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Tracking Error Models for Multiple Benchmarks

Yunchao Xu∗ Zhichao Zheng† Karthik Natarajan‡ Chung-Piaw Teo§

June 5, 2013

Abstract

We propose a new multiple-benchmark tracking-error model for portfolio selection problem.

The tracking error of a portfolio from a set of benchmark portfolios is defined as the difference

between its return and the highest return from the set of benchmarks. We derive closed-

form solution of our portfolio strategy, whose main component is the sum of the benchmark

portfolios weighted by their respective probabilities of attaining the highest return among the

portfolios in the benchmark. These probabilities, also known as the persistency values, are less

sensitive to estimation errors in the means and covariances. These features help to stabilize the

computational performance of our portfolio strategy against estimation errors.

We use the proposed model to address several pertinent issues in active portfolio manage-

ment: (1) What are the benefits in tracking performance of multiple benchmarks? We demon-

strate that under suitable conditions, multiple benchmarks tracking error model can actually

produce portfolio strategy that has less variability in portfolio returns, compared to the port-

folio strategy constructed using single benchmark model, given a fixed target rate of returns.

This addresses the agency issue in this problem, as portfolio managers are more concerned with

variability of the excess returns above the benchmark, whereas the investors are more concerned

with the variability of the total returns. (2) How and when to rebalance the portfolio allocation

when prices and asset returns change over time, taking into account transaction cost? We show

that our model can control for transaction cost by adding the buy-and-hold strategy into the set

of benchmark portfolios. This approach reduces drastically the transaction volume of several

popular static portfolio rules executed dynamically over time.

Last but not least, we perform comprehensive numerical experiments with various empirical

data sets to demonstrate tha our approach can consistently provide higher net Sharpe ratio

(after accounting for transaction cost), higher net aggregate return, and lower turnover rate,

compared to ten different benchmark portfolios proposed in the literature, including the equally

weighted portfolio (the 1/N strategy).
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1 Introduction

In practice, an institutional investor often evaluates the performance of a portfolio manager against

a benchmark (e.g., an index fund). In active portfolio management, the portfolio manager makes

specific investment with the goal of outperforming the benchmark, as his fees and compensations

are directly linked to the excess returns above the benchmark. For a given target rate of returns,

the portfolio manager would often seek to minimize the volatility of the deviation of the portfolio

return from the benchmark return, i.e., the tracking-error volatility. The portfolio-selection models

that minimize the tracking-error volatility are referred to as benchmark tracking-error models (cf.

Roll (1992) and Jorion (2003)).

Roll (1992) investigated the benchmark tracking-error model that minimizes the tracking-error

volatility subject to the full investment constraint and the constraint on target expected return,

i.e.,

min
eTx=1,µTx=K

E
[(
r̃Tp− r̃Tx

)2]
,

where r̃ ∈ Rn is the random return vector of the financial assets; µ is the expected return of the

assets, i.e., µ = E[r̃]; e is the column vector with all entries equal to 1; K is the target expected

return; p is the benchmark portfolio; and x ∈ Rn is the investment decision.

The deficiency with the tracking error approach is however well known. Roll (1992) observed

that the optimal trading decision (x− p) does not depend on the benchmark at all. Furthermore,

with this setup the portfolio manager will focus solely on the tracking-error volatility but ignore the

total portfolio risk. This creates an agency problem, since the investor is more concerned with the

latter. The tracking error model may thus produce seriously inefficient portfolios for the investor.

To address these issues, Roll (1992) proposed to constrain the portfolio’s beta; Jorion (2003)

proposed to constrain the portfolio’s total variance; and Alexander & Baptista (2008) proposed

to constrain the portfolio’s Value-at-Risk (VaR). However, most of these proposals are difficult

to implement in practice, and do not address directly the connection with the benchmark based

approach to portfolio management.

The choice of the proper benchmark is also a problem in practice. Poor active portfolio man-

agement could lead to less than perfectly diversified portfolio, and incur heavy transaction costs

and assumes high total portfolio risk. El-Hassan & Kofman (2003) observed from their empir-

ical analysis that in reality, the selected benchmark is often inefficient, and its expected return

could fall below the expected return of the well-known minimum-variance portfolio. The immedi-

ate consequence is that during bear market conditions the benchmark tracking-error models will

call for a huge amount of short selling, which can substantially increase the total portfolio risk.

