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Large-Scale Online Feature Selection for Ultra-High Dimensional
Sparse Data

YUE WU, University of Science and Technology of China, Singapore Management University
STEVEN C. H. HOI, Singapore Management University

TAO MEI, University of Science and Technology of China, Microsoft Research Asia
NENGHAI YU, University of Science and Technology of China

Feature selection (F'S) is an important technique in machine learning and data mining, especially for large-
scale high-dimensional data. Most existing studies have been restricted to batch learning, which is often
inefficient and poorly scalable when handling big data in real world. As real data may arrive sequentially and
continuously, batch learning has to retrain the model for the new coming data, which is very computationally
intensive. Online feature selection (OFS) is a promising new paradigm that is more efficient and scalable
than batch learning algorithms. However, existing online algorithms usually fall short in their inferior
efficacy. In this article, we present a novel second-order OFS algorithm that is simple yet effective, very fast
and extremely scalable to deal with large-scale ultra-high dimensional sparse data streams. The basic idea
is to exploit the second-order information to choose the subset of important features with high confidence
weights. Unlike existing OFS methods that often suffer from extra high computational cost, we devise a
novel algorithm with a MaxHeap-based approach, which is not only more effective than the existing first-
order algorithms, but also significantly more efficient and scalable. Our extensive experiments validated
that the proposed technique achieves highly competitive accuracy as compared with state-of-the-art batch
FS methods, meanwhile it consumes significantly less computational cost that is orders of magnitude lower.
Impressively, on a billion-scale synthetic dataset (1-billion dimensions, 1-billion non-zero features, and 1-
million samples), the proposed algorithm takes less than 3 minutes to run on a single PC.

CCS Concepts: ® Computing methodologies — Feature selection; Supervised learning by classifica-
tion;

Additional Key Words and Phrases: Feature selection, sparsity, second-order online learning, ultra-high
dimensionality

1. INTRODUCTION

In machine learning and data mining, feature selection (F'S) is the process of removing
irrelevant and redundant features from data toward model construction. It is a very
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important technique in the era of big data today. It has found applications in a wide
range of domains, particularly for scenarios with high-dimensional data [Bolén-Canedo
et al. 2015; Zhai et al. 2014]. FS has been extensively studied in which various algo-
rithms have been proposed [Hua et al. 2009; Liu and Yu 2005].

Despite the extensive research efforts in literature, most F'S methods are restricted to
batch learning settings [Bolén-Canedo et al. 2013]. However, batch learning has critical
drawbacks for big data applications. One drawback is that they require the entire
training dataset to be loaded into memory. This is obviously non-scalable when solving
real-world applications with large-scale datasets that exceed the memory capacity.
Another drawback is that batch learning methods usually assume all training data
and their full set of features have been made available prior to the learning process.
This assumption does not always hold in many real-world applications where data
arrive sequentially (e.g., internet data) or novel features may appear incrementally
(e.g., spam email filtering). These drawbacks make traditional batch FS techniques
non-practical for emerging big data applications.

To overcome the drawbacks of batch FS, online feature selection (OFS) has been
explored recently [Hoi et al. 2012; Wang et al. 2014; Wu et al. 2010; Yang et al. 2013].
One state-of-the-art scheme in Wang et al. [2014] attempts to resolve F'S by exploring
online learning techniques. Although it is far more efficient and scalable than batch
FS techniques, it still falls short in requiring linear time complexity with respect to
feature dimensionality. Besides, the learning accuracy is often not as well as batch FS
algorithms.

In this article, we argue that existing solutions are still not feasible due to the
high computation and memory cost in real-world applications. We propose a simple
but smart second-order online feature selection (SOFS) algorithm. It is not only ex-
tremely efficient and scalable to large scale and ultra-high dimensionality, but also
effective to address this open challenge. Compared to existing online OFS methods,
the complexity is significantly reduced to being linear to the average number of non-
zero features per instance, rather than the full feature dimensionality. In particular,
the proposed algorithm exploits the recent advances of second-order online learning
techniques [Crammer et al. 2009b; Dredze et al. 2008]. It tries to select the most con-
fident weights and achieves highly competitive learning accuracy even compared with
state-of-the-art batch F'S methods.

Our main contributions can be summarized as follows:

—We propose a new effective SOFS algorithm for large-scale ultra-high-dimensional
sparse data.

—We propose fast algorithms for both existing first-order and our proposed SOFS
algorithms. In particular, the computational complexity of the proposed second-order
algorithm is reduced from being linear to the whole dimensionality to being linear
to the average number of non-zero features.

—We conduct extensive experiments to verify the effectiveness and efficiency of the
proposed algorithm.

The rest of this article is organized as follows: Section 2 reviews the related work.
Section 3 presents the proposed method in detail. Section 4 shows our empirical eval-
uations. Section 5 draws our conclusions and discusses our future work.

2. RELATED WORK

Our work is related to FS and online learning. We review the related work in each
below.

FS methods have been extensively studied in literature [Bolon-Canedo et al. 2015;
Hua et al. 2009; Liu and Yu 2005; Zhao et al. 2013]. They can be roughly grouped



into three categories: Filter, Wrapper, and Embedded methods. Filter methods rely
on characteristics of data such as correlation, distance, and information gain without
assuming specific classifiers [Jiang et al. 2015; Jiang and Wang 2016; Li et al. 2016; Yu
and Liu 2003]. Yang et al. [2015] explore the combination effectiveness of selected fea-
tures with a multiple kernel learning approach, since traditional methods suffer from
the “monotonic” problem. The drawback of the Filter methods is that they ignore the
effect of selected features on the performance of the induction algorithm. By contrast,
Wrapper methods employ a predetermined classifier to evaluate the quality of selected
features [Kohavi and John 1997]. They search for a subset of features and then evaluate
their classification performances repeatedly. They often yield better performance for
the chosen classifier, but are computationally intensive. Embedded methods integrate
feature selection into the model training process [Le Thi et al. 2014; Maldonado et al.
2014; Pappu et al. 2015; Xu et al. 2009]. These methods aim to make a tradeoff be-
tween the efficiency of filter methods and the predictive accuracy of wrapper methods.
However, their selected features might not be suitable for other classifiers.

