
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2020

Lightweight sharable and traceable secure mobile health system Lightweight sharable and traceable secure mobile health system

Yang YANG
Fuzhou University

Ximeng LIU
Fuzhou University

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Health Information Technology Commons, and the Information Security Commons

Citation Citation
YANG, Yang; LIU, Ximeng; DENG, Robert H.; and LI, Yingjiu. Lightweight sharable and traceable secure
mobile health system. (2020). IEEE Transactions on Dependable and Secure Computing. 17, (1), 78-91.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3774

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1239?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3774&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Lightweight Sharable and Traceable Secure
Mobile Health System

Yang Yang, Member, IEEE, Ximeng Liu, Member, IEEE, Robert H. Deng, Fellow, IEEE,
Yingjiu Li, Member, IEEE,

Abstract—Mobile health (mHealth) has emerged as a new patient centric model which allows real-time collection of patient data via
wearable sensors, aggregation and encryption of these data at mobile devices, and then uploading the encrypted data to the cloud for
storage and access by healthcare staff and researchers. However, efficient and scalable sharing of encrypted data has been a very
challenging problem. In this paper, we propose a Lightweight Sharable and Traceable (LiST) secure mobile health system in which
patient data are encrypted end-to-end from a patient’s mobile device to data users. LiST enables efficient keyword search and fine-
grained access control of encrypted data, supports tracing of traitors who sell their search and access privileges for monetary gain, and
allows on-demand user revocation. LiST is lightweight in the sense that it offloads most of the heavy cryptographic computations to the
cloud while only lightweight operations are performed at the end user devices. We formally define the security of LiST and prove that it
is secure without random oracle. We also conduct extensive experiments to access the system’s performance.

Index Terms—access control, searchable encryption, traceability, user revocation, mobile health system.

F

1 INTRODUCTION

MOBILE health (mHealth) encompasses mobile devices
and wireless communication technology to collect

clinical health data and deliver them to healthcare providers
[1]. The emergence of wireless body sensor network (WBSN)
accelerates the development of mHealth. Implantable or
wearable medical sensors are placed on patients to monitor
and collect the physiological symptoms. These medical data
are aggregated at a mobile device (such as a smart phone)
and transmitted to the cloud via wireless networks for
remote storage and access. The two major benefits that
brought by mHealth are improved patient care and im-
proved data access. ”Improved patient care” means that
mHealth could realize telemedicine since the patient’s con-
ditions can be measured remotely instead of face-to-face in
the hospital. ”Improved data access” means that healthcare
providers can access critical electronic health record (EHR)
at the point of care or at a remote location using a mobile
terminal to provide in time medical treatment.

Mobile devices however have limited computation, stor-
age and battery powers. It is not economical and practical
for a hospital to equip thousands of healthcare staff with
high performance mobile devices. Moreover, the busy work
schedule in medical institutions also does not allow their
physicians to wait for the charging of portable devices when
their batteries are drain. Thus, it is critical to keep operations
in all mobile devices lightweight in a mHealth system.

Y. Yang and X. Liu are with College of Mathematics and Computer Sci-
ence, Fuzhou University, Fuzhou, China, 350116; and School of Informa-
tion Systems, Singapore Management University, Singapore 188065. (email:
yang.yang.research@gmail.com, snbnix@gmail.com)

R. H. Deng and Y. Li are with School of Information Systems, Singapore
Management University, Singapore 188065. (email: robertdeng@smu.edu.sg,
yjli@smu.edu.sg)

Y. Yang is also with Fujian Provincial Key Laboratory of Information
Processing and Intelligent Control (Minjiang University), Fuzhou, China,
350121.

X. Liu is the corresponding author.

Apart from the performance concerns in mobile devices,
data security and privacy concerns [2], [3] have been the
major obstacle that hinders the wide spread adoption of
mHealth systems. According to the Office of Civil Rights
under Health and Human services of U.S., more than 113
million medical records were compromised in 2015 [4]. In
mHealth systems, EHRs are outsourced to public cloud,
data owners would not have direct control of the software
and hardware platforms used to store their data. To mitigate
security and privacy concerns about EHRs, a common solu-
tion is to provide end-to-end encryption by storing EHRs in
encrypted form so that they remain private and secure, even
if the cloud is not trusted or compromised. The encrypted
EHRs, however, must be amenable to sharing and access
control. Attribute based encryption (ABE) is an effective
mechanism to provide fine-grained access control on en-
crypted data, in which secret keys of users and ciphertexts
are dependent upon attributes. In ciphertext-policy ABE,
which we will adopt, an access policy is associated with a
ciphertext and a user’s secret key is associated with a set of
attributes. The ciphertext can be decrypted only if the set of
attributes associated with the user’s secret key satisfies the
policy. In addition to fine-grained access control, effective
keyword search over encrypted EHRs is an extremely useful
feature in practice.

The high value of EHRs might motivate certain rogue
healthcare staff, called traitors, to sell their secret keys for
financial gains. Hence, it is imperative that the identity of a
key owner who maliciously sells his/her secret key in the
black market be traceable in mHealth systems. Furthermore,
a mHealth system should be able to revoke authorized
users’ access privileges when the users misbehave or when
their secret keys are being compromised. Most existing ABE-
based data encryption systems require large scale periodic
key update or ciphertext update to accomplish user re-
vocation, which incur too much operational overhead for

Published in IEEE Transactions on Dependable and Secure Computing, 2017 July, Volume PP, Issue 99, Pages 1-14
http://doi.org/10.1109/TDSC.2017.2729556

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

mHealth systems.

1.1 Our Contributions

In this paper, we propose a novel Lightweight Sharable
and Traceable (LiST) secure mHealth system. In addition
to using ABE to achieve fine-grained access control of
encrypted EHRs, LiST also supports keyword search over
encrypted EHRs, efficient traitor tracing, and scalable user
revocation. As mentioned before, the resource constraint
feature of mobile devices in mHealth system requires that
operations in mobile devices be lightweight. Maintaining
lightweight computation and efficient storage in mobile
devices throughout the LiST system operations is our over-
riding design objective. We achieve this by elaborately out-
sourcing most of the expensive cryptographic computations
to the cloud without leaking the sensitive information. In
particular, LiST provides the following functionalities.

- Lightweight encryption. In the encryption algorithm,
most of the ABE encryption computations are of-
floaded to the public cloud and only a few exponen-
tiation operations are performed in a data owner’s
mobile device. Encrypted EHRs are uploaded to the
public cloud for storage.

- Lightweight keyword trapdoor generation. To ob-
tain encrypted EHRs containing a certain keyword
from the public cloud, a data user generates a key-
word trapdoor and sends it to the cloud. In the
keyword trapdoor generation algorithm, only a few
lightweight multiplication, division and inversion
operations are done in the data user’s device.

- Lightweight test algorithm. Upon receiving a key-
word trapdoor from a data user, the cloud runs a test
algorithm to retrieve encrypted EHRs containing the
underlying keyword. Only three bilinear computa-
tions are required for the cloud storage provider to
complete a test operation. As will be discussed later,
the existing attribute based searchable encryption
systems require a huge number of time consuming
bilinear operations.

- Lightweight decryption and verification. In the de-
cryption algorithm, most of the ABE decryption op-
erations are outsourced to the public cloud. That is,
the cloud first transforms an encrypted EHR into an
intermediate ciphertext and sends it to a data user.
The data user’s device only needs to perform one
exponentiation computation to obtain the underlying
EHR and verifies that the transformation done by the
cloud is correct.

- Lightweight user revocation. Instead of expensive
periodic large-scale secret key update or ciphertext
re-encryption, an exquisite design in LiST guarantees
an ultra-lightweight user revocation mechanism.

- lightweight traitor tracing. Due to the one-to-many
encryption characteristic of ABE, decryption privi-
leges can be shared by a group of users who own the
same set of attributes. It is extremely hard to reveal
the original secret key owner’s identity from an
exposed secret key since most existing ABE schemes
allow key randomization. LiST supports lightweight

traitor tracing, only three bilinear operations are
involved in the traitor tracing algorithm, and no
additional storage or identity table is required.

We provide a thorough analysis of the security of LiST
and a detailed performance comparison of LiST with ex-
isting schemes. Extensive simulations and experiments are
conducted on both fixed and mobile platforms to validate
the performance of LiST. Our results indicates that LiST is
promising for practical applications.

1.2 Related Work
To realize fine-grained access control for outsourced data,
ABE provides a cryptographically approach to achieve one-
to-many data encryption and sharing. The notion of ABE
was first put forth by Goyal et al [5]. They proposed the first
key policy ABE (KP-ABE) scheme and the first ciphertext
policy ABE (CP-ABE) scheme based on access tree. Ostro-
vsky et al [6] introduced a new KP-ABE scheme such that
user’s private key can represent any Boolean access formula
over attributes. To remove the trusted central authority, [7]
and [8] present multi-authority system to realize decen-
tralized ABE. However, these schemes suffer from a large
computation overhead.

