Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

6-2017

Exploiting android system services through bypassing service
helpers

Yachong GU
Chinese Academy of Sciences

Yao CHENG
Singapore Management University, ycheng@smu.edu.sg

Lingyun YING
Chinese Academy of Sciences

Yemian LU
Chinese Academy of Sciences

Qi LI

Tsinghua University

Beravexhiaged atadiHandlatidasttps:/ink library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, Software Engineering Commons, and the
Systems Architecture Commons

Citation

GU, Yachong; CHENG, Yao; YING, Lingyun; LU, Yemian; LI, Qi; and SU, Purui. Exploiting android system
services through bypassing service helpers. (2017). Security and privacy in communication networks:
SecureComm 2016: Guangzhou, China, October 10-12. 198, 44-62.

Available at: https://ink.library.smu.edu.sg/sis_research/3809

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Yachong GU, Yao CHENG, Lingyun YING, Yemian LU, Qi LI, and Purui SU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3809


https://ink.library.smu.edu.sg/sis_research/3809

Exploiting Android System Services Through
Bypassing Service Helpers

Yacong Gu', Yao Cheng?, Lingyun Ying"2®), Yemian Lu', Qi Li%,
and Purui Su'?

! Institute of Software, Chinese Academy of Sciences, Beijing, China
{guyacong,luyemian,yly, supurui}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 Singapore Management University, Singapore, Singapore
ycheng@smu.edu.sg
4 QGraduate School at Shenzhen, Tsinghua University, Shenzhen, China
qi.li@sz.tsinghua.edu.cn

Abstract. Android allows applications to communicate with system
service via system service helper so that applications can use various
functions wrapped in the system services. Meanwhile, system services
leverage the service helpers to enforce security mechanisms, e.g. input
parameter validation, to protect themselves against attacks. However,
service helpers can be easily bypassed, which poses severe security and
privacy threats to system services, e.g., privilege escalation, function exe-
cution without users’ interactions, system service crash, and DoS attacks.
In this paper, we perform the first systematic study on such vulnerabili-
ties and investigate their impacts. We develop a tool to analyze all system
services in the newly released Android system. Among the 104 system
services and over 3,400 system service methods in the system, we dis-
cover 22 vulnerable service interfaces that can be exploited to launch
real-world attacks. Furthermore, we implement and construct attacks to
demonstrate the impacts of these vulnerabilities. In particular, by utiliz-
ing these vulnerabilities, these attacks result in implicit user fingerprint
authentication in background, NFC data retrieval in background, Blue-
tooth service crash, and Android system crash.

Keywords: Android - System services - Service helpers + Vulnerabilities

1 Introduction

One of the most salient features in Android is that it wraps various functions in
its system services, such as telephony, notification, and clipboard, so that differ-
ent applications (“apps”) can easily access these functions through inter-process
communication (IPC). Normally, apps use these system services via system ser-
vice helper. In order to protect system services, service helpers provide various
security mechanisms so as to protect the system services, e.g., validating input



parameters against service crash, checking callers’ status against user authen-
tication in background, identifying and handling duplicated requests against
unnecessary resource consumption, and passing callers’ identities (IDs) to allow
system services to authenticate the callers.

However, we find that these mechanisms can be easily bypassed, which incurs
serious security problems. For example, as shown in Fig. 1, FingerprintManager,
i.e., the service helper of system service FingerprintService, automatically
obtains a caller’s identity (i.e., the app’s package name) and passes it to
FingerprintService so that the service could enforce particular restrictions
based on the caller’s identity. Unfortunately, a malicious app can bypass the ser-
vice helper and directly feed fake ID to FingerprintService. Therefore, the
system service will directly accept the fake ID without any authentication. As
we observed, the vulnerabilities of bypassing service helpers can incur privilege
escalation, automatic function execution without user interaction, system service
crash, and Denial-of-Service (DoS) attacks. Therefore, it is necessary to system-
atically study such vulnerabilities and their impacts, which has not yet been well
studied in the literature.

Benign Service [data]1D] .
App Helper Proxy Service

Benign App Process

Security restrictions
""""""""""""""""""""""""" - 1 based on ID
Malicious Malicio S] data | Fake ID
Iclou — > @ Service Process
App Bypass Service Helper O/

Proxy

App Process

Fig. 1. A benign app interacts with a system service through the corresponding service
helper which automatically collects the caller’s identity and passes it to the system
service. However, a malicious app can bypass the service helper, and directly feed a
fake identity to the system service.

In this paper, we perform a systematic study on the above security breaches
related to service helper bypass. The root cause of the breaches is that system
services assume correct execution of security mechanisms in the corresponding
service helpers that actually can be bypassed. In order to find out all vulnerable
IPC methods in system services that can be exploited because of service helper
bypass, we develop a four-step approach to identify IPC methods that do not
enforce security mechanisms corresponding to that in the service helpers. Firstly,
we enumerate all system services as well as their IPC methods in the Android
source code. Secondly, we identify the corresponding service helper classes for
each of the services. Here, we need to consider internal and hidden APIs which
can be invoked by third-party apps through Java reflection. By scrutinizing
the source code, we extend Android SDK and define service helpers as the
classes in the extended SDK that can access system services via [PC methods.



