
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2018

Measuring program comprehension: A large-scale field study with Measuring program comprehension: A large-scale field study with

professionals professionals

Xin XIA
Zhejiang University

Lingfeng BAO
Singapore Management University, lfbao@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Zhengchang XING
Australian National University

Ahmed E. HASSAN
Queen's University

See next page for additional authors
Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
XIA, Xin; BAO, Lingfeng; LO, David; XING, Zhengchang; HASSAN, Ahmed E.; and LI, Shanping. Measuring
program comprehension: A large-scale field study with professionals. (2018). IEEE Transactions on
Software Engineering. 44, (19), 951-976.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3779

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Xin XIA, Lingfeng BAO, David LO, Zhengchang XING, Ahmed E. HASSAN, and Shanping LI

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3779

https://ink.library.smu.edu.sg/sis_research/3779

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

1

Measuring Program Comprehension: A
Large-Scale Field Study with Professionals

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, Shanping Li

Abstract—During software development and maintenance, developers spend a considerable amount of time on program
comprehension activities. Previous studies show that program comprehension takes up as much as half of a developer’s time.
However, most of these studies are performed in a controlled setting, or with a small number of participants, and investigate the
program comprehension activities only within the IDEs. However, developers’ program comprehension activities go well beyond their
IDE interactions. In this paper, we extend our ActivitySpace framework to collect and analyze Human-Computer Interaction (HCI) data
across many applications (not just the IDEs). We follow Minelli et al.’s approach to assign developers’ activities into four categories:
navigation, editing, comprehension, and other. We then measure the comprehension time by calculating the time that developers
spend on program comprehension, e.g. inspecting console and breakpoints in IDE, or reading and understanding tutorials in web
browsers. Using this approach, we can perform a more realistic investigation of program comprehension activities, through a field study
of program comprehension in practice across a total of seven real projects, on 78 professional developers, and amounting to 3,148
working hours. Our study leverages interaction data that is collected across many applications by the developers. Our study finds that
on average developers spend ∼58% of their time on program comprehension activities, and that they frequently use web browsers and
document editors to perform program comprehension activities. We also investigate the impact of programming language, developers’
experience, and project phase on the time that is spent on program comprehension, and we find senior developers spend significantly
less percentages of time on program comprehension than junior developers. Our study also highlights the importance of several
research directions needed to reduce program comprehension time, e.g., building automatic detection and improvement of low quality
code and documentation, construction of software-engineering-specific search engines, designing better IDEs that help developers
navigate code and browse information more efficiently, etc.

Index Terms—Program Comprehension, Field Study, Inference Model

F

1 INTRODUCTION

Program comprehension (aka., program understanding, or
source code comprehension) is a process where develop-
ers actively acquire knowledge about a software system
by exploring and searching software artifacts, and reading
relevant source code and/or documentation. Such acquired
knowledge helps support other software engineering activi-
ties, such as bug fixing, enhancement, reuse, and documen-
tation.

Previous studies show that program comprehension is
an essential and time-consuming activity in software main-
tenance [13], [15], [26], [36], [63]. Zelkowitz et al. claim that
program comprehension takes more than half of the time
spent on software maintenance [63]. A claim which is also
confirmed by Fjeldstad and Hamlen [15], and Corbi [13].
Ko et al. find through controlled experiments on two de-
bugging tasks and 10 participants, that understanding a

• Xin Xia, Lingfeng Bao and Shanping Li are with the College of Computer
Science and Technology, Zhejiang University, Hangzhou, China.
E-mail: xxia@zju.edu.cn, lingfengbao@zju.edu.cn, shan@zju.edu.cn

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Zhenchang Xing is with the Research School of Computer Science,
Australian National University, Australia.
E-mail: zhenchang.Xing@anu.edu.au

• Ahmed E. Hassan is with School of Computing, Queen’s University,
Canada.
E-mail: ahmed@cs.queensu.ca

• Lingfeng Bao is the corresponding author.

program occupies around 35% of the total time [26]. Minelli
et al. study the IDE interactions of 18 developers over
700 working hours, and find that on average developers
spend 70% of their time performing program comprehen-
sion activities [36]. However, only seven of the participants
are professionals and more than 85% of the studied data
is based on the activities of 3 participants who are PhD
students. Moreover, the study only investigats program
comprehension activities within the IDE.

Current empirical studies that examine the role of pro-
gram comprehension for software development have many
shortcomings, most notable are: (1) several conclusions are
based on anecdotal evidences [13], [15], [63], instead of
empirical experiments on developers; (2) most prior studies
are performed under controlled experiment with artificial
setting, making difficult to generalize the results, e.g., [26];
(3) most prior studies involve a small number of participants
(e.g., Ko et al.’s study has 10 participants [26], while Minelli
et al.’s study has 18 participants [36]), and most of the
participants are not professionals; (4) most prior studies
only investigate program comprehension activities that oc-
cur within IDEs [26], [36]. Our previous study shows that
developers use six or more different desktop and web ap-
plications in their daily development work [5]. For example,
to understand a piece of source code, a developer may not
only navigate and search for the related source code inside
the IDE, but also search online resources, such as Stack
Overflow.

Published in IEEE Transactions on Software Engineering, 2017 July, Volume PP, Issue 99, Pages 1-26
http://doi.org/10.1109/TSE.2017.2734091

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

2

In this paper, we perform a large-scale field study to
investigate program comprehension activities in a realistic
setting, while taking a more holistic approach that examines
activities across many applications that are used by develop-
ers instead of only using interaction data that is gathered
from IDEs. Similar to past studies [13], [15], [26], [36], [63],
our study tries to validate a well-known assumption (i.e.,
program comprehension takes much of the efficiency of
developer time) that drives the line of work on improving
program comprehension. It is important to evaluate the
assumption, because there is a large body of research on
improving program comprehension.

Relative to prior studies, our study is based on the
analysis of a large number of developer activity data from
their real working environment. Hence, we leverage the
methodology of Minelli et al. [36] since their methodology
can automatically infer developers’ activities from develop-
ers’ low-level interaction data. Different from several other
previously-proposed models of program comprehension,
e.g. [13], [58], our program comprehension model separates
navigation from other activities since we believe that nav-
igation is an important activity in software development
and we want to highlight it separately. Ko et al. found that
developers usually find the target information by navigating
“information scents” [26], e.g., hyperlinks on a web page.
Their study leads to a model of program comprehension
grounded in the theories of information foraging. However,
current IDEs do not support navigation well. For example,
if a developer loses track of a relevant code fragment within
Eclipse as she switches to other tasks, she is forced to find
it again. Identifying navigation actions from developers’
activities can give us deeper insight of developer’s behavior.
For example, we can get the procedural knowledge, which
describes actions and manipulations that are carried out to
complete programming tasks. We not only can know “what
a developer codes”, but also know “how a developer codes”.
However, separating navigation from other activities, e.g.
coding and debugging, is very difficult, since developers
interleave navigation and other activities. Furthermore, the
process used in many prior studies has some limitations in
a real working environment and requires extensive man-
ual analysis. For example, Ko et al. use screen capturing
techniques to record developers’ working process in which
they perform two debugging tasks and three enhancement
tasks [26]. The collected screen-capturing videos are tran-
scribed into different developer actions (e.g. reading code,
or editing code). Ko et al.’s results are based on subjective
interpretations of developers’ behaviors, but it is unrealistic
to analyze our collected data manually in our study because
we collect developer’s activity data for an extended period
of time, i.e., two weeks in this paper. Hence, we extend the
work of Minelli et al. [36] to investigate program compre-
hension activities. The question whether or not navigation
is part of comprehension is a controversial one. Our method-
ology which reports both comprehension and navigation
time allows readers to interpret the results in both ways, i.e.,
readers can simply sum up navigation and comprehension
time if they consider navigation as part of comprehension.

Following by Minelli et al. [36], we categorize develop-
ers’ activities into four categories: navigation, editing, com-

prehension, and other1. Navigation time refers to the time
that developers spend in browsing through software [52],
including navigation using IDEs or web browsers, clicking
a link, and searching for particular program entities or
code, etc. Editing time refers to the time that developers
spend on editing source code. Comprehension time refers to
the time that developers spend in program comprehension,
including inspection activities such as inspecting console
and breakpoint within the IDE, or reading through a piece
of code (identified by e.g., detecting mouse drifting actions).
We note that sometimes developers perform navigation ac-
tivities to assist program comprehension activities, however,
the navigation activities only involve some quick keyboard-
/mouse activities, such as rolling the mouse, or clicking
a link, and in that short time, developers actually do not
perform comprehension activities.

Our study is conducted within two large IT companies
named Insigma Global Service2 and Hengtian3 in China,
which have more than 500 and 2,000 employees, respective-
ly. In total, we investigated the activities of 78 developers
across 7 projects over 3,148 working hours in total. More-
over, we interviewed 10 of these developers. Our study
finds that: (1) on average program comprehension takes
up ∼58% of developers’ time, (2) besides IDEs, developers
frequently use web browsers and document editors during
their program comprehension activities, (3) developers in
Java projects spend a significantly higher percentage of
time on program comprehension than developers in .NET
projects, (4) senior developers spend a significantly less
percentage of time on program comprehension than junior
developers, and (5) developers working on projects that
are in the maintenance phase spend significantly higher
percentage of time on program comprehension than those
working on projects that are in the development phase.

The following is our list of contributions:

1) We perform a large-scale field study on the role of
program comprehension during software develop-
ment. Our study includes a total of 78 developers
across 7 projects over 3,148 working hours. This
study represents the largest field study on program
comprehension to date. Different from prior studies,
our study is conducted in a realistic setting.

2) We investigate the impact of programming lan-
guage, developers’ experience, and project phase on
the time that is spent on program comprehension.

Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 briefly reviews related work.
Section 3 elaborates on the setup of our field study setup
and our data collection process. Section 4 presents our field
study results. Section 5 discusses the threats to validity.
Section 6 draws the conclusions and mentions future work.

2 RELATED WORK

Measuring Program Comprehension. A number of prior
studies measure program comprehension [13], [15], [26],

1For more details, please refer to Section 2.2.
2http://www.insigmaservice.com/
3http://www.hengtiansoft.com/en

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

3

[36], [63]. Zelkowitz et al. [63], Fjeldstad and Hamlen [15],
and Corbi [13] all report that program comprehension ac-
tivities take more than half of the time spent on soft-
ware maintenance based on anecdotal evidences. Ko et
al. perform controlled experiments with two debugging
tasks and 10 participants, and and they find that program
comprehension occupies around 35% of the total develop-
ment time [26]. Minelli et al. study the IDE interactions
of 18 participants over 700 working hours, and they find
developers spend 70% of their time performing program
comprehension activities [36]. Most of the participants in Ko
et al.’s and Minelli et al.’s studies are students rather than
professional developers. Their studies also only analyze
developer activities in the IDEs.

Extending these previous studies, in this paper, we in-
vestigated program comprehension activities performed by
78 professionals working on 7 industrial projects in a realistic
setting. We collected a large amount of interaction data
(a total of 3,148 working hours) by monitoring developer
activities across many applications that they used during their
daily work. We also conducted interviews to confirm and
better interpret our quantitative findings.

Field Study on the Role of Program Comprehension
for Software Development. Roehm et al. perform a field
study on the role of program comprehension for software
development with 28 developers to understand: (1) what
strategies do developers follow to comprehend programs,
(2) what sources of information do developers use, (3) what
information is missing, and (4) which tools do developers
use and how do they use them [48]. Our field study is
different and complements Roehm et al.’s study in several
aspects: First, Roehm et al.’s study does not measure pro-
gram comprehension time which is the focus of our study.
Second, Roehm et al.’s study observes each participant for
45 minutes, while our study observes each participant over
two weeks. Third, Roehm et al.’s study is more invasive
to developer activities, with each developer needing to
comment on what they are doing in a think-aloud fashion
and several researchers observing the participating devel-
opers. This procedure may make developers change their
behaviors substantially. Our study involves a less invasive
procedure. Fourth, we consider many different RQs that
Roehm et al.’s study does not consider. Only one of our five
RQs (i.e., RQ2: which applications do developers use during
program comprehension activities) overlaps. Even with this
RQ, we consider a different angle by measuring the amount
of time that developers spend inside these applications. Our
paper also points to web browsers as useful comprehension
tools, which was not part of Roehm et al.’s study.

In a later work, Maalej et al. further extended Roehm
et al.’s study by surveying 1,477 respondents, and they
analyzed the importance of certain types of knowledge for
program comprehension, and the way that developers typi-
cally access and share knowledge [34]. Different from Maalej
et al.’s study, our study did not involve an online survey. We
complement their study by tracking user interaction data
from 78 developers for two weeks, consisting a total of 3,148
working hours. Our study also highlights findings which
were not investigated in Maalej et al.’s study.

Identifying Factors Affecting Program Comprehension.
A number of prior studies investigate the impact of dif-
ferent factors on program comprehension. Siegmund et al.
investigate the relationships between programming expe-
rience and program comprehension by performing short
controlled experiments (i.e., 40 minutes experiments) using
students as participants [51]. Teasley report that naming
style impacts on program comprehension [57]. Latoza et
al. identify working habit as a factor that impacts program
comprehension [29]. In our study (i.e., RQ4), similar to
Siegmund et al.’s work [51], we also investigate the impact
of programming experience on program comprehension.
However, different from their prior study, our study is per-
formed under a realistic setting by monitoring the activities
of professional developers for two weeks. Also, different from
the above mentioned studies, we consider additional fac-
tors, such as programming language (see RQ3) and project
phase (see RQ5).

3 FIELD STUDY SETUP

In this section, we present our field study setup which
includes three parts. We first present the criteria and details
of how the participants were selected. Next, we describe
the tool used to collect and organize developer interactions
across applications. Then, we present the details of our
qualitative interviews, which supplement our quantitative
findings. Finally, we present the five research questions
which are investigated in our study.

3.1 Participant Selection
One aim of our study is to investigate how professionals
(not students) perform program comprehension activities
in a realistic setting. We thus select participants in two IT
companies in China, named Insigma Global Service, and
Hengtian. Insigma Global Service is an outsourcing com-
pany which has more than 500 employees, and it mainly
does outsourcing projects for Chinese vendors (e.g., Chi-
nese commercial banks, Alibaba, and Baidu). Hengtian is
also an outsourcing company which has more than 2,000
employees, and it mainly does outsourcing projects for US
and European corporations (e.g., StateStreet Bank, Cisco,
and Reuters).

Note that in these two companies, around 50% of the
employees are developers (i.e., around 1,250 developers).
Also, a number of projects (around 60%) need to be done
onsite (i.e., developers should work in the client’s company)
and many projects are constrained with strict security poli-
cies. Unfortunately, we cannot collect data from these onsite
and secure projects. After removing developers that work
on these projects, around 830 developers remain as possible
participants of our study. Our toolset for collecting develop-
er interactions works on the Windows operating system and
not all developers use Windows. Thus, we further remove
additional 205 candidate developers from our list of possible
participants. As a result, we have 625 developers left. These
developers are involved in 25 different projects. Next, we
select projects and developers from this pool of 25 projects
and 625 developers following these steps:

• To reduce bias due to the project size, the selected
projects should have different sizes.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

4

• To reduce bias due to the used programming lan-
guages, the selected projects should use different
programming languages. We choose projects which
use either Java or C# as their main programming
language. Java and C# are the two most popular
programming languages used inside these two com-
panies. Eight projects use Python, Matlab, or C/C++
as their main languages, and thus we exclude them
from our list of projects.