In order to reduce the computation operations at an end
user’s device, Green et al. [9] introduced outsourcing de-
cryption mechanism to ABE system, which allows a proxy to
transform a ciphertext into another form so that the user can
recover the message efficiently. However, the correctness of
transformation in [9] can not be verified. Later, Lai et al.
[10] presented a verifiable outsourced decryption (VOD)
ABE scheme by appending a redundant message as the
auxiliary verification information. Although verifiability is
achieved in [10], it doubles the length of ciphertext and
introduces significant overhead in encryption operation.
The VOD issue is further discussed in schemes [11], [12].
The decryption computation overhead is reduced in these
schemes, but the encryption cost still grows with the com-
plexity of access structure. Furthermore, these schemes can
not provide search function on ciphertexts.

Another problem in the ABE mechanism is that a user’s
secret key is associated with a set of attributes rather than
the user’s identity. The same set of attributes can be shared
by a group of users. If a malicious authorized user sells
his secret key for financial gain, it would be impossible to
identify the suspect in the traditional ABE schemes. The
problem of tracing the original user from a secret key is
named as white-box traceability [13], [14]. If the leakage is
the decryption equipment instead of the secret key, this
stronger tracing notion is called black-box traceability [15].
Existing traitor tracing schemes [13], [14], [15] either requires
the maintenance of a user list or incurs a large compu-
tation overhead. In this paper, we provide a solution for
lightweight white-box traceability.

Although ABE encryption could prevent a storage
provider or outside attacker from revealing sensitive EHRs,
it still faces the problem of data usability. The encryption
algorithm exerts unreadability to the medical files and
prohibits users from performing operations on them, such
as the most commonly used information retrieval. As a
seminal work, Song et al. [16] proposed the first scheme

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

to enable keyword search over encrypted files. Following
this work, a lot of searchable encryption schemes have
been proposed, which can be classified into two categories:
symmetric searchable encryption (SSE) [17], [18], [19] and
public key encryption with keyword search (PEKS) [20],
[21], [22], [23].

In SSE schemes, a user Alice uploads its encrypted data
to a remote server and keeps the secret key private from the
server. It allows another user Bob to search on the private
files using a specified keyword under the premise that the
secret key is shared between Alice and Bob. SSE is only
suitable for the scenario where a group of users fully trust
each other.

It is obvious that this assumption is not suitable for a
mHealth system. In order to provide searchable encryption
ability in the public key setting, Boneh et al. [24] intro-
duced PEKS to enable searchable data sharing between
untrusted parties. Later on, Curtmola et al. [25] proposed
a dynamic searchable encryption scheme using the inverted
index. Boneh and Waters et al. [26] presented a novel PEKS
scheme that supports conjunctive, subset and range key-
word queries but the scheme suffers from large computation
and storage overhead. To provide multiple users the search
ability, authorized searchable encryption is desirable. In [27],
[28], [29], the ABE mechanism is introduced to searchable
encryption system. The outsourced files can be contributed
from multiple data owners and searchable by multiple users
[28]. A data owner could enforce access policy on the index
of the documents to realize search authorization. However,
the scheme in [28] requires the system to re-encrypt the
encrypted files and update users’ secret keys to revoke a
user. This is not suitable for a large mHealth system, which
has a massive amount of EHRs and a large number of users.
Moreover, the computation costs of these schemes [27], [28],
[29] increase with the complexity of access structures. More
recently, PEKS schemes dealing with post quantum attacks,
keyword guessing attacks, and key-escrow problems have
been proposed in [30], [33], [31], and [32], respectively.
However, these schemes do not provide the access control
function.

2 PRELIMINARIES

In this section, some basic notations and definitions used in
LiST are introduced.

2.1 Access Policy

Definition 1 (Access Structure [34]). Let {P1, · · · , Pn} be
a set of parties. A collection A ⊆ 2{P1,··· ,Pn} is monotone
if ∀B and C: if B ∈ A and B ⊆ C then C ∈ A. An
access structure (respectively, monotone access structure)
is a collection (resp. monotone collection) A of non-empty
subsets of {P1, · · · , Pn}, i.e., A ⊆ 2{P1,··· ,Pn}\{φ}. The sets
in A are called the authorized sets, and the sets not in A are
called the unauthorized sets.

The role of parties is taken by attributes in ABE scheme.
Thus, an access structure A contains the authorized sets of
attributes. As shown in [34], any monotone access structure
can be represented by a linear secret sharing scheme.

Definition 2 (Linear Secret Sharing Scheme (LSSS) [34]).
A secret-sharing scheme Π over a set of parties P is called
linear (over Zp) if
• The shares for each party form a vector over Zp.
• There exists a matrix M with l rows and n columns

called the share-generating matrix for Π. For all i = 1, · · · , l,
the ith row of M is labeled by a party ρ(i) (ρ is a function
from {1, · · · , l} to P). When we consider the column vector
v = (s, r2, · · · , rn), where s ∈ Zp is the secret to be shared
and r2, · · · , rn ∈ Zp are randomly chosen, then Mv is the
vector of l shares of the secret s according to Π. The share
(Mv)i belongs to party ρ(i).

Every LSSS according to the definition achieves the
linear reconstruction property [34]. Suppose that Π is an
LSSS for the access structure A. Let S ∈ A be any authorized
set and I ⊂ {1, · · · , l} be defined as I = {i : ρ(i) ∈ S}.
Then, there exists constants {ωi ∈ Zp}i∈I such that, if
{λi}i∈I are valid shares of any secret s according to Π,
then

∑
i∈I ωiλi = s. Furthermore, it is shown in [34] that

these constants {ωi}i∈I can be found in time polynomial in
the size of the share-generating matrix M . For unauthorized
sets, no such constants exist. In this paper, an LSSS matrix
(M,ρ) will be used to express an access policy associated to
a ciphertext.

2.2 Bilinear Groups
Let Gp be an algorithm that on input the security parameter
λ, outputs the parameters of a prime order bilinear map
as (p, g,G,GT , e), where G and GT are multiplicative cyclic
groups of prime order p and g is a random generator of G.
The mapping e : G×G→ GT is a bilinear map. The bilinear
map e has three properties: (1) bilinearity: ∀u, v ∈ G and
a, b ∈ Zp, we have e(ua, vb) = e(uv)ab. (2) non-degeneracy:
e(g, g) 6= 1. (3) computability: e can be efficiently computed.

2.3 Assumptions
The security of LiST is based on the following assumptions.

Assumption 1 (q-SDH assumption [35]). Let G be a
bilinear group of prime order p and g be a generator of
G, the q-Strong Diffie-Hellman (q-SDH) problem in G is
defined as follows: given a (q+1)-tuple (g, gx, gx

2

, · · · , gxq)
as inputs, output a pair (c, g1/(c+x)) ∈ Zp × G. An al-
gorithm A has advantage ε in solving l-SDH in G if
Pr[A(g, gx, gx

2

, · · · , gxq) = (c, g1/(c+x))] ≥ ε, where the
probability is over the random choice of x in Z∗p and the
random bits consumed by A.

Definition. We say that the (q, t, ε)-SDH assumption
holds in G if no t-time algorithm has advantage at least ε
in solving the q-SDH problem in G.

Assumption 2 (decisional bilinear Diffie-Hellman as-
sumption). Let G be a bilinear group of prime order p and g
be a generator of G. Let a, b, s ∈ Z∗p be chosen at random. If
an adversary A is given ~y = (g, ga, gb, gs), it is hard for the
attacker A to distinguish e(g, g)abs ∈ GT from an element
R that is randomly chosen from GT .

The adversary A has advantage ε in solving the above
assumption if∣∣∣Pr[A(~y, T = e(g, g)abs) = 0]− Pr[A(~y, T = R) = 0]

∣∣∣ ≥ ε.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Fig. 1: LiST System Architecture

3 SYSTEM MODEL

In this section, we describe the system architecture, threat
model and security requirements of LiST.

3.1 System Architecture
As shown in Fig. 1, the architecture of LiST mainly consists
of four types of parties: the wireless body sensor network
(WBSN) which acts as the function of data owner, healthcare
staff which is deemed as a data user, the public cloud and
the key generation center (KGC). The characteristic and
function of each party are described below.
• WBSN (data owner). WBSN involves tiny wireless

sensors that are embedded inside or surface-mounted on
the body of a patient. These sensors continuously monitor
the vital physiology parameters of the patient suffering
from chronic diseases such as diabetes, asthma and heart
problems. Collected personal health data are aggregated
and transmitted to a mobile device via wireless interface,
such as bluetooth or WLAN. Keyword to depict the health
information is extracted from the health record. Then, the
keyword and EHR are encrypted into a ciphertext under a
specific access policy. These encrypted EHRs are outsourced
to public cloud server for remote storage. The encryption
algorithm should be lightweight since the personal wireless
terminal has low computation capability and battery power.
• Healthcare staff (data user). Healthcare staff are the

data users in mHealth network. Each data user has a set
of attributes, such as affiliation, department and type of
healthcare staff, and is authorized to search on encrypted
EHRs based on his set of attributes. In mHealth system,
a data uses resource-limited mobile terminals to generate
keyword trapdoors and conduct the information retrieval
operation. The trapdoors are sent to the public cloud via
wireless channel and the retrieved EHR files are returned.
Then, the data user decrypts the EHR files and verifies the
correctness of decryption. In LiST, the trapdoor generation,
decryption and verification are all lightweight operations.
• Public cloud. The public cloud has almost unlimited

storage and computing power to undertake the EHR re-
mote storage task and respond on data retrieval requests.