The extended SDK includes all APIs accessible to third-party apps. Thirdly,
after obtaining system services and their helpers, we identify the presence of
security mechanisms for each method in two categories of classes, i.e., system
services and the corresponding service helpers, by applying static analysis. Since
service helpers run in the same process with the calling apps, while services do
not, we cannot use the same method to identify the mechanisms in these two
classes. To address this issue, we extract and compare code features of security
mechanisms in the system services and the corresponding service helpers so as
to obtain the difference in the security mechanisms. Finally, vulnerabilities are
detected if system services do not enforce security mechanisms that are enabled
in the corresponding service helpers.

We study the vulnerabilities in the Android 6.0.1. We find 22 vulnerabilities
in system services resulted from bypassing service helpers that can be exploited
by third-party apps to launch real-world attacks. We have submitted all vulner-
abilities to Android Security Team and got confirmed by multiple Android Bug
IDs. To demonstrate the impacts of the vulnerabilities, we exploit several rep-
resentative vulnerabilities by constructing real-world attacks that lead to user
fingerprint authentication in background, NFC data retrieval in background,
Bluetooth service crash, and Android system crash.

In summary, the contributions of this paper are three-fold.

— To the best of our knowledge, this paper performs the first systematic study
on security problems incurred by bypassing system service helpers. We find
that bypassing service helpers can lead to the abuse of system services.

— We propose a method to identify the vulnerabilities in system services that
are caused by bypassing service helpers and could be exploited to launch
real-work attacks.

— We identify 22 vulnerabilities in total in Android 6.0.1, all of which are
confirmed by Android Security Team. Moreover, we construct several mali-
cious apps to exploit the vulnerabilities to illustrate the impacts of the
vulnerabilities.

2 Background

In this section, we briefly review system services and service helpers, and the
security mechanisms enabled in service helpers.

2.1 System Service vs. Service Helper

System services encapsulate essential functions in Android and compose signifi-
cant parts of Android Open Source Project (AOSP) [1]. Two representatives of
the functions in the form of system service are Near Field Communication (NFC)
service and notification service. Usually, system services run as system processes
and are registered in the service manager which serves as a service information
center. Apps that intend to use a system service can query available services in



the service manager, and then obtain the service proxy object through which
functions in the system service can be used.

Service helpers enabled in Android SDK provide interfaces of functions in the
system services for apps so that apps can easily use the functions, e.g., service
helpers can automatically feed in parameters for functions in the system services.
Most of system services that can be accessed by third-party apps are with one
or more service helpers. In order to protect system services, the corresponding
service helpers also use some security mechanisms to validate the requests from
apps before issuing an IPC call to the system services.

A data flow of accessing system service is shown in Fig. 1. Since service helpers
run in the same process with the calling app, an app directly calls the service
helper within its own process. The service helper acquires the corresponding
service proxy from the service manager, and then sends the request to the service
proxy that is responsible for communicating with the target service via IPC calls
so as to execute the system functions. The detailed communication procedures
between services and the corresponding service proxies are defined by Android
Interface Definition Language (AIDL) [2].

2.2 Security Mechanisms in Service Helpers

In order to ensure security, reliability, and efficiency of system services, service
helpers include the following mechanisms. First of all, they enable the fail-fast
principle [3] to ensure system reliability. As providing direct interfaces to apps,
service helpers should detect failures as early as possible. We find that service
helpers validate parameters and the caller’s status to prevent service failures
incurred by wrong parameters and status. Secondly, service helpers automati-
cally collect data required by the system services, e.g., passing caller’s identity,
which reduces the risk incurred by passing invalid parameters to services. Mean-
while, they decrease the number of parameters that apps need to feed in. Lastly,
service helpers help the system services to deal with duplicated requests that
waste the service resources. Now we use four examples to illustrate the typical
protection enabled by service helpers to protect the system services.

Validating Input Parameters. Parameter validation is one of the most
important security mechanisms. For example, BluetoothHealth, the helper
of the system service BluetoothHealthService, checks in BluetoothHealth.
registerAppConfiguration (String name, int dataType, ...) to verify
whether the first string parameter is non-null. It will send the remote request to
HealthService via its service proxy only if the parameter is not empty.

Validating Callers’ Status. Some Android system services may be allowed
to be used only when the callers are currently active in the foreground. Ser-
vice helpers provide such assistance to verify caller’s status. One example is
NfcAdapter, which is the helper of system service NfcService, verifies a caller’s
status in NfcAdapter.enableForegroundDispatch(). If the caller is not cur-
rently active in the foreground, the registration request for using NFC listeners
will be rejected.



Passing Callers’ Identities. System services need to verify various identity
information of the callers (see Sect.3.3.1), such as caller’s uid, which can be
achieved by interacting with Binder [4]. For other information, such as pack-
age name, system services rely on their helpers to collect. For instance, in the
notification service, the first parameter of NotificationManagerService.
enqueueToast (String pkg, ITransientNotification callback, int
duration) is collected by one of its helpers Toast. Note that, such information
delivery is transparent to apps because it is automatically performed by service
helpers.

Constraining Duplicated Requests. There may exist multiple IPC requests
from an app to a system service during the app’s lifetime. IPC requests will con-
sume the limited system resources, such as memories, CPU time, and file descrip-
tors. Therefore, if a system service accepts all duplicated requests, the limited
resources may be exhausted. In order to prevent resource being exhausted by
duplicated requests, service helpers handle duplicated calls locally and mitigate
the impacts. Service helpers use two strategies to constrain duplicated requests.
For resource requests, service helpers restrict the number of calls that an app
can issue. If the number of duplicated calls exceeds a threshold, which can be
treated as abnormal or unnecessary, the following calls will be ignored locally.
While for requests of registering listeners, service helpers initiate an IPC call to
the remote system service only under receipt of the first request from the app. For
instance, an app can get a notification when the clipboard changes by registering
a listener to the system service ClipboardService. ClipboardManager, which
is the service helper of ClipboardService, only registers the service once to
get such listener after receiving the first request. After that, ClipboardManager
maintains a local listener queue. Any duplicated requests of registering listeners
afterwards will be only added to this queue locally. When the clipboard changes,
ClipboardService notifies its helper ClipboardManager of the change. Then,
ClipboardManager notifies all the listeners in its local queue. Thereby, system
services only allocate resources for one request from the app, but still can notify
the app when there is any update.

