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Abstract

This paper investigates whether return predictability can be explained by existing

asset pricing models. Using different assumptions, I develop two theoretical upper

bounds on the R-square of the regression of stock returns on predictive variables.

Empirically, I find that the predictive R-square is significantly larger than the upper

bounds, implying that extant asset pricing models are incapable of explaining the

degree of return predictability. The reason for this inconsistency is the low correlation

between the excess returns and the state variables used in the discount factor. The

finding of this paper suggests the development of new asset pricing models with new

state variables that are highly correlated with stock returns.
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1 Introduction

In the past three decades, financial economists and investors have found numerous economic

variables that can be identified as predictors of stock returns.1 The evidence on return

predictability has led to the development of new asset pricing models, such as the habit

formation model (Campbell and Cochrane 1999), the long-run risk model (Bansal and Yaron,

2004), and the rare disaster model (Barro, 2006; Gabaix, 2012; Gourio, 2012; Wachter, 2012).

While many asset pricing models can generate time-varying expected returns, it is unclear

whether they allow the same degree of predictability as observed in the data.

This paper asks whether predictability can be fully explained by a general asset pricing

model, of which the above three models are special cases. To answer this question, I develop

two theoretical upper bounds on the R2 of the regression of stock returns on any predictive

variable. If the predictive R2 is less than the bounds, return predictability is consistent with

asset pricing models. Otherwise, the models can be rejected. In this sense, the proposed

bounds provide a new way to diagnose asset pricing models.

With the assumptions that the stochastic discount factor (SDF) is a function of a set

of known state variables and investors’ risk aversions have an upper bound (maximum risk

aversion), the first bound in this paper depends on three key parameters: the multiple

correlation between the excess return and the state variables of the SDF, the maximum risk

aversion, and the volatility of the marginal investor’s optimal wealth. The rationale of the

maximum risk aversion is from Ross (2005) who shows that the volatility of the SDF is

positively related to risk aversion and that any upper bound on the SDF volatility is directly

related to the upper bound on the marginal investor’s risk aversion.

Instead of the maximum risk aversion, the second bound assumes that the volatility of

the SDF is bounded above by the market Sharpe ratio and also depends on three important

1Examples include the short-term interest rate (Fama and Schwert, 1977; Breen, Glosten, and Jagan-
nathan, 1989; Ang and Bekaert, 2007), the dividend yield (Fama and French, 1988; Campbell and Yogo,
2006; Ang and Bekaert, 2007), the earnings-price ratio (Campbell and Shiller, 1988), term spreads (Campbell,
1987; Fama and French, 1988), the book-to-market ratio (Kothari and Shanken, 1997), inflation (Campbell
and Vuolteenaho, 2004), corporate issuing activity (Baker and Wurgler, 2000), the consumption-wealth ratio
(Lettau and Ludvigson, 2001), stock volatility (French, Schwert, and Stambaugh, 1987; Guo, 2006), output
(Rangvid, 2006), oil price (Driesprong, Jacobsen, and Maat, 2008), output gap (Cooper and Prestley, 2009),
and open interest (Hong and Yogo, 2012).

1



parameters: the multiple correlation (as used in the bound with maximum risk aversion),

the market Sharpe ratio, and a parameter chosen by end-users that excludes arbitrage op-

portunities or “good-deals” in the sense of Cochrane and Saá-Requejo (2000). This bound

is in the spirit of Ross (1976) and Cochrane and Saá-Requejo (2000) who advocate using

the market Sharpe ratio to restrict the SDF volatility. The intuition is that extremely high

Sharpe ratios cannot persistently exist in the market and the volatility of the SDF is inti-

mately linked to the market Sharpe ratio. Hence, excluding extremely high Sharpe ratios is

equivalent to imposing an upper bound on the SDF volatility.

In the applications, I consider ten widely explored variables utilized by Goyal and Welch

(2008) to predict the excess returns of the market portfolio and cross-sectional portfolios,

such as portfolios formed based on size, book-to-market ratio, momentum, and industry. For

the state variables in the SDF, I first consider the consumption growth rate and the three

factors used by Fama and French (1993). The results show that the predictive R2s are almost

always larger than the proposed upper bounds. When the consumption growth rate is used

as the state variable in the SDF, the two proposed bounds are approximately zero regardless

of any of the ten predictors is used. When the state variables are the Fama-French three

factors, out of ten predictors, six predictors generate larger R2s than the bounds with the

maximum risk aversion and seven are larger than the bounds with the market Sharpe ratio.

Cross-sectionally, when any one of the ten variables is used as a predictor, with several

exceptions, all the predictive R2s violate the upper bounds, no matter whether the state

variables of the SDF are the consumption growth rate or the Fama-French three factors.2.

I then consider the market portfolio forecast in the case when the state variables are

those used in the habit formation model, the long-run risk model, or the rare disaster model.

The state variables in the habit formation model are the consumption growth rate and the

surplus consumption ratio. All the ten predictors generate larger R2s than the two bounds.

For example, when the dividend-price ratio is the predictor, the predictive R2 is 0.27% while

the upper bound is 0.03% with the maximum risk aversion and 0.02% with the market

Sharpe ratio. Constantinides and Ghosh (2011) show that the state variables in the SDF

of the long-run risk model can be the consumption growth rate, the risk-free rate, and the

2The results are robust when the momentum factor is included.
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dividend-price ratio. Nine predictive R2s violate the two bounds. With respect to the rare

disaster model, Wachter (2012) shows that the state variables can be the consumption growth

rate and the dividend-price ratio. In this case, both bounds are similar to that in the habit

formation and long-run risk models, and all ten predictive R2s exceed the two proposed

bounds significantly. In summary, one can conclude with a high degree of confidence that

the above three models explain only a fraction of predictability.

What happens when market frictions are introduced into the bounds? It may be the

case that the profits documented in the literature are not attainable for investors due to the

presence of market frictions. I follow Nagel (2012) by augmenting the SDF with a factor

that captures different notions of transaction cost, such as the marginal value of liquidity

services of tradeable assets in Holmström and Tirole (2001), the transaction costs in Acharya

and Pedersen (2005), or the funding liquidity in Brunnermeier and Petersen (2009). When

the liquidity factor in Pátor and Stambaugh (2003) is used as a proxy of transaction cost,

the proposed bounds are improved but still less than the predictive R2s significantly. In this

sense, transaction cost or market friction is not a key source to explain return predictability.

Since the bounds are robust to any specification of investors’ preference, the incapabil-

ity of extant asset pricing models in explaining return predictability is mainly due to the

low contemporaneous correlation between the excess return and the state variables. This

explanation is supported by the fact that the upper bounds are higher when the state vari-

ables are the Fama-French three factors than the consumption growth rate, because the

Fama-French three factors have a higher contemporaneous correlation with the excess re-

turn. Therefore, the finding of this paper suggests the development of new asset pricing

models with new state variables that are highly correlated with stock returns. This is con-

sistent with Cochrane and Hansen (1992) and Campbell and Cochrane (1999) who find that

the low correlation exacerbates a lot of asset pricing puzzles. More recently, Albuquerque,

Eichenbaum, and Rebelo (2012) introduce a demand shock to a representative agent’s rate

of time preference to account for the equity premium, bond term premia, and the correlation

puzzle.

In the literature, most studies focus on the qualitative property of predictability, and

only a few studies explicitly explore the quantitative magnitude allowed by asset pricing
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models. Hansen and Singleton (1983) seem to be the first to consider this problem exclusively

and find that the predictability of stock returns are proportional to the predictability of

the consumption growth rate. The weak predictability of the consumption growth rate

implies that stock returns are almost unpredictable. Ferson and Harvey (1991) and Ferson

and Korajczyk (1995) find that the multi-beta model explain a large fraction of return

predictability. Kirby (1998) develops a formal test and finds that none of the recognized

models can deliver sufficient predictability to accommodate the empirical pattern. Bansal,

Kiku, and Yaron (2012) show that the dividend-price ratio can only generate a marginal

degree of predictability with the long-run risk model. de Roon and Szymanowska (2012)

show that transaction costs rather than short sale constraint can reconcile Kirby (1998). All

these papers assume specific utility functions and so the results vary with different models

and parameter specifications.

Ross (2005) proposes an upper bound on the predictive R2 and finds that predictability

is consistent with asset pricing models. Zhou (2010) proposes a tighter bound and shows

that most predictors generate larger predictive R2s than his bound if the SDF is driven

by the consumption growth rate. This paper is closely related to Ross (2005) and Zhou

(2010) but departs from them in four aspects. First, I propose a new bound with the market

Sharpe ratio rather than the maximum risk aversion, giving a new choice to those who are

uncertain about risk aversion. Second, Ross (2005) implicitly assumes that the correlation

between the forecasted excess return and the state variables is 1, making it a special case

of my bounds. Third, Zhou (2010) uses the correlation between the state variables and

the default SDF,3 while my bounds use the correlation between the excess return and the

state variables, thereby providing some insights on cross-sectional predictability as to why

some assets are more predictable than others. Fourth and more important, my bounds use

conditional information explicitly and are much tighter than Ross (2005) and Zhou (2010).

When the market portfolio is included in the state variables of the SDF, the bounds in Ross

(2005) and Zhou (2010) lose the power to bind the predictive R2 while my bounds still work

well.

The rest of the paper is organized as follows. Section 2 shows how the predictive R2 can

3See equation (2) in Section 2.
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be bounded above by a specific SDF. Section 3 presents two semi-parametric bounds when

the SDF are bounded above by the maximum risk aversion or by the market Sharpe ratio.

The results of applying these two bounds to return predictability are reported in Section 4.

Finally, Section 5 summarizes and concludes.

2 Model

In this section, I show how to connect the predictive regression with asset pricing models

and then derive an upper bound on the predictive R2 with the variance of the stochastic

discount factor (SDF).