Lightweight test algorithm is designed in our proposed sys-
tem to improve performance. In addition, the public cloud
helps to convert the retrieved ciphertext into a transformed
one so that the data user can decrypt it by lightweight
computation.

• KGC. KGC generates public parameters for the entire
system and distributes secret keys to data users. A data
user’s set of attributes is embedded in his secret key in LiST
to realize access control. If a traitor sells his secret key for
financial gain, the KGC is able to trace the identity of the
malicious user and revoke his secret key. Both traitor tracing
and user revocation algorithms in LiST are lightweight.

The formal definition of LiST is described in Supplemen-
tal Materials A.

3.2 Threat Model

We assume that the KGC is a fully trusted entity. In our
system, the public cloud server is deemed as semi-honest
and curious. It follows the pre-defined operations to conduct
search on EHRs on behalf of data users but is curious in
the sense that it tries to derive sensitive information from
the stored EHRs or the plaintext keywords from keyword
trapdoors submitted by users. Moreover, the public cloud
may try to save its computation resource or bandwidth by
returning incorrectly transformed ciphertexts to users. Data
owners are supposed to honestly encrypt and upload their
EHRs. Data users are not trusted, who may sell their secret
keys for financial gain. We assume that the public cloud
does not collude with revoked users in order to obtain u-
nauthorized data or gain decryption privilege. All attackers
are assumed to have polynomial time bounded computation
ability such that they can not solve the hardness problems
mentioned in Section 2.3.

3.3 Security Requirements

In order to guarantee security of the keyword and cipher-
text of an EHR, a secure searchable data sharing system
should satisfy the following requirement: indistinguishable

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

against chosen keyword and chosen ciphertext attack (IND-
CKCCA) [23], [27], [28]. This requirement guarantees that an
attacker (either the cloud server or an outside adversary) is
not able to distinguish two challenge ciphertexts (given two
corresponding plaintext messages and keywords). Lots of
training opportunities will be given to the adversary before
and after the challenge phase.

Another security requirement is on the traceability [13],
[14]. This requirement ensures that any adversary can not
forge a valid secret key without knowing the master secret
key of the KGC. It also guarantees that a traitor can be traced
if a well-formed secret key is sold for financial gain.

The concrete definitions of security models of IND-
CKCCA and traceability can be found in Supplemental
Materials B.

4 PROPOSED SYSTEM

4.1 System Overview
A highlight of LiST is the lightweight computation at user’s
mobile device. The basic approach to achieve this is to
offload most of the computation intensive operations to the
cloud server such that only some marginal operations are
left to the user device.

The workflow of the system architecture (shown in fig-
ure 1) is described as follows.

(1) When an EHR is generated from a wireless body
sensor network, the data owner extracts a keyword to
describe the EHR. Then, both the EHR and keyword are
encrypted using a lightweight encryption algorithm. During
the encryption process, the access policy specified by the
data owner is embedded in the encrypted EHR. Then, the
ciphertext is outsourced to the public cloud.

(2) When an authorized healthcare staff (data user)
intends to issue a search query, he generates a keyword
trapdoor using a lightweight trapdoor generation algorithm,
and sends the trapdoor to the public cloud.

(3) Upon receiving the data retrieval request, the public
cloud executes a lightweight test algorithm to find the
matched ciphertexts. Then, the public cloud transforms the
matched ciphertexts into outsourced ciphertexts, and sends
them to the healthcare staff.

(4) Upon obtaining the transformed ciphertexts, the
healthcare staff recovers the plaintext EHRs with a
lightweight decryption algorithm and checks the correctness
of the decryption output using a lightweight verification
algorithm.

(5) When a secret key is found in the underground
market, the KGC firstly verifies whether the secret key is
a valid key generated by itself. If it is a valid key, the KGC
runs a lightweight trace algorithm to reveal the identity of
the key owner.

(6) To protect privacy of EHRS, efficient user revocation
is essential. The KGC uses a lightweight revocation mecha-
nism to remove revoked users’ data retrieval and decryption
privileges.

4.2 Concrete Construction
In this subsection, we present a concrete construction of
LiST. Important notations are summarized in Table 1 for ease
of reference. High level interactions among various entities
in the concrete construction are illustrated in Fig. 2.

TABLE 1: Summary of Notations

Notation Description
PP/MSK public parameter/master secret key
S/(A, ρ) attribute set/access structure
PK/SK public key/ secret key pair of user
KW/TKW keyword/keyword trapdoor
CT/Cm index/message ciphertext
CTout outsourced ciphertext
SEnc/SDec symmetric encryption/decryption pair
K key space of symmetric encryption

4.2.1 System Setup

The KGC takes the security parameter 1λ as input. It outputs
the public parameter PP of the whole system and keeps
secret the generated master secret key MSK.

• Setup(1λ) → (PP,MSK). Run Gp(1λ) →
(p,G,GT , e). Let g ∈ G be the generator of group
G. Select random α, λ, τ ∈R Z∗p and k1, k2 ∈R K.
Compute f = gτ , Y = e(g, g)α, Y0 = e(g, f), h = gλ.
The public parameter is PP = (g, h, f, Y, Y0) and
the master secret key is MSK = (α, λ, τ, k1, k2).
The KGC also defines two hash functions:
H : {0, 1}∗ → Z∗p and H1 : {0, 1}∗ → K. We
will omit PP in the expressions of the following
algorithms.

4.2.2 Key Generation

As shown in Fig. 2, the KGC and data user are involved in
the following key generation protocol. The KGC generates
the public/secret key pair for each data user using KeyGen
algorithm. The identity id and attribute set S of user are
embedded in the created secret key SKid,S .

• KeyGen(MSK, id, S) → (PKid,S , SKid,S). The
key generation algorithm takes the master secret
key MSK, the user’s identity id and an attribute
set S = {ξ1, ξ2, · · · , ξk} ⊆ Z∗p as input. Choose
a, r, θ, %, s′, s′′, u′, u′′, u′′′ ∈R Z∗p. Compute ζ =
SEnck1(id), δ = SEnck2 (ζ||θ). The public key
PKid,S and secret key SKid,S are constructed as:

D1 = g
α−ar
λ+δ , D2 = δ,D3,i = gar(ξi+τ)

−1

, D4 = %,

Ψ1 = (D%
1)u
′
,Ψ2 = Y u

′′′

0 ,Ψ3,i = (D%
3,i)

u′′ ,

Ψ4 = gs
′
,Ψ5 = fs

′′
,

PKid,S = (Ψ1,Ψ2, {Ψ3,i}i∈[k],Ψ4,Ψ5),

SKid,S = (D1, D2, {D3,i}i∈[k], D4, s
′, s′′, u′, u′′, u′′′).

Note that 1/(λ + δ) is computed modulo p. If
gcd(λ + δ, p) 6= 1, the KeyGen algorithm chooses
another θ ∈R Z∗p and repeat the computation
δ = SEnck2(ζ||θ).

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Fig. 2: High level interactions in the concrete construction

4.2.3 EHR and Keyword Encryption
The data owner performs the following steps to encrypt an
EHR. First, the keyword used to depict the file (such as the
disease name) is extracted. Secondly, the data owner selects
a random number and calculates its hash value, which is
used as a symmetric key to encrypt EHR. In order to support
decryption verification, the data owner appends a string of
zeros to EHR and generates the message ciphertext. Thirdly,
the data owner specifies the access policy of the EHR. Lastly,
he encrypts the keyword and random number using the
access policy.

• Enc(m, (M,ρ),KW) → CT. Let M be an l × n
matrix and ρ be the function that associates rows
of M to attributes. Select random Υ ∈R G∗T . Set
kSE = H1(Υ). The data owner selects a positive
integer $ and concatenates $-bit 0 string after the
message m, which is used for outsourced decryption
verification. Then, compute Cm = SEnckSE (m||0$),
where || denotes concatenation of a string. The data
owner picks a random s ∈R Z∗p and then choose a
random vector ~v = (s, y2, · · · , yn)> ∈ Znp which is
used to share s. For i ∈ [l], compute si = Mi · ~v,
where Mi is the vector corresponding to the ith row
of M . Compute the ciphertext CT as:

C0 = Υ · Y s, C1 = gs, C2 = hs,

C3,i = ρ(i)si/[s
′H(KW)], C ′3,i = si/[s

′′H(KW)],

C4 = Y
H(KW)
0 Y s/H(KW).

Then, the access policy (M,ρ) and the ciphertext
CT = (C0, C1, C2, {C3,i, C

′
3,i}i∈[l], C4, Cm) are out-

sourced to cloud.

Remark: In the LiST system, the encryption algorithm is
suitable for all kinds of EHRs, such as the X-Ray pictures

and MRI scan files. These EHRs are encrypted using the
symmetric encryption algorithm SEnc and the file cipher-
text is denoted as Cm = SEnckSE (m||0$), where m repre-
sents the EHR. No matter what type the EHR is, the data
owner should extract keyword KW to describe the EHR.
The keyword is encrypted to index. Then, the file ciphertext
and encrypted keyword index are outsourced to cloud. The
keyword search algorithm and decryption algorithm work
regardless of the types of EHR.