Many studies have attempted to address OFS in diverse ways. Some aim to handle
streaming features arriving sequentially to the classifier [Glocer et al. 2005; Perkins
and Theiler 2003; Wu et al. 2010]. They follow the stream learning setting and re-
turn a trained model at each time step given the observed features. However, these
methods assume all the training instances must be given. This is often unrealistic for
many online applications. In more general case where data arrive sequentially and
continuously, Huang et al. [2015] tackle OFS from an unsupervised perspective. Our
work is more closely related to another OFS setting by Wang et al. [2014]. Despite its
considerable advantages in efficiency and scalability over batch FS methods, it is still
slow when applied to large-scale FS tasks with ultra-high dimensionality.

Our work is also related to online learning [Hoi et al. 2014]. A variety of online
algorithms have been proposed in the past few years, ranging from classical first-
order algorithms [Crammer et al. 2006; Rosenblatt 1958; Zinkevich 2003] to recent
second-order algorithms [Crammer et al. 2013; Ding et al. 2015; Dredze et al. 2008;
Lu et al. 2013; Wang et al. 2012, 2016]. In general, these algorithms require to access
and explore the full set of features. They are not directly applicable to OFS tasks for
selecting a fixed number of active features. Another closely related online learning
method is sparse online learning [Duchi et al. 2011; Gao et al. 2014; Wang et al. 2014].
It aims to learn a sparse linear classifier from training data in high-dimensional space.
Yang et al. [2013] proposed a sparse online learning framework to solve the multi-task
feature selection problem for efficiency and memory concern. Despite the extensive
efforts, most of these works usually impose a soft constraint, such as ¢;-regularization,
onto the objective function for promoting sparsity. They do not directly solve an OFS
task that requires a hard constraint on the number of active dimensions in the learned
classifier. In this article, we explore online learning techniques for advancing the state
of the art of OFS algorithms.

3. ONLINE FEATURE SELECTION

In this section, we present a novel OFS method. We first describe the problem set-
ting. Then, we briefly introduce the existing first-order online feature selection (FOFS)
methods. Finally, we present the proposed SOFS method in detail.

3.1. Problem Setting

Without loss of generality, this article first investigates the problem of binary linear
classification tasks. We will extend the solution to the multi-class setting in Section 3.6.
Let {(x!, y)|t =1, ..., T} be a sequence of data instances received sequentially over the
training process. Each x* € R? is a d-dimensional vector and y* € {+1, —1}. An online



learner will learn a classifier with the same dimensionality w € R?. At each time ¢, a
learner receives an example x’. It then predicts the class label ' € {+1, —1} based on
the current model, i.e., the linear weight vector w':

P = sign(w’ - x°). (1)

After making the prediction, the true label y’ will be revealed. The learner can
measure the loss ¢(w') suffered with respect to (x, y*), which is the difference between
the prediction and the true label. At the end of each iteration, the learner will update
the weight vector w’ according to some updating rules. For example, the OGD algorithm
updates the model as follows:

wt+1 — wt + 7]tytxt, (2)

where 1’ is the learning rate at time ¢. According to the different updating rules, online
learning algorithms can be grouped into two categories:

—First-order algorithms, which are essentially gradient descent methods [Crammer
et al. 2006].

—Second-order algorithms, which exploit geometrical properties of the input
data [Crammer et al. 2013] or construct approximations to the Hessian of the objec-
tive functions [Duchi et al. 2011].

In the setting of OFS, we need to select a relatively small number of elements in w
and set the others to zero. In other words, we impose the following constraint on the
Ly norm of w:

d
Iwllo < B, lIwllo =) w,°, (3)
i=1

where B is the predefined constant. Consequently, at most B features of x will be used
for prediction.

3.2. First-Order Online Feature Selection

One of the most straightforward approaches to OFS is to apply the Perceptron algorithm
via truncation (PET) [Wang et al. 2014]. Specifically, at each step, the classifier first
predicts the label 9 with w’. If §* is correct, then w'*! = w’; otherwise, the classifier
will update w’ by the Perceptron rule: w'™! = w’ 4 ny’x’. It will be further truncated by
keeping the largest B absolute values of w/*! and setting the rest to zero. The truncated
classifier, denoted by w'*!, will be used to predict the next data instance. Algorithm 1
shows the framework of PET and Algorithm 2 shows the truncation step for OFS.

As analyzed in Wang et al. [2014], the above simple approach does not always work
well in practice. In particular, it cannot guarantee a small number of mistakes since it
fails to ensure that the numerical values of truncated elements are sufficiently small.
This will lead to a non-trivial loss of accuracy. Consequently, the authors in Wang et al.
[2014] proposed a FOFS algorithm by applying sparse projection before truncation.
FOFS guarantees the resulting classifier w' is restricted into an ¢;-ball at each step.
Algorithm 3 shows the details of the FOFS algorithm.