2.1 Asset pricing model

The central idea of finance theory is that the price of any asset is uniquely determined by a

Euler equation that satisfies

E[mt+1rj,t+1|It] = 0, j = 0, 1, · · · , N, (1)

where mt+1 is the SDF, rj,t+1 is the return of asset j in excess of the risk-free rate Rf,t.
4

Equation (1) says that the risk-adjusted return process defined by the product of the excess

return rj,t+1 and the SDF mt+1 is a martingale and is unpredictable using any information

contained in It. This equation is so general that it can accommodate the case when the

return itself is predictable, which does not necessarily conflict with the market efficiency

hypothesis. The only case of rj,t+1 being unpredictable is when mt+1 is constant over time.

According to Cochrane (2005), any asset pricing model is a particular specification of

mt+1. One default SDF, which satisfies (1) and prices the N + 1 assets, is given by

m0,t+1 = R−1
f,t + (1N −R−1

f,tµ)
′Σ−1(Rt+1 − µ), (2)

where Rt+1 is the N × 1 vector of gross returns on the N risky assets with mean µ and

4I use Rf,t rather than Rf,t+1 since it is known at the beginning of the return period.
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covariance Σ, and 1N is an N -dimensional vector of ones. I assume that µ is not proportional

to 1N and the N risky assets are not redundant.

In what follows, when it is not necessary to be explicit about the difference between

assets, I will suppress the subscripts and just write rt+1 rather than rj,t+1.

2.2 Predictive regression

Predictive regression is widely used in the study of return predictability, and is expressed as

rt+1 = α + βzt + εt+1, (3)

where zt is a predictive variable known at the end of period t. The degree of predictability

is measured by the predictive R2,

R2 =
Var(α + βzt)

Var(rt+1)
. (4)

When R2 > 0, rt+1 can be forecasted by zt. Otherwise, it cannot be forecasted. Following

this idea, numerous variables have been identified as predictors. Ludvigson and Ng (2007)

and Goyal and Welch (2008) provide a comprehensive list of predictors.

2.3 Bound on R2

Whether return predictability can be explained by asset pricing models is equivalent to ask

whether the predictive R2 in (4) can be derived from (1). For easy of exposition, I follow

Balduzzi and Kallai (1997) and normalize the SDF

m̃t+1 =
mt+1

E(mt+1)

such that E(m̃t+1) = 1 and E(m̃t+1rt+1) = 0. With a little abuse of notation, I still call this

normalized SDF as the SDF in the sequel.

I assume that the predictor zt in (3) has a mean zero and variance one throughout the

paper. Following Kirby (1998) and Ferson and Siegel (2003), I multiply the pricing equation
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(1) by zt in both sizes and apply the law of iterated expectations to obtain

E(m̃t+1rt+1zt) = 0, (5)

which can be rewritten as

Cov(rt+1, zt) = −Cov(m̃t+1, rt+1zt). (6)

Since Cov(rt+1, zt) = E(rt+1zt), equality (6) says that the expected excess return with zt units

of investment in the asset rt+1 is equal to the negative covariance between the SDF and the

realized excess return of the investment. In other words, any dynamic trading strategy that

exploits the predictability of rt+1 must be priced by the SDF.

Recall that Var(zt) = 1 and β = Cov(rt+1, zt). Combining (4) and (6) gives

R2 =
Var(α + βzt)

Var(rt+1)
=

β2

Var(rt+1)
=

Cov2(rt+1, zt)

Var(rt+1)
=

Cov2(m̃t+1, rt+1zt)

Var(rt+1)
. (7)

If an asset pricing model is true, i.e., the model can match the empirical evidence, the last

equality of (7) should always hold. To test this hypothesis, Kirby (1998) uses the generalized

method of moments (GMM) and finds that the R2 calculated from the last equality of (7)

is much smaller than that in (4) for established consumption- and factor-based asset pricing

models at that moment. Therefore, he concludes that return predictability is inconsistent

with what is expected. Kirby’s method is parametric and depends on the specification of

m̃t+1. Since Kirby (1998), new asset pricing models, such as the habit formation model, the

long-run risk model and the rare disaster model, have been developed. This implies that we

need retest the conclusion of Kirby (1998) when a new model is proposed.

I solve Kirby’s problem from another perspective by developing an upper bound on (7)

which can serve as a benchmark for evaluating forecasts. Statistically, the larger the predic-

tive R2, the higher the degree of predictability. Both financial economists and investment

practitioners have paid a lot attention in the past four decades in searching for variables

that can produce a better R2. This raises two issues. First, without theoretical guidance

on the R2 permitted by asset pricing models, an investor will never know whether the used
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predictor is the best one. Second, given hundreds of predictors that have been identified,

how does an investor use them in investment decision making? Should an investor utilize all

the possible predictors or just choose a subset of them?5 An investor cannot run two million

regressions and then decides which one is the best. However, if an investor knows the max-

imum predictability, he can stop searching when a predictor generates an R2 that achieves

or is close to the theoretical upper bound. Moreover, an investor can directly exclude those

variables with R2s much less than the bound.

Following Kan and Zhou (2006), I impose one structure on the SDF: m̃t+1 = m̃(xt+1) is

a function of a set of observable state variables xt+1. This structure remains general enough

to accommodate many asset pricing models. For example, factor-based models, such as the

capital asset pricing model (CAPM) and the Fama-French three-factor model, specify m̃t+1

as a linear function of factors. In consumption-based models, the state variables are the

surplus consumption ratio and the consumption growth rate in the habit formation model

(Campbell and Cochrane, 1999; Kan and Zhou, 2006), are the risk-free rate, the dividend-

price ratio, and the consumption growth rate in the long-run risk model (Constantinides

and Ghosh, 2011), and are the consumption growth rate and the dividend-price ratio in the

rare disaster model (Wachter, 2012). In addition, Bansal and Viswanathan (1993) specify

the SDF as a nonlinear function of the market portfolio, the Treasury bill yield, and the

term spread. Dittmar (2002) specifies the SDF as a cubic function of aggregate wealth. Äıt-

Sahalia and Lo (2000) project the SDF onto stock returns to obtain an observable kernel,

thereby avoiding the use of the consumption growth rate.

Now I am in a position to present the following proposition to explain that the predictive

R2 can be bounded above.

Proposition 1 Suppose that the SDF m̃t+1 = m̃(xt+1) is a function of K-dimensional state

variable xt+1 and E(εt+1|xt+1) = 0 in the regression rt+1zt = a+ b′xt+1 + εt+1.Then,

R2 ≤ φ2
x,rzVar(m̃t+1), (8)

5This echoes Cochrane (2011) who asks how multivariate information affects the understanding of price
movements.
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where

φ2
x,rz =

ρ2x,rzVar(rt+1zt)

Var(rt+1)
, (9)

and

ρ2x,rz =
Cov(xt+1, rt+1zt)

′Var−1(xt+1)Cov(xt+1, rt+1zt)

Var(rt+1zt)
. (10)

The formal proof is provided in the paper’s Appendix. Here I give a simplified proof

showing how the predictive R2 can be bounded by the variance of the SDF. This is the key

to restrict the regression analysis of return predictability by asset pricing models. Suppose

xt+1 and rt+1zt are jointly normally distributed conditional on time t. From (7), I have

R2 =
Cov2(m̃t+1, rt+1zt)

Var(rt+1)
=

[

Cov(xt+1, rt+1zt)
′Var−1(xt+1)Cov(m̃t+1, xt+1)

]2

Var(rt+1)
(11)

≤
[

Cov(xt+1, rt+1zt)
′Var−1(xt+1)Cov(xt+1, rt+1zt)

]

×
(

Cov(m̃t+1, xt+1)
′Var−1(xt+1)Cov(m̃t+1, xt+1)

)

Var(rt+1)
(12)

=
ρ2x,rzVar(rt+1zt)Cov(m̃t+1, xt+1)

′Var−1(x)Cov(m̃t+1, xt+1)

Var(rt+1)
(13)

≤
ρ2x,rzVar(rt+1zt)Var(m̃t+1)

Var(rt+1)
= φ2

x,rzVar(m̃t+1), (14)

where (11) uses Stein’s Lemma, which separates the underlying stochastic structure between

rt+1 and xt+1 from the distortion of m̃(·) (Furman and Zitikis, 2008). Inequalities (12) and

(14) use the Cauchy-Schwarz inequality. This completes the proof of (8).

Equality (11) shows that the covariance Cov(m̃t+1, rt+1zt) = E(rt+1zt) is mainly depen-

dent on two parts: one is covariance between the excess return with zt units of investment in

rt+1 and the state variable xt+1, Cov(xt+1, rt+1zt), and the other is the covariance between

the SDF and the state variable, Cov(m̃t+1, xt+1). In the asset pricing literature, expected

returns are expressed by the covariance of the returns and the SDF. The failure of asset pric-

ing models in explaining return puzzles or anomalies is usually attributed to the inability

of preferences in capturing investor’s behaviors. For this reason, many different preferences
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have been proposed over the past three decades. With a “moment-matching” approach (cal-

ibrating parameters with real data and investigating if the estimated parameters make sense

or if what the model implies with given parameters is consistent with return moments), one

specific utility is usually successful in explaining one or several puzzles, but not all of them.

Proposition 1, however, shows that the failure of asset pricing models may be due to the in-

sufficient state variables xt+1 rather than the utility functions m̃(·). The covariance between
the return and the SDF may blur the main reason of the inability of asset pricing models.

Proposition 1 imposes a slightly stronger assumption

Et(ut+1|xt+1) = 0, (15)

rather than the typical Et(ut+1) = 0 and Covt(ut+1, xt+1) = 0. One extreme case is ut+1 = 0

when rt+1zt is the same as xt+1 and can be fully projected on xt+1. Actually, the two

assumptions are equivalent if the excess return rt+1zt and the state variable xt+1 are jointly

elliptically, conditionally distributed (Muirhead, 1982).

The bound in (8) is an improvement over the bound of Ross (2005) who finds

R2 ≤ Var(m̃t+1). (16)

This improvement is due to the fact that I use the information of xt+1 in m̃t+1. Comparing

(8) and (16), Ross (2005) takes the extreme possibility that the state variable and the excess

return are perfectly correlated. This is obviously not the case in the real equity market.