4.2.4 Keyword Trapdoor Generation
The data user generates the keyword trapdoor TKW using
the following Trapdoor algorithm. The attribute set S is also
implicitly included in the generated trapdoor TKW , which
is transmitted to public cloud server via wireless channel.

• Trapdoor(SKid,S ,KW) → TKW . The data user
chooses u, u0 ∈ Z∗p and computes the keyword trap-
door TKW = (T0, T1, T2, T3, T

′
3, T4, T5) as:

T0 = u · (u′)−1, T1 = u0/[u
′H(KW)], T2 = D2,

T3 = u0 · (u′′)−1, T ′3 = uH(KW) · (u′′)−1,

T4 = u0D4, T5 = u0D4 ·H(KW) · (u′′′)−1.

4.2.5 Data Retrieval
Receiving the data retrieval request from data user, the
public cloud server responds on the request and search-
es on the stored encrypted EHRs to look for match-
ing files. The cloud server provider leverages on the
test and transform phases to complete the process:
Test&Transform(CT, TKW , PKid,S)→ CTout/⊥.

In the Test algorithm, the public cloud server searches
for the matching encrypted EHRs if the ciphertext satisfies
the following two requirements: the attribute set S (im-
plicitly included in keyword trapdoor) satisfies the access

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

structure defined in the encrypted EHR; the keyword con-
tained in the keyword trapdoor is in accordance with that
in ciphertext.

• Test(CT, TKW , PKid,S) → 1/0. Suppose CT as-
sociate with keyword KW ′ and TKW with KW .
The algorithm verifies whether S associated with
TKW satisfies (M,ρ) associated with CT . If not,
it outputs 0. Otherwise, let I ⊂ [l] be defined as
I = {i : ρ(i) ∈ S}. There exists a set of constants
{wi ∈ Zp}i∈I so that

∑
i∈I wiMi = (1, 0, · · · , 0). The

algorithm computes

Λ = e[Ψ4,
∏
i∈I

Ψ
C3,i·wi
3,i] · e[Ψ5,

∏
i∈I

Ψ
C′3,i·wi
3,i],

Γ = e(Ψ1, C
T2
1 C2), Γ2 = ΓT1 ,Λ2 = ΛT3 .

Then, the algorithm verifies whether the following
equation holds

ΨT5
2 · (Γ2/Λ2) = CT4

4 .

If the equation does not hold, it outputs 0 indicating
that KW ′ 6= KW . Otherwise, it outputs 1.

In the Transform algorithm, the public cloud server
transforms the matched ciphertext CT into CTout such that
the data user could use lightweight decryption algorithm to
recover the plaintext.

• Transform(CT, TKW , PKid,S) → CTout/⊥. If
the output of ”Test” algorithm is 0, it outputs ⊥.
Otherwise, it computes CTout = (C0,Γ1,Λ1, Cm), in
which Γ1 = ΓT0 ,Λ1 = ΛT

′
3 .

4.2.6 Data Decryption and Verification

Receiving the transformed ciphertext CTout, the data user
performs only one modular exponentiation computation to
recover the random number Υ, which can be computed as
symmetric key to recover the EHR m. In order to verify
whether the received CTout is correctly transformed from
the original CT , the data user checks whether a string of
zeros is appended to m.

• Dec(CTout, SKid,S)→ m/⊥. Compute

C0

(Γ1/Λ1)1/(uD4)
= Υ.

Then, the user computes kSE = H1(Υ) and
m′ = SDeckSE (Cm). The user checks whether a
redundancy 0$ is appended after the recovered
message. If so (m′ = m||0$), the message m can be
obtained by truncating $-bit 0 string. Otherwise,
the cloud server is dishonest to return an incorrect
transformed ciphertext and the algorithm outputs ⊥.

4.2.7 Traitor Tracing
A highlight of LiST is that the traitor can be traced if
a sold secret key is found in market. The KGC firstly
verifies whether the sold key is a well-formed key via
KeySanityCheck algorithm.

• KeySanityCheck(SKid,S) → 1/0. Suppose S =
{ξ1, ξ2, · · · , ξk}. The key sanity check of secret
key SKid,S consists of two steps. Firstly, the
KGC checks whether SKid,S is in the form
of (D1, D2, {D3,i}i∈[k], D4, s′, s′′, u′, u′′, u′′′) and
D2, D4, s

′, s′′, u′, u′′, u′′′ ∈ Z∗p, D1, D3,i ∈ G. Then,
the KGC verifies whether the equation holds

e(D1, h · gD2)k · e(g,
∏
i∈[k]

Dξi
3,i) · e(f,

∏
i∈[k]

D3,i) = Y k.

If SKid,S passes the key sanity check, the algorithm
outputs 1. Otherwise, it outputs 0.

If the sold key is proved valid, the identity of the true key
hold can be easily discovered through two decryption com-
putations on the component D1 of the secret key SKid,S .
The Trace algorithm is implemented by KGC using the
master secret key MSK.

• Trace(MSK,SKid,S) → id/⊥. If the output of
KeySanityCheck algorithm is 0, it means that
SKid,S is not a well-formed secret key and not
worth to be traced. The Trace algorithm outputs
⊥. Otherwise, SKid,S is a well-formed secret key.
The algorithm extracts (ζ||θ) = SDeck2(D1). The
malicious user’s identity id can be recovered by
computing id = SDeck1(ζ).

Fig. 3: User Revocation

4.2.8 User Revocation
After the traitor is identified in the tracing algorithm, an
important issue is how to revoke the search and decryption
privilege of the traced secret key. Taking the advantage of
the elaborate secret key design, the KGC can easily revoke
user’s access right in LiST. The component D2 = δ of secret
key contains the identity information of user. Moreover, it
must be submitted to public cloud server as a component
T2 = D2 of keyword trapdoor to issue a data retrieval re-
quest. As shown in Fig. 3, the KGC could simply putD2 = δ
into the revocation list to realize the user revocation. The
revocation list should be stored (together with a signature

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

signed by KGC) in the public cloud server. When the public
cloud receives a keyword trapdoor TKW , it should firstly
check whether T2 = D2 = δ is included in the revocation
list. If yes, the data retrieval request is rejected.1

Discussion: To realize traitor tracing function in LiST,
an identification element D2 = δ is generated from user’s
identity. It is also implicitly embedded into another element
D1 = g

α−ar
λ+δ of secret key. When a malicious user wants

to sell his secret key without being traced, he may intend
to re-randomize the element D2 to remove his identifier
information from the secret key. Although he can easily
generate a new D′2 = δ′, it is impossible for him to generate
a valid D′1 = g

α−ar
λ+δ′ without the master secret keys α and

λ. The construction of element D1 frustrates his vicious
attempt.

According to the performance analysis in Section 6,
the LiST system is much more efficient than the related
crypto schemes [6], [7], [9]-[14], [27], [28]. If one simply
combines several crypto schemes together, the performance
of the combined scheme will not be better than the orig-
inal underlying schemes, as adding extra functions to an
existing scheme introduces extra computation cost. Since
the performance of the original scheme is worse than the
LiST scheme (shown in Section 6), the combined scheme
will perform even worse. On the other hand, the security of
a combined scheme cannot be guaranteed unless a formal
proof is provided. Since different public key cryptosystems
may be proved secure based on different hardness problems,
it is challenging to prove that a combined scheme is secure
based on a single hardness problem. Moreover, simply
combining an existing public key encryption scheme with
keyword search is vulnerable to ciphertext swapping attack
[40], in which an attacker swaps the encrypted keyword in-
dices associated with encrypted files. Since different crypto
schemes utilize different random numbers to encrypt data,
the encrypted keyword index and file are bound together.
The ciphertext swapping attack is inevitable in such a com-
bined system.

In fact, the LiST system leverages the systematic design
philosophy to construct a lightweight sharable and traceable
secure system that is tailored for the mobile health applica-
tion. It not only has great advantages of computation and
communication overheads over the other crypto primitives,
but also ensures the security of the whole system. These
merits are achieved by the integrated architecture and del-
icate algorithm design, which can not be realized by the
simple combination.

5 SECURITY ANALYSIS

In accordance with the security requirements defined in
Section 3.3, we prove that LiST is IND-CKCCA secure
and satisfies the traceability. Both security requirements are
formally proved without random oracle. Then, we analyze
that the LiST system is secure against collusion attack.

1. The identities of the revoked users do not need to be stored in
the revocation list since the element D2 can be utilized to identify the
traitor.

Theorem 1. If the decisional bilinear Diffie-Hellman (DB-
DH) assumption holds, LiST is IND-CKCCA secure.

Proof : Due to the length limitation, the concrete proof of
Theorem 1 is given in Supplemental Materials C.

High Level Idea of the Proof : In the security proof of the-
orem 1, the challenger C and polynomial time adversary A
interact with each other. If A could break the IND-CKCCA
security of the LiST system, C then utilizes the interactive
game with A to solve the DBDH problem. The game is
briefly described as below.

(1) In the setup phase, C is given an instance of the
DBDH assumption (~y, T), where ~y = (g, ga, gb, gs), and
T = e(g, g)abs or T is a random element in GT . Then,
C utilizes the received elements to construct the public
parameter of the system.