3.3. Second-Order Online Feature Selection

In general, the FOF'S methods have a linear time complexity with respect to the feature
dimensionality. It could be very slow for ultra-high-dimensional data. Besides, in cases
where the different dimensions of the input data are not in the same scale, this method
may remove potentially informative features. As shown in equation (1), the prediction
is not only dependent on the weight vector, but also on the input data. Even though



ALGORITHM 1: PET: Framework of Perceptron with Truncation

Input: B — number of features to select, n — learning rate
Output: weight vector w’
Initialize: w! = 0;
fortin{1,..., T} do
Receive x* € R? and predict §* = sign(w’ - x);
Receive true label y';
Suffer loss £(w?);
if ¢(w') > 0 then
Wil = wt + nytx?;
w!t! = Truncate(W't!, B);
end
end

ALGORITHM 2: Truncate

Input: w — weight vector, B — number of features to select
Output: truncated weight vector w
if |wW|o > B then
w = w with every element but the B largest absolute ones set to zero;
else
W =W,
end

ALGORITHM 3: FOFS: First-Order OFS via Sparse Projection

Input: B — number of features to select, n — constant learning rate, A — regularization
parameter
Output: truncated weight vector w
witl = (1 — apwt + ny'x’;
1

Sot+l s NA S t+1.
W't = min{1, T P

w!tl = Truncate(w't!, B);

|lw;| < |wj, it is not guaranteed that w; * E(x;) < w; * E(x;), where E(x;) is the expecta-
tion of x;. To overcome these limitations, we propose a SOFS method by exploring the
recent advances of second-order online learning techniques.

The confidence-weighted (CW) method [Dredze et al. 2008] assumes that the weight
vector of the linear classifier follows a Gaussian distribution w ~ N(u, ). The con-
fidence of weights is represented by the diagonal elements of the covariance matrix
¥. The smaller X;;, the more confidence we have in the mean value of weight w;. Be-
fore observing any samples, all weights are of the same confidence or uncertainty. In
the CW learning process, given an observed training example (x!, y'), CW makes an
update by ensuring that the probability of making correct prediction on x’ is bigger
than a threshold r. Meanwhile, CW tries to stay close to the previous distribution. The
solution for the update can be cast into the following optimization problem:

@t =) = argmin D (W (u, £), N(u!, %))
n.x

sit. Proyyve obf(w-x)>0]> 1, 4)



ALGORITHM 4: Framework of the Second-Order Online Feature Selection
Input: B — number of features to select, y — regularization parameter
Output: weight vector u” and confidence =7
Initialize: p' =0, X! = I;
fortin {1,...,T} do
Receive x! € R? and predict §* = sign(u! - x*);
Receive true label y/;
Suffer loss £(uf) = max(0, 1 — y'(u! - x))?%;
if ¢(u') > 0 then
Calculate B!, g’ by equation (8);
for j=1,....,ddo

7 = i = g (2 = () ¢
end
for j=1,...,ddo

if Ej-}rl in smallest B diagonal elements then

G

y

/’L_lj+1 — /l3+l;
else
M;ﬂ -0
end
end
end

end

where Dk, (x, ) is the Kullback-Leibler (KL) divergence. The KL divergence of two
Gaussian distributions N (u, £) and N (!, £?) is defined as

¢ gty _ 1, det¥’ 1 1
DNV (e, =), N(u!, £9) = 5 log s + 2Tr((E )y 1y)
1 d
+§(ut —wTEH ! — ) — 3 (5)

The constraint in (4) can be rewritten as y'(u - xt) > ¢/(x))T ©x!, where ¢ = ®~1(r)
(® is the cumulative function of normal distribution). Various approaches have been
proposed to solve the optimization problem in (4). In this work, we explore AROW
[Crammer et al. 2013], which performs adaptive regularization of the prediction
function for each new observation. It has shown to be more robust in handling label
noises than the original CW algorithms:

(41, £+1) = argmin {DKLU\/m, ). Nt £9) + — o) + —(x)T zxt} o ®
7> 2y 2y

where y > 0 is a regularization parameter. ¢/(u) is the squared hinge loss function:

24(u) = max(0, 1 — y'(u - x9))%. (7)

The problem in (6) can be solved with the closed-form solutions as follows:
Bt = m g' = —2max (0,1 — y'(p’ - x")y'x’

ﬂt+1 — ul - %ﬁtztgt (zt+1)=1 — (5t)-1 4 diag()i(x’)T).

Note that only the diagonal elements of the covariance matrix X are considered.
From the efficiency perspective, maintaining a full covariance matrix requires O(d?)
memory space and O(d?) computational complexity. It is impractical to handle large-
scale ultra-high-dimensional data in such case. From the learning ability perspective,

(8



it is explored that given enough data, the diagonal approximation is able to outperform
the full version. This is because the same ability to adapt to data co-dependencies that
helps full CW learning during the early rounds leads to adapt to noise as it approaches
the optimal weight vector when the data are not separable [Ma et al. 2010].

Unlike the FOFS methods that select the important features based on the magni-
tudes of the weight vector, the key idea of the proposed SOF'S technique is to keep the
B most confidence features by exploiting the second-order information of the classifier.
Specifically, in the online learning process, when the loss for a training instance (x¢, y*)
is non-zero, we only update the most confident B weight variables whose covariance
values X ;; are among the B smallest. All the other weights are set to zero. Algorithm 4
shows the details of the proposed SOFS algorithm.

3.4. Efficient Algorithms

A common drawback with many existing OFS methods is the high computational cost
over ultra-high dimensions. Specifically, one of the major time-consuming procedures
is to select the largest or smallest B elements from a d-dimensional array (the absolute
weight vector in FOFS and the diagonal vector of ¥ in SOFS). Instead of sorting all
the elements at each step as in the previous study [Wang et al. 2014], we propose an
efficient and scalable solution by employing the MinHeap-based implementation for
PET and FOFS. Besides, with a similar MaxHeap-based implementation, we further
reduce the complexity by exploiting the monotonic decreasing property of SOFS as
shown in Section 3.4.2.