Suppose that the correlation between the consumption growth rate and the market portfolio

is 0.2 and that the SDF is driven by the consumption growth rate, bound (8) will be at

least 25 times tighter than that derived by Ross (2005). Cochrane (2005) notes the fact that

the low correlation between the consumption growth rate and stock returns exacerbates the

risk premium puzzle, but does not develop this point with respect to return predictability.

In summary, Ross’ bound imposes almost no structure on the SDF other than the law of

one price. The consequence is that it can deliver an R2 bound that is applicable for all

SDFs. However, the cost is that the bound is too loose to be meaningful in practice. Over

my sample period, Ross’ bound is as large as 4.78%, but the predictive R2 in the existing
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literature is less than 1% in general. To the best of my knowledge, no single predictor can

produce an R2 of 4.78%.

The bound in (16) holds with respect to the default SDF, i.e.,

R2 ≤ Var(m̃0,t+1), (17)

which can be tightened by Kan and Zhou (2007) who show that

Var(m̃0,t+1) ≤ ρ2x,m̃0
Var(m̃(xt+1)), (18)

where ρx,m̃0
is the multiple correlation between the state variable xt+1 and the default SDF.

Combining these two inequalities, Zhou (2010) gives the following upper bound

R2 ≤ ρ2x,m̃0
Var(m̃t+1), (19)

which is apparently tighter than Ross (2005) bound.

An interesting question at this point is whether the bound in (8) is tighter than (19).

This is equivalent to exploring whether φ2
x,rz < ρ2x,m0

. While there is no analytical relation

between them, empirical applications will show that φ2
x,rz is always smaller than ρ2x,m0

.

It is important to highlight the implication of the proposed bound of the predictive R2

on cross-sectional return predictability. In the literature, a large number of papers find

that return predictability exists and varies across cross-sectional portfolios sorted by market

capitalization (Ferson and Harvey, 1991; Kirby, 1998), book-to-market ratio (Ferson and

Harvey, 1991), industry (Ferson and Harvey, 1991), and volatility (Han, Yang and Zhou,

2012). Proposition 1 says that the maximum predictability of any asset is directly determined

by the parameter, φ2
x,rz̃, in the upper bound of R2. An asset is allowed to be more predictable

if it has a higher correlation with the state variables of the SDF, regardless of the specification

of the SDF.
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3 Upper Bound on Var(m̃t+1)

Inequality (8) provides an upper bound on the predictive R2. However, the SDF is model-

specific and unobservable. The goal of this section is to develop an upper bound on Var(m̃t+1)

that is observable and model-free.

There are two approaches for the SDF specification proffered in the literature, the abso-

lute approach and the relative approach (Cochrane and Saá-Requejo, 2000). The absolute

approach makes explicit assumptions about the representative investor’s preference and en-

dowment. Under these assumptions, the SDF is uniquely, endogenously determined by the

form of preferences. Although this approach is precise, it is sensitive to model and parameter

misspecification errors. The relative approach assumes the existence of a set of basis assets

and the absence of arbitrage opportunities, restricting the set of the SDF to those that can

correctly price the basis assets in the economy and assigning positive values to payoffs in

every state. Without resorting to preferences or endowments, this approach is exogenously

specified and robust to model specification. The drawback is that there are usually infinite

SDFs that can price the basis assets. This implies that it is difficult to choose an correct

asset pricing model when all the SDFs produce the same price.

To tackle this challenge, Cochrane and Saá-Requejo (2000) and Ross (2005) propose to

integrate the absolute and the relative approaches by restricting the SDF to an economically

meaningful set. In contrast to Hansen and Jagannathan (1991) who restrict the SDF with a

lower bound, I assume an upper bound on the SDF volatility to exclude the opportunities

that may generate arbitrages.

3.1 Bound Var(m̃t+1) with relative risk aversion

Ross (2005) shows that, in an incomplete market, if all investors are bounded above by a

maximum risk aversion, the set of the SDFs can be restricted by the marginal investor’s

SDF.

Lemma 1 (Ross, 2005) If a utility function, U(w), is bounded above in the relative

risk aversion by a utility function V (w), i.e., the risk aversion of U(w) is less than that of
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V (w), then

Var(m̃U) ≤ Var(m̃V ),

where m̃U and m̃V are the corresponding SDFs. Moreover, if V (w) is a constant relative risk

aversion utility function with risk aversion γ (γ 6= 1) and the optimal wealth is lognormally

distributed such as logw ∼ N(µw, σ
2
w), then

Var(m̃U) ≤ γ2σ2
w.

This lemma says that the variance of any SDF can be bounded above by a maximum risk

aversion.

Applying Lemma 1, I present the first semi-parametric bound in this paper as follows.

Proposition 2 Under conditions of Propositions 1 and Lemma 1, if investors are bounded

above by the maximum risk aversion γ, the upper bound of the predictive R2 is

R2 ≤ R̄2
RA = φ2

x,rzγ
2σ2

w. (20)

3.2 Bound Var(m̃t+1) with market Sharpe ratio

Instead of maximum risk aversion, Ross (1976) advocates using the market Sharpe ratio

to restrict the variability of the SDF. The intuition is that a high Sharpe ratio is not an

arbitrage opportunity or a violation of the law of one price, but extremely high Sharpe ratios

are unlikely to persist. In particular, Ross (1976) bounds the asset pricing theory residuals

by assuming that no portfolio can have more than twice the market Sharpe ratio. With this

idea, Cochrane and Saá-Requejo (2000) use the market Sharpe ratio to bound option prices

when either market frictions or non-market risks violate simple arbitrage pricing. That is,

Std(m̃t+1) ≤ h · SR(rS&P500), (21)

where h is a parameter chosen by the marginal investor. Cochrane and Saá-Requejo (2000)

choose h = 2 as the threshold for “good deals”.
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Proposition 3 Under conditions of Propositions 1, if the volatility of the SDF is bounded

by the market Sharpe ratio as in (21), the upper bound of the predictive R2 is

R2 ≤ R̄2
SR = φ2

x,rz · h2 · SR2(rS&P500). (22)

It is important to point out that the maximum risk aversion γ or h are the central pa-

rameters that a user must input to the calculation. When the upper bound of the SDF’s

volatility is violated, Shanken (1992) calls there have some “approximate arbitrage” oppor-

tunities. Ledoit (1995) calls a high Sharpe ratio a “δ arbitrage” that should be ruled out.

Also, there are other ways to bound the volatility of m̃t+1. For example, Bernardo and

Ledoit (2000) bound the SDF as a ≤ m̃t+1 ≤ b, where a and b are two positive and finite

real parameters. By applying the Grüss’ inequality, one immediately has Var(m̃t+1) ≤ (b−a)2

4

for any distribution of m̃t+1.

4 Empirical Results

This section explores empirically whether the predictive R2s of predicting excess returns on

the market portfolio and cross-sectional portfolios are smaller than the upper bounds derived

from asset pricing models.

4.1 Data

The main data set used in this paper is from Goyal and Welch (2008) and the Ken French

data library, spanning 1959:01-2010:12,6 where the sources are described in detail. The

excess return of the market portfolio is the gross return on the S&P 500 (including dividends)

minus the gross return on a risk-free treasury bill. As discussed by Ferson and Korajczyk

(1995), in the context of this paper, it is not appropriate to use continuously compounded

returns, which are commonly used in the literature of return predictability. The basic pricing

equation says that the expected returns are equal to the conditional covariances of returns

with the marginal utility for wealth, which depends on the simple arithmetic return of

6I thank Amit Goyal and Ken French for making the data available.
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the optimal portfolio. Moreover, continuously compounded portfolio returns are not the

portfolio-weighted average of the compounded returns of the component securities. For

these reasons, I use simple arithmetic returns.7

Ten popular economic variables in Goyal and Welch (2008) are used as predictors:

1. Dividend-price ratio (d/p): a 12-month moving sum of dividends paid on the S&P 500

index divided by the S&P 500 index;

2. Earning-price ratio (e/p): a 12-month moving sum of earnings on the S&P 500 index

divided by the S&P 500 index;

3. Dividend yield (dy): a 12-month moving sum of dividends divided by the lagged S&P

500 index;

4. Treasury bill rate (tbl): the 3-month Treasury bill (secondary market) rate;

5. Default yield spread (dfy): the difference between BAA and AAA-rated corporate bond

yields;

6. Term spread (tms): the difference between the long-term yield on government bonds

the Treasury bill rate;

7. Net equity expansion (ntis): ratio of a twelve-month moving sum of net equity issues

by NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks;

8. Inflation (infl): the Consumer Price Index;

9. Long-term return (ltr): return on long-term government bonds;

10. Equity risk premium volatility (rvol): moving standard deviation of the monthly returns

on the S&P 500 index (Mele, 2007):

σ̂t =

√

π

2

12
∑

i=1

|rt+1−i|√
12

.

I use this volatility measure rather than the realized volatility in Goyal and Welch

(2008) to avoid two severe outliers in Octobers of 1987 and 2008.

7The predictive R2s with compounded returns are generally larger than simple arithmetic returns. The
results are available upon request.
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To calculate the upper bounds of the predictive R2, I need state variables. The most

popular state variable in consumption-based asset pricing models is the consumption growth

rate: the percentage change in the seasonally adjusted, aggregate, real per capita consump-

tion expenditures on nondurable goods and services. The data are reported by the Bureau of

Economic Analysis (BEA). In addition, I consider the linear factor models where the market

index or the Fama-French three-factors are used as the state variables. I also use data on ten

size portfolios, ten book-to-market portfolios, ten momentum portfolios, and ten industry

portfolios, for cross-sectional predictability.

