaction, we propose AudioSense.
AudioSense automatically detects the items that a shop-
per touches or picks by localising the inaudible sound sig-

nals emitted by a smartwatch worn by the shopper. More
specifically, Audisense first detects the picking/touching
gestures using inertial sensing data on the smartwatch and
triggers the watch to emit the sound signals at the moment
of interaction. Then, the signal is captured by multiple mi-
crophones deployed on the racks. Using each microphone
data, we compute Angle of Arrival (AoA) of sound and com-
bines AoA at multiple microphones to estimate 2D location
of the sound source relative to the rack. This location is
further mapped to the specific items on the rack which com-
pletes the shopper-item interaction mapping. The history
of these interactions can be used to precisely customize
promotions for the shopper. In this paper, we focus on 2-
dimensional location estimation of the smartwatch, assum-
ing that the gesture detection technique is already available.

Motivating Scenario
Joey walks in a stationary shop and is looking to buy a book
from his favourite writer. He heads for the section where
all the books from that author are kept and browse through
them. He picks up a book from that section to check out
more details about it. The AudioSense system detects this
pickup gesture using the smartwatch worn by Joey and lo-
calizes the section from where Joey picked up the book.
Using the rack layout information, the system identifies
which author books are kept in that section and then im-
mediately sends an early bird offer for the upcoming book
from the same author to Joey’s smartwatch. Joey likes the
offer on the new book and hence opt for pre-booking.

System Overview
Figure 1 shows three modules involved in AudioSense. First
module is gesture recognizer which utilizes inertial sensor
data from shopper’s smartwatch and detects an ongoing
pickup gesture, if any. If any pickup gesture is recognized,
then smartwatch would emit a sound for a moment. Sec-
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ond module estimates 2 dimensional location(relative to the
rack) of emitted sound. It first computes AoA from the re-
ceived audio data and then using AoA values, it computes
2D location of smartwatch. Third module is responsible for
mapping the estimated location to the specific items of the
rack. It uses rack layout information to estimate closest pos-
sible item for the given 2D location. Output of this module is
set of items that the shopper picked up.

Figure 2 shows detailed workflow & various components
involved in AudioSense. It consists of a smartwatch worn
by the shopper, multi-microphone system deployed on the
racks and lastly a cloud server. The Smartwatch has a ges-
ture recognition application running on it. This application
can be either automatically started by the store location or
manually before entering the store. Next, each rack inside
the store will have 3-4 microphones installed at different po-
sitions as shown in the figure. These microphones can be
treated as 2 (or 3) independent pairs. All microphones are
connected to a computing device, e.g. raspberry pi board,
which is further connected to a cloud server. This setup is
repeated over all the racks inside the store. Lastly, the cloud
server communicates with all the computing devices con-
nected to the racks. Using the store layout information, the
cloud server transforms the estimated 2D location to the
specific items on the rack.

While inside the store, whenever the user picks up or touches
any item on rack N, the gesture recognition application on
the watch recognises this gesture (step 1 in figure 2) and
immediately emits a specific sound (for a moment) denoted
as step 2. All the microphones on the rack N receives this
sound and forward it to the computing device to which they
are connected. The computing device estimates an AoA
value corresponding to each pair of the microphones. Next,
the computing device combines these multiple AoA values

{w_id : { items}

w_id = Smartwatch Id
r_id = Rack Id
x’,y’ = Smartwatch Location(in 2D)
p = Interaction item

{ w_id1, r_id,
x’, y’ }

Racks

Server

31

X , Y

Gesture
Recog

Watch

2
Sound

Rack N
Rack ID

section_id :  Items

2D location to 
Product Mapping

Rack ID
(x’, y’) :  section_id

5

4

6

AudioSense System

Figure 2: System Architecture

to estimate watch location (x’,y’) wrt the rack. This is de-
noted as step 3 in figure 2. This location is further mapped
to the specific items (or compartments) on the rack (if rack
item layout is known) shown by step 4 & 5. The output
of the system is these items that the user picked up (or
touched) denoted as step 6. Following sections describe
AoA & location estimation procedure in more detail.

Requirements & Challenges
To realize this system functionality, following requirements
need to be fulfilled which have certain challenges.