• To reduce bias due to new or inactive projects, we
exclude 8 projects that are close to completion and 2
new projects.

At the end, 7 projects remain, and there are a total of 410
developers who work on these 7 projects. We send emails
to these developers inviting them to join our study. Eighty
three developers allow us to install our tool and collect their
interactions for two weeks (i.e., 10 working days in total,
excluding weekends). Among the 83 developers, 22% (18)
have more than 5 years of professional experience, 42% (35)
have 3 to 5 years of professional experience, and 36% (30)
have less than 3 years of professional experience.

For each developer, we compute his/her effective work-
ing hours across the two weeks. Effective working hours
refers to the time when a developer stays in front of the
computer, doing things which are related to the project.
We exclude idle periods during which a developer usual-
ly performs personal activities (e.g., eating lunch/dinner)
or attends meetings. Figure 1 presents the distribution of
the effective working hours. The median effective working
hours recorded by our tool is 37.4 hours, the minimum
working hours is 1.4 hours, and the maximum working
hours is 96 hours. We found four participants who worked
less than 5 hours during the two weeks, two of them were
project managers and they needed to attend many meetings
at that time, one of them moved to the client’s site to work,
and another needed to fly to another country to attend an
industrial conference. Also, we notice that one participant
worked for more than 90 hours (i.e., 96 hours) during two
weeks, and the participant informed us that since he is new
to the project team, and he worked many hours per day
to become familiar with the project. We removed the data
collected from these five participants to reduce the noise, so
in total we analyze data from 78 participants.

Table 1 presents the statistics of the seven studied
projects4. The columns correspond to the name of the
projects (Project), the start time of the projects (Start.), the
number of the developers (# D.), the number of developers
who participate in our study (# S.), the number of lines
of code (LOC), the main programming language (Pro.),
the size of the projects (Size) (L=large, M=medium, and
S=small), and the project phase (P.) (M=Maintenance and
D=Development).

Among the seven projects, projects A, E, and G contain
more than 5M LOCs, and more than 50 developers; consid-
ering the size of LOCs, number of developers, developer

4Due to the security policies in these two companies, we anonymize
the project names.

TABLE 1: Statistics of the studied projects. Start. = Start Date, #
D. = No. of Developers, # S. = No. of participants in our study,
Pro. = Programming Language.

Project Start. # D. # S. LOC Pro. Size Phase
A 2010.10 118 18 10M Java L M
B 2011.08 12 4 2M C# M M
C 2013.07 30 5 1M Java M D
D 2014.12 10 4 0.3M Java S D
E 2012.04 80 17 5M C# L D
F 2015.04 45 10 3M Java M M
G 2014.08 115 21 11M C# L D

0 20 40 60 80
Effective Working Hours

100

Fig. 1: A violin plot of the distribution of effective working
hours.

inputs5, and the two companies’ definition6, in this study,
we consider these three projects as large-size projects. Also,
projects B, C, and F contain 1M to 3M LOCs, and 12 -
45 developers, we label them as medium-sized projects.
Moreover, project D only has 0.3M LOCs, and 10 developers,
and we label it as a small-sized project. Among the 7
projects, three are large-sized projects (A, E, and G), three are
medium-sized projects (B, C, and F), and one is a small-sized
project (D). Four projects use Java (A, C, D, and F), and three
projects use C# (B, E, and G) as their main programming lan-
guage. We also asked developers to categorize each project
into either maintenance or development phase depending
on whether the corresponding software product has been
released or not. Four projects are in the development phase
(C, D, E, and G), and three projects are in the maintenance
phases (A, B, and F).

3.2 HCI Data Collection and Analysis

In this study, we extend our ActivitySpace framework [5], [6]
to collect and analyze Human-Computer Interaction (HCI)
data in developers’ daily work. Figure 2 shows our data col-
lection and analysis process: First, we use the ActivitySpace
framework to collect time-ordered events while a developer
is interacting with applications. Then we divide a sequence
of time-ordered events into working sessions by identifying
idle periods and we divide each working session into sprees
by the reaction time. Next, we classify these sprees by the
information that is provided by the collected events. Finally,
we compute the time for each of the different activities.

5From our interview, several developers mentioned that they con-
sider projects that have more than 50 developers, 10 - 50 developers,
and less than 10 developers as large, medium, and small projects
respectively.

6The two companies define the size of a project according to the fee
a client company will pay in the contract, and they simply ranked the
top 25% projects with highest fee as large projects, followed by the next
50% as medium size, and the lowest 25% as small projects.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

5

EventTracker
OS Windows APIs

Accessibility APIs

Mouse Move

Mouse Wheel
Mouse Click

Normal Keystroke
Shortcut Key

<Ctrl+O>
Shortcut Key

Tab Item

1

<Ctrl+O>
Shortcut Key

Tab Item

1

Normal Keystrokes

2 3

(comprehension)

EventLabeler

(Editing)

Developers

Software Applications

Session

Idle
Period

Session
Idle

Period
Session Idle Period Session

Time-ordered Events

Session
Idle

Period
Session

Idle
Period

Session Idle Period Session

Time-ordered Events

EventSegmentor

<spree>
Interval > RT

Code Editor Console Project Explorer

Eclipse
Navigation Bar Web Page

Firefox

Mouse Move and
Mouse Wheel

(navigation)

1 2 3

i n t <space> v a r

Fig. 2: Our data collection and analysis process.

3.2.1 Tracking Events

As a developer interacts with an application, ActivitySpace
generates time-ordered events (see Figure 3 for an example).
Each event has a time stamp down to milliseconds precision.
Each event is composed of an event type, basic window
information that is collected using OS window APIs, and the
focused UI information that the application exposes to the
operating system through accessibility APIs (available for
mouse click event only). ActivitySpace monitors three types
of mouse events (namely mouse move, mouse wheel, and
mouse click) and two types of keyboard events (namely
normal keystrokes like alphabetic and numeric keys and
shortcut keystrokes like “Ctrl+F” (Search or Find) and “Ctr-
l+O” (Eclipse shortcut for quick outline)).

Basic window information includes the position of a
mouse or cursor, the title and boundary of the focused
application window, the title of the root parent window
of the focused application window, and the process name
of the application. If the event type is a mouse click, Ac-
tivitySpace uses accessibility APIs to extract the following
focused UI information: UI Name, UI Type, UI Value and UI
Boundary of the focused UI component, and the UI Name
and UI Type of the root parent UI component. The accessibility
information is very helpful to infer the application context of
a developer’s action. For example, if the developer selects an
item in “Project Explorer” of Eclipse or “Solution Explorer”
of Visual Studio, ActivitySpace will record both the selected
item and its root parent UI component (“Project Explorer”
or “Solution Explorer”). This contextual information allows
us to classify the event as a navigation event.

In Figure 3, the first three events occur in an Eclipse
application window, and the last two events occur in a
Firefox application window. Each event has its own window
information. However, due to space limitation, we show
only window title, window boundary, root parent window
title, and process name for one of the first three events

and one of the last two events. The focused collected UI
information for the two mouse click events shows that the
developer selects a file in “Project Explorer” in Eclipse, and
searches java calendar on Google in Firefox.

In this study, we configure ActivitySpace to monitor
applications that are commonly used in developers’ daily
work, including web browsers (e.g., Firefox, Chrome, In-
ternet Explorer), document editors (and/or readers) (e.g.,
Word, Excel, PowerPoint, Adobe Reader, Foxit Reader, Notepad,
Notepad++), and IDEs (e.g., Eclipse, Visual Studio). We vali-
dated the list of applications monitored with the developers
and they confirm that these are the ones that they typically
use. We did not monitor command line tools since we were
informed that developers in the two companies rarely use
them when they worked in the Windows environment7. Fur-
thermore, if developers use command line tools to execute
one task, they usually switch to other applications and do
not need to wait for the results from the command line.
So, the spent tme on the command line tools is very small.
ActivitySpace generates a placeholder event of “unknown”
event type when a mouse or keyboard event occurs in
other applications. We analyse the proportion of time that
developers spend on such “unknown” applications, and it
is typically less than 2%.

3.2.2 Identifying Effective Working Sessions

Given a sequence of time-ordered events, ActivitySpace first
removes all the “unknown” events. That is, we do not
consider activities in unmonitored applications in the sub-
sequent analysis. Then, ActivitySpace identifies idle periods
during which no mouse or keyboard events occur. In this
study, we set the threshold of idle period at one hour.
We acknowledge that there often short idle periods (five

7The developers also informed us that they frequently use com-
mand line when they worked in a Linux environment, however our
current tool can only capture interaction data in Windows.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

6

minutes in this study) when developers could have a short
break or chat with other colleagues. We remove these short
idle periods when calculating the comprehension time. Idle
periods split a sequence of time-ordered events into effective
working sessions. For a developer, his effective work hours
is the sum of the time duration of all the effective sessions.

3.2.3 EventAnalyzer

Given an effective working session, the event segmentation
component (EventSegmentator) of ActivitySpace first splits
the sequence of events into application-window segments
by Process Name of basic window information, for exam-
ple Eclipse or Firefox. Then, for each application-window
segment, EventSegmentator further splits the sequence of
events into view segments by Window Title of basic window
information or Parent UI Name or Parent UI Type of acces-
sibility information, for example, Project Explorer, Console
and Code Editor in Eclipse window, and Navigation Bar and
Web Page area in Firefox window.

Finally, for each view segment, EventSegmentator splits
the sequence of events into a sequence of sprees by the
reaction time (RT), which is defined as follow:

Definition 1 (Spree). A spree is a sequence of mouse/key-
board events in which the interval between each pair of
events is less than reaction time (RT).

The time interval between the two consecutive sprees
must be larger than the RT, while the time interval between
the two consecutive events in a spree must be smaller
than or equal to the RT. The reaction time is the time that
elapses between the end of a physical action sequence (e.g.,
typing, moving the mouse, etc.) and the beginning of con-
crete mental processes (e.g., reflecting, or planning), which
represent the basic moments of program understanding.
The RT is also known as “Psychological Refractory Period”,
which has been used in many psychology studies (e.g.,
personality or driving, and level of alcohol or caffeine). The
term psychological refractory period refers to the period of
time during which the response to a second stimulus is
significantly slowed because a first stimulus is still being
processed [42]. According to this theory, developers cannot
perform different activities (i.e., programming comprehen-
sion, navigation, or editing) at the same time. So, we use
RT to split the event sequence into sprees. For example, a
developer is typing a piece of code in an editor. After some
typing, the developer pauses and thinks about the code he
just wrote and plans the next steps. Such pauses will split
the event sequence in a view segment into sprees. Note that
a spree might only contain a single action when an action
happens very slowly, for example, a slow navigation action
(a scroll or a menu click to view a call hierarchy). In such
cases, the intervals among actions are usually larger than
RT, which can be considered as the moment of program
comprehension. The RT might vary depending on human
factors (e.g., personality, or age) and the task at the hand.
Different settings of RT might generate different results, but
Minelli et al. [36] reported that the different RT values did
not affect their findings. So, in this study, we set RT at one
second, following their RT setting. We also discuss the effect
of different RT values in Appendix.

3.2.4 Classifying Sprees

Given a spree, the event labeling component EventLabeler of
ActivitySpace classifies the spree as navigation, comprehension
or editing. Our classification scheme follows Minelli et al.’s
work [36]. Minelli et al. assign inspection activities (e.g.,
inspecting stacktrace in Eclipse Console) to Comprehension
category, and Browsing (e.g., selecting a package, method,
or class in Project Explorer of Eclipse), and Searching (e.g.,
Starting a search in a Finder UI) activities to navigation cat-
egory. Figure 4 presents the process of spree categorization
of EventLabeler.

First, EventLabeler checks the window context (Window
Title, Parent UI component, sub-window) which usually
reflects developers’ activities directly to classify the spree
as navigation or comprehension. We identify the most com-
monly used UI components, sub-windows in our collected
data which are listed in the upper part of Figure 4. For E-
clipse and Visual Studio which are used as main IDEs in our
study, if a developer is performing inspection activities (e.g.
inspecting Console in Eclipse window or the Output in Vi-
sual Studio window), the spree is classified as comprehension;
if the developer is performing browsing or searching activities
(e.g. using the Project Explorer in Eclipse window or the
Solution Explorer in Visual Studio window), the spree is
classified as navigation. For browser, if the spree is in the
Navigation Bar or in a search engine’s web page, we regard
this spree as navigation. For all other applications, sprees in
the Search/Find windows are classified as navigation.

If EventLabeler cannot determine the category of a spree
based on its window context, it will then try to label the
events in the spree in order to determine its category. The
lower part of Figure 4 presents how EventLabeler labels an
event. For a mouse click event, EventLabeler classifies the
event as a navigation or comprehension event based on the
UI type of the focused UI component where the mouse click
occurs, as summarized in part Navigation UI Type of Figure 4.
UI Type may indicate the type of activities that developers
perform, for example, if the UI Type is tree item or scroll bar,
developers usually perform Browsing activities, then Event-
Labeler classifies the event as navigation event. If the mouse
click event occurs in a non-navigation UI Type, the event
is classified as comprehension event. For shortcut key event,
EventLabeler labels the event according to its function. For
example, ”Ctrl+F” is classified as a navigation event, while
“F6” (step over in Eclipse) is classified as comprehension.
We identify the most commonly used shortcut keys in our
collected data, as summarized in the Navigation Shortcut Key
and Comprehension Shortcut Key part of Figure 4. EventLabeler
labels normal keystroke events as editing.

If all the events in a spree are mouse move and/or
mouse wheel events (aka. Mouse Drifting in Minelli et al.’s
work), EventLabeler classifies the spree as comprehension, for
example, the spree (3) in Figure 2 in which a developer
is browsing a web page using a mouse. If the number of
editing events are more than 50% of the sum of editing,
navigation and comprehension events, EventLabeler classi-
fies the spree as editing, for example, spree (2) in Fig 2.
Finally, if the number of navigation events is greater than
that of comprehension events, EventLabeler classifies the spree
as a navigation event, otherwise as a comprehension event.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

7

Event Type Mouse Move Mouse Click Mouse Wheel Mouse Click KeyInput: “Ctrl+V”

Cursor Position (28, 439) (143, 254) (193, 397) (595, 262) (595, 262)

Window Title N/A N/A N/A N/A N/A

Window Boundary (6, 105, 495, 1008) (6, 105, 495, 1008) (6, 105, 495, 1008) (0, 0, 1920, 1040) (0, 0, 1920, 1040)

Parent Window
Title

Java –
Project/package/Ti
melineExample.java
- Eclipse

Java –
Project/package/Ti
melineExample.java
- Eclipse

Java –
Project/package/Ti
melineExample.java
- Eclipse

java calendar -
Google Search -
Mozilla Firefox

java calendar -
Google Search -
Mozilla Firefox

Process Name eclipse.exe eclipse.exe eclipse.exe firefox.exe firefox.exe

UI Name JSTreeDao.java Search

UI Type tree item combo box

UI Value N/A java calendar

UI Boundary (123, 249, 205, 267) (136, 121, 706, 140)

Parent UI Name Project Explorer java calendar -
Google Search -
Mozilla Firefox

Parent UI Type pane window

timeline

Fig. 3: An example of low level events.

For example, spree (1) in Fig 2 has two navigation events
(Ctrl+O to show quick outline and selecting another editor
in the tab), but no comprehension events. Thus, the spree is
classified as a navigation event.