What is the reasonable maximum risk aversion has been and will continue to be a debate

for a long time, although researchers admit that it should not be large. Mehra and Prescott

(1985) argue that a reasonable upper bound of risk aversion is around 10. Ross (2005) uses

the insurance premium to explain that a value of 5 is large enough. Barro and Ursúa (2012)

think that “a γ [risk aversion] of 6 seems implausibly high.” Empirically, Guiso, Sapienza

and Zingales (2011) find that the average risk aversion increases from 2.85 before the 2008

crisis to 3.27 after the collapse of the financial market. Paravisini, Rappoport and Ravina

(2012) estimate the risk aversion from investors’ financial decisions and find that the average

risk aversion is 2.85 with a median of 1.62. I follow Ross (2005) by setting the maximum risk

aversion to be 5. Also, in the application, I assume that the optimal wealth for the marginal

investor who has the maximum risk aversion is the market portfolio. During the sample

period, the market portfolio has an annual risk premium 5.31% and a volatility 15.44%.

When the market Sharpe ratio is used to bound the predictive R2, I follow Ross (1976)

and Cochrane and Saá-Requejo (2000) by setting h equal to 2. I find that the upper bound

with this value is close to that with the maximum risk aversion bound with a value of 5.

This result indirectly supports Ross (2005) that the upper bound of risk aversion should not

exceed 5.

4.2 Estimation and test

The parameters to calculate the predictive R2 and its upper bounds involve only the mean

and covariance of yt+1 = (rt+1, zt, rt+1zt, x
′

t+1)
′, where xt+1 could be multi-dimensional. The
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moment conditions are

h(yt+1, θ) =





yt+1 − µy

yt+1y
′

t+1 − (Σy + µyµ
′

y)



 , (23)

where µy = E(yt+1) and Σy = Cov(yt+1). The econometric specification in (23) is exactly

identified, the GMM estimator of θ = (µ′

y,Σy) is the value that sets 1/T
∑T

t=1 h(yt+1, θ)

equal to zero.

The distribution of θ̂ takes the form

√
T (θ̂ − θ)

d−→ N(0, S), (24)

where S =
∑

∞

j=−∞
E[h(yt+1, θ)h(yt+1−j, θ)

′].

We use a Wald test to evaluate whether R2 ≤ R̄2
RA or R̄2

SR. This is equivalent to a

one-sided test for g(θRA) = 0 or g(θSh) = 0, where θRA and θSh are the parameters used in

g(θRA) = R2 − R̄2
RA for the bound with risk aversion and g(θSh) = R2 − R̄2

SR for the bound

with Sharpe ratio. Let ΣRA and ΣSh be the corresponding covariances of θRA and θSh. The

Wald statistic is

WRA = Tg(θ̂RA)

[

dg

dθRA
Σ̂RA

dg

dθRA

]

−1

g(θ̂RA)
d−→ χ2(1) (25)

for the bound with risk aversion, and

WSh = Tg(θ̂Sh)

[

dg

dθSh
Σ̂Sh

dg

dθSh

]

−1

g(θ̂Sh)
d−→ χ2(1) (26)

for the bound with Sharpe ratio.

The approach here is slightly different from the typical GMM estimation and testing by

imposing the constraint R2 = R̄2
RA or R̄2

SR in the econometric specification directly. With

the property of GMM, the two approaches are asymptotically equivalent. The choice of this

paper makes it easy to compare the difference between the predictive R2 and the theoretical

upper bounds apparently.
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4.3 R2 bounds on market portfolio predictability

Table 1 reports the predictive R2 and its bounds for the regression model, rt+1 = α+βzt+εt+1,

where rt+1 is the excess return of the market portfolio and zt is the predictor given in the

table’s first column. The value of R2 and its bounds are all in percentage points. The

state variable is the consumption growth rate and the default SDF m0 is constructed by the

market portfolio.8 Panel A shows the results when the maximum risk aversion is 5. The

predictive R2s are given in the second column, which range from 0.04% for the net equity

issues (ntis) to 1.23% for the equity risk premium volatility (rvol). Positive R2s suggest that

the excess return of the market portfolio is predictable and the degree of predictability varies

across predictors. The upper bound of Ross (2005), R̄2
Ross, is 4.78% reported in Column 3

regardless of what the predictor is. Because this bound exceeds any R2 in Column 2, time-

varying expected return appears to be a perfect explanation of return predictability. To the

best of my knowledge, however, there is no single predictor in the literature generating an

R2 as large as 4.78% with monthly data. The reason is that Ross’ bound implicitly assumes

a correlation of 1 between the excess return and the consumption growth rate. Hence, it is

too loose to be meaningful.

Column 4 reports the correlation between the state variable and the default SDF and

Column 5 reports the bound developed by Zhou (2010). Since the correlation is 0.17, the

bound in Zhou (2010) is 0.13%, and thereby improves approximately 37 times relative to

Ross (2005). Out of ten predictors, eight exhibit significantly higher predictive R2s than

this bound. The two exceptions are the earnings-price ratio (e/p) and the net equity issues

(ntis).

Column 6 shows that the correlations between the state variable and the excess returns

with trading strategy zt. Surprisingly, all the correlations are pretty small and range from

0.02 to 0.06. Recall that the key parameter in the upper bounds in (20) and (22) is φ2
x,rz =

ρ2x,rzVar(rt+1zt)/Var(rt+1). Var(rt+1zt)/Var(rt+1) is larger than one but less than 4 for any

zt of the ten predictors. This implies that small value of ρx,rz makes the upper bounds of the

8Other portfolios, such as the Fama-French three factors or Fama-French 25 size book-to-market portfolios,
can be easily used to construct m0. This will change the multiple correlation ρ2x,m0

, but the change is very
small. The results are available upon request.
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predictive R2 small. Actually, both bounds with the maximum risk aversion and the market

Sharpe ratio are approximately zero. As a result, the proposed bounds are significantly

less than the predictive R2s. The low bound of R2 is consistent with Hansen and Singleton

(1983) who explore the joint dynamics of stock returns and consumption growth and find

that the predictability of stock returns is proportional to that of consumption growth. The

weak predictability of the consumption growth rate in turn implies that stock returns are

almost unpredictable. This result is confirmed by Kirby (1998) with a formal GMM test.

Panel B considers the case when the maximum risk aversion is 10. In this case, the upper

bounds R2 can be obtained by multiplying the bounds in Panel A by 4. Due to the small

value of ρx,rz, the increase in the risk aversion does not change the upper bounds significantly.

This insensitivity of the R2 bounds implies that changing the maximum risk aversion is not

promising to reconcile the violations of the bounds. On the other hand, since the bound

with the maximum risk aversion of 5 is close to the bound with the market Sharpe ratio (as

shown in Panel A), I believe that 5 is a reasonable upper bound of risk aversion. In this

sense, I will report results with the maximum risk aversion of 5 in the sequel.

One may be curious that the results in Table 1 are only valid to consumption-based asset

pricing models since I only consider the consumption growth rate as the state variable of the

SDF. In the literature, there are many factor-based asset pricing models. Table 2 reports

the bounds with alternative state variables. In particular, Panel A assumes that the state

variable is the market portfolio (the state variable of CAPM) and Panel B considers the

Fama-French three factors. With these two cases, since the correlation ρx,m0
is approaching

one, the bound of Zhou (2010) reduces to Ross (2005) and exceeds the predictive R2s.

However, the bounds proposed in this paper still work well. When the state variable is the

market portfolio, eight predictors violate the bounds, either with the maximum risk aversion

or the market Sharpe ratio. When the state variables are the Fama-French three factors, six

predictors violate the bounds with the maximum risk aversion and seven violate the bounds

with the market Sharpe ratio. When the momentum factor is added to the Fama-French

three factors, the upper bounds of R2 do not change significantly, and therefore, to conserve

space, the results are not reported.

In summary, the predictive R2s from the predictive regression are larger than the max-
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imum predictability permitted by asset pricing models. Since Var(rt+1zt)/Var(rt+1) has

nothing with the asset pricing model, the failure to explain predictability is clearly due to

the correlation between the excess return and the state variables of the SDF, the maximum

risk aversion, or the volatility of the marginal investor’ wealth. In the bound with the market

Sharpe ratio, the parameter of the maximum risk aversion is replaced by the parameter h

which is the threshold of excluding arbitrage opportunities. Among them, I have already

considered the case of a risk aversion of 10. The marginal investor’s wealth is assumed to

be the market portfolio, which may be more volatile than the real wealth with other non-

financial assets. Therefore, the only reason is that the correlation between the excess return

and the state variables in the SDF is too low (as shown in Column 6 in Tables 1 and 2). This

explanation is obvious when the state variables are the Fama-French three factors, which

have a much higher correlation with the excess returns and so generate higher bounds on

the predictive R2s. The findings of this section suggest that the state variables are more

important than investor’s preferences in explaining return predictability. This explanation

is consistent with Cochrane and Hansen (1992), Campbell and Cochrane (1999), and Al-

buquerque, Eichenbaum, and Rebelo (2012) who attribute the failure of consumption-based

asset pricing models to the low correlation between asset returns and the state variables of

the SDF.

4.4 R2 bounds with recently developed models

This subsection discusses whether the habit formation model, the long-run risk model, or

the rare disaster model can explain the predictability of the market portfolio when the state

variables are from one of these three asset pricing models.

4.4.1 Habit formation

The state variables in the habit formation model are the consumption growth rate and

the surplus consumption ratio st that is unobservable since the habit level is latent. I

follow Campbell and Cochrane (1999) by extracting st from the model and calculate the

multiple correlation between the state variables xt = (△ct,△st) and the excess return with
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zt units of investment in the market portfolio. The results are reported in Panel A of Table

3. With an additional state variable △st, the correlation between the excess return and

the state variables approximately doubles relative to the traditional Consumption-based

models. However, it is still very small. Nine out of ten correlations (since different predictor

implies different correlation) are less than 0.1. As a result, both bounds with the maximum

risk aversion and the market Sharpe ratio are still close to zero, significantly less than the

predictive R2s.