• Real-time Touch/Pickup gesture Recognition
Output of this step is input for the AudioSense sys-
tem, so high accuracy and low latency are crucial.
These gestures might also vary from user to user,
making it difficult to keep the training model accurate
as well as generic enough at the same time.

490

SESSION: UBIMI



• Robustness from Multi-User & Ambient Noise Inter-
ference
Multiple users might be simultaneously present near
a rack thus the sound received by microphones can
be a mixture of multiple watch sounds. Also, the pres-
ence of dynamic nature ambient noise (e.g. people
might be talking) can further complicate the situa-
tion and make it hard to separate sounds from each
smartwatch.

• Accurate Rack Compartment Estimation
Goal of the AudioSense system is to understand
user-item interaction. Precise identification of these
items heavily depends on the how accurately the
Smartwatch can be located in 2D and how accurately
this location is mapped to the corresponding com-
partment on the rack.

θ = cos−1(
v ∗ ∆t

k
) (1)

y = m1 ∗ x (2)

y = m2 ∗ (x− d) (3)

We see this work as our first step towards the final system,
so in this paper, we address some of the above mentioned
challenges. The following sections describe how does the
system estimate the 2 dimensional location of watch (wrt
the rack) and its mapping to the corresponding compart-
ment of the rack.

2D Watch Location Estimation & Compartment
Mapping
We believe 2D watch location estimation and its mapping
to corresponding rack compartment are core part of the
system because the specific items that a user is interacting
with can only be determined by this step. The precision &
accuracy of location estimation & its mapping determines
how precisely can we determine items of interest to the
user. This step makes AudioSense more precise system as
compared to other works that track user’s overall location
inside the store and then send promotions based on the

0 , 0

0 , d

Line 1

Line 2

AoA2

AoA1

sec_id = section ID of rack N
X,Y = Actual location of Smartwatch
d = distance between Smartphones
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∆𝑡

Mic 1

Mic 2

∆𝑡

Mic 1
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S
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u
n
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Watch
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Server

Rack 
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Figure 3: 2D Hand Trajectory Tracking System

these locations. So, in this paper we focus on these two
components.

Figure 3 represents architecture of the system used in this
paper. The pick-up/touch gesture recognition part is not
implemented in the current system and we assume that
the input sound to this system is triggered after the pickup
gesture is identified by the smartwatch. Two pairs of mi-
crophones are required for watch location estimation in 2
dimensional space wrt rack N. So, we have used 2 Smart-
phones, each with 2 in-built microphones as shown in fig-
ure 3. Both Smartphones compute AoA from the received
sound and send it to the server. The server then estimates
the location of Smartwatch in x,y plane. In contrast to the
final system architecture, the location estimation(from AoA)
is shifted to server side and instead of 1 computing device
per rack, we have used 2 Smartphones. Rest of the work-
flow remains the same.
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Angle of Arrival EstimationTable 1: Experiment Parameters

Parameter
Name

Value

Smart
phones
Used

Samsung
Galaxy S7

Smart
watch
Used

LG Urbane 2

Distance
between
Micro-
phones

14 cm

Distance
between
2 Smart-
phones

50 cm

Audio
Sampling
Rate

44100 Hz

Processing
Window
Size

6500 Sam-
ples per
channel

Smoothing
Window
size

1-7

Rack Size 100x100 cm2

Smartphones used here have 2 microphones at different
positions so sound received will have TDoA (Time Differ-
ence of Arrival) represented as ∆t in figure 3 and is com-
puted by cross-correlating individual microphone signals.
For given audio sampling rate, AoA can be computed as
shown in equation 1 where k is distance between the two
microphones of a Smartphone and v is velocity of sound.

Optimal size of processing window (number of samples
used to estimate each AoA) is crucial for accurate AoA es-
timation. Depending on the sound type and the ambience,
low processing window size might not contain sufficient
information about the desired sound to accurately cross-
correlate.