This problem is compounded by the fact that tracking error measurement does not differentitate

between over-performing and under-performing vis-a-viz the benchmark portfolio, and hence the

performance of the tracking error model can be adversely affected by a poorly selected benchmark.

To mitigate this problem of finding the right unique benchmark, one natural solution is to use

multiple benchmarks to evaluate the performance of a portfolio manager. By choosing benchmarks

that can counter-balance the performance of each other in different market environments, we can
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track the performance of our portfolio strategy in a more accurate and reliable manner. The litera-

ture on multiple-benchmark tracking-error strategy is however comparatively sparse. Wang (1999)

extended the single-benchmark tracking-error model to track multiple benchmarks simultaneously.

The tracking error of the portfolio with respect to a set of m benchmarks is defined by a weighted

sum of single-benchmark tracking errors, i.e.,

min
eTx=1,µTx=K

m∑
j=1

wjE
[(
r̃Tpj − r̃Tx

)2]
,

where wj is the weight on the tracking error of the jth benchmark portfolio, pj , j = 1, . . . ,m.

Rustem & Howe (2002) considered an alternative model. Their objective is to minimize the maxi-

mum tracking-error volatility across all benchmarks, i.e.,

min
eTx=1,µTx=K

max
j∈{1,...,m}

E
[(
r̃Tpj − r̃Tx

)2]
.

However, it is not clear how a portfolio manager should choose the weights in Wang’s model.

The minimax approach, on the other hand, is often considered to be too conservative. A more

critical issue is that these models still rely on the evaluation of single-benchmark tracking error

and only combine them in the aggregate level. They fail to distinguish between over-performing

and under-performing vis-a-viz the selected benchmarks, and that the performance of the different

benchmarks may be correlated. Hence they do not fully capture the concerns arising from the real

investment activities as discussed above.

In this paper, we propose a new class of tracking-error models for multiple benchmarks. This

problem arises naturally when multiple natural benchmarks (e.g., risk-free returns, S&P 500 index

etc.) are readily available in the market that can be used to evaluate the performance of the

portfolio managers. It also arises when the portfolio manager is managing funds for different

clients, each with a unique benchmark that will be used to evaluate the performance of the manager.

Instead of managing different pools of funds, one for each client, we explore the possibility of pooling

the funds and benchmarks together to derive a better portfolio strategy. Our target performance

is to match the highest return among all the benchmarks, i.e.,

ZB(r̃) := max
j∈{1,...,m}

r̃Tpj .

Note that since the asset returns are random, the highest benchmark return is also random, and it

depends on the realization of the asset returns. That is why we use the notation ZB(r̃) to represent

the highest benchmark return. Our multiple-benchmark tracking error is defined as the difference

between the portfolio return and the highest return induced from the benchmark portfolios, i.e.,

r̃Tx−ZB (r̃). We are interested in finding a portfolio x whose tracking-error volatility is minimized,

i.e.,

(T) min
x∈X

E
[(
ZB(r̃)− r̃Tx

)2]
,
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where X is a set of feasible portfolios. The constraints in the set X includes the full investment

constraint eTx = 1. It is possible to capture additional constraints on the portfolio vector in the

set X , e.g., target expected return constraint, short-sale constraints, etc. Note that when there is

only one benchmark portfolio, this reduces to the single-benchmark tracking-error model of Roll

(1992).

Intuitively, as the financial asset returns are very volatile, it is almost impossible for a single

benchmark to consistently perform well in every situation. Tracking the best return from a set

of benchmarks appears to be a more attractive and practical objective, as it addresses partially

the concern of a particularly bad benchmark dragging down the performance of the portfolio. The

investor can also control the aggressiveness of the active investment by choosing an appropriate pool

of benchmarks that suit the style and risk profile of the investor. Surprisingly, this approach can

also be used to address the agency issue concerning the conflicting objectives between the investor

and portfolio manager - the portfolio constructed using the multiple tracking error model may

actually resulted in lower total returns variability, compared to the single benchmark approach.

Our main contributions in the paper are as follows:

1. Under the assumption of a normally distributed return vector, we derive the closed-form

solution of our portfolio model without short-sale constraints, and show that the optimal

multiple-benchmark tracking error portfolio relies on the probabilities that the benchmarks

attain the highest return. This helps to stabilize the perofrmance of our portfolio strategy

in numerical experiments, as those probabilities are generally less prone to estimation errors

on means and covariances.