Unfortunately, these mechanisms can be easily bypassed if a malicious app
directly invokes methods in system services instead of that in the service helpers.
In this paper, we will focus on the vulnerabilities incurred by bypassing service
helpers and the consequent impacts on the system services.

3 Identifying Vulnerabilities

In this section, we present an approach to systemically studying the vulnerabil-
ities caused by bypassing service helpers.
3.1 Overview

The main idea of our approach is to find out whether the security mechanisms
enforced by system services are consistent with that in their service helpers.



Android Extract Find Identify Detect
Source Service IPC | Service —» Security | Possible
Code Methods Helpers Enforcements Vulnerabilities

New
Vulnerabilities

Fig. 2. Overview of our approach.

If they are not consistent, we regard it as a potential vulnerability that may
be exploited through bypassing the service helper. For each potential vulnera-
bility, we need to manually confirm it since not all potential vulnerabilities can
be exploited. Following this, our study based on the source code of Android
composes of four steps as shown in Fig. 2.

Firstly, we identify all system services as well as their IPC methods that
can be accessed by third-party apps. We need to consider the services both in
framework layer and native layer. We leverage service manager, in which all
services are registered, as choke points to obtain all system services. We obtain
IPC methods for most services that can be extracted from the AIDL files. Note
that, a small portion of services (i.e., five system services) do not have their
public IPC methods in the AIDL files. We manually extract their IPC methods.

Secondly, for each service, we need to find out its service helper class(es). We
extend Android SDK to define service helpers as the classes that request services
via IPC methods and can be accessed by third-party apps. We associate system
services with their service helpers in the method level. If a service helper method
includes an IPC call to invoke a remote service method, we treat these two meth-
ods as a pair. Here, we need to take all APIs into consideration, including the inter-
nal and hidden ones that can be invoked by third-party apps using Java reflection.

Thirdly, we examine the presence of security mechanisms in both system
services and service helpers. We extract the code features of different security
mechanisms. In this step, we need to detect the presence of security mechanisms
in system services and their helper classes separately due to their differences.

Finally, potential vulnerabilities are detected by comparing whether the secu-
rity mechanisms in the method pairs are consistent. If they do not match, it
means that the service includes a potential risk of being exploited by bypassing
service helpers and the inside security mechanisms. We manually confirm the
vulnerabilities by launching real attacks.

There are two major challenges to identify all vulnerabilities. Firstly, it is not
easy to find out all service helper classes. The internal and hidden APIs [5] that
can be invoked by third-party apps through Java reflection are not included in
the official Android SDK. If we intend to find out all service helper classes that
third-party apps can access, we need to consider all APIs. Secondly, it is difficult
to identify security mechanisms in system service methods and the corresponding
service helper methods. The security mechanisms in service helpers and the
system services are implemented with different methods, in particular, service
helpers run in the same processes with the caller app, whereas system services
run in a separate system process. Therefore, we cannot directly compare the



source code of security mechanisms in system services and their corresponding
service helpers.

3.2 Enumerating Service Helper Classes

We show how to find service helper classes for various system services. Since
the standard Android SDK does not include the internal and hidden APIs that
can be invoked by third-party apps through Java reflection, we cannot directly
enumerate all the APIs. To address this, we extend Android SDK to define
service helpers as the classes that can use the corresponding system services
via IPC methods. Internal APIs are located in com.android.internal package
which is available in the framework. jar file on real Android device, while hidden
APIs are located in android. jar file with @hide javadoc attribute. We merge
the android. jar file and the framework. jar file to generate the extended SDK
which includes all APIs that can be directly accessed by third-party apps.

We use Soot [6] to automatically analyze all classes in the extended SDK. One
class is treated as a service helper as long as it invokes an IPC method of a sys-
tem service by using one or more methods. If an identified class is a nested class,
an inner class, a local class or an anonymous class, the top level enclosing class
is considered as the service helper class. We further associate the service helper
method with the service IPC method, and these methods compose a method pair
that will be used to analyze security mechanisms in a later subsection.

3.3 Detecting Security Mechanisms

We identify the presence of security mechanisms in these methods by construct-
ing a call graph and detecting their code features in the graph. We construct call
graphs to express the relationships inside system services and service helpers and
that between them. The call graphs are constructed by using Soot on the method
level according to system services and service helpers. Moreover, we use PScout [7]
to parse indirect dependency, e.g., Message Handler invokes different methods to
handle messages according to the message content, so as to construct complete call
graphs. Note that, in order to allow our approach to work with the latest Android
6.0, we also adopt the new compiling strategy in Android 6.0. Since Android 6.0,
AOSP adopts a new Java Android Compiler Kit (Jack) toolchain [8] to generate
.jack and .dex files as build targets. Since PScout uses . jar files as default input,
we need to convert .dex files to . jar files by using dex2jar tool [9].