3.2.5 Computing Activity Statistics
The comprehension time is the sum of the duration of all
the comprehension sprees and all the time intervals between
sprees that are longer than the RT (1 second in our study)
and shorter than a threshold (5 minutes in our study). Based
on our observation and interview, time intervals longer than
5 minutes usually represent the time period during which
developers have short breaks or chat with their colleagues.
We do not consider these time intervals as idle periods
because a developer is still in a working mode on the
computer, unlike a long meeting or a lunch break. The
navigation and editing time are the sum of the duration of
all the navigation and editing sprees respectively.

We aggregate the statistics of developers’ activities ac-
cording to different types of applications. In this study, we
classify the monitored applications into three types: IDEs (E-
clipse, Visual Studio), web browsers (e.g., Firefox, Chrome,
IE), and document editors (Word, Excel, PowerPoint, PDF
reader, Notepad, Notepad++, etc.).

We filter activities in web browsers that are unlikely
related to software development tasks (e.g. visiting news or
shopping websites) using the keywords in the title of the
visited web pages (for example, “Sina”, one of the most
popular news websites in China, or “taobao”, the most
popular online shopping website in China). We observe the
collected data and identify a set of keywords to filter non-
software-development activities in web browsers. We use a
long list of filters that were manually determined and fine
recorded to ignore websites that are unrelated to software
development. Table 2 shows some example keywords of our
used website filters. We divide the websites that are unre-
lated to software development into seven categories: News,
Sports, Social Network, Shopping, Game, Video, Money. Note
that most of the example keywords in Table 2 are translated
from Chinese. Our filtering results in more accurate statistics
of developers’ work habits.

TABLE 2: Examples of Website Filters

Website Category Example Keywords
News Sina, NetEase, Sohu, Tencent
Sports NBA, Basketball, Football
Social Network weibo, weixin, QQ
Shopping Taobao, Tmall, Jingdong
Game Game, Dota, LOL
Video Iqiyi, Youku, AcFun, Bilibili
Money stock, real estate

To understand program comprehension across different
applications, ActivitySpace identifies all application switch-
ing by identifying the difference between the process names
of two consecutive events. It can find all application switch-
ing, e.g., IDE⇒Web Browser, IDE⇒Web Browser⇒ IDE,
of length 2 to 4, and compute the duration of sequences that
have these application switching. For each sequence, Activi-
tySpace counts instances of such switching and computes the
total time spent. The total time carefully considers overlaps;
for example, IDE ⇒ Web Browser ⇒ IDE ⇒ Web Browser
⇒ IDE has two instances of IDE⇒Web Browser⇒ IDE, but
the two instances are overlapping. This overlapping part is
only considered once in the computation of total time.

3.2.6 Accuracy of Our Data Collection Tool
To investigate the accuracy of our data collection tool on
identifying program comprehension activities, we perform
a preliminary study on two developers. To do so, we install
our data collection tool and a video recording tool on these
two developers’ desktop. Next, we record 4 working hours
for each of these two developers by using both our data
collection tool and the video recording tool. Then, we invite
these two developers to join us to review the videos. We
split the collected data into many sprees using our proposed
approach and link these sprees to the corresponding times-
tamp of the screen-capturing video. Then we confirm the
categories of these sprees with the two developers. For the
two developers, there are 2,840 and 1,643 sprees in total,
respectively. Among these sprees, 1,051 and 343 sprees are
categorized as comprehension by our ActivitySpace tool.
For these ones, we ask the developers to tell us what they

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

8

Window Context
Identification

Context:
Navigation

Context:
Comprehension

Unidentified
Context

Event Labeling
In Sprees

Eclipse
Visual
Studio

Browser
Other
Apps

Eclipse
Visual
Studio

Project Explorer,
 Package
Explorer,
Outline,

 Task List,
 Search,

 Find/Replace,
 Open Resource,

Open Type,
Open Type in

Hierarchy

Solution Explorer,
Team Explorer,

 Find Result Class,
View Object
View, Search

Navigation Bar,
Search Engine

Web Page

Find or Search
Window

Console,
Call Hierarchy,

Type Hierarchy,
Breakpoints,

Problems,
Errors,

 Expression,
Properties,

 Ant,
 Git,

 History

Output,
 Call Hierarchy,

Error List,
 Watch #,

Breakpoints

Mouse Click Event KeyStroke Event

list / List Item
check box

progress bar
scroll bar / thumb

slider
tab / tab item

title bar
tool bar / tool tip
tree / tree item

hyper link
header / header item

All applications:
Ctrl+F
Eclipse
Ctrl+R Ctrl+H
Ctrl+Shift+R
Ctrl+Shift+T
Ctrl+Shift+G F3 F4
Visual Studio
Ctrl+Shift+FF3
Shift+F3
Alt+F12 Ctrl+G
Ctrl+Up
Ctrl+Down F12

Eclipse
F5 F6 F7 F8 Ctrl+F5
Ctrl+Shift+B
Ctrl+O Ctrl+T
Visual Studio
F5 F6 F7 F9 F10 F11
Ctrl+F5
Shift+F5 Ctrl+F9
Ctrl+F10

Navigation
Shortcut Key

Comprehension
Shortcut Key

Editing
Shortcut Key

Other shortcut keys
Normal keyinput

Navigation
Mouse Click

Comprehension
Mouse Click

Navigation UI Type

Label one event

Labeled
Spree

Spree
Categorization

A Spree

Window, UI Component, View or Sub-window

Fig. 4: The Process of Spree Categorization of EventLabeler

TABLE 3: Percentage of time two developers spend on compre-
hension (Compre.), navigation, editing, and others as computed
by our data collection tool and manually labeled by developers.

Dev Tool Compre. Navigation Editing Other

Dev 1 Our 58.26% 18.38% 15.25% 8.15%
Manual 58.31% 18.41% 15.11% 8.17%

Dev 2 Our 62.38% 22.45% 13.88% 1.29%
Manual 62.30% 22.47% 13.71% 1.52%

did in the sprees, and categorize what they did into one of
the four activities (i.e., navigation, editing, comprehension,
and others). Although more than a thousand sprees need to
be analyzed by the two developers, a large number of con-
tinuous sprees belong to one activity. Thus, the developers
only need to recognize the boundaries of the activities, and
do not need to analyze the sprees one by one.

Table 3 presents the percentage of time that the two
developers spend on comprehension, navigation, editing,
and others computed by our data collection tool and de-
veloper manual labeling. The difference between our data
collection tool and manual labeling is relatively small (less
than 0.23%), thus our proposed tool achieves an acceptable
accuracy.

3.3 Interview
In addition to analyzing the collected data, we interviewed
10 out of the 78 participants, to confirm and interpret our
findings. We performed the interviews at the end of the
monitoring process. We sent emails to all of the 78 partic-
ipants to inquire about their availability, and 10 participants
indicated their availability (seven worked on Java projects,
and eight worked on C# projects). Table 4 presents the
working experience, programming languages, and project
teams of the 10 interviewees. The participants have varying
numbers of years of professional experience.

The interviews are semi-structured and are divided into
three parts. In the first part, we ask each developer some
demographic questions, such as their working experience.
In the second part, we ask some open-ended questions, such
as the importance, challenges, and difficulties met during

TABLE 4: Statistics of the 10 interviewees. Exp. = Experience,
Lang = Language.

Interviewee Professional Exp. Program Lang. Project
P1 > 5 Years Java A
P2 >5 Years Java A
P3 2 - 5 Years Java A
P4 2 - 5 Years Java C
P5 < 2 Years Java D
P6 > 5 Years C# E
P7 2 - 5 Years C# E
P8 2 - 5 Years C# E
P9 < 2 Years C# E
P10 < 2 Years C# E

the program comprehension process. We also ask intervie-
wees to recall some situations when they find program
comprehension particularly challenging. The purpose of this
part is to allow the interviewees to speak freely about their
program comprehension experience.

In the third part, we considered a list of topics related
to program comprehension, and asked the interviewees to
discuss these topics, especially those that they have not
discussed during the second part of the interview. The topics
include the impact of different programming languages on
program comprehension, and the impact of project phase
(development phase or maintenance phase) on program
comprehension.

After the interviews, we used a transcription service
named LuyinBao8 provided by iFlyTek in China to tran-
scribe audio into text. We then read the text, and per-
formed open card sorting [53] to group the statements
from the 10 interviewees into different categories. To do
so, we first removed statements which are not related to
program comprehension, e.g., “I have experiences on legacy
system reengineering”. Then, we created one card for each of
the statements, and the first two authors worked together
to group the statements into different categories. For each
statement, they first manually extracted key phrases from it.
Then they grouped the statements with similar key phrases

8http://luyin.voicecloud.cn/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

9

into the same category. The process is repeated until all
statements made by the interviewees are mapped to at least
one category. Furthermore, since all of the 10 interviewees
are Chinese, we used Chinese as the main language to
discuss with them. In the paper, we translated all Chinese
communications into English.

3.4 Research Questions
We would like to investigate the following five research
questions: (RQ1) How much of developers’ time is spent
on program comprehension? What are some common
factors that increase program comprehension time?

Previous studies show program comprehension can take
up as much as half of a developer’s time [13], [15], [26],
[36], [63]. However, some conclusions are based on anec-
dotal evidence [13], [15], [63], instead of being derived
from empirical studies. Some studies are performed under
controlled experiment instead of real project settings [26].
Furthermore, some studies only involve a small number of
participants [26], [36], and most of them are not profession-
als. To address the limitations of prior works, in this work,
we revisit the same question by monitoring the time spent
on program comprehension activities of the 78 developers
working on 7 real world projects of 0.3-10 millions lines of
code over a period totalling of 3,148 working hours..

(RQ2) Which applications do developers use in their
program comprehension activities? How much time do
they spend inside these applications during their program
comprehension activities?

Previous studies only investigate program comprehen-
sion activities performed inside IDEs [26], [36]. However, to
understand a piece of source code, a developer may not
only navigate and search for related source code inside
the IDE, but also search online resources, such as Stack
Overflow. Investigating program comprehension activities
across multiple applications helps us better understand how
developers perform program comprehension in practice.

Specially, in RQ2, we investigate the time that devel-
opers spent when using IDEs, web browsers, and text
editors to perform program comprehension activities, keep
in mind that these three applications represent different
ways for performing program comprehension activities: in
IDEs, developers mainly comprehend the source code; in
web browsers, developers mainly comprehend the searched
content (e.g., bug fixing solutions, feature implementation
suggestions, or tool installation guides) returned by search
engines; in text editors (e.g., MS Word, MS Excel, and
Notepad++), developers mainly comprehend technical/pro-
ject documents (e.g., project requirement or design docu-
ments). Note that some developers might use text editors
to write/edit source code. For such cases, since the text
editor now serves as an IDE, we count the time that they
spent on text editors as program comprehension time inside
IDE. We use file extension to identify whether participants
edit/write/comprehend source code or not, i.e., if a partici-
pant opened or edited a file in a text editor with an extension
such as “java“, “cs”, “c”, “cpp”, “h”, “html”, “htm”, “js”, or
“xml”, we count the time spent on such files as program
comprehension time inside IDE. Moreover, three of our
investigated projects (B, E, and F) need to develop web

portals, and developers sometimes debug the web pages in
web browsers. For such cases, since the web browser now
serves as an IDE, we count the time that they spent on web
browser as program comprehension time inside IDE, i.e.,
if a developer opened a URL such as “localhost:8080” or
a specific IP address like “10.171.10.99”, we still count the
time spent on such web pages as program comprehension
time inside IDE.

(RQ3) Do different programming languages affect the
percentage of time spent on program comprehension?

A number of factors (e.g., programming languages, de-
veloper experience, and project phase) would affect the time
that is spent on program comprehension, and investigating
the impact of programming languages on the percentage
of time that is spent on program comprehension could
help developers understand their program comprehension
activities better. Our findings can help developers consider
an additional factor when deciding which programming
language to use, and help inform language and IDE design-
ers on areas for improvement. Here, we consider the effect
of two programming languages, i.e., Java and C#, on the
time that is spent on program comprehension. According to
a Stack Overflow survey 2017, Java and C# are two most
popular programming languages9.

(RQ4) Do the senior developers spend less time on pro-
gram comprehension?

The working experience of a developer may impact the
needed time for program comprehension activities. Senior
developers’ behaviors are different from junior developers’
behaviors, which might lead to varying time spent on pro-
gram comprehension activities. In this research question, we
investigate whether senior developers spend less time than
junior developers (e.g., novice or less experienced develop-
ers) on program comprehension. The answer of this RQ can
help identify the target beneficiary (e.g., senior or junior
developers) for automated tools to improve the efficiency
of program comprehension.

(RQ5) Do different project phases affect the percentage of
time spent on program comprehension?

Different project phases, such as the development and
maintenance phase, may affect the time spent on program
comprehension activities. In this research question, we in-
vestigate whether projects at different phases require dif-
ferent amounts of program comprehension effort. Similar
to RQ4, the answer of this RQ can provide inputs to tool
builders in designing automated tools to improve the ef-
ficiency of program comprehension by considering project
phases.

4 FIELD STUDY RESULTS

In this section, we present the results of our case study with
respect to our five research questions.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

10

TABLE 5: The average percentage of time developers spend on
comprehension, navigation, editing, and others.

Project Comprehension Navigation Editing Others
Average 57.62% 23.96% 5.02% 13.40%

A 63.37% 19.31% 5.02% 12.30%
B 55.80% 24.83% 6.36% 13.02%
C 58.86% 27.62% 3.90% 9.62%
D 53.32% 28.36% 5.31% 13.01%
E 56.15% 23.59% 5.53% 14.73%
F 64.05% 20.30% 4.66% 10.99%
G 51.80% 28.02% 4.59% 15.41%

40
50

60
70

A B C D E F G

P
er

ce
n

ta
g

e
o

f
P

ro
g

ra
m

 C
o

m
p

re
h

en
si

o
n

 T
im

e
(%

)

80

Fig. 5: A violin plot of the percentage of program comprehen-
sion time.

4.1 (RQ1) How much of developers’ time is spent on
program comprehension? What are some common fac-
tors that increase program comprehension time?

4.1.1 Results
Table 5 presents the average percentage of time that de-
velopers spent on comprehension, navigation, editing, and
others for the 5 projects. On average across the 5 projects,
developers spend 57.62% of their time on program com-
prehension activities, followed by navigation (23.96%),
others (13.40%), and editing (5.02%). Figure 5 presents
the percentage of program comprehension time for the 5
projects. From the figure, we observe that developers in
different projects spend varying time on program compre-
hension activities, which vary from 51.80% (G) - 64.05% (F).
Our finding is consistent with previous studies [13], [15],
[26], [36], [63].

To further investigate why developers spent so much
time on program comprehension, we performed the follow-
ing two steps: (1) we invited 10 interviewees to speak freely
on other root causes of long program comprehension time,
and we came out with an initial set of causes; (2) we label
the 200 sessions based on these root causes, and we create
new root causes if the existing ones are not sufficient. Based
on the interviewee’s input, we identify nine root causes
as shown in Table 6, and we randomly choose from our
collected data 200 sessions where developers spent more
than 20 minutes on program comprehension. By using the

9https://stackoverflow.com/insights/survey/2017

snapshots and the events that are provided by our Activi-
tySpace tool, the first two authors can trace back and replay
what developers did during these sessions. We found that in
the 200 long program comprehension sessions, developers
used IDEs, web browsers, and text editors in 144, 171, and
120 sessions, respectively. Next, the first two authors tried
to categorize these long sessions into the nine root causes
that we derived, and we categorize the sessions which do
not belong to any root causes as “others”. We observe that
some sessions can be assigned to multiple root causes, and
thus we assign multiple causes to these sessions as needed.
We use Fleiss Kappa [16] to measure the agreement between
the two labelers. The overall Kappa value between the two
labelers on the 200 sessions is 0.78, indicating a substantial
agreement between the labelers. For the sessions for which
both labelers cannot reach an agreement, we invited a Ph.D
student (not one of the co-authors) who has 5 years of
professional experience to make the judgement. Finally, we
reached agreement on all of the 200 sessions. We find that
all the 200 sessions can be put into eight out of the nine
root causes that we identified – no session belongs to “unfa-
miliarity with business logic” category. Table 6 presents the
nine root causes. Since a session can be mapped to multiple
root causes, the sum of the number of sessions for the nine
root causes is more than 200.