But arbitrarily increasing processing window size will in-
crease overhead during cross-correlation consequently
increasing estimation latency. Moreover, the system will
also have a smoothing window which will average multiple
AoA estimates to compute one final AoA value for each lo-
cation of Smartwatch, thus amplifying the impact of bigger
processing window. To address this issue, we used time-
domain cross correlation of samples bounded by a maxi-
mum possible lag value. This value of lag is computed be-
forehand for given values of sampling rate and distance be-
tween microphones. The cross-correlation module doesn’t
check for delay beyond this maximum lag value, thus reduc-
ing the cross-correlation operation cost. Evaluation section
will describe the exact values used for our experiments.

2 Dimensional Location Estimation
Both Smartphones send estimated AoA values to server.
For each location of Smartwatch and Smartphone, a straight
line can be assumed between them. Using the AoA, server
computes this straight line equation for both Smartphones
as following.

Location of lower phone is assumed to be at origin (0,0)
and that of the upper phone is (0,d) where d is the separa-
tion between the two phones. Equations of lines passing
through lower & upper phones are shown by equations 2
and 3 respectively.

Where m1 and m2 are slopes of the lines which can be
computed once corresponding AoA values are known. The
intersection of these two lines represents 2D location (x’,y’)
of Smartwatch wrt the origin.

Compartment Mapping
Having estimated 2D location, next step is to map this lo-
cation to the corresponding compartment(or section) of the
rack. For this, we divide the rack into a grid of m x n com-
partments(physical or logical) and compute coordinates
of center of each compartment wrt origin(position of lower
phone is origin and we know rack dimensions). Then we
compute euclidean distance between (x’,y’) and each com-
partment center. The compartment with the minimum eu-
clidean distance is termed as the corresponding compart-
ment for the location (x’,y’).

Evaluation
This section describes the experimental setup and dis-
cusses results for smartwatch location estimation and com-
partment mapping.

Experimental Setup
Table 1 describes specific parameter values used in our
experiments. We divide an area of 100x100 cm2 into 4x4
grids. Each grid is assigned a number from 1-16 and rep-
resents a rack compartment. Next, we generate a random
sequence of compartment numbers (1-16) and place the
smartwatch at the center of each compartment in that or-
der. We assume that a pickup gesture was detected at the
center of each compartment, so the watch emits sound
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from each compartment center. This sound is used as in-
put to our system, which outputs an estimated compartment
number. So, for each compartment number in the random
sequence, AudioSense estimates a compartment number.
We present accuracy of these estimations in following sec-
tion.

Seq
No

Accuracy Median
Err(cm)

Mean
Err(cm)

1 6/10 15.3 17.9
2 6/10 15.9 17.7

Table 2: Exact Accuracy
Results
We have used two types of accuracy metrics for our results.
For each compartment number in random sequence, when
AudioSense estimates the exactly same compartment num-
ber, then we call it exact-accuracy whereas if estimated
compartment is immediate neighbour of actual compart-
ment, then we call it 1-hop accuracy. Apart from these,
we also report the median and mean errors (in cm) in ex-
act location estimation for each sequence of compartment
numbers. Table 2 & 3 show experiment results for exact ac-
curacy scenario and 1-hop accuracy scenario respectively.
In exact accuracy scenario, AudioSense estimated 6 out of

Seq
No

Accuracy Median
Err(cm)

Mean
Err(cm)

1 10/10 15.3 17.9
2 10/10 15.9 17.7

Table 3: 1-Hop Accuracy

10 compartments accurately and the remaining 4 compart-
ments were estimated as immediate neighbour of actual
compartment. This is evident from 1-hop accuracy scenario
wherein all 10 compartments are estimated either as ex-
act or immediate neighbour. The median error in location
estimation is found to be 15-16 cm.
These experiments show that rack compartments of ra-
dius around 16cm can be estimated accurately. Hence, in
stores where each compartment contains similar items, it
is possible to know which specific items a particular user is
interested in.

Conclusion
We presented architecture of the AudioSense system to
monitor user-item interactions inside a store and presented
results from Smartphone based current system implemen-
tation. AudioSense could estimate exact location of the

smartwatch wrt the rack with a median error of 15-16cm
and shows compartment mapping accuracy of 60% and
100% for exact-accuracy and 1-hop accuracy scenarios re-
spectively. In future, we would like to work towards other
identified challenges of the system and test system perfor-
mance in an actual stationary/grocery store.
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