3.4.1. Efficient Algorithms for First-Order OFS. To find out the B largest values from a
d-dimensional array (either PET in Algorithm 1 or FOFS in Algorithm 3), a straight-
forward solution is to sort the d values and select the top B elements. To improve the
efficiency, we build a MinHeap to store the B largest absolute elements of the weight
vector w'. At each learning step, whenever the classifier is updated, we make the
following two-step updates to figure out the B largest elements:

—Adjust positions of the elements that already exist in the heap to maintain the heap.

—Compare each element that is not in the heap with the heap limit. If the value is
smaller than the heap limit, set the value of the element to zero. Otherwise, replace
the root node of the heap by the element. After that, adjust the position of the root
node with its child nodes recursively to maintain the heap property. The value of the
original root node is set to zero.

Algorithm 5 shows the detailed procedures of the improved algorithms for the FOFS
algorithm. Fast algorithm for PET is similar. We note that the improved algorithms
have never been proposed in previous studies.

To illustrate why the above steps work, we need to prove that the largest B elements
will be in the MinHeap after each iteration. Let A1, . . ., hp denote the indices of elements
that are already in the heap. The rest elements are with indices /g, 1, ..., kq. In the first
step, wp,, ..., wp, are re-organized to maintain the MinHeap. We have the following two
propositions.

Proposrtion 3.1. If wy,, Vi € [1, Bl is still among the largest B elements after updating
the model, wy, will not be replaced out of the heap.

ProposiTion 3.2. If wy,, Vi € (B, d] is among the largest B elements after updating the
model, wy,, will be replaced into the heap.

Proor. To prove the proposition 3.1, if wy, is not the smallest one among the largest
B elements, wj, will never become the root node due to the heap property. Thus, it will



ALGORITHM 5: Fast Algorithm for First-Order OFS

Input: B — number of features to select, n — learning rate, A — regularization parameter .
Output: weight vector w’
Initialize: w! = 0, v! = (jw}|, ..., |wi]) = 0, MinHeap H on v! with size B;
fortin {1,..., T} do

Receive x! € R? and predict §* = sign(w! - x°);

Receive true label y*;

Suffer loss ¢(w?);

if ¢(w') > 0 then

witl = (1 — apw! + ny'xt;
1

w1 = min{1, 7"\3;?1“2 JWitL
vt+1 — (lwt1+1|7 o |w(ti+1|),
adjust H to maintain the MinHeap;
forj=1,....d vj-“ ¢ H do
if v§+1 > H,;, then
get the index of H,,;,, denoted by s;
wt+1 — 0;
replace H,;, by vi—“;
adjust the root node with its childnodes recursively to maintain the MinHeap;

else
wz-“ =0;
end
end
end
end

never be replaced out of the heap. Otherwise, wy, is the smallest and the rest B— 1 are
no smaller than wy, . Combined with the assumption that wy, is still among the largest
B elements, the rest d — B elements outside of the heap should all be no bigger than wy,.
As aresult, wy, will not be replaced out of the heap in both cases. As to proposition 3.2,
we can easily conclude that the root node of the heap is smaller than wy, since wy, is
among the largest B elements. As a result, wy, will always be replaced into the heap as
long as the heap is well maintained. O

3.4.2. Efficient Algorithms for Second-Order OFS. Despite the better implementation, com-
putational complexity of the previous algorithms is still linear w.r.t. the feature dimen-
sionality d. In this section, we present an efficient algorithm for SOFS, whose computa-
tional complexity depends linearly on the number of non-zero features of each example
m, instead of the feature dimensionality d. This makes it extremely efficient and scal-
able when handling real-world high-dimensional sparse data. Before presenting the
proposed algorithm, we first introduce the following proposition for the monotonic de-
creasing property of X!, a property that is critical to the proposed algorithm.

PRrOPOSITION 3.3 (MONOTONIC DECREASING). Given %! computed by (8), Vtand Vj € [1, d],
ARIP 3L
JJ = TJJ

It is not difficult to verify the above proposition by noticing diag(x!(x))T)/y is always
non-negative. Using this important property, we can develop a fast algorithm for the
SOF'S method.



ALGORITHM 6: SOFS: Fast Algorithm for Second-Order OFS

Input: B — number of features to select, y — regularization parameter
Output: Output: weight vector u” and confidence =7
Initialize: u' = 0, X! = I, MaxHeap H on X! with size B;
fortin {1,..., T} do
Receive x’ € R” and predict § = sign(u! - x%);
Receive true label y/;
Suffer loss £(u') = max(0, 1 — y'(uf - x))?%;
if ¢(u?) > 0 then
Calculate g, g’ by (8);
for j=1,....d,x,; #0do

Wi =G — 3B g, (ST = ()T +
if =/ in H then

adjust 2;}71 recursively with its child nodes to maintain the MaxHeap;
end

(o )2 .

y

. t+1
forj=1,..., d,x;#0,%5" ¢ Hdo
if 23}1 < H,,. then
get the index of H,,,., denoted by s;

t+1 _ ().
Mg - 07
t+1,

replace Hy,, by Z77;

adjust the root node recursively with its child nodes to maintain the MaxHeap;

else
uitt =0
end
end
end
end

Similar to the previous solution, we build a MaxHeap data structure to store the B
smallest diagonal values of covariance ‘. The monotonic decreasing property of X’
leads to two major benefits in saving computational cost:

—When maintaining the heap in step 1, we do not need to update the positions of all the
B elements. Whenever an element is changed, we only need to compare and update
it with its child nodes since we know its parent node is guaranteed to be bigger than
the current element.

—In step 2, we do not need to check those unchanged elements outside the heap to
see if they are among the B smallest elements. This is because the root node of the
MaxHeap is non-increasing. The unchanged elements should still be bigger than the
root node after updating the model.