The following paragraphs describe the details of the nine
root causes and the 200 sessions:

1. No comments or insufficient comments. A large amount
of the code that we inspected has no comment or insufficient
comments among the 200 sessions. For example, in Java
projects, many comments that say “TODO Auto-generated
method stub” (the default comments when automatically
generating a class/method in Eclipse), or “To be added”.
Moreover, in 30 sessions, developers finally added com-
ments to the class/method after they spent a long time
comprehending a piece of source code.

In our interview, all of the ten interviewees agree that
insufficient comments cause program comprehension diffi-
culties. Developers “cannot understand the source code if there
are insufficient comments, especially when the source code is a
bit complex” (P6). In practice, without comments, developers
have to look at the code and use bottom-up comprehen-
sion, which causes difficulties in program comprehension.
Previous studies highlighted the importance of comments
in the process of software maintenance [22], [38], [54], [55],
[61]. Also, sometimes comments are not updated along
with the code, which in turn causes difficulties for program
comprehension. This is especially true for projects with high
turnover rates; P1 stated: “My project is in the maintenance
phase, developers always leave the team to work in other new
projects. Due to the lack of comments, whenever we are asked
to implement a new function or fix a bug, we have to read
and understand the relevant source code, which may take a long
time”. Previous studies reported that the turnover rate in IT
companies varies from 20% - 35% [17], [23], [47], [60].

2. Meaningless classes/methods/variables names. Devel-
opers might need to spend more time to understand the
source code if there are many meaningless classes/method-
s/variable names. For example, in the 200 sessions that we
analyzed, we observe that one method called “readHistory”

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

11

TABLE 6: Nine root causes that were identified by us.

Root Cause Source Application # Sessions
No comments or insufficient comments Interview/Session

IDE

92 (46%)
Meaningless classes/methods/variables names Interview/Session 75 (38%)

Large number of LOC in a class/method Interview/Session 63 (32%)
Unconsistent coding styles Interview/Session 42 (21%)

Navigating inheritance hierarchies 38 (19%)
Query refinement Interview/Session Web Browser 83 (42%)

Query Refinement, and browsing a number of search results/links Interview/Session 42 (21%)
Lack of documents, and ambiguous/incomplete docu- ment content Interview/Session Text Editor 79 (40%)

Searching for the relavent documents Interview/Session 12 (6%)
Unfamiliarity with business logic Interview NA NA

needs to open 5 files, and the code simply names the needed
5 “ BufferedReader” instances as “br1” to “br5”. When
developers comprehended this method, we noticed that
they frequently traced back to the definition statement of
“br1” to “br5” whenever they saw operations on these five
methods.

In our interview, nine out of the ten interviewees a-
gree that meaningless classes or methods or variables lead
to program comprehension difficulties, since it increases
the difficulty of understanding the semantic meanings of
classes/methods/variables, as P8 stated “Some developers
name a variable casually, such as int a, double b, which makes
the program hard to understand and maintain”. De Lucia et
al. highlighted that name of a class/method/variable is
a crucial element for program readability [14]. Lawrie et
al. found that the quality of class/method/variable names
affects the efficiency of program comprehension, and they
recommended the use of full word identifiers [30]. Thus,
in practice, we recommend developers to pay attention
to the name of classes/methods/variables, and to try to
use meaningful words to describe the meaning of each
class/method/variable.

3. Large number of LOC in a class/method. Some class-
es/methods are extremely long, e.g., more than 500 LOCs.
In our interview, four out of ten interviewees note that large
classes or methods cause difficulty in understanding since
the code logic is often complex. For example, in the 200
sessions that we analyzed, one class named “StockMarke-
tOperation”, which provides stock buying, selling, buying
on margin, and short selling functionalities, has more than
2,000 LOCs. A developer spent 30 minutes to comprehend
this class when he was trying to locate a bug. A large
number of LOC in a class/method is often a sign cause
of an anti-patterns named god class/method, where one
class/method controls too many processes in a software
system [18]. One common practice to resolve a large number
of LOC in a class/method is to divide the implemented
functionalities in the class/method across several focused
sub-classes/methods [18], [46].

4. Inconsistent coding styles. Due to the evolution of a
software system and lack of strict style guidelines, the
coding styles of a project, a class, and even a method can
be different. Among the 200 sessions that we analyzed,
21% of the sessions needed long program comprehension
time due to inconsistent coding styles. For example, class
“EmailSending” has been revised by different developers
to add more functionalities, and different developers have
different coding styles, which cause a number of simi-

lar variables, e.g., “user name”, “UserName”, “userName”,
and “User Name”. Some of these variables are defined as
public variables, and some are defined as local variables. A
developer needs to trace back multiple times to understand
the meaning of these similarly named variables.

In our interviewee, nine out of the ten interviewees
agree that inconsistent coding styles (e.g., camelCase or
under score) [8], [50] cause program comprehension diffi-
culties. A number of project teams do not have strict coding
styles nor naming conventions; for example, a developer
can name a method in the format of “helloWorld()”, while
others use the following formats: “Hello World()” or “Hel-
loWorld()”. If the source code follows multiple naming conven-
tions, the source code is hard to understand (P4). Some prior pro-
gram comprehension studies also argue whether camelCase
is superior to under score in practice [8], [50]. For example,
Binkley et al. performed an eye tracking study on 135
programmers and non-programmers to better understand
the impact of identifier style on code readability, and they
found that camelCase is superior to under score [8]. Later,
Sharif and Maletic performed a replication study of Binkley
et al.’s eye tracking study, and the difference between these
two studies were that the participants were trained mainly
in the underscore style and were all programmers [50]. They
found there is no difference in accuracy between the two
styles, participants recognize identifiers in the under score
style more quickly. Thus, in practice, we recommend project
teams to strictly follow a consistent coding style and naming
convention.

5. Navigating inheritance hierarchies. Abstraction is one
of the most important features for object-oriented program-
ming languages. Sometimes abstraction causes additional
program comprehension time since developers might navi-
gate multiple times to find relevant source code. For exam-
ple, in our collected data, there is an abstract class named
StockExchange, and a number of classes inherit this abstract
class, such as “StockExchangeChina”, “StockExchangeUS”,
“StockExchangeIndia”, and “StockExchangeSingapore”. S-
ince the project used the factory design pattern to wrap
the implementation of detailed classes, to locate the buggy
method in one of the inherited classes, a developer needed
to comprehend the method in the abstract class, and to
navigate and comprehend each of the inherited methods in
the inherited classes, and finally located the buggy method.
To reduce the effort due to navigating inheritance hierarchy,
Lanza and Ducasse propose a lightweight view named
polymetric views which is based on the combination of
software visualization and software metrics [28].

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

12

In our interview, seven out of the ten interviewees
mention that high-level abstractions in source code might
increase navigation time. P7 stated: “Abstraction can help to
reuse the APIs in the source code, but it will also lead to difficulties
in understanding the behavior of source code. For example, if class
A and B are both inherited from the abstraction class C. When
we are asked to write a new class D which is also inherited from
C, we need to read the source code in A, B, and C to get hints
on how to write class D. The process can be extremely difficult if
there are a number of abstractions in the source code”. We note
that all of the seven developers who share this difficulty
have only worked less than 5 years. Experienced developers
among our interviewees (P1, P2, and P6), however mention
that they do not have this problem in understanding source
code.
6. Query Refinement, and browsing a number of search
results/links. When developers perform online queries to
comprehend an exception/error/bug or an API, they might
need to refine their queries multiple times to find desired
results. For example, in our collected data, a developer need-
ed to comprehend an exception on a database connection,
and since he has limited experience on database connec-
tions, he performed this Google query10 “how to connect
a database using Java”. After reading and comprehending
several of the top results, he found that none of them was
relevant. But he noticed a new word “JDBC”, and refined
the query as “Java Database Connection JDBC”, however
again after reading and comprehending the source code of
several of the top results, none of them were considered
relevant. Finally, he refined the query as “Java Database
Connection JDBC pool”, and found a relevant answer on
Stack Overflow.

In our interview, only three out of ten interviewees
agreed that query refinement is one of the root causes
for long program comprehension time. All of these three
interviewees are junior developers who worked less than 2
years. As P1 stated: “I think with the increase of experience,
it would be easy to find the suitable queries when searching
online”. Haiduc et al. highlighted the importance of query
refinement in the performance of text retrieval in software
engineering [21]. They proposed Refoqus which refines a
user query based on the top-k (e.g., k=10) documents that
are retrieved by an initial query. Nie et al. expanded a query
based on crowd knowledge to improve the performance of
code search [40]. The effectiveness and efficiency of search
can be improved if a search engine could help refine queries
intelligently.
7. Lack of documents, and ambiguous/incomplete docu-
ment content. From our study, we observe that the contents
of some documents are either ambiguous or incomplete,
which causes developers to spend a considerable amount
of time to comprehend these documents. For example, in
one requirement documents, the description of the rules
governing how a fund should be transferred are too short
and not clear. A developer spent more than two hours to
comprehend this requirement.

In our interview, nine out of the ten interviewees agreed
that the lack of documentation, and ambiguous/Incomplete

10Although Google is blocked in China, developers use VPN to
access Google.

document content often leads to long program compre-
hension time. In our study, documentation refers to the
requirement, design, and API documents. P1 and P2 who
have led a project on reengineering of legacy systems told
us that “legacy systems always have no or limited documents; the
first step is to manually read and understand the source code to
generate documentations. We find that this process is extremely
hard for the developers, and they need to spend more than 90% of
their time on program comprehension”.

Nowadays, agile software development methodology is
one of the most popular development methods. Paetsch et
al. found that it is infeasible to create complete and consis-
tent requirements documents, which might cause long-term
problems for agile teams [41]. And the Agile manifesto [7]
also pointed out: Working software [is valued] over com-
prehensive documentation. Unfortunately, a limited focus
on documentation in agile development increases the pro-
gram comprehension cost. P5 stated: “Agile can increase the
productivity of a developer, however, it will increase the program
comprehension time when new developers join the project team
since there are limited documents to which they can refer.”

In practice, developers prefer to write code more than
documents11, thus the lack of documentation is problematic
in every development process, which causes difficulties in
program comprehension.
8. Searching for the relevant documents. In project C,
we noticed that they have different types of documents,
e.g., requirement documents, design documents, API usage
documents, and test case documents. And each type of doc-
ument has multiple versions. We found that in 12 sessions,
developers spent long comprehension time on documen-
tations since they needed to browse multiple versions of
documents to find the description of a specific function im-
plementation or a specific test case. In our interviews, only
one interviewee (P4) mentioned that too much documents
hinders program comprehension activities.

Besides the 8 root causes, during the interviews, we
also uncovered one additional root cause for long program
comprehension times, i.e., unfamiliarity with business logic.
9. Unfamiliarity with Business Logic. Five out of the ten
interviewees mention that unfamiliarity with business logic
also hinders program comprehension activities. P1 stated:
“unfamiliarity with the business logic is very common for devel-
opers who just joined a project. For these developers, they need to
read the source code and relevant documents first to understand
the whole project”. Program comprehension difficulty due
to unfamiliarity with business logic is one of the common
problems that a newcomer faces, and it can be relieved when
the newcomer stays longer in the project team, or he/she
gains more experience on software development.

4.1.2 Implications
In RQ1, we find that developers spend 58% of their time on
program comprehension, which validates the well-known
assumption (i.e., program comprehension takes much of
developer’s time) that drives the line of work on support-
ing program comprehension [13], [15], [26], [36], [63]. Our
results also show that the efforts of previous studies on

11http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=
show&ixPost=35336

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

13

program comprehension are necessary, and we still in need
for more advanced program comprehension tools. Here,
we list some potential tools based on our analysis of our
collected data, and interviews:

Code and Documentation Quality Control. From our study
and interviews, we found no comments or insufficient
comments, meaningless classes/methods/variables names,
large number of LOC in a class/method, inconsistent coding
styles, lack of documentation, and ambiguous/Incomplete
document content are all important root causes which lead
to more time spent on program comprehension activities.
However, an automated tool which assess the quality of
code and documentation in a project could help reduce the
effort on program comprehension. In our interview, four
out of ten interviewees pointed out the need to assess the
quality of code and its documentation. P1 stated: “I spend a
long time on program comprehension just because the code quality
is low. I think if we have better code control, such as strict code
review, then I can save more time on program comprehension”.
Currently, to catch deadlines, project teams often do not
pay much attention to documentation. There is a need for
tools that can automatically extract useful documentation,
beyond simple UML diagrams or Javadocs, from source
code, to substantially reduce program comprehension effort.

Comments and Documentation Generation. In our study, we
found no comments or insufficient comments, and lack of
documentation are the two root causes which lead to more
time being spent on program comprehension activities. In
software engineering community, many studies proposed
the automated generation of comments [38], [54], [55], [61],
and documents [25], [35]. Our findings support these prior
research studies, it would be interesting to deploy these
tools in practice to improve the efficiency of program com-
prehension.

Automated Generation and Refinement of Search Queries. From
our study, we observe that sometimes developers need to
refine their queries multiple times and browse a number
of search results/links to find the relevant results, which
leads to more time being spent on program comprehen-
sion activities. Thus, automatically generating and refining
search queries based on the context in which a developer is
working (e.g., by monitoring the state of his/her IDE) would
help developers during program comprehension activities.
Some related research tools have been proposed in the
literature to reformulate search queries for text retrieval in
software engineering. For example, Haiduc et al proposed
Refoqus which refines a user query based on the top-k (e.g.,
k=10) documents that are retrieved by an initial query [21].
However, in practice, it is possible that all top-k documents
are irrelevant to the posed query, and for such cases, there
is a need to investigate other ways to refine user queries.
Thus, we still need more work to build a solution that can
effectively help developers with online searching.

On average across the 7 projects, developers spend 57.62% of
their time on program comprehension activities.

TABLE 7: The average percentage of time that developers spent
on program comprehension activities when they use IDEs, web
browsers, and document editors.

Project IDEs Web Browsers Document Editors
Average 19.95% 27.26% 10.38%

A 36.76% 23.71% 2.91%
B 14.03% 31.26% 10.05%
C 14.04% 36.13% 8.68%
D 18.39% 34.23% 0.70%
E 16.08% 28.08% 10.45%
F 32.22% 24.13% 7.70%
G 8.58% 26.50% 16.72%

4.2 (RQ2) Which applications do developers use during
program comprehension activities? How much time do
they spend inside these applications during their pro-
gram comprehension activities?

4.2.1 Results

In this RQ, we investigate program comprehension activ-
ities that are performed outside the IDE, the percentages
of time that developers spend inside various applications
during these activities, and how developers switch between
applications during program comprehension sessions. We
calculate the length of time that developers spent on various
applications during their program comprehension activities,
and analyze the frequent sequences returned by our Activi-
tySpace tool.