4.4.2 Long-run risk

The long-run risk model focuses on the low-frequency properties of the time series of divi-

dends and aggregate consumption, and can explain simultaneously the equity risk premium

puzzle, the risk-free rate puzzle, and the high level of market volatility. The key assumptions

in the long-run risk model are that the consumption growth rate and the dividend growth

rate follow the following joint dynamics:

△ct+1 = µc + µc,t + σtǫc,t+1,

µc,t+1 = ρµµc,t + ψcσtǫµ,t+1,

σ2
t+1 = (1− ν)σ̄2 + νσ2

t + σwǫσ,t+1,

△dt+1 = µd + φµc,t + φσtǫd,t+1,

where ct+1 is the log aggregate consumption and dt+1 is the log dividends. The shocks ǫc,t+1,

ǫµ,t+1, ǫσ,t+1, and ǫd,t+1 are assumed to be i.i.d. normally distributed.9

With log-affine approximation, the SDF is

logmt+1 = A0 + A1µc,t + A2σ
2
t + A3△ct+1 + A4µc,t+1 + A5σ

2
t+1, (27)

where A0, · · · , A5 are parameters to be estimated. There are two latent state variables in the

SDF, the conditional mean of the consumption growth rate yt and the conditional variance

of its innovation σ2
t , which are difficult to be measured in the data. Motivated by Dai and

9I use µc,t rather than xt to denote the persistent component of consumption since xt has been used as
the state variables of the SDF.
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Singleton (2000), Constantinides and Ghosh (2011) bridge this gap and find that these two

latent variables can be projected on the log risk-free rate rf,t and the log dividend-price ratio

dpt:

µc,t = α0 + α1rf,t + α2dpt,

σ2
t = β0 + β1rf,t + β2dpt.

In this way, the log SDF is an affine function of the log risk-free rate, the log dividend-price

ratio, and the consumption growth rate:

logmt+1 = B0 +B1rf,t +B2dpt +B3rf,t+1 +B4dpt+1 +B5△ct+1.

Panel B of Table 3 shows the R2 bounds when the state variables in the SDF are

xt+1 = (△ct+1, rf,t+1, dpt+1)
′. (28)

The correlations between xt+1 and the excess returns conditional information zt are around

0.1, implying that the R2 bounds will be significantly larger than that in the habit formation

model. However, both bounds are still less than the predictive R2s. These results are con-

sistent with Constantinides and Ghosh (2011) and Bansal, Kiku, and Yaron (2012) who find

that the permitted degree of predictability is extremely low in the long-run risk framework.

4.4.3 Rare disaster

The rare disaster model revived by Barro (2006) is intended to solve the equity risk premium

puzzle and does not accommodate time-varying expected returns. Gabaix (2012) allows for

time-varying probability and size of disasters, thereby generating volatility of price-dividend

ratios and implying return predictability to some extent. Gourio (2008) exclusively studies

whether the predictability generated by the rare disaster model can match the magnitude of

predictability observed in market data. In so doing, he introduces an exogenous, persistent,

time-varying disaster probability in the rare disaster framework. With numerical simulation,

to best match the predictive power of the dividend-price ratio, the model needs to have an

22



average equity premium as high as 13.71%, which is obviously not reasonable. As a result,

Gourio concludes “with Epstein-Zin utility, the model can fit the facts qualitatively, and to

some extent quantitatively, if we allow for a highly variable probability of disaster, leverage

and an IES above unity” to explain return predictability.

The basic assumption for the rare disaster model is that the consumption growth rate

follows the stochastic process:

△ct+1 =







µc + σǫt+1, with probability 1− pt;

µc + σǫt+1 + log(1− b), with probability pt.
(29)

where ǫt+1 is i.i.d. N(0, 1) and 0 < b < 1 is the size of the disaster. The crucial question is to

find a variable to proxy the unobservable probability of disasters. Wachter (2012) considers

the rare disaster model in a continuous-time setting and find that the dividend-price ratio

is a strictly increasing function of the disaster probability, which implies that one can invert

this function to find the disaster probability given the observations of the dividend-price

ratio. Hence, in addition to the consumption growth rate, the dividend-price ratio can be

used as an observable state variable for the rare disaster model. That is,

xt+1 = (△ct+1, dpt+1)
′.

The predictive R2 bounds are exhibited in Panel C of Table 3. Again, ten predictive R2s

exceed the bounds significantly. These results are approximately the same as that in the

habit formation model. Therefore, consistent with Gourio’s (2008) numerical simulation, it

is difficult for the rare disaster model to match the observed return predictability.

4.5 R2 bounds with market frictions

One interesting question is what happens when the market is not frictionless. The proposed

bounds in this paper assume that investors can trade freely without transaction costs and

constraints. It may be the case that the profits documented in the literature are not at-

tainable for investors because of transaction costs and constraints. The limit of arbitrage

forces investors to deviate from the trading strategy that seeks to exploit predictability in
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the market.

Market frictions refer to trading costs that can be the transaction cost in He and Modest

(1995), the marginal value of liquidity services of tradeable assets in Holmström and Tirole

(2001), the transaction cost in Acharya and Pedersen (2005), the funding liquidity in Brun-

nermeier and Pedersen (2009), or the execution cost in Hasbrouck (2009).10 Nagel (2012)

reviews these models and finds that the SDF in frictionless market can be augmented with

a factor Λt that captures the state of transaction costs

m̃F
t+1 = m̃t+1

Λt

Λt+1

. (30)

Let △λt+1 = log(Λt+1/Λt). Then I can rewrite m̃F
t+1 as

m̃F
t+1 = m̃F (xt+1,△λt+1). (31)

In this way, a higher △λt+1 means a higher transaction cost, and an asset paying well in

the state of higher △λt+1 earns a lower expected return. The bounds in this paper can be

adjusted easily by including △λt+1 into the state variables.

I use the liquidity factor constructed by Pástor and Stambaugh (2003) as the proxy of

transaction cost. Table 4 reports the R2 bounds on the market portfolio forecasts with the

ten macroeconomic variables. Panel A considers the case when the state variable is the

consumption growth rate. In this case, the bound with either the maximum risk aversion

or the market Sharpe ratio is marginally improved relative to that without considering

transaction (Panel A of Table 1). All the ten R2s are significantly larger than the two

bounds. Where the Fama-French three factors are used as the state variables in Panel B,

the results are almost the same as Panel B of Table 2. Six R2s exceed the two proposed

bounds significantly. The results in Table 4 are in contrast to de Roon and Szymanowska

(2012) who point out that the finding in Kirby (1998) can be reconciled with transaction

costs. The reason is that they consider fixed transaction cost while I focus on time-varying

cost.

10Amihud, Mendelson, and Pedersen (2005) give an excellent literature review on the relationship between
transaction costs of different dimensions and asset prices.
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4.6 R2 bounds on cross-sectional portfolio predictability

One interesting question is whether the proposed bounds work well for cross-sectional port-

folio forecasts. Theoretically, Propositions 2 and 3 show that individual portfolios should

have different predictability since they have different correlations with the state variables.

For this reason, I report results on ten size portfolios, ten value portfolios (formed based on

the book-to-market ratio), ten momentum portfolios, and ten industry portfolios. I consider

two cases for the state variables: the consumption growth rate and the Fama-French three

factors. The maximum risk aversion is assumed to be 5. To save space, I report the results

when the predictor is the dividend-price ratio or the term spread. The results for the other

predictors exhibit similar characteristics and are available upon request.

4.6.1 Portfolio forecasts with dividend-price ratio

Size portfolios The predictability of size portfolios (i.e., portfolios formed based on market

capitalization) has been extensively investigated (Ferson and Harvey, 1991; Ferson and Ko-

rajczyk, 1995; Kirby, 1998). The basic pattern is that portfolios with small size are more

predictable than portfolios with large size. Table 5 reports the predictive R2s when the

dividend-price ratio is used as the predictor, and the upper bounds proposed in this paper.

Panel A considers the case when the state variable is the consumption growth rate. Surpris-

ingly, the predictability of size portfolios in Column 2 does not show the monotonic pattern

reported by Kirby (1998).11 The minimum predictability is the smallest size portfolio with

an R2 of 0.09%. The maximum predictability is the 4th smallest size portfolio with an R2

of 0.48%. The predictive R2 for the largest size portfolio is 0.25%. The bound developed

by Ross (2005) is 4.78%, larger than any predictive R2, suggesting that the predictability of

size portfolios can be explained. However, the bound in Zhou (2010) is 0.13%, smaller than

all R2s except for the smallest size portfolio. With respect to the proposed bounds in this

paper, both bounds with the maximum risk aversion and the market Sharpe ratio are close

11Kirby (1998) forecasts the size portfolios by using five predictors simultaneously (the excess return on the
equally weighted NYSE index, a dummy variable for the month of January, the 1-month 90-day Treasury
bill rate less than the 30-day Treasury bill rate, the yield on Moody’s Baa rated bonds less the yield on
Moody’s Aaa rated bonds, and the dividend yield on the S&P 500 stock index less the 30-day Treasury bill
rate).
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to zero and significantly smaller than the corresponding R2s.

Panel B of Table 5 considers the case when the Fama-French three factors are used as the

state variables. Since the Fama-French three factor model includes the market portfolio as

a factor, which has high correlations with component portfolios, the bound in Zhou (2010)

loses the power to diagnose the predictability. However, my bounds remain valid. Except

for the first two smallest size portfolios, the other eight portfolios display R2s larger than

the bounds, either the bound with the maximum risk aversion or the bound with the Sharpe

ratio. Cross-sectionally, the proposed bounds are monotonically decreasing in firm size. The

inability of the dividend-price ratio to generate monotonic predictive R2s may be due to the

fact that the dividend-price ratio uses the sum of dividends paid on the S&P 500 index. Big

firms usually pay more dividends than small firms. As a result, the dividend-price ratio is

more informative for large size portfolios, exhibiting higher predictive power.

Value portfolios The predictability of the value premium reported in the literature is mixed.