Algorithm 6 shows the details of the proposed fast algorithm for SOFS.

3.5. Analysis of Time and Space Complexity

The above proposed technique significantly improves the efficiency of OFS algorithms.
We now analyze the computational complexity of the above algorithms.

Let us denote the dimensionality of the weight vector by d, and m the average
number of non-zero features of each sample. In the worst case, each updating step of
PET requires:



—2m for calculating the loss and updating the model;

—m for calculating the absolute value of the model;

—Blog B for maintaining the MinHeap;

—(d — B)log B for finding out the largest B elements and maintaining the MinHeap;
—d — B for setting the corresponding elements to zero.

The overall computational complexity of PET at each step is {3m+d — B + dlog B}.
FOFS is similar to PET, which requires:

—2m for calculating the loss and updating the model;

—d for calculating the norm;

—d for sparse projection;

—d for calculating the absolute values of the model;

—Blog B for maintaining the MinHeap;

—(d — B)log B for finding out the largest B elements and maintaining the MinHeap;
—d — B for setting the corresponding elements to zero.

The overall complexity of FOFS at each step is {2m + 4d — B + dlog B}, which is much
more computationally expensive than PET for high dimensional data.
The updating of the proposed SOFS requires:

—3m for calculating the loss, updating the model and the covariance;
—mlog B for maintaining the MaxHeap since only m values changed;
—m for setting the corresponding elements to zero.

The computational complexity of SOF'S at each step is reduced to {4m + mlog B}, making
it far more efficient and scalable when handling ultra-high-dimensional sparse data
where m <« d and B « d. In the worst case where m ~ d, the cost of the maintaining
step of SOF'S is approximate to PET, but still much smaller than FOFS.

For space complexity, we only consider the space required by the classifiers. Storage
for data loading is omitted here. In our implementation, the input data are stored in
sparse arrays of index-value format, while the model parameters are represented by
dense vectors for efficiency concern. Both PET and FOFS require to keep the weight
vector w and its absolute vector in memory. The space complexity is O(2d). SOFS
also has the space complexity of O(2d) for keeping the weight vector and the diagonal
confidence matrix ¥ in memory. As a result, SOFS has the same space complexity as
the FOF'S algorithms.

3.6. Second-Order Multi-Class Online Feature Selection

In the multi-class setting, each training example is associated with a label y ¢
{0,1,...,k—1} for k classes. We adopt the one-vs.-the-rest strategy to extend the SOFS
to the multi-class setting. As suggested in [Crammer et al. 2009a], the distribution of
the confidence weighted model is similar to the binary case, w ~ N(u, £),u € R¥ ¥ ¢
RFdxkd We introduce a new label-dependent feature,

vix,i)=[07,... . x", ..., 0"]7,

where only the ith position ¥ (x, i) is x and others are 0 (0, x € R?). At each step, the

classifier receives a new example x’ and predicts the label ' = arg maxf;ol uty(x,10).
The classifier suffers a squared hinge loss:

(uh) = max(0,1 — ! - Ayt 9)
where Ay! depends on the multi-class updating strategy.



For max-score multi-class update,

Ayt = Y(xt, ) — y(x!, argmax ! - y(x, i)). (10)
i=0,isyt
For uniform multi-class update, let

E ={i#y :p y&0i)>pu -y, ),

we have
k-1 ~1/|E!| i ¢ E!
Ayt = alyxi), of =11 if i=y (11)
i—0 0 otherwise.

The update is performed as follows:
1 1
(@, 21 = arg min {Dgr, (N (s, ), N(p, £) + 5, (W + E(Avﬁﬂmwt}. (12)
n.x

The closed-form solution is similar to equation (8), except that y’x’ is replaced by
AL,

To select features, we keep the B features that are most confident. In the multi-class
setting, confidence of a feature depends on the % binary classifiers in the one-vs-the-

rest strategy. The confidence of the jth feature is measured by C; = & — Zf:_l %ijij- We
update the weight vector only for those whose confidence C; is among the B largest.
All the other weights are set to zero. The details of this algorithm are similar to those
of Algorithm 6, with some replacement of y'x’ by Ay!. The time complexity of SOFS in
the multi-class setting is & times that of the binary case.

Note that the sum Zf:_& ¥;;j is also monotonic decreasing in the multi-class setting,

as shown in the following proposition, which can be easily verified.

Prorosition 3.4 (MonNoTONIC DECREASING). Given X! computed by (12), Vt and Vj €
k-1 k=1 st 41
[1,d], o Efj,ij =2.i-0 Efj,—ij'
As a result, the fast algorithm in the binary classification also works in the multi-
class setting.

4. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of the
proposed SOFS algorithm. We compare with existing F'S algorithms on both synthetic
and real data, from medium scale to large scale.

4.1. Experimental Setup

For the family of OFS algorithms, we only run each algorithm by a single pass through
the training data if without explicit indication. We compare the proposed algorithm
with a set of state-of-the-art algorithms, including both online and batch F'S as follows:

—PET: the baseline of OFS by Perceptron with truncation [Wang et al. 2014];

—FOFS: the state-of-the-art first-order OF'S via sparse projection [Wang et al. 2014];

—mRMR: minimum Redundancy Maximum Relevance Feature Selection [Peng et al.
2005], a state-of-the-art batch F'S method and its parallelized version with Graphic
Processing Unit (GPU-mRMR) [Ramirez-Gallego et al. 2017].

—LIBLINEAR: a famous library for large linear classification [Fan et al. 2008]. We
adopt [1-SVM for the Embedded FS in our experiments.

—FGM: a batch Embedded feature-generating method [Tan et al. 2014].