(2) In the query phase 1, A adaptively issues the secret
key queries and trapdoor queries. C responds on these
queries and returns the corresponding secret keys or trap-
doors to A.

(3) In the challenge phase, A sends the challenge access
policy (M∗, ρ∗), two keywords (KW ∗0 ,KW

∗
1) and two mes-

sages (m∗0,m
∗
1) to C. The restriction is that the secret key of

attribute set S that satisfies (M∗, ρ∗) has not been queried
in query phase 1. Then, C flips random coins µ1, µ2 ∈ {0, 1},
and encrypts the message m∗µ1

and the keyword KW ∗µ2
. A

key point is that the element T should be embedded in the
generated challenge ciphertext CT ∗, which is sent to A.

(4) Receiving the challenge ciphertext CT ∗, the adver-
sary A continues to issue queries as in phase 1. The restric-
tion is that KW /∈ {KW ∗0 ,KW ∗1 } and S does not satisfy
(M∗, ρ∗).

(5) In the guess phase,A outputs a guess µ′1, µ
′
2 ∈ {0, 1}.

If µ′1 = µ1, µ
′
2 = µ2, then C outputs 1 meaning T =

e(g, g)abs. Otherwise, it outputs 0 meaning T is a random
element in GT .

If C wins the game with non-negligible probability, then
A could utilize the guess of C to solve the DBDH prob-
lem with non-negligible probability. However, since DBDH
problem is intractable by polynomial time algorithm, then
the system is IND-CKCCA secure. �

Theorem 2: The proposed LiST system is (t̃, ε) traceable
under the (q, t̃′, ε′)-SDH assumption with ε′ = ε, t̃′ ≥ t̃ +
te · [O(|S|)qsk], where qsk denotes the total numbers of
user secret key queries, te denotes the running time of an
exponentiation, |S| is the number of attributes in a set S.

Proof : The concrete proof of Theorem 2 is given in
Supplemental Materials C.

High Level Idea of the Proof : In the security proof of
theorem 2, the challenger C and polynomial time adversary
A interact with each other. If A could break the traceability
of the LiST system, C then utilizes A to solve the q-SDH
problem. The game is briefly described as below.

(1) In the setup phase, C is given an instance of the q-
SDH assumption (ĝ, ĝλ, ĝλ

2

, · · · , ĝλq). Then, C utilizes the
received elements to construct the public parameter of the
system.

(2) In the query phase 1, A adaptively issues the secret
key queries. C responds on these queries and returns the
corresponding secret keys to A.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

(3) In the challenge phase,A sends a challenge secret key
SK∗ to C. If SK∗ passes the key sanity check, it indicates
that A successfully forges a valid secret key and breaks the
traceability of the LiST system. Then, C utilizes the SK∗ to
construct a tuple (c∗, w∗) to solve the q-SDH problem.

If C wins the game with non-negligible probability, then
A could utilize the the forged secret key of C to solve the
q-SDH problem with non-negligible probability. However,
since q-SDH problem is intractable by polynomial time
algorithm, then the system is IND-CKCCA secure. �

Keyword Guessing Attack: The proposed LiST system
(as well as [27], [28]) can not resist such attack. However,
[36], [37] proposed an effective way to prevent the attack.
In their schemes [36], [37], the storage server has its own
public/secret key pair. The server’s public key is involved
in the keyword trapdoor generation algorithm such that the
test algorithm can only be executed by the server with the
help of its secret key. The similar skill can also be leveraged
in LiST to resist keyword guessing attack.

Resistance to collusion attack. Collusion attack is an
important type of attack in multi-user system. The autho-
rized users may collude with each other in order to get extra
privileges. However, our system is not vulnerable to such
attack. In the key generation algorithm, the KGC selects a set
of random numbers to create user’s secret key. The collusive
users are not able to combine their secret keys to generate a
new valid secret key, since the secret keys generated from
different random numbers are not compatible with each
other. Therefore, the LiST system is secure against collusion
attack.

6 PERFORMANCE ANALYSIS

In this section, we compare LiST with other existing schemes
in terms of storage overhead and computation cost. The
proposed LiST is also implemented using the PBC library
[38] on both PC and mobile device platforms.

TABLE 2: Function Comparison with Other Schemes

Sch. Access Search Out. Ver. W.B. User
Control Dec. Dec. Trace Revoke

[6]
√

× × × × ×
[7]

√
× × × × ×

[9]
√

×
√

× × ×
[10]

√
×

√ √
× ×

[11]
√

×
√ √

× ×
[12]

√
×

√ √
× ×

[13]
√

× × ×
√

×
[14]

√
× × ×

√
×

[27]
√ √

× × × ×
[28]

√ √
× × ×

√

LiST
√ √ √ √ √ √

6.1 Comparison
Tables 2-4 compare the function, storage and computation
overhead of LiST with other schemes that could exert access
control on the encrypted data.

Table 2 indicates that the schemes [27], [28] provide
keyword search function. Outsourced decryption (for short,
Out. Dec.) is achieved in [9] and verifiable decryption (for
short, Ver. Dec.) is dealt with in [10], [11], [12]. The schemes

in [13], [14] achieves white-box (for short, W. B.) traceability.
The user revocation is realized in [28] using a large scale key
update approach. In LiST, all these functions are supported
with much less transmission and computation cost, which
will be analyzed in the following.

First of all, we define the notations used in Table 3-4.
Let |PP |, |SK|, |CT |, |TKW | be the sizes of the public pa-
rameter, secret key of user, the ciphertext and the keyword
trapdoor, respectively. Let l be the number of rows in matrix
M of access structure, |S| be the size of attribute set S and
|U | be the size of the universe attribute set U . |G|, |GT |
and |Zp| represent the bit length of an element in group
G, GT and Zp, respectively. Denote te1, te2 and tp as the
times consumed for a modular exponentiation on group G, a
modular exponentiation on group GT and a bilinear pairing
operation, respectively.

The storage overhead comparison is shown in Table 3.
The comparison shows that LiST has smaller public param-
eter size, secret key size, ciphertext size and trapdoor size.
The detailed analyzing is listed as following.

• Public Parameter Size: It is easy to find that LiST and
[9], [14] supports unbounded number of attributes
in the system, which is also referred to as ”large
universe” in ABE schemes. This feature will be very
helpful for large scale mHealth network since the
size of public parameter is immutable with the size
of attribute set. However, the public parameter sizes
of the other schemes [6], [7], [10], [11], [12], [13], [27],
[28] linearly grow with |U |, which is the total number
of the attributes in the system. With the expansion
of the system, more and more new attributes will
emerge. These schemes have to rebuilt the whole
system to accommodate these new attributes. Thus,
they are not practical for the mHealth system.

• Secret Key Size: The secret key of user in LiST
consists of |S| + 1 elements in group G and seven
elements in Zp. Generally speaking, |Zp| is always
smaller than |G|, which will be further analyzed in
the experiments in Sec. 6.2. It is obvious that the size
of user’s secret key in LiST is smaller compared with
the schemes in [6], [14], [27], [28]. Smaller secret key
size also means smaller storage overhead in user’s
resource-limited mobile devices.

• Ciphertext Size: The ciphertext generated in LiST
has 2 elements in group G, 2 elements in group GT
and 2l elements in Zp. Since the |Zp| is typically at
least one sixth of |G|, the |CT | in LiST is smaller
than all the other schemes in Table 3. Thus, LiST
requires smaller storage overhead in the public cloud
and lower transmission cost between data owner and
public cloud.

• Trapdoor Size: The schemes in [6], [7], [9], [10], [11],
[12], [13], [14] do not support keyword search on
encrypted data and do not have trapdoor generation
algorithm. In LiST, the keyword trapdoor generated
by user consists of only 7 group elements in Zp,
which is much smaller than the schemes in [27], [28].
From another perspective, it will greatly reduce the
transmission overhead between data user and public

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

TABLE 3: Storage Overhead Comparison

Scheme |PP | |SK| |CT | |TKW |
[6] (2|U |+ 3)|G| (5|S|)|G| (2l + 1)|G|+ |GT | ⊥
[7] (2|U |+ 4)|G|+ |GT | (|S|+ 6)|G| (5l)|G|+ |GT | ⊥
[9] 2|G|+ |GT | (|S|+ 2)|G| (2l + 1)|G|+ |GT | ⊥
[10] (|U |+ 5)|G|+ |GT | (|S|+ 2)|G| (4l + 3)|G|+ 2|GT | ⊥
[11] (|U |+ 2)|G|+ |GT | (|S|+ 2)|G| (2l + 1)|G|+ |GT | ⊥
[12] (|U |+ 4)|G|+ |GT | (|S|+ 2)|G| (2l + 1)G|+ |GT | ⊥
[13] (|U |+ 3)|G|+ |GT | (|S|+ 3)|G|+ |Zp| (2l + 2)|G|+ |GT | ⊥
[14] 6|G|+ |GT | (2|S|+ 3)|G|+ |Zp| (3l + 2)|G|+ |GT | ⊥
[27] (2|U |+ 10)|G|+ 3|GT | (3|S|)|G| (l + 3)|G|+ 2|GT | (3|S|)|G|
[28] (3|U |+ 1)|G|+ |GT | (2|S|+ 1)|G|+ |Zp| (l + 2)|G| (2|S|+ 2)|G|