Table 7 presents the average percentages of time that
developers spent using IDEs, web browsers, and document
editors to perform program comprehension activities for
each of the 7 projects. On average across the 7 projects,
the percentages of the time that developers use IDEs,
web browsers, and document editors to do program
comprehension activities are 19.95%, 27.26%, and 10.38%,
respectively. Since the distributions of percentage of time
developers spend when using IDEs, web browsers, and text
editors during their program comprehension activities are
normally distributed as shown by the results of the Shapiro-
Wilk test [49] (i.e., p-value is larger than 0.05), we apply a
one-way analysis of variance (ANOVA) test to determine
whether there are any statistically significant differences
between the means of these groups [56]. Table 8 presents
the results for a one-way ANOVA test for the percentage
of time that developers spent when performing program
comprehension activities using IDEs, web browsers, and
document editors. Since the F-value of the one-way ANOVA
is 32.4, and the P-value is less than 0.001, we conclude
that the difference between the different applications used
to perform program comprehension activities is statistically
significant.

Next, we also apply a pairwise t-test with a Bonferroni
correction [9] and we measure Cohen’s d [12]12 to deter-
mine whether the difference between different groups is
statistically significant and the effect sizes are substantial.
Table 9 presents Cohen’s d and p-values for comparison of
percentage of time that developers spend when using IDEs,
web browsers, and document editors to perform program

12Cohen defines a D of between 0.01 to 0.20, between 0.20 and 0.50,
between 0.50 and 0.80, above 0.80 as negligible, small, medium, and
large effect size [12], respectively.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

14

TABLE 8: One-way ANOVA test for percentage of time that de-
velopers spent using different applications to perform program
comprehension activities. DF = Degrees of Freedom. Sum Sq. =
Sum of Square. Mean Sq. = Mean of Square.

Factor DF Sum Sq. Mean Sq. F Value P Value
Application 2 11,323 5,662 32.4 3.9e−13***
Residuals 234 40,940 175 – –

***p<0.001, **p<0.01, *p<0.05

TABLE 9: Cohen’s D and P-values for comparison of percentage
of time that developers spent using different applications to
perform program comprehension activities.

Application IDE Web Browser
Web Browser -0.49 (Small)*** –

Text Editor 0.70 (Medium)** 1.55 (Large)***
***p<0.001, **p<0.01, *p<0.05

comprehension activities. We have the following observa-
tions:

1) Developers spend least time on program compre-
hension activities when using text editors, and the
effect sizes are small and large when compared
with the time that they spend using IDEs and web
browsers, respectively.

2) Developers spend most time on program compre-
hension activities when using web browsers, and
the effect sizes are large when compared with the
time using IDEs and text editors.

Table 10 presents the top-5 frequent sequences and the
percentage of program comprehension time for each se-
quence. We observe that developers frequently switch be-
tween IDEs and web browsers. For example, the frequent
sequence “IDE⇒Web Browser” and “Web Browser⇒IDE”
correspond to 10.55% and 9.15% of the total effective
working time of developers. Moreover, the frequency of
switching between IDEs and document editors is much
lesser. Among the top-5 frequent sequences, only “Web
Browser⇒IDE⇒Document” captures the switching among
web browsers, IDEs, and document editors, which corre-
sponds to 3.35% of developers’ total effective working time.

We also investigate what kinds of tasks lead to web
browser use (see Table 11). There are 20,678 web pages
in our collected data. So, we randomly sample 3,000 web
pages from the collected data and perform an open card
sort to group the tasks. Our card sort process consists of
two phases: In the preparation phase, we create one card
for each web page. In the execution phase, cards are sorted
into meaningful groups with a descriptive title. Our card
sort was open, meaning that we had no predefined groups;
instead, we let the groups emerge and evolve during the
sorting process. The first author and another two graduate

TABLE 10: Top-5 frequent sequences and the percentage of
program comprehension time for each sequence.

Frequent Sequence Percentage
IDE⇒Web Browser 10.55%
Web Browser⇒IDE 9.15%

IDE⇒Web Browser⇒IDE 5.35%
Web Browser⇒IDE⇒Web Browser 4.65%

Web Browser⇒IDE⇒Document 3.35%

students of Zhejiang University (who are not co-authors of
this paper) jointly sorted the card. Finally, we categorize
six kinds of tasks that lead to web browser use: Com-
munication, Project/Company Management, Debugging/Testing,
Learning, Search for Solutions, and Others. We also count the
number of web pages that the developers open and calculate
the percentage of web pages that belong to each task – see
the last column of Table 11. While reading their emails,
developers need to comprehend email contents (e.g., bug
description and solution proposal) to complete their work.
Thus, the comprehension time in a web browser also in-
cludes email time. We group email and online forum under
the same task (i.e., communication) since both of them can
be used for communication.

We find that the most use of browser belongs to Search-
ing for Solution category. Developers often need to search
online when they encounter some problems during software
development. The search process is usually as follows: First,
a developer encounters a problem while working in the
IDE, e.g. an exception; then he/she switches to the browser,
opens the search engine and inputs a query; he/she visits
several web pages, e.g., a post on Stack Overflow, a technical
blog, etc; Finally, he/she finds a solution and switches
back to the IDE to fix the problem. During this process,
developers need to perform many comprehension activities
to comprehend the knowledge on these web pages.

Another important reason that leads developers to use
a web browser is Debugging/Testing. There is at least one
web application in all the studied projects and developers
usually need to switch frequently between the IDE and
the browser when they are debugging or testing the web
application.

The aforementioned two tasks might cause very frequent
switchings between the IDE and the browser, which in-
creases program comprehension cost. The increased cost is
due to the developers working context changing fast and
frequently during the switchings across applications [4].
This suggests that effective techniques are required to track
the information that flows implicitly during the context
switching.

In addition to the two above mentioned tasks, develop-
ers also need to learn programming skills and background
knowledge related to their project by reading online tutori-
als and accessing the company’s sharepoint site.

4.2.2 Interview Findings
From our interviews, all of the ten interviewees confirm
that they frequently use a web browser to perform program
comprehension activities. P6 stated: “I will use a web browser
to search for something that I cannot understand from the source
code. For example, I just simply copy the piece of source code that
I do not understand into Bing13, and I will find something useful
from the search results. It really helps me and I think the time to
use web browser to do program comprehension takes half of my
total time on program comprehension.” From Table 7, we notice
on average across the seven projects, the percentages of
time that developers use web browsers to perform program
comprehension activities is 27.26%, while the percentages

13In China, Google is blocked so developers use Bing more frequent-
ly instead.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

15

TABLE 11: The summary of web browser use

Task Description Website Example Task Example Perc.
Email Developers read emails to comprehend reported bugs.Communication Developers use some online tools in Web browser to

communicate with others Online Forum Developers discuss some interesting topics in company forums. 6.5%

Project/Company
Management

Currently, many project/company management systems
(e.g., task tracking system, code quality management system)
are web application

Intracompany
Website Developers submit their monthly reports in a task tracking system. 14.2%

Debugging/Testing
If a developer works for a web application (e.g., J2EE),
he usually need to visit the related web page when he is
testing/debugging one certain function.

Project-related
Website

After developers receive a bug report, they open the related web
page of the project to debug/test the related function 24.3%

Learning
Developers learn some kinds of knowledge from online
resources, such as technical tutorial, online company
documentation.

Tutorial Developers learn code skills through online turotials. 8.5%

Search engines To solve some technical problems, developers usually use Baidu/Bing
to search for solutions.

Q&A websites Developers often visit Stack Overflow to find some code examples
or solutions.

API documentation Developers often visit the official API documentation (e.g., Java API)
to know the usage of one certain APISearching for Solutions

During software development, developers often encounter
many obstacle (e.g., runtime exceptions, or configuration
errors) or are required to implement some code. They
usually use search engines to get relevant anwsers.

Code hosting Developers find some popular repositories in Github to get a
similar technical solution

42.8%

Others Websites that are unrelated to developers’ work Entertainment When developers have a rest, they view news or visit social
network websites. 3.7%

of time that developers use IDEs and document editors to
perform program comprehension activities is 30.33%. P6’s
comments are consistent with our findings listed in Table 7.

Also, eight out of the ten interviewees complain that the
frequent switching among web browsers, IDEs, and docu-
ment editors adversely impacts their productivity, since they
may forget what they really want to do after the switch, and they
need to spend some time to recall something (P1). P10 stated:
“although web browser and documents can help to do program
comprehension, I still need to do the search process. Sometimes
I cannot find the solutions that I want, so I keep on searching.
Then after several tries, I may forget what I really want to do, and
maybe go to read some news in the web browser”.

Notice that in Table 7, the time spent for program com-
prehension activities that are performed inside document
editors is much lower than time spent inside IDEs and web
browsers. We also check this observation with the inter-
viewees, and seven of them agree that suitable documents
are not always available or comprehensive enough. Thus,
they prefer to use IDEs and web browsers more frequently
during their program comprehension activities (P1, P3, P5,
P6, P7, P9, P10). P1 stated: “Due to the tight project schedule,
most of the projects do not leave enough documentation. The help
from the documentation is rather limited, reading the source code
more or searching from the Internet can be more helpful”.

4.2.3 Implications

Based on the findings of RQ2, we have the following impli-
cations:

Integrating Multiple Applications into IDE. We notice that
developers frequently switch between their IDEs and web
browsers. Also, the percentage of time that a developer
uses a web browser to perform program comprehension
activities is ∼27%, which is more than the total percentage
of time spent on program comprehension activities that are
performed within IDEs and document editors. To reduce
the time wasted due to the switching among multiple appli-
cations, it will be interesting to integrate multiple relevant
applications into IDEs, e.g., integrate web search functions
into IDEs. In practice, Mylyn14 [24], can help reduce the side
effect due to task switching, and improve productivity by
reducing searching, scrolling, and navigation. Past studies

14http://www.tasktop.com/mylyn/resources

(e.g., [43], [45]) also investigate how to integrate search
engines or Stack Overflow into IDEs. Our findings support
these prior studies.
Search Engines. From RQ1, we found that query refinement
might cause more time being spent on program compre-
hension activities. From RQ2, in Table 11, we found that
developers frequently search for solutions online. Thus,
investigating what developers search and how they per-
form search activities could help us better understand how
developers perform program comprehension activities. In
software engineering research, many prior studies (e.g.,
[1]–[3], [31], [32]) tried to develop domain-specific search
engines (e.g., code search engines) to help developers to
improve their search efficiency. However, it is still not clear
whether domain-specific search engines can help developers
improve their performance on program comprehension. Al-
so, there are other open questions which are not answered:
What do developers search online? Are general search
engines such as Google good enough to solve software
engineering problems? Future studies are needed to further
investigate these questions.

Aside from IDEs, developers use web browsers and document
editors in their program comprehension activities. On average
across the 5 projects, the percentages of time that developers
use IDEs, web browsers, and document editors to do program
comprehension activities are 19.95%, 27.26%, and 10.38%.
Moreover, developers frequently switch between IDEs and web
browsers, and the help gained from reading documents is
limited.

4.3 (RQ3) Do different programming languages affect
the percentage of time spent on program comprehen-
sion?

4.3.1 Results
In this research question, we investigate whether devel-
opers working on projects written in different program-
ming languages spend different percentages of time on
program comprehension. To address RQ3, we divide the
seven projects into two groups, i.e., Java and C#. The Java
group consists of projects A, C, D, and F, and the C# group
consists of projects B, E, and G.
One-way ANOVA Analysis. Figure 6 presents the percentages
of program comprehension time for Java and C# projects.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

16

20
40

60
80

Java C#

P
e

rc
en

ta
g

e
o

f
P

ro
g

ra
m

 C
o

m
p

re
h

en
si

o
n

 T
im

e
 (

%
)

Fig. 6: A violin plot of the percentages of program comprehen-
sion time for different programming languages.

TABLE 12: One-way ANOVA test for percentage of time that
developers spent on program comprehension when working
on Java and C# projects.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 1 1,492 1,492 18.7 4.6e−5***
Residuals 77 6,158 80 – –

***p<0.001, **p<0.01, *p<0.05

We notice that on average, developers working in the Java
and C# projects spend 63.22% and 53.54% of their time
on program comprehension activities. Similar to RQ2, s-
ince the distribution of percentage of time developers that
spent program comprehension is normally distributed as
shown by the results of the Shapiro-Wilk test [49] (i.e., p-
value is larger than 0.05), we apply a one-way analysis
of variance (ANOVA) to determine whether there are any
statistically significant differences between the means of the
two groups [56]. Table 12 presents the results for a one-
way ANOVA test for percentage of time that developers
spend on program comprehension when working on Java
and C# projects. Since the F- value of the one-way ANOVA
is 18.7, and the P-value is less than 0.001, we conclude that
there is statistical significance difference for the time that
developers spend on program comprehension in Java versus
C# projects.

Next, we also measure Cohen’s d to test whether the
effect size between these two groups (Java and C#) is sub-
stantial. The Cohen’s d is 0.97, which corresponds to large
effect size. Thus, we conclude that developers working on
Java projects spend more time on program comprehension
than those working on C# projects (at least for our studied
projects).

Two-way ANOVA Analysis. In RQ2, we investigate the per-
centages of time that developers spent on program compre-
hension activities when using IDEs, web browsers, and doc-
ument editors. Here, we investigate the interaction effects of
the programming language of projects and the applications
(i.e., IDE, Web browser, or text editor) that are used for
program comprehension. For example, we would like to
investigate whether developers in C# projects spend more

time on comprehension in web browsers than those devel-
opers in Java projects. Since the distributions of percentage
of time that developers spent using IDEs, web browsers,
and text editors during their program comprehension ac-
tivities are normally distributed as shown by the results of
the Shapiro-Wilk test (i.e., p-value is larger than 0.05), we
apply a two-way ANOVA test [9]. A two-way ANOVA test
extends a one-way ANOVA by examining the influence of
two different categorical independent variables (in our case,
programming languages, and used applications) on one
continuous dependent variable (in our case, the percentage
of time that is spent on program comprehension). Table 14
presents the results of our two-way ANOVA test for the
interaction effects of the programming language of projects
and the used applications for program comprehension. We
find that the programming language of a project, the used
applications for program comprehension, and the interac-
tions of these two factors all have statistically significant
impact on the percentage of time spent on program compre-
hension.

Next, we also apply a pairwise t-test with a Bonferroni
correction and a Cohen’s d to test whether the difference
between these two factors (i.e., programming languages,
and used applications) are statistically significant and that
the effect sizes are substantial. Table 15 presents the Co-
hen’s d and p-values for the interactions of programming
languages of projects and used applications for program
comprehension, we have the following observations:

1) Developers in C# projects spend more time on
program comprehension inside web browsers than
developers in C# projects using IDEs or text ed-
itors, respectively, and the effect sizes are large.
However, there is a negligible effect size and non-
statistical significant difference when comparing the
time spent on program comprehension by using
IDEs and text editors in C# projects.

2) Developers in Java projects spend less time on
program comprehension inside text editors than
developers in Java projects using IDEs or web
browsers, respectively, and the effect sizes are large.
However, there is a negligible effect size and non-
statistically significant difference when comparing
the time spent on program comprehension by using
IDEs and web browsers in Java projects.

3) Developers in Java projects spend more time on
program comprehension inside the IDEs than devel-
opers in C# projects using IDEs. However, there is
no statistically significant difference when compar-
ing the time on program comprehension using web
browsers or text editors in C# and Java projects.