Table I. Summary of Synthetic data (“K,”M,” and “B” are Short
for Thousand, Million, and Billion, Respectively)

Dataset #Train #Test Dim IDim® NDim? #Feature

X 100K 10K 10K 100 200 30M
Xs 100K 10K 20K 200 400 60M
X3 1M 100K 1B 500 500 1B

¢dimension of informative features per instance.
bdimension of noise features per instance.

For online algorithms, we use hinge loss as the loss function. A five-fold cross valida-
tion is conducted to identify the optimal parameters. The experiments are conducted
10 times with a random permutation of the dataset. For [1-SVM in LIBLINEAR, we
tune parameter C to select different number of features. For FGM, we follow the set-
tings in [Tan et al. 2014] and set C = 10 for simplicity. For mRMR, we first select a
specific number of features and then use the online gradient descent (OGD) algorithm
to train a classifier. We exploit the advantage of online learning that processes data
sequentially. We implement the online algorithms with two parallel threads, one for
data loading and the other for training. All experiments are conducted on a single
server with 64GB RAM.! The server also features a Nvidia Titan X GPU card for the
parallelized algorithm.

4.2. Experiments on Synthetic Data

Synthetic data. We follow the settings of FGM and generate three types of synthetic
data, namely X; € RI100Kx10K ¥, ¢ RI0Kx20K and X; e RIM*1B tg test the efficacy,
efficiency, and scalability of the proposed algorithm. All datasets are for binary classifi-
cation. Each entry is sampled from the i.i.d. Gaussian distribution N(0, 1). To simulate
real data, each sample is a sparse vector. The numbers of informative features for the
three datasets are 100, 200, and 500, respectively. For each sample, we randomly select
200 dimensions for X7, 400 dimensions for X5, and 500 dimensions for X3 as noise. To
generate labels, we sample a weight vector w* from the Uniform distribution ¢/(0, 1) as
the groundtruth. The label of each sample is determined by y = sign(w* - x*), where x*
is a sample without noise. Details of the synthetic datasets are shown in Table I.

4.2.1. Experiment on Medium-Scale Synthetic Data. We evaluate all the algorithms on X;
and Xs. The largest-scale dataset X3 will be used to test scalability of the algorithms
in the subsequent experiment. Figures 1 and 2 show the comparison of accuracy and
time cost, respectively. In the following we analyze each of them in detail.

Accuracy. Figure 1 shows the comparison of accuracy. Several observations can be
drawn from the figures. First, when plenty of informative features are selected(100 in
X; and 200 in X5), SOFS is comparable to batch FS algorithms. What is more, LIB-
LINEAR and FGM perform better than SOFS with very limited advantage. Second,
when less features are selected, batching learning algorithms are superior to online al-
gorithms. We find that FGM and mRMR work especially better than online algorithms
in such case. The accuracy of SOFS is not good with insufficient features. However, it
reaches the best and then saturates quickly with more features selected. Third, the two
FOFS algorithms perform the worst, especially on Xo. PET and FOFS work better than
SOFS with a very few features. However, their performances cannot reach a compara-
ble level with batch algorithms even with adequate features. To conclude, the proposed
algorithm is able to identify the number of informative features of the data. Besides, it
can reach a comparable performance with batch algorithm with enough features.

1We run the experiments on a server because batch algorithms require large RAM. The source codes is
available at LIBOL online repositories: https:/github.com/LIBOL/SOL/tree/master/ofs.
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Time cost. In addition to accuracy, training efficiency is a critical issue for real-world
problems. We show time cost of the algorithms in Figure 2. Generally, we can see that
the batch learning scheme, though effective, is much more time-consuming than online
learning algorithms. The proposed SOF'S can achieve comparable test accuracy to batch
algorithms in seconds. In contrast, LIBLINEAR requires about 10 times of training
time. FGM and mRMR even require 100 times of training time on the X, dataset. The
parallelized mRMR reduces more than half of the training time compared with the non-
parallel version. Among OFS, our method still requires the least training time. We find
that the time cost of OFS algorithms are similar to each other on these two datasets.
We will further explore their difference on larger scale and higher dimensional data to
verify the analysis in Section 3.5. Nevertheless, the accuracy and time cost comparison
verify that SOFS is an efficient and effective OFS algorithm.

4.2.2. Experiment on Large-Scale Synthetic Data. In this setting, we mainly test whether
SOFS is scalable to ultra-high-dimensional data with billion scale features on dataset
X3. Due to the large scale and ultra-high dimension of X3, we find that it may take hours
or even days for existing FS algorithms to run. As a result, we force B = 100, 200, 500
on X1, Xy, X3, respectively, to test whether SOFS can handle the increasing scale and
dimension. Besides, we compare with two baseline online learning algorithms with full
feature sets to verify the efficacy of SOFS. The two algorithms are OGD and Adaptive
Regularization of Weights (AROW). The results are shown in Table II.



Table Il. Scalability evaluation of SOFS

Algorithm X3 Xy X3
OGD(s) 3.58 7.06 114.82
Time cost AROW(s) 3.59 7.02 130.72

SOFS(s) 3.51 7.00 132.94
OGD(%) 98.44 97.83  99.39
Accuracy AROW(%) 98.48 98.52  99.55
SOFS(%) 99.17 98.62 99.56
OGD(%) 0.00 0.00 83.16
Model sparsity AROW(%)  0.00 0.00 72.22
SOFS(%)  99.00 99.00 99.99
Texts in bold highlight the least time cost, best accuracy
or highest sparsity.