2. Using two suitably chosen benchmarks, we prove that one can generate the entire mean-

variance efficient frontier using our model. This result is similar to the well known Two-Fund

Theorem in classical portfolio theory.

3. We also compare the performance of our multiple benchmark tracking error model with

the traditional single benchmark tracking error model, for fixed target return K. While

the portfolio manager focuses on minimizing the variability of the excess return against the

benchmark(s), we show that the total portfolio returns variability can be lower in the multiple

benchmark environment. We identify the environments under which the multiple benchmarks

portfolio strategy will dominate the performance of the single benchmark approach, i.e., lower

total returns variability, at all target level of returns. This result exploits the fact that the

variance of the returns of a linear combination of portfolio rules can be smaller than the

variance of the returns of each indivudal portfolio rule.

4. We also show that the portfolio strategy constructed using our tracking error model will be

preferred over using simple linear combination of the benchmark portfolios, in the environ-

ment when the portfolio managers have mean-variance utility functions with low risk aversion

parameters.
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5. More importantly, we show that our portfolio strategy performs well even with estimation

errors and when transaction costs are properly accounted for1. We show that our model can

be extended to penalize for transaction volumes. Alternately, we can also simply incorporate

the buy-and-hold strategy into the set of benchmarks to reduce the transaction volumes.

We show via extensive numerical experiments that this approach can significantly reduce

transaction costs while not sacrificing the performance on returns. For instance, in the multi-

period empirical tests, when we combine the partial minimum-variance (PARR) portfolio

proposed by DeMiguel et al. (2009) with the buy-and-hold strategy as two benchmarks,

our multiple-benchmark tracking-error portfolio incurs turnover rates that are less than half

of those from the PARR portfolio. In terms of out-of-sample Sharpe ratio net of 50 basis

point, our portfolio is significantly higher than the PARR portfolio. Our strategy also beats

the equally weighted investment strategy (also known as the 1/N strategy) comprehensively

when transaction costs are properly accounted for.

This paper is organized as follows. In the next section, we solve our multiple-benchmark

tracking-error model and analyze the properties of its solution. We present and discuss the results

of the numerical studies in Section 3 with a focus on including the buy-and-hold strategy as

a benchmark to beat the other benchmark portfolios, especially the equally weighted portfolio.

Finally, we provide some concluding remarks in Section 4.

2 Multiple-Benchmark Tracking-Error Portfolio

In this section, we will derive the solution to our model, i.e., Problem (T), and analytically in-

vestigate its features. Especially, we will compare our portfolio with the well-known Markowitz

mean-variance efficient portfolio and the linear combination rule proposed by Tu & Zhou (2011).

An extension of our model to penalize transaction costs is presented in the final part of this section.

To derive the closed-form solution of Problem (T), we first simplify the problem by linking it

to the concept of persistency and Stein’s identity.

2.1 Persistency and Stein’s Identity

Bertsimas et al. (2006) define the persistency of a binary decision variable in a mixed zero-one

linear optimization problem as the probability that the variable takes a value of one in an optimal

solution. The persistency quantitatively captures the likelihood that a variable is a part of an

optimal solution. It generalizes the definition of criticality index in project networks and choice

probability in discrete choice models (c.f. Bertsimas et al. (2006), Natarajan et al. (2009), Mishra

et al. (2012)). In the context of the benchmark tracking problem, we present the definition of

persistency formally next.

1The most common approach in existing literature is to include either a penalty term in the objective function
or a budget constraint in the portfolio models. For example, Brodie et al. (2009) proposed to add an additional
penalty term to the classical Markowitz mean-variance framework, where the penalty is proportional to the sum of
the absolute values of the portfolio weights.

5



Definition 1 Define the m dimensional random vector

p(r̃) =
(
IZB(r̃)=r̃Tp1 , . . . , IZB(r̃)=r̃Tpm

)T
,

where the indicator function IZB(r̃)=r̃Tpj takes a value of 1 if the jth benchmark portfolio produces

the maximum return in the set of benchmark portfolios and 0 otherwise. The persistency vector is

an m dimensional vector whose jth component is the probability that the jth benchmark portfolio is

the best performing portfolio in the set of benchmark portfolios, i.e.,

E[p(r̃)] =
(
P
(
ZB(r̃) = r̃Tp1

)
, . . . ,P

(
ZB(r̃) = r̃Tpm

))T
.