Lettau and Ludvigson (2001) show some positive evidence, but Lewellen and Nagel (2006)

find that the time-variation in the expected value premium is marginal and hence unpre-

dictable. Table 6 reports the results when the dividend-price ratio is used to forecast the ten

value portfolios formed based on the book-to-market ratio. The predictive R2s are 0.11%

for the 1st decile portfolio (growth portfolio) and 0.32% for the 10th decile portfolio (value

portfolio). This suggests that when the difference between the value and the growth portfolio

is used as a proxy of the value premium, the value premium should be significantly predicted

by the dividend-price ratio. Panel A shows that the proposed bounds, as well as those in

Zhou (2010), are less than the predictive R2s when the state variable is the consumption

growth rate. When the Fama-French three factors are used, the two proposed bounds are

still less than the predictive R2s. While the predictive R2s are more than 0.25% except for

the growth portfolio. The difference between the R2s for the value portfolios versus the size

portfolios is that the proposed bounds do not show a monotonic pattern with respect to the

book-to-market ratio.
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Momentum portfolios When the dividend-price ratio is used to forecast the ten decile mo-

mentum portfolios, the predictive R2s vary significantly, ranging from 0.10% for the 5th

portfolio to 0.83% for the 9th portfolio, as shown in Table 7. The R2s for the lowest- and

the highest-momentum portfolios are 0.19% and 0.24%, respectively. Again, all R2s exceed

the proposed bounds when the state variable is the consumption growth rate. When the

Fama-French three factors are used, the predictive R2s, except for the 5th portfolio, exceed

the two bounds.

Industry portfolios Ferson and Harvey (1991) and Ferson and Korajczky (1995) show sig-

nificant predictability for industry portfolios. In Table 8, when the dividend-price ratio is

used as the predictor, eight out of ten industries (with two exceptions, manufacturing and

energy) show strong performance. The most predictable industry is nondurable goods with

an R2 of 0.64%. Panel A shows that all the predictive R2s except Enrgy exceed the pro-

posed bounds when the state variable is the consumption growth rate. Panel B identifies

that five industries that have larger R2s than the bounds when the state variables are the

Fama-French three factors. This result indicates that asset pricing models can generate more

predictability for some industry portfolios than others.

4.6.2 Portfolio forecasts with term spread

This section discusses the results when the term spread is used to forecast cross-sectional

portfolios. While the term spread exhibits stronger predictive ability, the overall pattern is

similar to the case when the predictor is the dividend-price ratio. When the consumption

growth rate is used as the state variable, asset pricing models do not show any hope of

explaining return predictability. Instead, when the Fama-French three factors are used, they

generate larger bounds. Here I only report the results for the case of the Fama-French

three factors (see Tables 9 and 10), which are summarized as follows. First, the predictive

ability of the term spread is too strong to be explained by asset pricing models. That

is, all the predictive R2s, with three exceptions, exceed the proposed bounds. Second, the

predictability varies significantly across different portfolios. Third, the failure of current asset

pricing models lies in the poor ability of the state variable in capturing the cross-sectional
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characteristics of individual portfolios.

The results are robust to the habit formation model, the long-run risk model, and the

rare disaster model, and also robust to the case with transaction costs. Overall, the cross-

sectional results echo the market portfolio forecast that time-varying expected return can

only explain a small fraction of predictability.

5 Conclusion

This paper asks whether the overall pattern of return predictability is consistent with asset

pricing models. To answer this question, I develop two upper bounds on the predictive

R2. When one of ten established macroeconomic variables in Goyal and Welch (2008) is

used to forecast the excess returns of the market portfolio and cross-sectional portfolios, the

predictive R2s almost always exceed the upper bounds, implying that return predictability

cannot be fully explained by extant asset pricing models. The reason is the low correlation

between the forecasted excess return and the state variables used in the SDF.

There are also many other reasons to explain why the predictive R2s violate the upper

bounds. There may be structural breaks in the specific models over the long-term period

investigated in this study. For example, Goyal and Welch (2008), Rapach, Strauss, and

Zhou (2010), Henkel, and Martin and Nardari (2011) find strong evidence of fairly frequent

breaks in the predictive regression. Most macro fundamental variables exhibit significant

power of return predictability during economic recessions, but perform badly during economic

expansions. It may be necessary to incorporate regime changes into the upper bounds. Also,

an alternative explanation is behavioral bias that leads investors to under- or over-react to

private or public news, generating return predictability.

This paper focuses on the stock market. It will be of interest to investigate whether any

asset pricing model can explain return predictability on the bond market, housing market,

commodity market, currency market, and international markets.
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Appendix

Proof of Proposition 1. Since Et(εt+1|xt+1) = 0 in the regression rt+1zt = a+ bxt+1+εt+1,

I have

Cov(εt+1, m̃(xt+1) = E[E(εt+1|xt+1)m̃(xt+1)] = 0.

Then

Cov(rt+1zt, m̃(xt+1)) = Cov[b′xt+1, m̃(xt+1)] = b′Σxm̃.

The Cauchy-Schwarz inequality generates

Cov[rt+1zt, m̃(xt+1)]
2 = (b′Σ1/2

xx Σ
−1/2
xx Σxm̃)

2 ≤ (b′Σxxb)(Σ
′

xm̃Σ
−1
xxΣxm̃).

From the regression rt+1 = α + βzt + εt+1, the R
2 is

R2 =
βVar(zt)β

Var(rt+1)
≤ Cov2(rt+1, zt)

Var(rt+1)

=
Cov2(m̃t+1, rt+1zt)

Var(rt+1)

≤ b′Σxxb

Var(rt+1zt)

Var(rt+1zt)(Σ
′

xm̃Σ
−1
xxΣxm̃)

Var(rt+1)

≤ ρ2x,rz
Var(rt+1zt)

Var(rt+1)
Var(m̃t+1)

= φ2
x,rzVar(m̃t+1).

This completes the proof.

29



References

Acharya, V., Pedersen, L.H., 2005. Asset pricing with liquidity risk. Journal of Financial

Economics 77, 374–410.
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Table 1: R2 bounds on market portfolio forecast

The table reports the bounds of the predictive R2 from the regression rt+1 = α+ βzt + εt+1,
where rt+1 is the excess return of the market portfolio and zt is one of the ten predictors
given in the first column. The state variable x in the SDF is the consumption growth rate.
The marginal investor’s risk aversion is 5 in Panel A and 10 in Panel B. R̄2

Ross and R̄2
Zhou

denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the
bounds developed in this paper with the maximum risk aversion and the market Sharpe
ratio, respectively. ρx,m0

and ρx,rz denote the multiple correlations, where the default SDF
m0 is constructed by the market portfolio. Statistical significance is assessed by the Wald
statistic for testing that the predictive R2 is less than the theoretical upper bound. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: maximum risk aversion γ = 5

d/p 0.27 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

e/p 0.11 4.78 0.17 0.13 0.03 0.01∗∗∗ 0.01∗∗∗

dy 0.33 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

tbl 0.21 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

dfy 0.21 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

tms 0.56 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

ntis 0.04 4.78 0.17 0.13 0.02 0.00∗∗∗ 0.00∗∗∗

infl 0.42 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

ltr 1.04 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

rvol 1.23 4.78 0.17 0.13∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

Panel B: maximum risk aversion γ = 10

d/p 0.27 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

e/p 0.11 19.11 0.17 0.54 0.03 0.03∗∗∗ 0.01∗∗∗

dy 0.33 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

tbl 0.21 19.11 0.17 0.54 0.06 0.07∗∗∗ 0.02∗∗∗

dfy 0.21 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

tms 0.56 19.11 0.17 0.54∗∗ 0.04 0.03∗∗∗ 0.01∗∗∗

ntis 0.04 19.11 0.17 0.54 0.02 0.01∗∗ 0.00∗∗∗

infl 0.42 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

ltr 1.04 19.11 0.17 0.54∗∗∗ 0.02 0.01∗∗∗ 0.00∗∗∗

rvol 1.23 19.11 0.17 0.54∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗
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Table 2: R2 bounds on market portfolio forecast

The table reports the bounds of the predictive R2 from the regression rt+1 = α+ βzt + εt+1,
where rt+1 is the excess return of the market portfolio and zt is one of the ten predictors
given in the first column. The state variables xt in the SDF are the market portfolio in
Panel A or the Fama-French three factors in Panel B. R̄2

Ross and R̄2
Zhou denote the bounds

proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in
this paper with the maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote the multiple correlations, where the default SDF m0 is constructed by the
market portfolio. Statistical significance is assessed by the Wald statistic for testing that the
predictive R2 is less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at
the 1%, 5%, and 10% level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: xt is the return of the market portfolio

d/p 0.27 4.78 1.00 4.76 0.10 0.06∗∗∗ 0.05∗∗∗

e/p 0.11 4.78 1.00 4.76 0.05 0.02∗∗∗ 0.02∗∗∗

dy 0.33 4.78 1.00 4.76 0.06 0.02∗∗∗ 0.02∗∗∗

tbl 0.21 4.78 1.00 4.76 0.07 0.03∗∗∗ 0.02∗∗∗

dfy 0.21 4.78 1.00 4.76 0.25 0.47 0.40

tms 0.56 4.78 1.00 4.76 0.03 0.00∗∗∗ 0.00∗∗∗

ntis 0.04 4.78 1.00 4.76 0.19 0.24 0.21

infl 0.42 4.78 1.00 4.76 0.10 0.07∗∗∗ 0.06∗∗∗

ltr 1.04 4.78 1.00 4.76 0.00 0.00∗∗∗ 0.00∗∗∗

rvol 1.23 4.78 1.00 4.76 0.25 0.32∗∗∗ 0.27∗∗∗

Panel B: xt are the Fama-French three-factors

d/p 0.27 4.78 1.00 4.76 0.11 0.07∗∗∗ 0.06∗∗∗

e/p 0.11 4.78 1.00 4.76 0.12 0.10 0.09∗∗

dy 0.33 4.78 1.00 4.76 0.08 0.04∗∗∗ 0.03∗∗∗

tbl 0.21 4.78 1.00 4.76 0.25 0.35 0.30

dfy 0.21 4.78 1.00 4.76 0.32 0.75 0.64

tms 0.56 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.13∗∗∗

ntis 0.04 4.78 1.00 4.76 0.23 0.33 0.28

infl 0.42 4.78 1.00 4.76 0.16 0.16∗∗∗ 0.14∗∗∗

ltr 1.04 4.78 1.00 4.76 0.09 0.06∗∗∗ 0.04∗∗∗

rvol 1.23 4.78 1.00 4.76 0.28 0.40∗∗∗ 0.34∗∗∗
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Table 3: R2 bounds on market portfolio forecast with recently developed models