LiST 3|G|+ 2|GT | (|S|+ 1)|G|+ 7|Zp| 2|G|+ 2|GT |+ 2l|Zp| 7|Zp|

TABLE 4: Computation Overhead Comparison

Scheme KeyGen Enc Dec Trapdoor Test
KeySanityCheck

&Trace

[6] (6|S|)te1
tp + te2 (3|S|)tp ⊥ ⊥ ⊥

+(2l + 1)te1 +|S|te1 + 2|S|te2
[7] (|S|+ 9)te1

tp + (6l)te1 (6|S|)tp ⊥ ⊥ ⊥
+l · te2 +(2|S|)te2

[9] (|S|+ 2)te1 tp + (3l + 1)te1 + te2 te1 ⊥ ⊥ ⊥
[10] (|S|+ 3)te1 2tp + (6l + 4)te1 + 2te2 te1 ⊥ ⊥ ⊥
[11] (|S|+ 3)te1 tp + (3l + 1)te1 + te2 te1 ⊥ ⊥ ⊥
[12] (|S|+ 3)te1 tp + (3l + 3)te1 + te2 te1 ⊥ ⊥ ⊥

[13] (|S|+ 4)te1
tp + te2+ (2|S|+ 1)tp + |S|te2 ⊥ ⊥ (2|S|+ 5)tp + te2

(3|l|+ 2)te1 +(|S|+ 1)te1 +(|S|+ 3)te1

[14] (4|S|+ 4)te1
tp + te2+ (3|S|+ 1)tp + |S|te2 ⊥ ⊥ (4|S|+ 5)tp + (|S|+ 1)te2

(5|l|+ 2)te1 +(|S|+ 1)te1 +(|S|+ 4)te1

[27] 4|S|te1
2tp + 2te2+ 4tp + te2+ 8|S|te1

2tp+ ⊥
(l + 5)te1 (3l + 4)te1 (2l)te1

[28] (2|S|+ 2)te1 (2|S|+ 2)te1 ⊥ (2|S|+ 2)te1
(|S|+ 1)tp ⊥

+te2

LiST (|S|+ 1)te1 2te1 + 3te2 te1
0tp + 0te1 3tp + te2+ 3tp + 2te2+
+0te2 (2l + 4)te1 (|S|+ 1)te1

cloud and decrease the energy consumption of user’s
mobile terminal compared with that in [27], [28].

As shown in Table 4, LiST has lower computation over-
head in each algorithms compared with other schemes.

• KeyGen: In the KeyGen algorithm, the KGC could
utilize |S| + 1 exponentiation operations on group
G to generate user’s secret key. All other schemes
in Table 3 requires more computation than ours.
For instance, [6], [14] and [27] needs as much as
6|S|, 4|S| + 4 and 4|S| exponentiation calculations
on group G in KeyGen computation, respectively.

• Enc: In LiST, the EHR encryption is done by user’s
energy limited device. In real-time monitoring med-
ical care system, the health information will be con-
tinuously generated, which should be immediately
encrypted and transmitted to the public cloud. If the
encryption computation cost is too large, the power
of data owner’s wireless terminal will be consumed
very quickly. In LiST, no pairing computation is
involved in the encryption algorithm. Moreover, only
two exponentiations on group G and three expo-
nentiations on group GT are required to generate a
ciphertext. Other schemes in Table 3 need much more
calculation cost in Enc algorithm, which also grow
with the number of attributes.

• Dec: Utilizing the outsourced decryption mechanis-
m, the schemes in [9], [10], [11], [12] and LiST can
recover the EHR with only one exponentiation com-

putation on group G. However, they [9], [10], [11],
[12] have not realized keyword search function on
encrypted data. On the other hand, the schemes in
[6], [7], [13], [14], [27] consume a lot of time and
energy to execute the large amount of pairing and
exponentiation computations.

• Trapdoor: In Table 4, it is shown that the com-
putation overhead of Trapdoor algorithm in LiST
is 0tp + 0te1 + 0te3 . It means that no pairing or
exponentiation computations is required in LiST. In
fact, only a few lightweight multiplication, division
and inversion computations on Zp are required in
LiST. The computation time of these operations can
almost be ignored compared with the pairing and
exponentiation operations (shown in Table 6). On
the contrary, the schemes in [27], [28] need a large
amount of exponentiation calculations to generate
a keyword trapdoor, which will consume a lot of
energy of user’s mobile device.

• Test: In the Test algorithm, the scheme in [27] needs
a little bit less computations than ours. However, [27]
puts heavy computation burden to user’s terminal in
the decryption phase. The main principle of LiST is
alleviating user’s computation burden and migrating
the heavy computation to public cloud, which pro-
cesses stronger computation power and continuous
energy supply.

• KeySanityCheck&Trace: The schemes in [13] and

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

[14] take the traitor tracing problem into considera-
tion. However, a large amount of pairing computa-
tions are required to recover the traitor’s identity in
these two schemes [13], [14]. In LiST, three pairing
computations is needed in the tracing procedure.

6.2 Experimental Analysis
We conduct experiments on both PC and smart phone to
evaluate the performance of LiST. The PC is utilized to
simulate the public cloud and KGC, which process relatively
high computation capability and endless electricity supply.
The smart phone is regarded as the mobile terminals of data
owner or data user, which has low computation resources
and limited battery.

6.2.1 Experiment Settings
We leverage Stanford Pairing Based Cryptography (PBC)
Library [38] on PC to implement LiST and other available
schemes used for comparison. C programming language is
used for prototyping of the schemes. The PC used for con-
ducting experiment is running Windows 7 64-bit operation
system with the following configurations: Intel CoreTM i3-
2120 CPU @ 3.30 GHz, 4.00 GB RAM.

We use Java Pairing Based Cryptography (JPBC) Li-
brary [38] to test LiST on smart phone, which utilizes Java
programming language for the scheme coding. The smart
phone has a 64-bit 8core CPU processor (4core processor
runs at 1.5 GHz and 4core processors runs at 1.2 GHz), 3GB
RAM. The experiment is built on the platform Android 5.1.1.

For both PC and smart phone, type A elliptic curve of
160-bit group order in PBC library [38] is chosen for con-
ducting experiment, which is equivalent to 80-bit security
level [39]. It has the expression form E : y2 = x3 + x
over Fq finite field. Both group G and group GT have
order p and are subgroups of E(Fq). The parameters q
and p are equivalent to 512 bits and 160 bits numbers in
binary system, respectively. Then, we have |Zp| = 160 bits,
|G| = 1024 bits and |GT | = 1024 bits.

TABLE 5: Storage Overhead (bits) (|S| = 100)

Scheme [13] [14] [27] [28] LiST
|PP | 106,496 8,192 218,112 309,248 7,168
|SK| 105,632 208,032 307,200 207,008 104,544
|CT | 207,008 309,408 105,792 104,448 36,096
|TKW | ⊥ ⊥ 307,200 206,848 1,120

6.2.2 Experiment Results
(1) Storage and Transmission Efficiency.

To evaluate the storage and transmission overhead, we
compare LiST with the schemes [13], [14], [27], [28] in terms
of the public parameter size, secret key size and trapdoor
size (bits) in Figure 4 and Table 5. In order to describe the
performance, a non-uniform axis is used in Fig. 4(a) to make
the different values much clearer.

• Fig. 4(a) shows that LiST requires much less storage
space and transmission cost for the public parameter.
No matter how many attributes are accommodated
in the mHealth system, the public parameter size is
7,168 bits. However, [28] needs 309,248 bits when the

0
5000
10000

0 10 20 30 40 50 60 70 80 90 100

50000

100000

150000

200000

250000

300000

350000

Si
ze

 (b
its

)

Number of attributes

 LiST
 [13]
 [14]
 [28]
 [27]

(a) Public Parameter Size

0 10 20 30 40 50 60 70 80 90 100
0

50000

100000

150000

200000

250000

300000

350000

Si
ze

 (b
its

)

Number of attributes

 LiST
 [13]
 [14]
 [28]
 [27]

(b) Secret Key Size

0 10 20 30 40 50 60 70 80 90 100
0

50000

100000

150000

200000

250000

300000

350000

Si
ze

 (b
its

)

Number of attributes

 LiST
 [13]
 [14]
 [28]
 [27]

(c) Ciphertext Size

0 10 20 30 40 50 60 70 80 90 100
0

2000
4000

50000

100000

150000

200000

250000

300000

350000

Number of attributes

Si
ze

 (b
its

)

 LiST
 [28]
 [27]

(d) Trapdoor Size

Fig. 4: Storage and transmission overhead

total number of attributes in the system grows to 100,
which is 43 times of ours parameter size. Since the
PP should be stored in each device in the system,
the mobile terminals of user has to use a large storage
space for the schemes in [13], [27], [28].

• In Fig. 4(b), it looks like that there are only three
lines for five schemes. The fact is that the schemes
in [14] and [28] has similar size of SK and these
two lines seem overlap. Moreover, LiST and [13] has
similar |SK| and the lines overlaps with each other.
When |S| = 100, the schemes in [27] requires 307,200
bits storage space for the secret key storage, which is
tripled of ours.