3.3.1 Identify Security Mechanisms in Service Helpers
We use different methods to identify the presence of the four types of security
mechanisms in service helpers, separately.

Identifying Parameter Validation. We adopt def-use analysis [10] to iden-
tify the parameter validation mechanisms. Def-use analysis links each variable
definition with that is referred, which can be used to identify if the variable, i.e.,



an input parameter, is referred in a validation process. Firstly, we check whether
input parameters of a method are used in boolean expressions or whether they
are used in other methods that return boolean values. Secondly, if the parameters
are indeed related to boolean values, we further verify whether the boolean values
are used in conditional statements, which contain statements with early returns
or thrown exceptions. If these two conditions are met, the method includes input
parameter validation.

Identifying Caller Status Validation. For the caller status validation, it is
similar to the input parameter validation from the perspective of code features.
We can identify caller status validation by analyzing APIs that return callers’
status and verifying if these APIs are used in conditional statements.

Identifying the Process of Passing Caller’s Identity. Apps provide differ-
ent types of identities. As we observed, there are seven types of identity infor-
mation in Android, i.e., package name, uid (i.e., linux user identifier), pid (i.e.,
linux process identifier), gid (i.e., linux group identifier), tid (i.e., linux thread
identifier), ppid (i.e., linux parent process identifier), and UserHandle (i.e., rep-
resenting a user in Android that supports multiple users). Each of them can be
obtained by calling relevant methods that are summarized in Table 1. If there is
any method included in a service helper method before an IPC method of the
target service in the call graph, there is a high possibility that this service helper
will pass a caller’s identity to its service.

Identifying the Constraint of Duplicated Requests. In order to prevent
resource consumption incurred by duplicated requests from apps, service helpers

Table 1. Methods used by service helpers to obtain caller’s identity.

Identity type | Method

Package name | Context.getPackageName()

Context.getBasePackageName()

Context.getOpPackageName()
UID Process.myUid()
Process.getUidForPid()
Context.getUserld()

PID Process.myPid()
Process.getPids()
Process.getPidsForCommands()

GID Process.getGidForName()
Process.getProcessGroup()
PPID Process.myPpid()
Process.getParentPid()
TID Process.myTid()

UserHandle | Process.myUserHandle()




adopt two ways to constrain the number of duplicated requests delivered to
the system services according to the type of requested resources (see Sect. 2.2).
The first approach is to restrict the number of requests that an app can issue
to request resources. If the total number of requests exceeds a threshold, the
following requests would be ignored. To identify the existence of this approach,
we search all methods in service helpers to locate the conditional statements
where the conditions are with constant integer expressions. If such conditional
statement is located after the entry of the corresponding service helper and
before the TPC calls to the service in the call graph, there is a high probability
that the statement is used to check duplicated requests, which is similar to input
parameter validation. Therefore, we can use a similar method to further confirm
the detected mechanisms.

The second approach is to constrict the number of duplicated requests to
register listeners. Usually, a service helper method accepts a listener as its para-
meter, and saves the listener to a local list. For example, the service helper
method, EthernetManager.addListener(Listener listener) saves the para-
meter listener to ArrayList <Listener> mListeners. If it is the first registra-
tion request, the helper will register in the remote service via IPC. Otherwise, the
service helper method only adds the request’s listener to the local list. When the
service helper receives the update from the service, it dispatches the update to
all the listener maintained in that list. We capture the mechanism by identifying
the code maintaining the listener lists.

3.3.2 Identifying Security Mechanisms in System Services

The idea of identifying security mechanisms in service helpers can be used to
identify the security mechanisms enforced in system services. However, we can-
not directly adopt the methods in Sect. 3.3.1 to system services because of the
difference between systems services and service helpers.

Firstly, service helpers run in the same process with the caller while
services do not. Service helpers can directly obtain the caller’s identity
via methods in Tablel. However, system services need different APIs to
obtain the information about the caller and check the caller’s properties,
since they run in system processes which are separate from the caller
processes. For instance, system services use Binder.getCallingUid() and
Binder.getCallingPid () to obtain the callers’ identities instead of the meth-
ods listed in Table1. Secondly, system services need to validate app iden-
tities and verify whether the calling app is privileged to perform sensitive
operations, which is not required in the service helpers. Fortunately, we find
that system services heavily rely on the functions provided by AppOpsService
to perform validation. For example, AppOpsService.checkPackage(int uid,
String packageName) checks whether the input package name actually belongs
to the given uid, and AppOpsService.checkOperation(int code, int uid,
String packageName) checks whether the uid has the privilege to perform the
sensitive operation indicated by the code. We can use these key methods to



Table 2. Methods used by services to obtain and check identity.

Function Method
Get caller’s UID Binder.getCallingUid()
Get caller’s PID Binder.getCallingPid()

Get caller’s UserHandle | Binder.getCallingUserHandle()
Check package name AppOpsService.checkPackage()

Check operation AppOpsService.checkOperation()

identify the process of verifying identities in system services. These key methods
in system services are listed in Table 2.

3.3.3 Detect Possible Vulnerabilities

The final step is to examine whether the security mechanisms are consistent
in the method pairs we identified in Sect.3.2, i.e., the service method and the
corresponding service helper method. The examination is straightforward and
can be automated in most cases. Taking parameter validation as an example,
we separately form the parameters validated in each party of the method pair
into two sets. The parameters validated in the service method are denoted as
set S, and those in the service helper method are denoted as set H. If S is not
the superset of H, which means the helper checks more parameters than the
service, the parameters p, which belongs to H but does not belong to .S, may
be abused with illegal values. For the processes of dealing with duplicated calls
which are few in numbers (9 methods of 7 system helpers), we manually verify
the enforcement consistency within the pairs.