The table reports the bounds on the R2 from the regression rt+1 = α+βzt+εt+1, where rt+1

is the excess return of the market portfolio and zt is one of the ten predictors in Column 1.
R̄2

Ross and R̄2
Zhou denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2

RA and
R̄2

SR denote the bounds developed in this paper with the maximum risk aversion and the
market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote the multiple correlations, where the
default SDF m0 is constructed by the market portfolio. Statistical significance is assessed by
the Wald statistic for testing that the predictive R2 is less than the theoretical upper bound.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Habit formation model
d/p 0.27 4.78 0.18 0.15∗∗∗ 0.07 0.03∗∗∗ 0.02∗∗∗

e/p 0.11 4.78 0.18 0.15 0.04 0.01∗∗∗ 0.01∗∗∗

dy 0.33 4.78 0.18 0.15∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

tbl 0.21 4.78 0.18 0.15∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

dfy 0.21 4.78 0.18 0.15∗∗∗ 0.11 0.10∗∗∗ 0.08∗∗∗

tms 0.56 4.78 0.18 0.15∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

ntis 0.04 4.78 0.18 0.15 0.02 0.00∗∗∗ 0.00∗∗∗

infl 0.42 4.78 0.18 0.15∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

ltr 1.04 4.78 0.18 0.15∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

rvol 1.23 4.78 0.18 0.15∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

Panel B: Long-run risk model
d/p 0.27 4.78 0.17 0.14∗∗∗ 0.11 0.07∗∗∗ 0.06∗∗∗

e/p 0.11 4.78 0.17 0.14 0.07 0.04∗∗∗ 0.03∗∗∗

dy 0.33 4.78 0.17 0.14∗∗∗ 0.12 0.09∗∗∗ 0.07∗∗∗

tbl 0.21 4.78 0.17 0.14∗∗∗ 0.08 0.03∗∗∗ 0.03∗∗∗

dfy 0.21 4.78 0.17 0.14∗∗∗ 0.09 0.06∗∗∗ 0.05∗∗∗

tms 0.56 4.78 0.17 0.14∗∗∗ 0.09 0.04∗∗∗ 0.03∗∗∗

ntis 0.04 4.78 0.17 0.14 0.11 0.08 0.07
infl 0.42 4.78 0.17 0.14∗∗∗ 0.13 0.10∗∗∗ 0.08∗∗∗

ltr 1.04 4.78 0.17 0.14∗∗∗ 0.10 0.06∗∗∗ 0.05∗∗∗

rvol 1.23 4.78 0.17 0.14∗∗∗ 0.12 0.07∗∗∗ 0.06∗∗∗

Panel C: Rare disaster model
d/p 0.27 4.78 0.17 0.14∗∗∗ 0.08 0.04∗∗∗ 0.03∗∗∗

e/p 0.11 4.78 0.17 0.14 0.06 0.02∗∗∗ 0.02∗∗∗

dy 0.33 4.78 0.17 0.14∗∗∗ 0.08 0.04∗∗∗ 0.03∗∗∗

tbl 0.21 4.78 0.17 0.14∗∗∗ 0.05 0.02∗∗∗ 0.01∗∗∗

dfy 0.21 4.78 0.17 0.14∗∗∗ 0.08 0.05∗∗∗ 0.04∗∗∗

tms 0.56 4.78 0.17 0.14∗∗∗ 0.07 0.03∗∗∗ 0.02∗∗∗

ntis 0.04 4.78 0.17 0.14 0.06 0.02∗∗∗ 0.02∗∗∗

infl 0.42 4.78 0.17 0.14∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

ltr 1.04 4.78 0.17 0.14∗∗∗ 0.09 0.05∗∗∗ 0.04∗∗∗

rvol 1.23 4.78 0.17 0.14∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗
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Table 4: R2 bounds on market portfolio forecast with transaction cost

The table reports the bounds on the R2 from the regression rt+1 = α + βzt + εt+1, where
rt+1 is the excess return of the market portfolio and zt is one of the 10 predictors in Column
1. The state variables xt in the SDF are the consumption growth rate in Panel A and the
Fama-French three factors in Panel B. The transaction cost is measured by the liquidity
factor of Pástor and Stambaugh (2003). R̄2

Ross and R̄2
Zhou denote the bounds proposed by

Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with
the maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote
the multiple correlations, where the default SDF m0 is constructed by the market portfolio.
Statistical significance is assessed by the Wald statistic for testing that the predictive R2 is
less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: xt is consumption growth rate

d/p 0.29 4.88 0.34 0.55 0.05 0.01∗∗∗ 0.01∗∗∗

e/p 0.10 4.88 0.34 0.55 0.03 0.01∗∗∗ 0.01∗∗∗

dy 0.31 4.88 0.34 0.55 0.06 0.02∗∗∗ 0.02∗∗∗

tbl 0.24 4.88 0.34 0.55 0.04 0.01∗∗∗ 0.01∗∗∗

dfy 0.20 4.88 0.34 0.55 0.01 0.00∗∗∗ 0.00∗∗∗

tms 0.53 4.88 0.34 0.55 0.04 0.01∗∗∗ 0.01∗∗∗

ntis 0.04 4.88 0.34 0.55 0.06 0.02∗∗ 0.02∗∗

infl 0.55 4.88 0.34 0.54 0.09 0.05∗∗∗ 0.04∗∗∗

ltr 1.10 4.88 0.34 0.55∗∗∗ 0.09 0.05∗∗∗ 0.04∗∗∗

rvol 1.19 4.88 0.34 0.55∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

Panel B: xt are the Fama-French three-factors

d/p 0.29 4.88 1.00 4.86 0.14 0.12∗∗∗ 0.11∗∗∗

e/p 0.10 4.88 1.00 4.86 0.13 0.12 0.10

dy 0.31 4.88 1.00 4.86 0.12 0.08∗∗∗ 0.07∗∗∗

tbl 0.24 4.88 1.00 4.86 0.26 0.39 0.33

dfy 0.20 4.88 1.00 4.86 0.34 0.84 0.72

tms 0.53 4.88 1.00 4.86 0.18 0.16∗∗∗ 0.14∗∗∗

ntis 0.04 4.88 1.00 4.86 0.22 0.32 0.28

infl 0.55 4.88 1.00 4.86 0.17 0.19∗∗∗ 0.16∗∗∗

ltr 1.10 4.88 1.00 4.86 0.12 0.09∗∗∗ 0.08∗∗∗

rvol 1.19 4.88 1.00 4.86 0.29 0.42∗∗∗ 0.36∗∗∗
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Table 5: R2 bounds on size portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj+βjzt+εj,t+1,
where rj,t+1 is the excess return on one of the ten size portfolios and zt is the dividend-price
ratio. The state variables xt in the SDF are the consumption growth rate (Panel A) or the
Fama-French three factors (Panel B). R̄2

Ross and R̄
2
Zhou denote the bounds proposed by Ross

(2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with the
maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote
the multiple correlations, where the default SDF m0 is constructed by the market portfolio.
Statistical significance is assessed by the Wald statistic for testing that the predictive R2 is
less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: xt is the consumption growth rate

Small 0.09 4.78 0.17 0.13 0.08 0.04∗∗∗ 0.03∗∗∗

2 0.20 4.78 0.17 0.13∗∗∗ 0.05 0.02∗∗∗ 0.02∗∗∗

3 0.32 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

4 0.48 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

5 0.43 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

6 0.43 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

7 0.29 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

8 0.28 4.78 0.17 0.13∗∗∗ 0.00 0.00∗∗∗ 0.00∗∗∗

9 0.24 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

Large 0.25 4.78 0.17 0.13∗∗∗ 0.01 0.00∗∗∗ 0.00∗∗∗

Panel B: xt are the Fama-French three-factors

Small 0.09 4.78 1.00 4.76 0.23 0.31 0.26

2 0.20 4.78 1.00 4.76 0.23 0.34 0.29

3 0.32 4.78 1.00 4.76 0.20 0.23∗∗∗ 0.19∗∗∗

4 0.48 4.78 1.00 4.76 0.19 0.18∗∗∗ 0.16∗∗∗

5 0.43 4.78 1.00 4.76 0.17 0.18∗∗∗ 0.15∗∗∗

6 0.43 4.78 1.00 4.76 0.14 0.12∗∗∗ 0.10∗∗∗

7 0.29 4.78 1.00 4.76 0.15 0.14∗∗∗ 0.11∗∗∗

8 0.28 4.78 1.00 4.76 0.14 0.12∗∗∗ 0.10∗∗∗

9 0.24 4.78 1.00 4.76 0.12 0.09∗∗∗ 0.08∗∗∗

Large 0.25 4.78 1.00 4.76 0.09 0.06∗∗∗ 0.05∗∗∗
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Table 6: R2 bounds on value portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj+βjzt+εj,t+1,
where rj,t+1 is the excess return on one of the ten value portfolios and zt is the dividend-price
ratio. The state variables xt in the SDF are the consumption growth rate (Panel A) or the
Fama-French three factors (Panel B). R̄2

Ross and R̄
2
Zhou denote the bounds proposed by Ross

(2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with the
maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote
the multiple correlations, where the default SDF m0 is constructed by the market portfolio.
Statistical significance is assessed by the Wald statistic for testing that the predictive R2 is
less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: xt is the consumption growth rate