To visualize the results, we plot the interaction effect
between programming languages of projects and used ap-
plications for program comprehension as shown in Table 13.
↑ denotes the staticstically significant with a large positive
effect size, while ↓ denotes statistically significant with a
large negative effect size. From Table 15, we also find that
the main difference between the time spent on program
comprehension in Java and C# projects is due to difference
in the time spent on program comprehension inside IDEs,
and we find that on average developers in Java projects

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

17

TABLE 13: Interaction effect of programming languages of
a project and used applications for program comprehension.
↑ denotes the staticstically significant with a large positive
effect size, while ↓ denotes statistically significant with a large
negative effect size.

(a) Interaction effect of programming languages (i.e., Java and C#)
Interaction Effect Java C#

IDE
Web Browser ↑
Text Editor ↓

(b) Interaction effect of applications (i.e., IDE, web browser, and text
editor).

Interaction Effect Java C#
IDE ↑

Web Browser
Text Editor

TABLE 14: Two-way ANOVA test for the interaction effects
of the programming language of projects and the applications
used for program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 1 497 497.4 3.3 0.0488*

Application 2 11,323 5661.6 38.0 5.2e−15***
Lang:Appl 2 6,066 3,033 20.4 7.1e−9***
Residuals 231 34,377 148.8 – –

***p<0.001, **p<0.01, *p<0.05

spend a higher percentage of their time performing program
comprehension activities inside IDEs than their counterparts
that work on C# projects (28.72% vs. 11.82%).

Furthermore, we analyze if the difference in program
comprehension time is correlated to the age of a project.
We first count the number of the months that passed from
the start date of the seven projects to the month when we
performed our study (i.e., June 2016); these are shown in
Table 16. We then use the Spearman correlation coefficient
to measure the strength of correlation between the two vari-
ables C- in our case, number of months that passed for each
of the seven projects, and program comprehension time.
The Spearman correlation coefficient ranges from -1 to 1,
where -1 and 1 correspond to perfect negative and positive
relationships respectively, and 0 means that the variables are
independent of each other. Table 17 presents Spearman’s
rho and P-value for the number of months and program
comprehension time. The correlations between the number
of months, and the overall program comprehension time,
the time spent on program comprehension inside IDEs, web
browser, and text editors are all small. Thus, the age of
a project has a limited effect on the spent time spent on
program comprehension. Note that these correlations may
not be statistically significant, due to the small size of the
investigated data.

4.3.2 Interview Findings
We also interview developers to better understand why
Java projects need more program comprehension time. One
possible reason is that Java projects often make extensive
use of third party libraries. P5 stated: “Different from C#
projects, Java projects often use a number of third party open
source libraries. These libraries lead quite often to an increased
need for additional program comprehension effort, since we need
to understand what is in these libraries”. To further analyze

TABLE 17: Spearman’s rho and p-value for the number of
months and program comprehension time. Statistically signifi-
cance is in bold.

Factors Spearman’s rho p-value
Overall Compre. Time 0.09 0.85

IDE Compre. Time 0.04 0.94
Web Browser Compre. Time -0.04 0.94
Text Editor Compre. Time 0.16 0.73

TABLE 18: Spearman’s rho and P-value for the number of
libraries and program comprehension time. Statistically signifi-
cance is in bold.

Factors Spearman’s rho p-value
Overall Compre. Time 0.88 0.008

IDE Compre. Time 0.81 0.027
Web Browser Compre. Time -0.31 0.504
Text Editor Compre. Time -0.74 0.058

whether the number of third party libraries affects the time
spent on program comprehension, we count the number of
third party libraries that are used in these seven projects by
analyzing their build files (e.g., build.xml in Ant, pom.xml
in Maven, or MSBuild in C#). Table 16 presents the number
of third party libraries to the percentage of time spent on
program comprehension. We observe that Java projects use
a larger number of third party libraries than C# projects. We
use the Spearman correlation coefficient [62] to measure the
correlation between the two variables – in our case, number
of used libraries in the seven projects, and the program
comprehension time. Table 18 presents Spearman’s rho and
p-value for the number of libraries and program compre-
hension time. Correlations between the number of libraries,
and the overall program comprehension time and the time
spent on program comprehension inside IDEs are high and
statistically significant. Thus, an increase in the number of
libraries is associated with an increase in the amount of time
spent on program comprehension, especially the time spent
on program comprehension inside IDEs. Note that although
we get medium to large correlations between the number of
libraries and time spent on program comprehension inside
web browser and text editors, the correlations may are
not statistically be significant, due to the small size of the
investigated data.

We also investigate the interaction effects of the pro-
gramming language of a project and the number of used
libraries in these projects to the percentage of time spent on
program comprehension. We have a continuous indepen-
dent variable (i.e., the number of libraries) and a categorical
independent variable (i.e., the programming languages of
a project). Hence , while a two-way ANOVA only works
when the independent variables are of categorical type, we
use a two-way ANCOVA test [9] since a two-way ANOVA
only works when the independent variables are categorical.
to check whether the interaction effect of programming
language and the number of used libraries has a statis-
tically significant impact on the time spent on program
comprehension. Table 19 presents the two-way ANCOVA
test for the interaction effects of the programming language
of a project and the number of used libraries for program
comprehension. We find that the programming languages of
a project, and the number of used libraries have statistically

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

18

TABLE 15: Cohen’s d and p-values for the interactions of the programming languages of a project and used applications for
program comprehension.

Lang.(Appl.) C# (IDE) C# (Web) C# (Text) Java (IDE) Java (Web) Java (Text)
C# (IDE) – 1.20 (Large)*** 0.16 (Negligible) 1.14 (Large)*** 1.23 (Large)*** -0.46 (Small)
C# (Web) -1.20 (Large)*** – -1.21 (Large)*** 0.05(Negligible) -0.12(Negligible) -1.86 (Large)***
C# (Text) -0.16 (Negligible) 1.21 (Large)*** – 1.13 (Large)*** 1.29 (Large)*** -0.77 (Medium)

Java (IDE) -1.14 (Large)*** -0.05(Negligible) -1.13 (Large)*** – -0.16 (Negligible) -1.70 (Large)***
Java (Web) -1.23 (Large)*** 0.12(Negligible) -1.29 (Large)*** 0.16 (Negligible) – -2.12 (Large)***
Java (Text) 0.46 (Small) 1.86 (Large)*** 0.77 (Medium) 1.70 (Large)*** 2.12 (Large)*** –

***p<0.001, **p<0.01, *p<0.05

TABLE 16: Number of third party libraries and number of months to the percentage of time spent on program comprehension.

Project Language #No. Libs #No. Months % Compre. % IDE % Web % Text
A Java 22 68 63.37% 36.76% 23.71% 2.91%
C Java 18 35 58.86% 14.04% 36.13% 8.68%
D Java 14 18 53.32% 18.39% 34.23% 0.70%
F Java 25 14 64.05% 32.22% 24.13% 7.70%
B C# 4 58 55.80% 14.03% 31.26% 10.05%
E C# 6 50 56.15% 16.08% 28.08% 10.45%
G C# 2 22 51.80% 8.58% 26.50% 16.72%

TABLE 19: Two-way ANCOVA test for the interaction effects of
the programming language of a project and the number of used
libraries for on the time spent on program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 1 1492.3 1492.3 19.4 3.5e−5***

Lib 1 377.1 377.1 4.9 0.03*
Lang:Lib 1 0.5 0.5 0.007 0.935
Residuals 75 5779.9 77.06 – –

***p<0.001, **p<0.01, *p<0.05

significant impact on the percentage of time that is spent on
program comprehension. However, the interaction of these
two factors does not have a statistically significant impact
on the percentage of time that is spent on program compre-
hension. Thus, the programming languages of a project, and
the number of used libraries impact the percentage of time
spent on program comprehension independently.

Another reason is that many developers find that Visual
Studio (IDE for C# projects) provides better support for
program comprehension activities than Eclipse (IDE for Java
projects). All ten interviewees agreed that the difference
between the IDEs plays a major role in the difference in
program comprehension time. Among the ten interviewees,
six of them have experience on both Java and C#, and used
Eclipse and Visual Studio, and we asked them whether they
think Visual Studio provides better search and navigation
functions in comparison to Eclipse. And all of them agreed
that the difference between the IDEs play a major role in the
difference in program comprehension time.

4.3.3 Implications

Based on the findings of RQ3, we have the following impli-
cations:

Library Usage. One advantage of Java is that there are many
third-party libraries, and SE introductory book (e.g., [19],
[44]) often encourage developers to reuse existing code
instead of writing new code, in order to reduce development
time. From our study, we find that using more third-party
libraries increases the time spent on program comprehen-
sion. Thus, it would be interesting to investigate whether

the decreased time on development is equal, larger, or
smaller than the increased time on program comprehension.
Moreover, considering that there are a large number of third
party libraries, and some are of high quality, while others
are of low quality. Thus, recommending suitable libraries
for software development would be useful.

Better Design of IDE. In RQ1, we observed that navigating
inheritance hierarchies leads to more time spent on program
comprehension. And in RQ3, we observed that the main
difference of spent time on program comprehension in Java
versus C# projects is due to difference of time spent on
program comprehension inside IDEs. In our interviews, five
out of ten interviewees mentioned IDEs like Eclipse do not
provide sufficient support for developers to fully under-
stand and navigate through relationships (e.g., containment,
inheritance, and invocations) between code elements that
are spread across multiple source code files. Prior research
proposed several tools to improve IDEs according to devel-
opers’ typical behavior [10], [27]. Ko and Myers proposed a
debugging tool Whyline, which allows programmers to ask
”Why did” and ”Why didn’t” questions about their pro-
gram’s output [27]. Bragdon et al. proposed Code Bubbles
to help developers define and use working sets, where a
working set refers to the group of functions, documentation,
notes, and other information that a programmer needs for
accomplishing a particular programming task (e.g., feature
implementation or bug fixing) [10]. Moreover, from our
interviews we observe that the Eclipse community might
also draw lessons from some interesting design ideas and
functionalities from Visual Studio. Future studies are need-
ed to better under the key differences between Eclipse
and Visual Studio, and the impact of these differences on
program comprehension activities.

Developers in the Java projects spend more percentages of
their time on program comprehension than developers in the
C# projects.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

19

20
40

60
80

Low Medium High

P
er

ce
n

ta
g

e
o

f
P

ro
g

ra
m

 C
o

m
p

re
h

en
si

o
n

 T
im

e
(%

)

Fig. 7: A violin plot of the percentages of program comprehen-
sion time for developers with different professional experience.

4.4 (RQ4) Do senior developers spend less time on
program comprehension?
4.4.1 Results
In RQ4, we examine whether there exists major differences
for participants with different professional experience, thus
we create buckets of participants according to their profes-
sional experience. Specifically, we divide the developers into
3 groups according to their number of years of professional
experience. We define those with low, high, and medium
experience as the 25% with the least experience in years,
25% with the most experience in years, and the rest, respec-
tively. This grouping of participants follows prior work, e.g.,
Carver et al. [11] and Lo et al. [33]. By using this approach,
participants who have less than 3 years of professional
experience, 3 to 5 years of professional experience, and more
than 5 years of professional experience are categorized into
the low, medium, and high experience groups.
One-way ANOVA Analysis. Figure 7 presents the percentages
of program comprehension time for developers with differ-
ent professional experience. On average, developers of low,
medium, and high experience spend 66.37%, 55.97%, and
44.43% of their time on program comprehension activities.
Similar to previous RQs, we apply a one-way analysis of
variance (ANOVA) to determine whether there are any
statistically significant differences between the means of the
three groups. Table 20 presents the results for a one-way
ANOVA test for the percentage of time that developers
with different professional experience spend on program
comprehension. Since the F value of the one-way ANOVA
is 79.4, and the p-value is less than 0.001, we conclude that
there is a statistical significant difference for the time that
developers with different professional experience spend on
program comprehension. Table 21 presents Cohen’s d and
p-values for comparison of percentage of time that devel-
opers with low, medium, and high professional experience
spend on program comprehension activities. We have the
following observations:

1) Developers of low professional experience spend
more time on program comprehension activities

TABLE 20: One-way ANOVA test for the percentage of time
that developers with different professional experience spent on
program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Experience 2 5174 2587.1 79.4 <2.2e−16***
Residuals 76 2476 32.6 – –

***p<0.001, **p<0.01, *p<0.05

TABLE 21: Cohen’s d and p-values for comparison of percent-
age of time that developers with low, medium, and high pro-
fessional experience spent to perform program comprehension
activities.

Exp Low Medium
Medium 1.80 (Large)*** –

High 3.99 (Large)*** 1.98 (Large)***
***p<0.001, **p<0.01, *p<0.05

compared to developers with medium and high
professional experience, and the effect sizes are
large.

2) Developers of medium professional experience
spend more time on program comprehension activ-
ities compared to developers with high professional
experience, and the effect size is large.

Two-way ANOVA Analysis. Here, we want to investigate the
interaction effects of professional experience and the used
applications (i.e., IDE, Web browser, and text editor) for
program comprehension, and we apply a two-way ANOVA
test to check whether the interaction effect of professional
experience and the used applications has a statistically
significant impact on the time spent on program compre-
hension. Table 22 presents the results of a two-way ANOVA
test for the interaction effects of professional experience and
the used applications for program comprehension. We find
that professional experience, used applications for program
comprehension, and the interactions of these two factors
all have statistically significant impact on the percentage
of time that is spent on program comprehension. Here, the
interaction of these two factors has a statistically significant
impact on the percentage of time that is spent on program
comprehension, meaning that the simultaneous influence of
the two factors (in our case, professional experience and the
used applications) on the dependent variable (in our case,
percentage of time that is spent on program comprehension)
is not additive.

Next, we also apply a pairwise t-test with a Bonfer-
roni correction and we measure Cohen’s d to test whether
the difference between these two factors (i.e., professional
experience, and used applications) are statistically signifi-
cant and whether the effect sizes are substantial. Table 23
presents the Cohen’s d and p-values for the interactions of
professional experience and used applications for program
comprehension, we have the following observations:

1) Developers of low and medium experience spend
less time on program comprehension inside text
editors than inside IDEs or web browsers, and the
effect sizes are large.

2) Different from developers of low and medium ex-
perience, developers of high experience spend less
time on program comprehension inside IDEs than

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

20

TABLE 22: Two-way ANOVA test for the interaction effects of
professional experience and the used applications for program
comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Experience 2 1,725 862.4 5.5 0.005**
Application 2 11,323 5661.6 36.2 2.3e−14***

Exp:Appl 4 3,523 880.7 5.6 0.0002***
Residuals 228 35,693 156.5 – –

***p<0.001, **p<0.01, *p<0.05

inside text editors or web browsers, and the effect
sizes are large.

3) Developers of low and medium experience spend
more time on program comprehension inside IDEs
than developers with high experience, and the ef-
fect size is large. However, there is no statistically
significant difference between developers of low ex-
perience and medium experience on the time spent
on program comprehension inside IDEs.

4) There is no statistically significant difference among
developers of low, medium, and high experience on
the time spent on program comprehension inside
web browsers or text editors, although the effect
sizes are small or medium.