4 Vulnerability Results

We develop a tool based on the methodology in Sect. 3, and apply it to analyze
the latest AOSP 6.0.1. This section firstly summarizes our experimental findings,
including the vulnerabilities related to the four types of security mechanisms in
service helpers. Then, we construct real-world attacks exploiting representative
vulnerabilities.

4.1 Vulnerability Summary

In the extended SDK containing 8130 classes, we find out 158 service helper
classes. Among these service helpers, there are 86 cases where the helper passes
caller’s identity to the service. Also, these helpers classes include 227 methods
that validate input parameters, six methods that verify caller’s status, and nine
methods that handle duplicated requests. Among these service helpers, as shown
in Table 3, we capture 22 vulnerabilities, which can lead to privilege escalation,
bypass of user interactions, service crash, or Android system soft reboot. All these



Table 3. Summary of vulnerabilities resulted from bypassing service helpers.

Service helper Vulnerable service method Security implication | Type
Toast enqueueToast Soft reboot Fake identity
NotificationManager |setNotificationPolicy Privilege escalation |Fake Identity

getNotificationPolicy

setInterruptionFilter

FingerprintManager |authenticate Privilege escalation |Fake identity

cancel Authentication

getEnrolledFingerprints

hasEnrolledFingerprints

isHardwareDetected
MediaBrowser addSubscription DoS Illegal parameter
removeSubscription
BluetoothHealth registerAppConfiguration DoS Illegal parameter
NfcAdapter enableForegroundDispatch Bypass of user Fake status
interaction
requirements
ClipboardManager |addPrimaryClipChangedListener Soft reboot IPC flooding
AccessibilityManager|addClient Soft reboot IPC flooding
LauncherApps addOnAppsChangedListener Soft reboot IPC flooding
TvInputManager registerCallback Soft reboot IPC flooding
EthernetManager addListener Soft reboot IPC flooding
WifiManager WifiLock.acquire Soft reboot IPC flooding

MulticastLock.acquire

LocationManager addGpsMeasurementsListener Soft reboot IPC flooding

addGpsNavigationMessageListener

vulnerabilities have been confirmed by Android Security Team and assigned with
different Android Bug IDs. We describe the vulnerabilities in the following.

Vulnerabilities Caused by Passing Fake Identity. We find 19 inconsis-
tent method pairs that are identified in 86 cases where service helpers pass the
callers’ identities to the services. That is, 19 service methods receive callers’
identities from the corresponding service helpers but fail to verify the authen-
ticity of the received identities as the service helpers do. We manually verify
whether all of them can be exploited. Our verification shows that nine out
of the 19 inconsistent method pairs can be used to launch real-world attacks.
The rest 10 methods are not vulnerable to the fake identity attacks. Among
them, five methods are protected by high level permissions (i.e., signature and
signatureOrSystem levels) and cannot be granted to third-party apps, such as
StatusBarManager.setIcon(), and the other five methods do not incur security
issues, such as BackupManager.dataChanged ().

One vulnerability is abuse of enqueueToast () in notification service, which
can lead to system reboot. Malicious apps will be regarded as one of the system
apps by passing a fake package name “android” and can exhaust the system
resources. The other eight vulnerabilities are in the notification service and



the fingerprint service, which will result in the privilege escalation. A real-
world attack to fingerprint service is illustrated in Sect. 4.2.1.

Vulnerabilities Caused by Passing Illegal Parameter. We find out 227
service helper methods validating their input parameters. Among these ser-
vice helper methods and their corresponding service IPC methods, 51 method
pairs are inconsistent in validating the input parameters. These methods may
be exploited. After manual verification, three methods are identified to be vul-
nerable, i.e., they can be exploited to crash their services.

The reason most of inconsistent method pairs are secure is that Android
automatically adds handle code for some common exceptions when generating
Java classes from AIDL. The six most common exceptions are well handled
in the system services defined by AIDL, including BadParcelableException,
IllegalArgumentException, TllegalStateException, NullPointer
Exception, SecurityException, and NetworkOnMainThreadException [11].
For other exceptions, it re-throws them as RuntimeExceptions. The exceptions
thrown by system service IPC methods are caught by the Binder framework.
The Binder framework then passes the exception to the IPC caller through
Parcel.writeException() so that the caller could handle these exceptions in
its own process. Therefore, if the exception triggered by illegal parameters occurs
inside the service IPC methods, it would be handled well and not crash the ser-
vice. However, if the parameter is used outside the service IPC methods, such
as being used in asynchronous handler or stored for later access, it may lead to
security issues due to the failure of handling exceptions. These three vulnera-
bilities in MediaBrowserService and HealthService are due to such failure in
handling exceptions. In Sect. 4.2.3, we construct a real-world attack to illustrate
the process of crashing Bluetooth service by passing illegal parameters.

Vulnerabilities Caused by Invoking IPC with Fake Status. We find that
six service helper methods check the caller’s status. One of them lacks the valida-
tion of the caller’s status in its corresponding service method, i.e., NfcService.
It bypasses user interaction to access function without user initiation or user
permission, we will show such a case in Sect. 4.2.2 that an app can retrieve NFC
data in background.