Table Ill. Medium-Scale Real Datasets in Experiments

Dataset Feat dim Train no. Test no. Feat no.
relathe 4,322 1,000 427 87,352
pcmac 7,510 1,000 946 55,470
basehock 4,862 1,500 493 101,974
ccat 47,236 13,149 10,000 994,133
aut 20,072 40,000 22,581 1,969,407

real-sim 20,958 50,000 22,309 2,560,340

As we can see from the table, test accuracy is improved against the baseline al-
gorithms, which verifies that removing irrelevant or noisy features can improve the
prediction performance. What is more, SOF'S requires less than 1% features to achieve
such accuracy. The benefits are three-fold: (1) In cases where input data are dense, such
a sparse classifier will reduce the prediction time cost significantly. (2) It can reduce
the memory cost significantly in prediction. (3) It can significantly reduce the feature
extraction time. In this example, OGD and AROW require about 1GB to represent the
classifier of X3 (with a 4 byte float to represent each weight), while SOFS requires only
2KB. In scenarios like embedded systems where memory is limited, such a compact
classifier is much more applicable and economic.

We observe that with more data samples and higher feature dimension, time cost
of SOF'S increases in a controllable manner. It costs only a little more than 2 minutes
to train a classification model on the billion scale dataset. On the contrary, other F'S
algorithms suffer from the problem of the curse of dimensionality. For example, PET
takes at least 10 hours to select 500 features from X3, let alone other more complicated
algorithms. Besides, we would like to highlight the time cost of SOFS with the baseline
algorithms. It can be found that SOF'S does not incur significant extra time cost. This
is due to the fact that learning and data loading run in parallel in our implementation.
Since all the three algorithms are very efficient, data loading accounts for the major
part of time consumption. To conclude, the efficient computation and high test accuracy
indicate that our algorithm is effective and efficient in exploiting informative features
on large scale ultra-high-dimensional data.

4.3. Experiments on Medium-Scale Real Datasets

In this section, we evaluate the performance of OFS algorithms on a number of medium-
scale public datasets, as shown in Table III. The datasets can be downloaded either
from Feature Selection website of Arizona State University? or SVMLin? (for sparse
datasets).

2http://featureselection.asu.edu/datasets.php.
3http://vikas.sindhwani.org/svmlin.html.
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Fig. 3. Test accuracy of feature selection algorithms on medium-scale real world data.

4.3.1. Evaluation of Accuracy. Figure 3 shows the test accuracy of different algorithms.
By examining the online algorithms, we find that SOFS performs better than PET
and FOFS except when the number of selected features is limited on some datasets.
This observation is similar to what we found on synthetic datasets. When consider-
ing batch algorithms, SOFS is comparable to or even better than the state-of-the-art
FGM algorithm with enough features. FGM performs well with a rather few features.
LIBLINEAR shows a very interesting phenomenon. The test accuracy first increases



rapidly with more selected features. After a certain stage where the accuracy of other
algorithms begins to saturate, the accuracy of LIBLINEAR tends to drop considerably.
This is possibly because [1-SVM suffers the overfitting problem with small /1 penalty.
As to mRMR, we can observe that mRMR is better when the number of features is
rather small. The accuracy of SOFS increases quickly and surpasses mRMR with more
selected features. However, the overall performance of mRMR is much worse than other
FS algorithms.

Generally, we can find that batch learning algorithms work better with very small
number of selected features. However, as more features are selected, the performance
of the proposed SOFS algorithm increases quickly and achieves comparable or even
better test accuracy.

4.3.2. Evaluation of Time Cost. Figure 4 shows the time cost comparison of feature selec-
tion methods on the medium-scale data. First of all, the proposed SOF'S takes the least
time to do feature selection. Note the time costs on the later three datasets, which are
of relatively high dimension. It shows the great advantage of our proposed algorithm
on high-dimensional data. Second, there exists up to 10 times advantage over PET
and FOFS. Besides, FOFS takes more time than PET, especially on the later three
large datasets. Third, among the batch algorithms, LIBLINEAR is the most efficient,
which is still tens of times longer than SOFS. The time cost of FGM is about an order
of magnitude higher than LIBLINEAR. The most time consuming algorithm is the
mRMR algorithm. On the “aut” dataset, even the parallelized algorithm requires more
than 6,000 seconds to select 10,000 features, let alone the non-parallelized algorithm.
Besides, we find the parallelized algorithm only accelerates the algorithm when the
number of training data exceeds the data dimension (“real-sim” and “aut”).

We can easily conclude that the time cost of the F'S algorithms is consistent to the
complexity analysis in Section 3.5. The complexity of SOFS is linearly dependent on
the number of non-zero features. Though linearly dependent on the feature dimension,
the complexity of PET is still more efficient than FOFS.

4.4. Experiment on Object Recognition

OF'S can also be applied to the computer vision field like image and video processing [Li
et al. 2017; Wang et al. 2009]. In this experiment, we apply the proposed multi-class
SOF'S algorithm to the real-world object recognition task. We use the VOC2007 dataset,
which contains 20 object classes in realistic scenes [Everingham et al. 2007]. We first
crop the objects from the images. Half of the cropped images are randomly selected
as training images. The left are used as test images. To extract features, we adopt
the widely used deep convolutional neural network — the VGG16 pretrained model
[Simonyan and Zisserman 2014]. Each image is represented by the features of last two
fully connected layers. By doing so, we obtain 12, 315 samples for training and 12, 325
samples for testing. Each sample is a 8, 192-dimensional sparse vector. The sparsity
is due to the rectified linear unit activation function [Krizhevsky et al. 2012]. We omit
FGM in this experiment as it is designed for binary classification only. We also omit
LIBLINEAR since it can only induce sparsity on the weights rather than features.
Figure 5 shows the classification accuracy and the time cost evaluation of SOFS com-
pared with other online and batch algorithms. We can observe that the proposed SOFS
achieves the best performance among all the algorithms. The test accuracy increases
rapidly with more features selected, which verifies the effectiveness of SOFS for com-
puter vision tasks. mRMR performs the worst in this case. Another finding is that
SOFS achieves the best accuracy with about 4,000 features, which is about half of the
full dimension. Given that the features are generated from the fully connected layers
of the deep convolutional neural network, the removed features indicate that we can
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remove some fully connected parameters that generate the features. This will acceler-
ate the training of deep learning and reduce the size of the deep models. Figure 5(b)
again verifies the efficiency of OFS algorithms. Since the data scale and dimension-

ality are not high in this problem, the benefits of SOFS over PET and FOFS are not
significant.