• Fig. 4(c) indicates that LiST requires the least storage
space for ciphertext, which is very useful to save
money in the pay-for-use mode of cloud. Moreover,
the data owner could consume less battery to trans-
mit the ciphertext to the public cloud and prolong
the service time of user’s mobile devices.

• In Fig. 4(d), there are only three lines since the
schemes in [13], [14] do not provide keyword search
function. The keyword trapdoor generated in LiST
only has 1,120 bits and will not grow with the num-
ber of the attribute set. It is much smaller than that
in [28] (206,848 bits) and [27] (307,200 bits) when
|S| = 100. The expensive transmission overhead
in [27], [28] will quickly drain the battery of user’s
wireless terminal.

TABLE 6: Computation Time on Different Platforms (ms)

PC Smart Phone
Bilinear Pairing 18.025 195.106

Exponentiation on group G 9.175 90.118
Exponentiation on group GT 2.784 33.4

Multiplication on Zp 0.001 0.026
Division on Zp 0.005 0.093
Inversion on Zp 0.004 0.057

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

TABLE 7: Computation Time (ms) (|S| = 100)

Scheme [13] [14] [27] [28] LiST
KeyGen 1,118 1,055 4,093 2,072 906.67
Enc 27,444 45,377 9,919 18,203 280.43
Dec 51,657 71,167 28,209 ⊥ 90.11

Trapdoor ⊥ ⊥ 72,094 18,203 0.501
Test ⊥ ⊥ 1,885 2,530 1,949
Trace 4,624 6,712 ⊥ ⊥ 985.91

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

 Key Generation Time
(PKG: PC)

Ti
m

e
(m

s)

Number of attributes

 LiST
 [13]
 [14]
 [28]
 [27]

(a) Key Generation Time

0 10 20 30 40 50 60 70 80 90 100
0

500
1000

10000

20000

30000

40000

50000

Number of attributes

 Encryption Time
(User: Mobile Device)

Ti
m

e
(m

s)
 LiST
 [13]
 [14]
 [28]
 [27]

(b) Encryption Time

0 10 20 30 40 50 60 70 80 90 100
0

100
200

10000

20000

30000

40000

50000

60000

70000

80000

Number of attributes

 Decryption Time
(User: Mobile Device)

Ti
m

e
(m

s)

 LiST
 [13]
 [14]
 [27]

(c) Decryption Time

0 10 20 30 40 50 60 70 80 90 100
0
1
2

10000

20000

30000

40000

50000

60000

70000

80000

Number of attributes

 Trapdoor Generation Time
(User: Mobile Device)

Ti
m

e
(m

s)

 LiST
 [28]
 [27]

(d) Trapdoor Generation Time

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

 Test Time
(Public Cloud: PC)

Ti
m

e
(m

s)

Number of attributes

 LiST
 [28]
 [27]

(e) Test Time

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Trace Time
(PKG: PC)

Ti
m

e
(m

s)

Number of attributes

 LiST
 [13]
 [14]

(f) Trace Time

Fig. 5: Computation overhead

(2) Computation Efficiency.
Shown in Figure 5, we have implemented each algorithm

in LiST and that in [13], [14], [27], [28]. The computations
operated by KGC and public cloud are tested on PC, while
the calculations of data owner and data user are executed
by the smart phone. The experiments on both PC and smart
phone (shown in Table. 6) indicate that the same basic
computations (such as bilinear paring and exponentiation)
executed by PC is about 10 times faster than that on smart
phone .

The experimental results shown in Figure. 5 and Table 7
clearly demonstrate that LiST always has least computation
time compared with others. Especially for the algorithms
that are executed by user’s wireless devices, LiST has in-
comparable efficiency advantage. A non-uniform axis is also
used in Fig. 5 for clear description.

• As indicated in Table 7, our encryption time is

10 20 30 40 50 60 70 80 90 100

250

300

350

400

450

500

550

600

650

Data Retrieval and Recovery Time
|S|=10

Number of returned files

Ti
m

e
(s

)

 LiST
 [27]

(a) |S| = 10

10 20 30 40 50 60 70 80 90 100
400

500

600

700

800

900

1000

1100

Data Retrieval and Recovery Time
|S|=20

Ti
m

e
(s

)

Number of returned files

 LiST
 [27]

(b) |S| = 20

10 20 30 40 50 60 70 80 90 100
600

800

1000

1200

1400

1600

Data Retrieval and Recovery Time
|S|=30

Ti
m

e
(s

)

Number of returned files

 LiST
 [27]

(c) |S| = 30

10 20 30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

2000

Data Retrieval and Recovery Time
|S|=40

Number of returned files

Ti
m

e
(s

)

 LiST
 [27]

(d) |S| = 40

Fig. 6: Data Retrieval and Recovery Time Comparison

about 280.43 ms and not varies with the number
of attributes. However, the EHR encryption time
consumes 27,444 ms, 45,377 ms, 9,919 ms and 18,203
ms in [13], [14], [27], [28], respectively.

• In the Dec algorithm, LiST has a constant computa-
tion cost 90.11ms to complete a decryption operation.
However, the schemes in [13], [14], [27] require 51,657
ms, 71,167 ms and 28,209 ms to recover a message,
respectively. The large computation overhead will
quickly consumes the battery of user’s resource lim-
ited mobile device.

• The Trapdoor algorithm in LiST requires no bilinear
paring or exponentiation computations. Only mul-
tiplication, division and inversion operations on Zp
are calculated in smart phone, which consume only
0.026 ms, 0.093 ms and 0.057 ms, respectively. When
|S| = 100, LiST only requires 0.501 ms to complete
a keyword trapdoor generation algorithm, while the
schemes in [27], [28] needs 72,094 ms and 18,203 ms.

The above analysis shows that LiST has efficiency sig-
nificantly better than the other schemes. The only exception
is that the computation cost of Test algorithm in [27] is
a little bit better than ours. However, [27] spends much
more time in the decryption time compared with ours. It
is important to evaluate the time between sending out a
keyword trapdoor query and obtaining the recovered health
documents, which is deemed as user’s waiting time.

In the following, we compare the data retrieval and
recovery time (waiting time) of LiST and that in [27] in
Figure 6. Assume the public cloud executes data retrieval
operations on 1000 encrypted EHRs. Various quantity of
matched files will be returned and decrypted by user’s
terminal. The number of matched files varies from 10 to 100
in Figure 6. Moreover, distinct values of |S| are considered
in Figure 6.a-6.d.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

It is notable that the data retrieval and recovery time
of LiST is far less than that in [27]. With the increasing of
the number of matched files, the waiting time in [27] grows
rapidly. For example, when |S| = 40 (shown in Figure 6.d),
the data retrieval and recovery time in [27] varies from 903
seconds to 1,982 seconds when the number of matching files
grows from 10 to 100. On the contrary, the waiting time
in LiST varies from 855 seconds to 863 seconds. Needless
to say, from the user’s viewpoint, LiST has much better
performance than that in [27].

7 CONCLUSION

In this paper, we proposed LiST, a lightweight secure data
sharing solution with traceability for mHealth systems. LiST
seamlessly integrates a number of key security functional-
ities, such as fine-grained access control of encrypted data,
keyword search over encrypted data, traitor tracing, and
user revocation into a coherent system design. Considering
that mobile devices in mHealth are resource constrained,
operations in data owners’ and data users’ devices in LiST
are kept at lightweight. We formally defined the security
of LiST and proved its security without random oracle.
The qualitative analysis showed that LiST is superior to
most of the existing systems. Extensive experiments on its
performance (on both PC and mobile device) demonstrated
that LiST is very promising for practical applications.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under Grant No. 61402112, 61472307,
61472309, 61502086; the Singapore National Research Foun-
dation under the NCR Award Number NRF2014NCR-
NCR001-012; AXA Research Fund; Fujian Provincial Key
Laboratory of Information Processing and Intelligent Con-
trol (Minjiang University) MJUKF201734; Fujian Major
Project of Regional Industry 2014H4015; and Major Science
and Technology Project of Fujian Province under Grant No.
2015H6013.

REFERENCES

[1] L. Guo, C. Zhang, J. Sun, Y. Fang. “A privacy-preserving attribute
based authentication System for Mobile Health Networks,” IEEE
Transactions on Mobile Computing, 2014, vol. 13, no. 9, pp. 1927-
1941.

[2] A. Abbas, S. Khan, “A review on the state-of-the-art privacy pre-
serving approaches in e-health clouds,” IEEE Journal of Biomedical
Health Informatics, 2014, vol. 18, pp. 1431-1441.

[3] J. Yang, J. Li, Y. Niu, “A hybrid solution for privacy preserving
medical data sharing in the cloud environment,” Future Generation
Computer Systems, 2015, vol. 43-44, pp. 74-86.

[4] http://www.pbs.org/newshour/updates/has-health-care-hacking
-become-an-epidemic/.

[5] V. Goyal, O. Pandey, A. Sahai, B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” Proc. 13th
ACM Conf. Computer and Comm. Security (CCS’06), pp. 89-98,
2006.

[6] R. Ostrovsky, A. Sahai, B. Waters, “Attribute-based encryption with
nonmonotonic access structures,” in: Proceedings of the 14th ACM
Conference on Computer and Communications Security, ACM,
2007, pp. 195-203.