Vulnerabilities Caused by IPC Flooding. We identify nine methods in
service helpers that handle duplicated requests which can be bypassed. These
helper methods firstly check whether the current request is a duplicated one.
These methods handle duplicated requests either by processing the requests
locally (but not delivering them to the services) or restricting the number of
the requests that can be delivered to the services. However, as we point out,
these methods can be easily bypassed by directly using the methods in the cor-
responding services. A malicious app can abusively invoke corresponding service
via [PC without any restriction. A large number of IPC calls would lead to
Android resource exhaustion, which can further cause the system reboot. An
attack leading to Android soft reboot will be described in Sect. 4.2.1.



4.2 Real-World Attacks

In this section, we demonstrate the impacts of several representative vulnerabil-
ities by constructing real-world attacks to exploit these vulnerabilities.

4.2.1 User Fingerprint Authentication in Background

The FingerprintService provides functions related to user fingerprint authen-
tication. We discover that there are five vulnerable methods in Fingerprint
Service which all result in the privilege escalation by passing fake iden-
tify. The functions include fingerprint authentication (authenticate() and
cancelAuthentication()), accessing the information about the enrolled fin-
gerprints of a particular user (getEnrolledFingerprints() and hasEnrolled
Fingerprints), and determining if the fingerprint sensor is present and func-
tional on the current device (isHardwareDetected()).

Take FingerprintService.authenticate() as an example, the helper class
of FingerprintService, i.e., FingerprintManager, is responsible for automat-
ically collecting and passing the caller’s package name to FingerprintService.
FingerprintService.authenticate() is used to authenticate a given finger-
print. As shown in Listing 1, in authenticate(), it verifies whether the caller
is allowed to use fingerprint based on received package name (Line 2). In
canUseFingerprint (), it evaluates whether the caller is the current user or
profile (Line 12), whether App Ops allows the operation (Line 14), and whether
the caller is currently in the foreground (Line 16). Note that if the caller’s
package name is of KeyguardService, the caller is always allowed to use the
fingerprint, and above restrictions could be bypassed (Line 10). Unfortunately,
authenticate () never verify the authenticity of received package name. A mali-
cious app can bypass the service helper to directly feed the KeyguardService’s
package name to the service method FingerprintService.authenticate().
In this case, a malicious app can circumvent these three restrictions in
canUseFingerprint (). This vulnerability is confirmed with Bug ID AndroidID-
29324069.

1 public void authenticate(/* other parameters #*/, String pkgName) {
2 if (!canUseFingerprint (pkgName, true)) {

3 Slog.v(TAG, "authenticate(): reject " + pkgName) ;

4 return;

3 }

7
8 boolean canUseFingerprint(String pkgName, boolean foregroundOnly) {

9 checkPermission (USE_FINGERPRINT) ;

10 if (pkgName.equals(mKeyguardPackage))

11 return true; // Keyguard is always allowed

12 if (!isCurrentUserOrProfile(UserHandle.getCallingUserId()))
13 return false;

14 if (mAppOps.notelp(OP_USE_FINGERPRINT, uid, pkgName) != MODE_ALLOWED)
15 return false;

16 if (foregroundOnly && !isForegroundActivity(uid, pid))

17 return false;

18 return true;

1 F

Listing 1: Code snippet in FingerprintService. java

(All code we present in this section has been simplified for brevity).



4.2.2 NFC Data Retrieval in Background

The NfcService provides NFC operations such as reading data from a close NFC
tag. The service helper of NfcService checks the app’s status by its method,
i.e., NfcAdapter.enableForegroundDispatch(), so that only the app currently
running in the foreground could register NFC listeners (see Listing 2). It is a
rational design that the activity currently in the foreground should be the pref-
erential destination for new coming NFC events. However, a malicious app could
directly call service proxy method INfcAdapter.enableForegroundDispatch()
to register an NFC listener. This is different from passing fake identities. There
is no need to feed a fake status as the status is not passed to the service side.
The NFC service does not verify whether the app is indeed in the foreground.
In this case, the malicious app in the background can successfully register NFC
listeners. When an NFC tag approaches the device, the malicious app in the
background can read data on the NFC tag which may lead to user privacy leak-
age. We have reported this vulnerability to Android Security Team. It is tracked
with AndroidID-28300969 with moderate severity level.

13
/This method must be called from the main thread,

;nd only when the activity is in the foreground (resumed).

*
void enableForegroundDispatch(Activity aty, /* other paramters */) {
6 if (!aty.isResumed()g {
7 throw new IllegalStateException("Foreground dispatch can only be
— enabled " + "when your activity is resumed");

S EECI

8 }
9 sService.setForegroundDispatch(intent, filters, parcel);
0}

Listing 2: Code in NfcAdapter. java, the helper class of NFC service.

4.2.3 Bluetooth Service Crash

The HealthService service, which provides health-related Bluetooth service,
contains a vulnerability that can be exploited by passing illegal parame-
ters. The method pairs, i.e., the service helper method BluetoothHealth.
registerAppConfiguraton(String name, int dataType...) and the corre-
sponding service method HealthService.BluetoothHealthBinder.register
AppConfiguration(String name, int dataType...), do not use the same
method to validate parameters. The helper method checks the “name” para-
meter to make sure it is not null, whereas the service method does not.
The service does not use the value of “name” parameter immediately in the
IPC method. Instead, it stores the value and uses it in BluetoothHealthApp
Configuration.equals(). In BluetoothHealthAppConfiguration.equals(),
it assumes config.getName(), that returns the value of “name”, can never
be null as shown in Listing 3. When a malicious app bypasses the ser-
vice helper and registers a config with null-value in “name” parameter, there
would be a NullPointerExcetion in BluetoothHealthAppConfiguration.
equals (). Unfortunately, this method fails to handle the exception, and hence



the HealthService crashes. This vulnerability is acknowledged by Android
Security Team, and tracked as AndroidID-28271086.

public boolean equals(Object o) {
if (o_instanceof BluetoothHealthAppConfiguration) {
BluetoothHealthAppConfiguration config = o;
// config.getName() can never be NULL
return mName.equals(config.getName()) && ... ;

}
return false;

0N oA W N =

Listing 3: Code snippet in BluetoothHealthAppConfiguration. java. The pos-
sible reason is that Google engineers assume that mName should never be NULL
since it is validated in its corresponding helper class.