4.4.2 Interview Findings
All of the ten interviewees agree that the more senior a
developer is the more likely he/she spends less time on
program comprehension. Senior developers accumulate e-
nough software development experience, and some of them
have done a number of similar projects before. In an IT
company, to better allocate human resources, typically de-
velopers are required to do projects in the same domain.
For example, P6 has done 5 projects which are all related
to financial systems. The accumulated experience helps to
reduce the time spent on program comprehension activities.
P1 who is a senior developer stated: “I have worked more
than 7 years, and done more than 20 projects. Currently, given
a requirement document, I can even know how the source code
will be written since most of these projects are similar. However,
if I come to a new project which I have never done before, such
as a Matlab project, I will still spend a lot of time on program
comprehension”.

4.4.3 Implications
Based on the findings of RQ4, we have the following impli-
cations:
Program Comprehension Behavior Learning. We manually
checked and compared the behavior of senior and junior
developers during program comprehension activities, and
we noted some interesting observations. For example, when
switching between an IDE and a web browser, some senior
developers will first copy some code from the web browser
to the IDE, then compare the differences between the copied
code and the original code in the IDE. In this way, they
can reduce the time to switch between IDE and web brows-
er multiple times. However, for some junior developers,
they just simply switched between IDE and web browser
multiple times, which required more time. Thus, it would
be interesting to develop a tool which can automatically

20
40

60
80

Maintenance Development

P
e

rc
e

n
ta

g
e

o
f

P
ro

g
ra

m
 C

o
m

p
re

h
e

n
s

io
n

 T
im

e
 (

%
)

Fig. 8: A violin plot of the percentages of program comprehen-
sion time for projects in different phases.

monitor developers’ behaviors when they perform program
comprehension activities, and recommend best practices to
developers to help them reduce program comprehension
time. The best practices can possibly be learnt automatically
by mining the activities of senior developers.

As an example, in a project team, we can analyze how se-
nior developers navigate source code to acquire a good pro-
gram understanding to perform various maintenance tasks
(e.g., implementing newly requested features, fixing newly
reported bugs, etc.). Based on senior developers’ navigation
patterns, we can build new behavior-driven change impact
analysis and bug localization techniques. Given a particular
source code file to change, we can recommend what other
source code files and documentation to inspect to get the
needed information to perform the change. Given a new
feature request, we can highlight the files that developers
need to inspect to get a better understanding of relevant
parts of the code base. Given a new bug report, we can
highlight the files that developers need to inspect to get a
better understanding as to what went wrong and how to
fix it. As another example, we can recommend sites that
senior developers frequently visited to get information that
is needed during program comprehension phase, or to learn
new technology and tips to improve their skills.

Senior developers spend less time on program comprehension
activities than novices/less experienced developers.

4.5 (RQ5) Do different project phases affect the per-
centage of time spend on program comprehension?
4.5.1 Results
To address RQ5, we divide the 7 projects into two groups,
i.e., projects in the new development phase and project in
the maintenance phase. The new development phase group
contains projects C, D, E, and G, and the maintenance phase
group contains projects A, B, and F.
One-way ANOVA Analysis. Figure 8 presents the percentage
of time that is spent on program comprehension activities
for projects in the development and maintenance phases.
We notice that on average, developers of projects in the new

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

21

TABLE 23: Cohen’s d and p-values for the interactions of professional experience and used applications for program comprehen-
sion.

Exp(Appl) Low(IDE) Low(Web) Low(Text) Med(IDE) Med(Web) Med(Text) High(IDE) High(Web) High(Text)
Low(IDE) – 0.18 (Neg) -1.00(Lar)*** -0.36(Sma) 0.15(Neg) -1.37(Lar)*** -1.13(Lar)*** -0.31(Sma) -0.63(Med)
Low(Web) -0.18 (Neg) – -1.67(Lar)*** -0.68(Med) -0.05(Neg) -2.39(Lar)*** -1.95(Lar)*** -0.69(Med) -1.19(Lar)*
Low(Text) 1.00(Lar)*** 1.67(Lar)*** – 0.73(Med) 1.56(Lar)*** -0.45(Sma) -0.33(Sma) 0.91(Lar) -0.47(Sma)
Med(IDE) 0.36(Sma) 0.68(Med) -0.73(Med) – -0.06(Neg) -0.33(Sma)** -0.95(Lar)* 0.06(Neg) -0.33(Sma)
Med(Web) -0.15(Neg) 0.05(Neg) -1.56(Lar)*** 0.06(Neg) – -2.21(Lar)*** -1.82(Lar)*** -0.62(Med) -1.09(Lar)*
Med(Text) 1.37(Lar)*** 2.39(Lar)*** 0.45(Sma) 0.33(Sma)** 2.21(Lar)*** – -0.06(Neg) 1.58(Lar)* 1.1(Lar)
High(IDE) 1.13(Lar)*** 1.95(Lar)*** 0.33(Sma) 0.95(Lar)* 1.82(Lar)*** 0.06(Neg) – 1.18(Lar) -0.80(Med)
High(Web) 0.31(Sma) 0.69(Med) -0.91(Lar) -0.06(Neg) 0.62(Med) -1.58(Lar)* -1.18(Lar) – -0.45(Sma)
High(Text) 0.63(Med) 1.19(Lar)* -0.47(Sma) 0.33(Sma) 1.09(Lar)* -1.1(Lar) -0.80(Med) 0.45(Sma) –

***p<0.001, **p<0.01, *p<0.05

TABLE 24: One-way ANOVA test for the percentage of time that
developers in projects of maintenance and new development
phases spent on program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Phase 1 1,802 1,802 23.7 5.8e−6***

Residuals 77 5,847 75.9 – –
***p<0.001, **p<0.01, *p<0.05

TABLE 25: Two-way ANOVA test for the interaction effects
of the project phases and the used applications for program
comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Phase 1 601 601 4.4 0.0372*

Application 2 11,323 5661.6 41.3 4.5e−16***
Phase:Appl 2 8,701 4354.8 31.8 6.3e−13***
Residuals 231 31,630 136.9 – –

***p<0.001, **p<0.01, *p<0.05

development phase and those in the maintenance phase
spend 53.54% and 63.22% of their time on program com-
prehension activities. Table 24 presents the results for a one-
way ANOVA test for the percentage of time that developers
of projects in maintenance and new development phases
spend on program comprehension. Since the F value of the
one-way ANOVA is 23.7, and the p-value is less than 0.001,
we conclude that there is statistically significant difference
for the time that developers spent on program comprehen-
sion in projects in the maintenance versus new development
phase.

Next, we also apply a pairwise t-test with a Bonferroni
correction and we measure Cohen’s d to test whether the
difference between these two groups (maintenance and de-
velopment) are statistically significant and the effect sizes
are substantial. The p-value is less than 0.001, and Cohen’s
d is 1.11, which corresponds to large effect size. Thus, we
conclude that developers working on maintenance projects
spend more time on program comprehension than develop-
ers working on new development projects.

Two-way ANOVA Analysis. Here, we would like to investi-
gate the interaction effect of the project phase and the used
applications for program comprehension, and we apply a
two-way ANOVA to test the statistical significant. Table 25
presents the results of a two-way ANOVA test for the
interaction effect of project phase and the used applications
for program comprehension. We find that the project phase,
used applications for program comprehension, and the in-
teraction of these two factors all has a statistically significant

impact on the percentage of time that is spent on program
comprehension.

Next, we also apply a pairwise t-test with a Bonferroni
correction and measure Cohen’s d to test whether the differ-
ence between these two factors (i.e., project phases and used
applications) are statistically significant and the effect sizes
are substantial. Table 26 presents Cohen’s d and p-values
for the interaction of project phases and used applications
for program comprehension, we have the following obser-
vations:

1) Developers in development projects spend more
time on program comprehension inside the we-
b browsers than developers in new development
projects using IDEs or text editors, respectively,
and the effect size is large. However, there is a
small effect size and a non-statistically significant
difference when comparing the time on program
comprehension by using IDEs and text editors in
development projects.

2) Developers in maintenance projects spend less time
on program comprehension inside the text editors
than those in maintenance projects using IDEs or
web browsers, respectively, and the effect size is
large. However, there is a small effect size and
a non-statistical significance when comparing the
time on program comprehension by using IDEs and
web browsers in maintenance projects.

3) Developers in maintenance projects spend more
time on program comprehension inside the IDEs
than developers in new development projects using
IDEs (28.72% vs. 11.46%). And developers in main-
tenance projects spend less time on program com-
prehension inside the text editors than developers in
new development projects using text editors (5.71%
vs. 13.72%). However, there is a small effect size
and a non-statistically significant difference when
comparing the time on program comprehension
using web browsers in maintenance versus new
development projects.

4.5.2 Interview Findings
There are several reasons for the difference in the per-
centages of program comprehension time for developers
of projects in new development phase and maintenance
phase. First, in the new development phase, the project
team is relatively stable, but in the maintenance phase, some
developers will leave and some new developers will join the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

22

TABLE 26: Cohen’s d and p-values for the interaction of project phase and used applications for program comprehension.

Lang (Appl) Dev (IDE) Dev(Web) Dev(Text) Main (IDE) Main (Web) Main (Text)
Dev(IDE) – 1.28 (Large)*** 0.20 (Small) 1.48 (Large)*** 1.21 (Large)*** -0.53 (Medium)
Dev(Web) -1.28 (Large)*** – -1.27 (Large)*** 0.24(Small) -0.21(Small) -1.98 (Large)***
Dev(Text) -0.20 (Small) 1.27 (Large)*** – 1.52 (Large)*** 1.25 (Large)*** -0.94 (Large)*

Main (IDE) -1.48 (Large)*** -0.24(Small) -1.52 (Large)*** – -0.47 (Small) -2.20 (Large)***
Main (Web) -1.21 (Large)*** 0.21(Small) -1.25 (Large)*** 0.47 (Small) – -2.24 (Large)***
Main (Text) 0.53 (Medium) 1.98 (Large)*** 0.94 (Large)* 2.20 (Large)*** 2.24 (Large)*** –

project team. P6 stated: “The high turnover rate for project in
the maintenance phase causes the long program comprehension
time. Sometimes, even 50% of the developers will leave my team.
The newcomers need to spend more time to understand the source
code”.

Second, in the new development phase, developers are
more likely to focus on understanding requirements; while
in the maintenance phase, developers are more likely to
focus on understanding the source code. P3 stated: “In the
new development phase, we spend more time on understanding
the requirements but less time on the source code. Understanding
requirements is high level, while understanding code is low level,
which will take much more time”.

Third, the lines of code (LOCs) of projects in the new
development phase are much less than the LOCs in the
maintenance phase. Thus, the workload to understand the
source code in the new development phase is much less
than that in the maintenance phase. P9 stated: “the search
space for projects in the new development phase and maintenance
phase is different. The larger number of LOCs for projects in the
maintenance phase translates to the need to put more effort on
searching for relevant source code, and hence lead to more time on
program comprehension activities.”.

4.5.3 Implications

Based on the findings of RQ5, we have the following impli-
cations:

Code Search. In RQ5, we found one important reason that
developers in maintenance projects spend more time on
program comprehension, namely the large size of the source
code and relevant documentation. So, an effective code
search tool can help developers find the target information
quickly. Furthermore, if such code search tool can link the
source code to other materials during new development
and maintenance phases, such a tool will make developers
understand source code more effectively.

Developer Turnover Management. We also found that the
high developer turnover rate in the maintenance phase is
associated with developer spending more time on program
comprehension. Many researchers have studied developer
turnover. For example, Mockus finds that developers leav-
ing a project had a negative impact on quality but that
newcomers had no effect on it due to the loss of knowledge
and experience [37]. On the contrary, Foucault et al. find
that newcomers have an impact on quality while project
leavers do not have such an effect [17]. Understanding and
preventing developer turnover can help a company retain
talented developers and reduce the loss due to developer-
s’ departure. The talented developers who remain in the
project can spend less time on program comprehension.

20
40

60
80

Hengtian IGS

P
er

ce
n

ta
g

e
o

f
P

ro
g

ra
m

 C
o

m
p

re
h

en
si

o
n

 T
im

e
(%

)

Fig. 9: A violin plot of the percentages of program comprehen-
sion time for developers in Hengtian and IGS.

Developers of projects in the maintenance phase on average
spend a higher percentage of their time on program com-
prehension activities than developers of projects in the new
development phase.

5 DISCUSSION

5.1 Cross-Company Analysis
Our study collects data from two companies Hengtian and
IGS. Projects A and G are from IGS, and projects B to F are
from Hengtian. Here, we would like to investigate whether
developers across both companies spend similar time on
program comprehension. The answer to this question will
affect the generalizability of our study, e.g., if we find that
developers in different companies spend different amount
of time on program comprehension, then future studies
should consider this aspect in the design of their experi-
ments.
One-way ANOVA Analysis. Figure 9 presents the percentage
of time spent on program comprehension activities for
developers in Hengtian and IGS. On average, developers
in Hengtian and IGS spend 57.49% and 57.68% of their
time on program comprehension activities. Table 27 presents
the results for a one-way ANOVA test for the percentage
of time that developers in maintenance and development
phases spend on program comprehension. Since the p–value
is larger than 0.05, we conclude that there is no statistically
significant difference in the time, that developers across both
companies, spent on program comprehension.
Two-way ANOVA Analysis. We now investigate the interac-
tion effect of the company and the applications that are used

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

23

TABLE 27: One-way ANOVA test for percentage of time that
developers Hengtian and IGS spend on program comprehen-
sion.

Factor DF Sum Sq. Mean Sq. F Value P Value
Company 1 0.7 0.7 0.007 0.9338
Residuals 77 7649 99.3 – –

***p<0.001, **p<0.01, *p<0.05

TABLE 28: Two-way ANOVA test for the interaction effect of
company and the used applications for program comprehen-
sion.

Factor DF Sum Sq. Mean Sq. F Value P Value
Company 1 0 0.2 0.0001 0.9711

Appl 2 11,323 5661.6 37.4 4.0e−16***
Comp:Appl 2 547 273 1.6 0.2117
Residuals 231 40,393 174.9 – –

***p<0.001, **p<0.01, *p<0.05

for program comprehension. Hence we apply a two-way
ANOVA to test the statistical significance. Table 28 presents
the results of a two-way ANOVA test for the interaction
effect of company and the applications that are used for
program comprehension. We find that the interaction of
these two factors has a non-statistically significant impact
on the percentage of time spent on program comprehension.

From the above analysis, we conclude that developers in
these two companies spend similar time on program com-
prehension, thus our results are more likely to generalize to
other companies. Nevertheless, future studies are needed to
further examine the generality of our findings.

5.2 Feedback from Participants

After completing our paper, we sent the results section along
with the abstract and introduction to the ten interviewees,
and asked them for feedback about our findings, i.e., we
asked them whether they agree, disagree or have no com-
ments (neutral) on the results of each RQ. Figure 10 presents
the survey results for the ten interviewees. In general, most
of the respondents agreed with the results of the five RQs.
For RQ1 and RQ2, all of the ten respondents agreed with
our findings. For RQ3, two of the respondents (P9 and P10)
choose the option “neutral”, since they only worked in C#
projects, and they never joined any Java project. For RQ4,
two of the respondents disagreed with our findings; one
commented that “the results in RQ4 are surprising. In my
experience, senior developers need to spend more time on program
comprehension, since they have to do more advanced things (e.g.,
code reviews, and architecture design), which require them to
understand source code and the implementation of systems more”
(P1). For RQ5, we have two respondents who disagreed with
our findings; one commented that “I think developers spend
similar time on program comprehension activities in different
projects phases, since in any phase developers need to read code,
search online, and reuse third-party libraries. Maybe I am wrong,
but I have to admit that it is an interesting” (P6). Some of the
received comments which support our results are as follows:

• I really like the (nine) root causes concluded by
the authors. I will ask my team members to write
comments in source code, to reduce the difficulty of
program comprehension.