Low 0.11 4.78 0.17 0.13 0.04 0.01∗∗∗ 0.01∗∗∗

2 0.33 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

3 0.28 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

4 0.25 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

5 0.19 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

6 0.39 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

7 0.23 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

8 0.28 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

9 0.41 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

High 0.32 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

Panel B: xt are the Fama-French three-factors

Low 0.11 4.78 1.00 4.76 0.11 0.09∗∗ 0.08∗∗∗

2 0.33 4.78 1.00 4.76 0.13 0.09∗∗∗ 0.08∗∗∗

3 0.28 4.78 1.00 4.76 0.15 0.14∗∗∗ 0.12∗∗∗

4 0.25 4.78 1.00 4.76 0.16 0.15∗∗∗ 0.13∗∗∗

5 0.19 4.78 1.00 4.76 0.15 0.14∗∗∗ 0.12∗∗∗

6 0.39 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

7 0.23 4.78 1.00 4.76 0.17 0.16∗∗∗ 0.14∗∗∗

8 0.28 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.15∗∗∗

9 0.41 4.78 1.00 4.76 0.15 0.12∗∗∗ 0.10∗∗∗

High 0.32 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.14∗∗∗
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Table 7: R2 bounds on momentum portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj+βjzt+εj,t+1,
where rj,t+1 is the excess return on one of the ten momentum portfolios and zt is the dividend-
price ratio. The state variables xt in the SDF are the consumption growth rate (Panel A) or
the Fama-French three factors (Panel B). R̄2

Ross and R̄2
Zhou denote the bounds proposed by

Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with
the maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote
the multiple correlations, where the default SDF m0 is constructed by the market portfolio.
Statistical significance is assessed by the Wald statistic for testing that the predictive R2 is
less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: xt is the consumption growth rate

Low 0.19 4.78 0.17 0.13∗∗∗ 0.01 0.00∗∗∗ 0.00∗∗∗

2 0.23 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

3 0.48 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

4 0.24 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

5 0.10 4.78 0.17 0.13 0.08 0.03∗∗∗ 0.01∗∗∗

6 0.56 4.78 0.17 0.13∗∗∗ 0.07 0.03∗∗∗ 0.02∗∗∗

7 0.31 4.78 0.17 0.13∗∗∗ 0.07 0.03∗∗∗ 0.03∗∗∗

8 0.31 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

9 0.83 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

High 0.24 4.78 0.17 0.13∗∗∗ 0.01 0.00∗∗∗ 0.00∗∗∗

Panel B: xt are the Fama-French three-factors

Low 0.19 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

2 0.23 4.78 1.00 4.76 0.10 0.06∗∗∗ 0.05∗∗∗

3 0.48 4.78 1.00 4.76 0.12 0.13∗∗∗ 0.11∗∗∗

4 0.24 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.15∗∗∗

5 0.10 4.78 1.00 4.76 0.17 0.17 0.15

6 0.56 4.78 1.00 4.76 0.19 0.22∗∗∗ 0.19∗∗∗

7 0.31 4.78 1.00 4.76 0.21 0.27∗∗ 0.23∗∗∗

8 0.31 4.78 1.00 4.76 0.19 0.24∗∗∗ 0.20∗∗∗

9 0.83 4.78 1.00 4.76 0.16 0.17∗∗∗ 0.14∗∗∗

High 0.24 4.78 1.00 4.76 0.15 0.16∗∗∗ 0.13∗∗∗
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Table 8: R2 bounds on industry portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj+βjzt+εj,t+1,
where rj,t+1 is the excess return on one of the ten industry portfolios and zt is the dividend-
price ratio. The state variables xt in the SDF are the consumption growth rate (Panel A) or
the Fama-French three factors (Panel B). R̄2

Ross and R̄2
Zhou denote the bounds proposed by

Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with
the maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote
the multiple correlations, where the default SDF m0 is constructed by the market portfolio.
Statistical significance is assessed by the Wald statistic for testing that the predictive R2 is
less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: xt is the consumption growth rate

NoDur 0.64 4.78 0.17 0.13∗∗∗ 0.09 0.05∗∗∗ 0.04∗∗∗

Durbl 0.19 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

Manuf 0.03 4.78 0.17 0.13 0.03 0.01∗∗∗ 0.01∗∗∗

Enrgy 0.01 4.78 0.17 0.13 0.00 0.00 0.00

HiTec 0.10 4.78 0.17 0.13 0.01 0.00∗∗∗ 0.00∗∗∗

Telcm 0.52 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

Shops 0.47 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

Hlth 0.25 4.78 0.17 0.13∗∗∗ 0.08 0.04∗∗∗ 0.03∗∗∗

Utils 0.16 4.78 0.17 0.13∗∗∗ 0.00 0.00∗∗∗ 0.00∗∗∗

Other 0.44 4.78 0.17 0.13∗∗∗ 0.05 0.01∗∗∗ 0.01∗∗∗

Panel B: xt are the Fama-French three-factors

NoDur 0.64 4.78 1.00 4.76 0.27 0.42∗∗∗ 0.35∗∗∗

Durbl 0.19 4.78 1.00 4.76 0.09 0.04∗∗∗ 0.03∗∗∗

Manuf 0.03 4.78 1.00 4.76 0.16 0.16 0.14

Enrgy 0.01 4.78 1.00 4.76 0.20 0.29 0.24

HiTec 0.10 4.78 1.00 4.76 0.21 0.32 0.27

Telcm 0.52 4.78 1.00 4.76 0.16 0.16∗∗∗ 0.13∗∗∗

Shops 0.47 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.15∗∗∗

Hlth 0.25 4.78 1.00 4.76 0.23 0.32 0.27

Utils 0.16 4.78 1.00 4.76 0.25 0.40 0.34

Other 0.44 4.78 1.00 4.76 0.22 0.28∗∗∗ 0.24∗∗∗
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Table 9: R2 bounds on size and value portfolio forecasts

The table reports the bounds on R2 from the regression rj,t+1 = αj + βjzt + εj,t+1, where zt
is the term spread and rj,t+1 is the excess return on one of the 10 size portfolios (Panel A)
or the 10 value portfolios (Panel B). The state variables xt in the SDF are the Fama-French
three factors. R̄2

Ross and R̄
2
Zhou denote the bounds proposed by Ross (2005) and Zhou (2010).

R̄2
RA and R̄2

SR denote the bounds developed in this paper with the maximum risk aversion
and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote the multiple correlations,
where the default SDF m0 is constructed by the market portfolio. Statistical significance is
assessed by the Wald statistic for testing that the predictive R2 is less than the theoretical
upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Size portfolios

Small 0.83 4.78 1.00 4.76 0.23 0.26∗∗∗ 0.22∗∗∗

2 0.61 4.78 1.00 4.76 0.20 0.19∗∗∗ 0.16∗∗∗

3 0.54 4.78 1.00 4.76 0.17 0.15∗∗∗ 0.13∗∗∗

4 0.63 4.78 1.00 4.76 0.17 0.16∗∗∗ 0.13∗∗∗

5 0.58 4.78 1.00 4.76 0.17 0.14∗∗∗ 0.12∗∗∗

6 0.81 4.78 1.00 4.76 0.16 0.13∗∗∗ 0.11∗∗∗

7 0.69 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

8 0.52 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

9 0.58 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.13∗∗∗

Large 0.54 4.78 1.00 4.76 0.18 0.17∗∗∗ 0.14∗∗∗

Panel B: Value portfolios

Low 0.52 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.14∗∗∗

2 0.51 4.78 1.00 4.76 0.13 0.08∗∗∗ 0.07∗∗∗

3 0.73 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.06∗∗∗

4 0.68 4.78 1.00 4.76 0.14 0.10∗∗∗ 0.09∗∗∗

5 0.65 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

6 0.43 4.78 1.00 4.76 0.14 0.10∗∗∗ 0.09∗∗∗

7 0.28 4.78 1.00 4.76 0.11 0.06∗∗∗ 0.05∗∗∗

8 0.14 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.11∗∗∗

9 0.29 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

High 0.49 4.78 1.00 4.76 0.20 0.24∗∗∗ 0.21∗∗∗
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Table 10: R2 bounds on momentum and industry portfolio forecasts

The table reports the bounds on R2 from the regression rj,t+1 = αj + βjzt + εj,t+1, where
zt is the term spread and rj,t+1 is the excess return on one of the 10 momentum portfolios
(Panel A) or the 10 industry portfolios (Panel B). The state variables xt in the SDF are the
Fama-French three factors. R̄2

Ross and R̄
2
Zhou denote the bounds proposed by Ross (2005) and

Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with the maximum
risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote the multiple
correlations, where the default SDF m0 is constructed by the market portfolio. Statistical
significance is assessed by the Wald statistic for testing that the predictive R2 is less than
the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0

R̄2
Zhou(%) ρx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Momentum portfolios

Low 0.54 4.78 1.00 4.76 0.22 0.25∗∗∗ 0.21∗∗∗

2 0.43 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.14∗∗∗

3 0.51 4.78 1.00 4.76 0.15 0.12∗∗∗ 0.10∗∗∗

4 0.60 2.78 1.00 4.76 0.15 0.11∗∗∗ 0.10∗∗∗

5 0.50 4.78 1.00 4.76 0.17 0.14∗∗∗ 0.12∗∗∗

6 0.80 4.78 1.00 4.76 0.15 0.13∗∗∗ 0.11∗∗∗

7 1.11 4.78 1.00 4.76 0.14 0.11∗∗∗ 0.09∗∗∗

8 0.56 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

9 0.37 4.78 1.00 4.76 0.15 0.13∗∗∗ 0.11∗∗∗

High 0.33 4.78 1.00 4.76 0.19 0.21∗∗∗ 0.18∗∗∗

Panel B: Industry portfolios

NoDur 0.40 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

Durbl 1.41 4.78 1.00 4.76 0.21 0.24∗∗∗ 0.20∗∗∗

Manuf 0.80 4.78 1.00 4.76 0.15 0.12∗∗∗ 0.10∗∗∗

Enrgy 0.16 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

HiTec 0.61 4.78 1.00 4.76 0.21 0.21∗∗∗ 0.18∗∗∗

Telcm 0.21 4.78 1.00 4.76 0.21 0.21 0.18∗

Shops 0.43 4.78 1.00 4.76 0.10 0.05∗∗∗ 0.04∗∗∗

Hlth 0.00 4.78 1.00 4.76 0.12 0.06 0.05

Utils 0.19 4.78 1.00 4.76 0.03 0.00∗∗∗ 0.00∗∗∗

Other 0.40 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗
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