4.2.4 Android System Crash

This is an attack related to restriction on duplicated requests. The helper
class associated with Wi-Fi service is WifiManager. An app can acquire
Wi-Fi lock to prevent Wi-Fi to go in stand-by. This is done by calling
WifiManager.WifiLock.acquire(). The source code is shown in Listing . This
method examines whether the current request exceeds the maximum lock num-
ber that an app can acquire. If it detects that the current request has exceeded
the threshold, it would release the lock immediately. We can see from the com-
ments in AOSP that the restriction here is to “prevent apps from creating a
ridiculous number of locks and crashing the system by overflowing the global ref
table.” However, a malicious app can easily bypass such restriction in the service
helper by directly issuing requests to Wi-Fi service via the service proxy, i.e.,
IWifiManager.acquireWifilLock(). A large number of IPC calls would over-
flow the reference table, and lead to the crash of Wi-Fi service and then the
reboot of Android. This vulnerability is tracked as AndroidID-27596394.

/* Mazimum number of active locks we allow.
* This limit was added to prevent apps from creating a rTidiculous number of
— locks and crashing the system by overflowing the global ref table.

*/
private static final int MAX_ACTIVE_LOCKS = 50;

(S

B w

o

public void acquire() {
mService.acquireMulticastLock (mBinder, mTag) ;
if (mActiveLockCount >= MAX_ACTIVE_LOCKS) {
mService.releaseWifilLock (mBinder)
throw new Exception("Exceeded maximum number of wifi locks");

W R OO ® o

o e

T

Listing 4: Code snippet in WifiManager. java.



5 Discussion

5.1 Lessons Learned

Service helpers play an important role in assisting both app developers (for easy
app development) and services (for security verification). Unfortunately, we show
that the use of the service helpers could be manipulated. In a manipulated process,
service helpers can be bypassed. It means all the security mechanisms would be
in vain. We have identified that there are indeed a large number of such vulnera-
bilities (Sect.4). These vulnerabilities can lead to privilege escalation, bypass of
user interaction requirements, service crash, and Android system soft reboot.

All vulnerabilities discussed in our paper are incurred by that security mech-
anisms in service helpers are bypassed. Since Android cannot guarantee a con-
trol flow to the service is initiated by a service helper, to completely prevent
the attacks, an intuitive solution is to let services enforce the same security
mechanisms as that in the corresponding service helpers, i.e., verifying callers’
identities, verifying callers’ status, validating input parameters, or constraining
duplicated requests.

5.2 Limitations

False Negatives. Even though we have detected a series of vulnerabilities
caused by the bypass of service helpers, we have to admit that there may be
more such vulnerabilities to be uncovered. There are two factors leading to false
negatives. One factor is that we do not consider the sequence of check and use.
In our approach, we examine whether the service enforces the same security
mechanisms as the service helper does. We assume that as long as there are
the same enforcements in services, the adversary cannot abuse the service even
though (s)he can bypass its service helpers. However, some defective services
may perform sensitive operations before the security checking, e.g., using the
parameter before the validation. In this case, the early use may lead to potential
risks even with the presence of the same verifications in services. Another factor
is that some services invoke native code using JNI, which is a small portion of
the service code [5]. We do not study on these native code in our analysis, which
also results in false negatives. We leave the analysis on services with JNI native
code as future works.

Manual Work. Our approach is mostly automated, but still involves some
manual works. The manual works are used in three processes. The first one is to
identify the IPC methods that are not defined by AIDL. Fortunately, there are
only five such services implementing their own IPC methods without AIDL. The
second manual work is to examine whether the process of dealing with duplicated
request are consistent in method pairs. There are nine pairs in total that need to
be manually verified. The third one is to verify whether the experimental results
can indeed be exploited to launch real-world attacks. It is also necessary to
investigate the impacts of the vulnerabilities by verifying if they can be exploited.



6 Related Work

Vulnerabilities in Android have been extensively studied, including private data
leakage [12-16], privilege escalation [17-21] and component hijacking [22-25].
In this section, we only summarize and compare with the existing studies closely
related to ours.