[7] J. Han, W. Susilo, Y. Mu. “Improving privacy and security in
decentralized ciphertext-policy attribute-based encryption,” IEEE
Transactions on on Information Forensics and Security, 2015, vol.
10, no. 3, 665-678.

[8] M. Li, S. Yu, Y. Zheng, K. Ren, W. Lou. “Scalable and secure sharing
of personal health records in cloud computing using attribute-
based encryption,” IEEE transactions on parallel and distributed
systems, 2013, 24(1): 131-143.

[9] M. Green, S. Hohenberger, B. Waters, “Outsourcing the decryption
of ABE ciphertexts,” in Proc. USENIX Security Symp., San Francis-
co, CA, USA, 2011.

[10] J. Lai, R. H. Deng, C. Guan, J. Weng, “Attribute-based encryption
with verifiable outsourced decryption,” IEEE Trans. Inf. Forensics
Security, vol. 8, no. 8, pp. 1343-1354, Aug. 2013.

[11] B. Qin, R. H. Deng, S. Liu, S. Ma, “Attribute-based encryption
with efficient verifiable outsourced decryption,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 7, pp. 1384-1394, JULY. 2015.

[12] X. Mao, J. Lai, Q. Mei, K. Chen, J. Weng, “Generic and efficient
constructions of attribute-based encryption with verifiable out-
sourced decryption,” IEEE Transactions on Dependable and Secure
Computing, publish online, DOI: 10.1109/TDSC.2015.2423669.

[13] Z. Liu, Z. Cao, D. Wong, “White-box traceable ciphertext-policy
attribute-based encryption supporting any monotone access struc-
tures,” IEEE Transactions on Information Forensics and Security,
2013, 8(1), 76-88.

[14] J. Ning, X. Dong, Z. Cao, L. Wei, X. Lin, “White-box traceable
ciphertext-policy attribute-based encryption supporting flexible at-
tributes,” IEEE Transactions on Information Forensics and Security,
2015, 10(6), 1274-1288.

[15] Z. Liu, Z. Cao, D. Wong, “Traceable CP-ABE: how to trace decryp-
tion devices found in the wild,” IEEE Transactions on Information
Forensics and Security, 2015, 10(1), 55-68.

[16] D.X. Song, D. Wagner, A. Perrig, “Practical techniques for searches
on encrypted data”, in: IEEE Symposium on Security and Privacy,
2000, pp. 44-55.

[17] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in Proc.
IEEE INFOCOM, Apr./May 2014, pp. 2112-2120.

[18] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage,” in Proc. NDSS, Feb.
2014.

[19] Y. Yang, H. Li, W. Liu, H. Yang, and M. Wen, “Secure dynamic
searchable symmetric encryption with constant document update
cost,” in Proc. GLOBECOM, Anaheim, CA, USA, 2014.

[20] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with
conjunctive field keyword search,” in Information Security Appli-
cations, 5th International Workshop, WISA 2004, Jeju Island, Korea,
August 23- 25, 2004, Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 3325. Springer, 2004, pp. 73-86.

[21] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved
searchable public key encryption with designated tester,” in Pro-
ceedings of the 2009 ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2009, Sydney, Australia,
March 10-12, 2009. ACM, 2009, pp. 376C379.

[22] Z. Lv, C. Hong, M. Zhang, and D. Feng, ”Expressive and secure
searchable encryption in the public key setting,” in Information
Security - 17th International Conference, ISC 2014, Hong Kong,
China, October 12-14, 2014. Proceedings, ser. Lecture Notes in
Computer Science, vol. 8783. Springer, 2014, pp. 364-376.

[23] Y. Yang and M. Ma, “Conjunctive Keyword Search With Designat-
ed Tester and Timing Enabled Proxy Re-Encryption Function for
E-Health Clouds,” IEEE Transactions on on Information Forensics
and Security, 2016, vol. 11, no. 4, 746-759.

[24] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theo-
ry Appl. Cryptograph. Techn., Adv. Cryptol. (EUROCRYPT), vol.
3027. Interlaken, Switzerland, May 2004, pp. 506-522.

[25] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient construc-
tions,” in Proc. 13th ACM Conf. Comput. Commun. Security, 2006,
pp. 79-88.

[26] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Proc. 4th Theory Cryptogr. Conf. (TCC), vol.
4392. Amsterdam, The Netherlands, Feb. 2007, pp. 535-554.

[27] K. Liang, W. Susilo, “Searchable Attribute-Based Mechanism with
Efficient Data Sharing for Secure Cloud Storage,” IEEE Transactions
on Information Forensics and Security, 2015, vol. 10, no. 9, pp. 1981
- 1992.

[28] W. Sun, S. Yu, W. Lou, Y. Hou and H. Li, “Protecting Y-
our Right: Verifiable Attribute-based Keyword Search with Fine-
grainedOwner-enforced Search Authorization in the Cloud,” IEEE

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2729556, IEEE Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

Transactions on Parallel and Distributed Systems, 2016, vol. 27, no.
4, pp. 1187 - 1198.

[29] S. Qiu, J. Liu, Y. Shi, R. Zhang. “Hidden policy ciphertext-policy
attribute-based encryption with keyword search against keyword
guessing attack.” Science China Information Sciences 60.5 (2017):
052105.

[30] Y. Yang, S. Yang, F. Wang, J. Sun. “Post-Quantum Secure Public
Key Broadcast Encryption with Keyword Search.” Journal of Infor-
mation Science and Engineering 33.2 (2017).

[31] Q Huang, H Li. “An Efficient Public-Key Searchable Encryption
Scheme Secure against Inside Keyword Guessing Attacks.” Infor-
mation Sciences (2017).

[32] A. Ruhul. “Design of a Certificateless Designated Server Based
Searchable Public Key Encryption Scheme.” Mathematics and Com-
puting: Third International Conference, ICMC 2017, Haldia, India,
January 17-21, 2017, Proceedings. Vol. 655. Springer, 2017.

[33] Y. Yang, X. Zheng, V. Chang, S. Ye, C. Tang. “Lattice assumption
based fuzzy information retrieval scheme support multi-user for
secure multimedia cloud.” Multimedia Tools and Applications: 1-
15 (2017).

[34] A. Beimel, “Secure Schemes for Secret Sharing and Key Distribu-
tion,” PhD thesis, Israel Institute of Technology, Technion, Haifa,
Israel, 1996.

[35] D. Boneh and X. Boyen, “Short signatures without random or-
acles,” in Advances in Cryptology (Lecture Notes in Computer
Science), vol. 3027, C. Cachin and J. L. Camenisch, Eds. Berlin,
Germany: Springer-Verlag, 2004, pp. 56-73.

[36] J. Baek, R. Safavi-Naini, W. Susilo, “Public key encryption with
keyword search revisited,” in International conference on Compu-
tational Science and Its Applications. Springer Berlin Heidelberg,
2008: 1249-1259.

[37] L. Guo, W.C. Yau, “Efficient secure-channel free public key en-
cryption with keyword search for EMRs in cloud storage,” Journal
of medical systems, 2015, 39(2): 1-11.

[38] B. Lynn. The Stanford Pairing Based Crypto Library. [Online].
Available: http://crypto.stanford.edu/pbc, accessed May 7, 2014.

[39] http://csrc.nist.gov/groups/ST/toolkit/keymanagement.html.
[40] W. Yau, S. Heng, B. Goi. “Off-line keyword guessing attacks

on recent public key encryption with keyword search schemes.”
International Conference on Autonomic and Trusted Computing.
Springer Berlin Heidelberg, 2008.

Yang Yang received the B.Sc. degree from Xi-
dian University, Xi’an, China, in 2006 and Ph.D.
degrees from Xidian University, China, in 2012.
She is a research fellow (postdoctor) under su-
pervisor Robert H. Deng in School of Information
System, Singapore Management University. She
is also an associate professor in the college
of mathematics and computer science, Fuzhou
University. Her research interests are in the area
of information security and privacy protection.

Ximeng Liu received the B.Sc. degree from Xi-
dian University, Xi’an, China, in 2010 and Ph.D.
degrees from Xidian University, China, in 2015.
He was the research assistant at School of
Electrical and Electronic Engineering, Nanyang
Technological University, Singapore from 2013
to 2014. Now, he is a research fellow at School
of Information System, Singapore Management
University, Singapore. His research interests in-
clude cloud security and big data security.

Robert H. Deng is AXA Chair Professor of Cy-
bersecurity in the School of Information Sys-
tems, Singapore Management University. His
research interests include data security and
privacy, network and system security. He has
served/is serving on the editorial boards of many
international journals in security, such as IEEE
Transactions on Information Forensics and Se-
curity, IEEE Transactions on Dependable and
Secure Computing, the International Journal of
Information Security, and IEEE Security and Pri-

vacy Magazine. He is Fellow of IEEE.

Yingjiu Li is an Associate Professor at the
School of Information Systems, Singapore Man-
agement University. His research interests in-
clude RFID Security and Privacy, Mobile and
System Security, Data Application Security and
Privacy. He has served on the editorial boards
(and Committee Chair) of many information se-
curity international journals (and conferences).

	Lightweight sharable and traceable secure mobile health system
	Citation

	tdsc-2729556-pp.pdf