Fig. 10: Survey results.

• It is interesting to note (that) developers spend most
of the time on program comprehension inside Web
browser. Although I know I use web search fre-
quently, I never notice that I even spent more time
inside web browsers than inside IDEs. Yes, I agree
context switch increases the time spent on program
comprehension.

• Java and C# are the two most popular programming
languages, and I have experience on both of the two
programming languages. From my experience, when
I develop Java projects, I spend more time on code
understanding, since we would use a large amount
of external code. I also agree that third-party library
usage might be the cause of the difference of the time
spent on program comprehension between Java and
C#.

• As an outsourcing company, there are many projects
in the maintenance phases. Sometimes, the boss
thinks maintaining a project is much easier than
developing a project from scatch, and thus we should
deliver a maintenance project on time. However, we
(developers) do not agree with that. The finding of
the paper provides us the evidence, and we will use
it to argue with our boss next time.

5.3 Limitations

Threats to Construct Validity. One of the threats to con-
struct validity relates to the ability of our ActivitySpace tool
to accurately infer program comprehension activities. There
could be activities that are wrongly labelled. Still, we have
done many steps to minimize errors, e.g., detecting and
removing idle time, and ignoring accesses to websites which
are irrelevant to software development. We also perform a
preliminary study on two developers to verify the correct-
ness of our data collection tool on inferring programming
comprehension activities. Since the two developers need to
analyze many sprees, it is possible that they make some
mistakes. Still, we believe that the developers are correct for
most of the sprees.

Another threat relates to wrong conclusions that we
draw about participant’s perceptions from their comments.
To minimize this threat, we recorded our interviews and
listened to them several times. Also, the first two authors
worked together to ensure that the results are accurate. After

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

24

completing our paper, we also sent it to the interviewees,
and asked them for feedbacks on our findings. All of them
agree that our findings are consistent with their interviews.
Threats on External Validity. The number of participants
that we monitor and interview is limited. In total, we
monitor 78 developers for a total of 3,148 working hours
and interview 10 of them. All these developers come from
2 companies. Due to the limited availability of the partic-
ipants, we only interviewed ten participants, which might
impact the generalizability of our results. Although these
numbers may limit the generalizability of our study, the
number of developers that we interviewed is on par with
other interview-based studies [20], [39], and the number of
developers that we monitored are more than other studies
that also monitor developers, e.g., [26], [36]. Furthermore,
many of our participants have worked in many other com-
panies before, and have experience with developing projects
of various programming languages and sizes.

We only study two companies and both are from China.
Time spent on program comprehension may be different
if we investigate projects from other companies, especially
those outside China. Additionally, developers participating
in our study may use different search engines, e.g., Bing
or Google (via VPN). The usage of different search en-
gines may affect the time spent on program comprehension.
Moreover, the company strategy on open source projects us-
age might affect the time spent on program comprehension,
since developers are likely to do more web searching for
projects that make heavy use of open source components.
Future studies are needed to further examine these points.

Moreover, in this paper, we only consider two pro-
gramming languages, i.e., Java and C#. The time spent on
programming languages might be vary when we consider
more programming languages. In the future, we plan to
reduce these threats further by monitoring and interviewing
an even larger number of developers across more companies
over a longer period of time, and investigating projects
written in a more diverse set of programming languages.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a large-scale field study on how
program comprehension is performed in practice. We record
the activities of 78 developers working on 7 real industrial
projects spanning a period totaling of 3,148 working hours.
We analyze this recorded data, and we find that on average,
developers spend up to ∼58% of their time on program
comprehension, and they frequently use web browsers and
document editors to perform program comprehension ac-
tivities. Through relatively extensive empirical data, our
work revisits long-held assumptions about program com-
prehension, including that senior developers spend less
time on program comprehension, that more time on pro-
gram comprehension is required in the maintenance phase,
and that program comprehension activities occupy a non-
trivial amount of a developer’s day. We encourage future
work to use our findings to construct in-depth surveys that
can be distributed to a much wider audience so we can get
a much wider understanding.

A replication package for this paper can be downloaded
from: https://goo.gl/DHyfJa

TABLE 29: The average percentage of time that developers
spend on comprehension (Compre.), navigation, editing, and
others for different RT values.

RT Compre. Navigation Editing Others
0.5 61.05% 17.01% 5.70% 16.24%
0.8 59.15% 21.38% 5.50% 13.97%
1.0 58.87% 24.83% 6.36% 9.94%
1.2 56.78% 25.85% 4.95% 12.42%
1.5 53.03% 31.28% 4.45% 11.23%

APPENDIX

1. Different Settings of Reaction Time (RT)
In this study, by default, we set the reaction time (RT)

value to 1 second when computing program comprehension
time. This might be a threat to validity. The range of RT
value is usually from 0.5 to 1.5 seconds, which depends
on different human factors (e.g., personality, age, etc.) and
the task on hand [59]. Hence, we also try different RT
values (i.e., in {0.5,0.8,1,1.2,1.5}) to investigate the effect of
choosing different RT values on our findings.

Table 29 shows the average percentage of time that
developers spend on comprehension, navigation, editing,
and others when using different RT values. We find that
the larger the RT value is, the less the percentage of com-
prehension time is. On the other hand, the percentage of
navigation time becomes larger as the RT value increases.
This result makes sense because all intervals that are larger
than RT among developers’ interactions are computed as
comprehension in our study.

However, these variations in the results when using
different RT values do not affect our findings. In all results,
comprehension activities take more than half of developers’
working time, which is consistent with prior studies [13],
[15], [26], [36], [63]. Furthermore, the results of all individual
developers in our study is consistent with the average
results in Table 29. So, the different RT values do not affect
our findings about the effect of programming language,
developer experience, and project phase on program com-
prehension. Moreover, as we show in Section 3.2.6, that
when we set RT to be 1 second, our approach shows similar
results as manual annotations. Thus, in this paper, we set RT
to 1 second.

REFERENCES

[1] Krugle. http://opensearch.krugle.org/projects/, March 2014.
[2] Koders. http://www.koders.com, March 2016.
[3] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi,

and C. Lopes. Sourcerer: a search engine for open source code
supporting structure-based search. In Proceedings of the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, lan-
guages, and applications, pages 681–682. ACM, 2006.

[4] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou. Extracting and
analyzing time-series hci data from screen-captured task videos.
Empirical Software Engineering, pages 1–41, 2016.

[5] L. Bao, Z. Xing, X. Wang, and B. Zhou. Tracking and analyzing
cross-cutting activities in developers’ daily work. In Proc. 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2015.

[6] L. Bao, D. Ye, Z. Xing, and X. Xia. Activityspace: A remembrance
framework to support interapplication information needs. In
Proc. 30th IEEE/ACM International Conference on Automated Software
Engineering (Tool Track), 2015.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

25

[7] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
et al. Manifesto for agile software development. 2001.

[8] D. Binkley, M. Davis, D. Lawrie, and C. Morrell. To camelcase or
under score. In Program Comprehension, 2009. ICPC’09. IEEE 17th
International Conference on, pages 158–167. IEEE, 2009.

[9] S. Boslaugh. Statistics in a nutshell. ” O’Reilly Media, Inc.”, 2012.
[10] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-

plan, C. Coleman, F. Adeputra, and J. J. LaViola Jr. Code bubbles:
rethinking the user interface paradigm of integrated development
environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 455–464. ACM,
2010.

[11] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann.
How practitioners perceive the relevance of esem research. In Pro-
ceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, page 56. ACM, 2016.

[12] J. Cohen. Statistical power analysis for the behavioral sciences
lawrence earlbaum associates. Hillsdale, NJ, pages 20–26, 1988.

[13] T. A. Corbi. Program understanding: Challenge for the 1990s. IBM
Systems Journal, 28(2):294–306, 1989.

[14] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella. Using ir methods for labeling source code artifacts:
Is it worthwhile? In Program Comprehension (ICPC), 2012 IEEE 20th
International Conference on, pages 193–202. IEEE, 2012.

[15] R. K. Fjeldstad and W. T. Hamlen. Application program main-
tenance study: Report to our respondents. Proceedings Guide, 48,
1983.

[16] J. L. Fleiss. Measuring nominal scale agreement among many
raters. Psychological bulletin, 76(5):378, 1971.

[17] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri.
Impact of developer turnover on quality in open-source software.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 829–841. ACM, 2015.

[18] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[19] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software
engineering. Prentice Hall PTR, 2002.

[20] M. Greiler, A. van Deursen, and M. Storey. Test confessions:
a study of testing practices for plug-in systems. In Software
Engineering (ICSE), 2012 34th International Conference on, pages 244–
254. IEEE, 2012.

[21] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies. Automatic query reformulations for text retrieval in
software engineering. In Software Engineering (ICSE), 2013 35th
International Conference on, pages 842–851. IEEE, 2013.

[22] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan. On
the relationship between comment update practices and software
bugs. Journal of Systems and Software, 85(10):2293–2304, 2012.

[23] J. J. Jiang and G. Klein. Supervisor support and career anchor
impact on the career satisfaction of the entry-level information
systems professional. Journal of management information systems,
16(3):219–240, 1999.

[24] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, pages
1–11. ACM, 2006.

[25] J. Kim, S. Lee, S.-W. Hwang, and S. Kim. Enriching documents
with examples: A corpus mining approach. ACM Transactions on
Information Systems (TOIS), 31(1):1, 2013.

[26] A. J. Ko, B. Myers, M. J. Coblenz, H. H. Aung, et al. An exploratory
study of how developers seek, relate, and collect relevant informa-
tion during software maintenance tasks. Software Engineering, IEEE
Transactions on, 32(12):971–987, 2006.

[27] A. J. Ko and B. A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
pages 151–158. ACM, 2004.

[28] M. Lanza and S. Ducasse. Polymetric views-a lightweight visual
approach to reverse engineering. IEEE Transactions on Software
Engineering, 29(9):782–795, 2003.

[29] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of the
28th international conference on Software engineering, pages 492–501.
ACM, 2006.

[30] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Whats in a name?
a study of identifiers. In Program Comprehension, 2006. ICPC 2006.
14th IEEE International Conference on, pages 3–12. IEEE, 2006.

[31] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C.
Masiero, P. Baldi, and C. V. Lopes. Codegenie: using test-cases to
search and reuse source code. In Proceedings of the 22nd IEEE/ACM
international conference on Automated software engineering (ASE),
pages 525–526. ACM, 2007.

[32] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi.
Sourcerer: mining and searching internet-scale software reposito-
ries. Data Mining and Knowledge Discovery, 18(2):300–336, 2009.

[33] D. Lo, N. Nagappan, and T. Zimmermann. How practitioners per-
ceive the relevance of software engineering research. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 415–425. ACM, 2015.

[34] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the compre-
hension of program comprehension. ACM Transactions on Software
Engineering and Methodology (TOSEM), 23(4):31, 2014.

[35] P. W. McBurney and C. McMillan. Automatic documentation
generation via source code summarization of method context. In
Proceedings of the 22nd International Conference on Program Compre-
hension, pages 279–290. ACM, 2014.

[36] R. Minelli, A. Mocci, and M. Lanza. I know what you did
last summer- an investigation of how developers spend their
time. In Proc. of the 23rd IEEE International Conference on Program
Comprehension (ICPC 2015), pages 25–35. IEEE, 2015.

[37] A. Mockus. Succession: Measuring transfer of code and developer
productivity. In Proceedings of the 31st International Conference on
Software Engineering, pages 67–77. IEEE Computer Society, 2009.

[38] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker. Automatic generation of natural language sum-
maries for java classes. In Program Comprehension (ICPC), 2013
IEEE 21st International Conference on, pages 23–32. IEEE, 2013.

[39] E. R. Murphy-Hill, T. Zimmermann, and N. Nagappan. Cow-
boys, ankle sprains, and keepers of quality: how is video game
development different from software development? In Software
Engineering (ICSE), 2014 36th International Conference on, pages 1–
11, 2014.

[40] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. Query expansion based
on crowd knowledge for code search. IEEE Transactions on Services
Computing, 9(5):771–783, 2016.

[41] F. Paetsch, A. Eberlein, and F. Maurer. Requirements engineer-
ing and agile software development. In Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003.
Proceedings. Twelfth IEEE International Workshops on, pages 308–313.
IEEE, 2003.

[42] H. Pashler. Dual-task interference in simple tasks: data and theory.
Psychological Bulletin, 116(2):220–44, 1994.

[43] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack over-
flow in the ide. In Proceedings of the 2013 International Conference on
Software Engineering, pages 1295–1298. IEEE Press, 2013.

[44] R. S. Pressman. Software engineering: a practitioner’s approach.
Palgrave Macmillan, 2005.

[45] M. M. Rahman, S. Yeasmin, and C. K. Roy. Towards a context-
aware ide-based meta search engine for recommendation about
programming errors and exceptions. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week-IEEE Conference on, pages 194–203. IEEE, 2014.

[46] A. J. Riel. Object-oriented design heuristics, volume 335. Addison-
Wesley Reading, 1996.

[47] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus. Quantify-
ing and mitigating turnover-induced knowledge loss: case studies
of chrome and a project at avaya. In Proceedings of the 38th
International Conference on Software Engineering, pages 1006–1016.
ACM, 2016.

[48] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do pro-
fessional developers comprehend software? In Proceedings of the
34th International Conference on Software Engineering, pages 255–265.
IEEE Press, 2012.

[49] S. Shaphiro and M. Wilk. An analysis of variance test for normal-
ity. Biometrika, 52(3):591–611, 1965.

[50] B. Sharif and J. I. Maletic. An eye tracking study on camelcase and
under score identifier styles. In Program Comprehension (ICPC),
2010 IEEE 18th International Conference on, pages 196–205. IEEE,
2010.

[51] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg.
Measuring and modeling programming experience. Empirical
Software Engineering, 19(5):1299–1334, 2014.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2734091, IEEE
Transactions on Software Engineering

26

[52] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software. In Program Comprehension, 2005. IWPC
2005. Proceedings. 13th International Workshop on, pages 173–175.
IEEE, 2005.

[53] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[54] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments
for java methods. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 43–52. ACM,
2010.

[55] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically
detecting and describing high level actions within methods. In
Proceedings of the 33rd International Conference on Software Engineer-
ing, pages 101–110. ACM, 2011.

[56] B. G. Tabachnick, L. S. Fidell, and S. J. Osterlind. Using multivari-
ate statistics. 2001.

[57] B. E. Teasley. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies,
40(5):757–770, 1994.

[58] A. Von Mayrhauser and A. M. Vans. Program comprehension
during software maintenance and evolution. Computer, 28(8):44–
55, 1995.

[59] G. M. Weinberg. The psychology of computer programming. 1998.
[60] A. Whitaker. What causes it workers to leave. Management Review,

88(9):8, 1999.
[61] E. Wong, J. Yang, and L. Tan. Autocomment: Mining question

and answer sites for automatic comment generation. In Automat-
ed Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 562–567. IEEE, 2013.

[62] J. H. Zar. Significance testing of the spearman rank correlation co-
efficient. Journal of the American Statistical Association, 67(339):578–
580, 1972.

[63] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon. Principles of software
engineering and design. Prentice-Hall Englewood Cliffs, 1979.

	Measuring program comprehension: A large-scale field study with professionals
	Citation
	Author

	tmp.1506589865.pdf.dj2vX