Android System Service Security. There have been only a few works [5,
26,27] on the security of system services, despite the significant part they take
in Android framework and the important role they play in Android. Huang
et al. [26] discover a design flaw in the concurrency control of Android system
services. They notice that Android system services often use the lock mechanism
to protect critical sections or synchronized methods. If an application takes a lock
for a long time, other services sharing the same lock would freeze, and then the
watchdog thread would force Android to reboot. Shao et al. [5] find out that there
are multiple execution paths leading to the same system service function but with
inconsistent privilege requirement. Malicious apps can escalate their privileges
or even perform DoS attacks by redirecting their requests to the paths with less
enforced permissions. Different from the study only on the service side, our work
focuses on investigating the impacts of bypassing service helpers by studying
the security mechanisms in both services and service helpers. Another related
work [27] examines the input validation in system services using fuzzing. They
have identified several DoS attacks due to the lack of proper input validation in
system services. Parts of our work is related to the input validation of system
services. The identity collected by the service helper and the parameters prepared
by the developer are passed to the service as its input. Our relevant findings in
Sects. 4.2.1 and 4.2.3 reveal more vulnerabilities in the parameter validation
which are missed in their detection. These studies are unable to discover the
vulnerabilities since they can be exploited by constructing special parameters.
For example, the FingerprintService service can be exploited if the input
parameter is set to be the package name of KeyguardService (see Sect.4.2.1.
However, it is not easy for fuzzing to construct the parameters so as to effectively
find this vulnerability.

Static Analysis in Android. Static analysis is one of the most effective ways
to analyze the vulnerabilities in both Android systems and apps. Based on
static analysis, there have been various researches on malware detection [28-
30], library security [31], repackaging detection [32,33], component security [25],
system service security [5,26], and permission specification [7]. Static analysis
tools [6,34,35] also have been proposed to solve different problems. The two
[5,26] closely related to our work both use static analysis. The difference is that
our study focuses on the security breaches related to bypassing service helpers.
Moreover, since static analysis cannot accurately reflect the precise situations in
runtime, the analysis results may not be accurate. In our paper, we verifies the
found vulnerabilities by constructing real-world attacks.



7 Conclusion

To our best knowledge, our study is the first systemic study on security problems
of bypassing service helper of various Android system services. We point out that
system services face the risk of being abused via bypassing the security mecha-
nisms in service helpers. In order to identify such vulnerabilities and demonstrate
the impacts of vulnerabilities, we develop a tool to analyze the system services
in the latest AOSP. The experimental results reveal 22 vulnerabilities that can
be used to launch real-world attacks.

Acknowledgments. This work was partially supported by the National Natural Sci-
ence Foundation of China under grants 61572278, 61502468, 61502469 and 61572483,
the National Key R&D Program of China under grant 2016YFB0800102, and the
National Basic Research Program of China (973 Program) under grant 2012CB315804.

References

1. Android open source project. https://android.googlesource.com/
Android interface definition language. https://goo.gl/UFrnT3
3. Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on Reliability in Distributed Software and Database Systems (1986)
4. Android API reference: Binder. https://goo.gl/w2fXFH
5. Shao, Y., Chen, Q.A., Mao, Z.M., Ott, J., Qian, Z.: Kratos: discovering inconsistent
security policy enforcement in the android framework. In: Proceedings of the 23rd
NDSS (2016)
6. Soot. https://sable.github.io/soot/
7. Au, KZW.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-
mission specification. In: Proceedings of the 19th CCS (2012)
8. Compling with jack. https://goo.gl/09RYXS8
9. Dex2jar. https://goo.gl/skfQLI
10. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques, and Tools.
Addison Wesley, Boston (1986)
11. Android API reference: Parcel.writeexception(). https://goo.gl/7TzuXuR
12. Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying
and categorizing android sources and sinks. In: Proceedings of the 21st NDSS
(2014)
13. Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smart-
phone motion. In: Proceedings of the 6th HotSec (2011)
14. Xu, Z., Bai, K., Zhu, S.: Taplogger: inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of the Fifth WISEC (2012)
15. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proceedings of the 28th ACSAC (2012)
16. Cheng, Y., Ying, L., Jiao, S., Su, P., Feng, D.: Bind your phone number with
caution: automated user profiling through address book matching on smartphone.
In: Proceedings of the 8th ASTACCS (2013)
17. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: Proceedings of the
19th NDSS (2012)

N



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R.: Xmandroid: a new
android evolution to mitigate privilege escalation attacks. Technische Universitat
Darmstadt, Technical Report TR-2011-04 (2011)

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: Proceedings of the 20th USENIX Security
(2011)

Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ili¢, 1. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346-360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8_30

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight
provenance for smart phone operating systems. In: Proceedings of the 20th
USENIX Security (2011)

Zhou, Y., Jiang, X.: Detecting passive content leaks and pollution in android appli-
cations. In: Proceedings of the 20th NDSS (2013)

Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the app is that? Deception and countermeasures in the android user interface.
In: Proceedings of 36th IEEE Security and Privacy (2015)

Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th MobiSys (2011)

Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: Chex: statically vetting android apps
for component hijacking vulnerabilities. In: Proceedings of the 19th CCS (2012)
Huang, H., Zhu, S., Chen, K., Liu, P.: From system services freezing to system
server shutdown in android: all you need is a loop in an app. In: Proceedings of
the 22nd CCS (2015)

Cao, C., Gao, N., Liu, P., Xiang, J.: Towards analyzing the input validation vul-
nerabilities associated with android system services. In: Proceedings of the 31st
ACSAC (2015)

Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th CCS (2009)

Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifica-
tion of android (2009)

Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th MobiSys
(2012)

Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.-R.: Unsafe exposure analysis of
mobile in-app advertisements. In: Proceedings of the Fifth WISEC (2012)

Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone
applications in third-party android marketplaces. In: Proceedings of the Second
CODASPY (2012)

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system
for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62-81. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37300-8_4

Androguard. http://code.google.com/p/androguard

Androbugs. http://www.androbugs.com



	Exploiting android system services through bypassing service helpers
	Citation
	Author

	tmp.1509342910.pdf.iCWQ9