4.5. Experiments on Large-Scale Real-World Datasets

In this section, we evaluate the performance of the proposed SOFS algorithm for three
large-scale text classification tasks, as shown in Table IV.
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Table IV. Summary of Large-Scale Real-World Datasets
in Our Experiments

DataSet  Feat dim Trainno. Testno. Feat no.

news 1,355,191 10,000 9,996 5,513,533
revl 47,152 781,265 23,149 59,155,144
url 3,231,961 2,000,000 396,130  2,31,249,028

Table V. Evaluation on Large-Scale High-Dimensional Datasets (p is the Fraction of Selected Features)

Dataset P 0.005 0.05 0.1 0.2

PET 90.33%(41.34s) 94.09%(32.18s) 93.91%(36.54s) 95.08%(31.37s)

news SOFS 91.26%(0.61s) 94.76%(0.63s) 95.33%(0.60s) 95.84%(0.61s)
FGM 94.92%(90.10s) 95.43%(1610.53s)  95.47%(5206.20s)  95.46%(15055.28s)

PET 73.18%(79.13s) 96.21%(20.30s) 97.01%(18.53s) 97.37%(24.63s)

revl SOFS 90.40%(6.29s) 96.86%(6.27s) 97.19%(6.28s) 97.65%(6.32s)
FGM  91.74%(394.98s)  97.13%(1346.03s) 97.37%(1994.78s)  97.54%(3253.97s)
url PET  98.15%(1100.28s)  98.38%(1664.15s)  98.21%(1528.01s)  98.21%(1573.35s)

SOFS 98.32%(6.95s) 98.74%(7.05s) 98.92%(6.94s) 99.18%(6.94s)

Texts in bold highlight the least time cost, best accuracy or highest sparsity.

The first dataset “news” (for news group classification) is high dimensional, the
second “rcvl” (for text categorization) is relatively large scale, and the last one “url”
(for suspicious url detection) is large scale and high dimensional. In this experiment,
for simplicity, we only compare the proposed SOFS algorithm with PET (due to its low
time complexity) and FGM (due to its high accuracy).

Table V and Figure 6 show the experimental results of test accuracy and time cost of
the three algorithms. We do not show the results of FGM on “url” as it is too slow. From
the tables, we can observe that performance of SOFS is very close to or even better than
that of FGM, especially when more features are selected. Both of these two algorithms
outperform the baseline OFS algorithm PET. As to the time cost, the comparison of
PET and SOFS on “news” and “rcv1” shows that the time cost of PET is more relevant to
data dimension. An interesting phenomenon is that PET takes much more time when
only 0.5% features are selected. This is because the PET algorithm converges much
slower with a few features. In other words, the PET algorithm has to update its model
frequently. FGM in this scenario is the most computationally expensive algorithm with
even more than an order of magnitude difference. Besides, the time cost increases
rapidly with more features selected. We can see the significant advantage of SOFS in
these three high dimensional or large scale datasets. In real scenarios, it will be much
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more efficient to run the proposed F'S algorithms multiple times on training datasets to
achieve higher accuracy than running such computationally expensive batch learning
algorithms.

Above all the experimental results and analysis, we find that the proposed OF'S algo-
rithm is able to outperform existing online methods and is comparable to state-of-the-
art batch learning methods. However, computational efficiency of SOFS is significantly
superior to both the online and batch F'S algorithms, which capacitates the proposed
SOFS to handle large scale and ultra-high dimensional data in real-world applications.

5. CONCLUSION AND FUTURE WORK

In this article, we addressed the challenge of F'S for large-scale ultra-high-dimensional
sparse data, which aims to select a small fixed number of relevant features. We pre-
sented a novel SOFS algorithm. In contrast to existing OFS algorithms with linear
computational complexity on total feature dimensions, the complexity of our new algo-
rithm is significantly reduced to be linearly dependent on number of non-zero features
of each sample. We extensively evaluated empirical performance of the proposed algo-
rithm by comparing with both online and batch state-of-the-art FS algorithms on both
synthetic and real datasets, from medium scale to large scale. The promising results
showed that our algorithm not only achieved highly competing prediction accuracy to
the state-of-the-art batch F'S algorithms, but also significantly improved computational
efficiency, making our algorithm practical for handling large scale data with ultra-high
dimensionality.



Despite the encouraging results, the existing solution for OFS could be further im-
proved for future work. As we observed in experiments, prediction accuracy is worse
than batch learning algorithms when only a small fraction of features are selected. We
can explore more informativeness from data to enhance existing OFS algorithms with
extremely few features. Another work is to adaptively select a number of features. Cur-
rently, we set the number of features manually. In industrial scenarios, the desirable
case is that a F'S system can receive data and then output the most compact and accu-
rate model by the system itself. Besides, this paper focuses on the selection of distinctive
features. Recently, researchers have explored structured knowledge based features to
improve the downstream applications, such as text classification [Wang et al. 2016]
and clustering [Wang et al. 2015]. How to select structured features efficiently and
effectively is still under-explored.
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