Definition 2 Define the n × m benchmark portfolio matrix P =
[
p1, . . . ,pm

]
. The persistency

weighted benchmark portfolio is defined as the n dimensional vector PE[p(r̃)].

Remark 1 In this paper, we assume that r̃ is a nondegenerate multivariate continuous random

vector with a positive definite covariance matrix. The support of r̃ over which more than one

benchmark attains the maximum return has measure zero. Then p (r) is unique almost surely, and

E[p (r̃)] satisfies
∑m

j=1E[pj (r̃)] = 1.

As we will see later, the solution to the multiple-benchmark tracking-error minimization prob-

lem is related to the persistency when the return follows a multivariate normal distribution, i.e.,

(A) The random return vector, r̃, follows a multivariate normal distribution with a finite mean,

µ ̸= 02, and a finite positive definite covariance matrix, Σ, denoted as r̃ ∼ N(µ,Σ).

This result is established by appealing to Stein’s Identity in probability theory, which we will

introduce next.

Lemma 1 (Stein’s Identity) Let the random vector r̃ = (r̃1, ..., r̃n)
T be multivariate normally

distributed with mean vector µ, and covariance matrix Σ. Consider a function h(r1, ..., rn) : Rn →
R such that ∂h(r1, ..., rn)/∂rj exists almost everywhere and E[|∂h(r̃)/∂rj |] < ∞ for all j = 1, . . . , n.

Denote

∇h(r) = (∂h(r)/∂r1, ..., ∂h(r)/∂rn)
T .

Then Cov(r̃, h(r̃)) = ΣE[∇h(r̃)] or equivalently,

Cov(r̃l, h(r̃1, ..., r̃n)) =

n∑
j=1

Cov(r̃l, r̃j)E

[
∂

∂rj
h(r̃1, ..., r̃n)

]
∀l = 1, ..., n.

For completeness, the proof of Lemma 1 is provided in Appendix A. Intuitively, if we treat

ZB(r̃) as a function on r̃, we can apply Stein’s Identity to derive the covariance between the

individual asset return and the highest benchmark return.

2Note that the assumption of µ ̸= 0 is required only for the model analysis, especially on efficient frontiers. For
our basic model, we can still obtain the solution when µ = 0.
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2.2 Tracking Error Minimization

Applying Stein’s Identity to Cov(ZB(r̃), r̃
T ), we get

Cov(ZB(r̃), r̃
T ) = (ΣPE[p(r̃)])T .

Our problem can be simplified as shown in the next proposition.

Proposition 1 Under Assumption (A), the multiple benchmark tracking error portfolio in Model

(T ) can be found by solving the following convex quadratic minimization problem:

(T′) min
x∈X

xT
(
Σ+ µµT

)
x− 2

(
ΣPE[p(r̃)] +E[ZB(r̃)]µ

)T
x,

where PE[p(r̃)] is the persistency weighted benchmark portfolio, and E[ZB(r̃)] is the expected

highest benchmark return.

To maintain the flow of the paper, all the proofs of our results in this section are relegated to

Appendix B.

Remark 2 Suppose that the random vector r̃ is not normally distributed. It is still possible to find

the multiple-benchmark tracking-error portfolio by solving the following convex quadratic program-

ming problem:

min
x∈X

xT
(
Σ+ µµT

)
x− 2E

[
ZB(r̃)r̃

T
]
x.

This requires the estimation of E
[
ZB(r̃)r̃

T
]
. The advantage of resorting to Stein’s Identity for the

multivariate normal distribution is twofold. First, by using Stein’s Identity, we need to estimate (a)

The persistency vector E[p(r̃)], and (b) The expectation of the best benchmark return E[ZB(r̃)].

Estimation of the benchmark portfolio that different experts believe will outperform the rest is

inherently easier to elicit from managers. Second, the transformed problem provides a simple

characterization with a closed-form solution that allows for more in-depth analysis of the model.

We elaborate on this issue in the next several subsections.

By re-writing the expression in Proposition 1, we can reinterpret our model as a variant of a

single-benchmark tracking-error model: Problem (T′) is equivalent to

min
x∈X

(x− PE [p (r̃)])T Σ (x− PE [p (r̃)]) +
(
E [ZB (r̃)]− µTx

)2
.

The first term is essentially the variance of the tracking-error, measured against the persistency

weighted portfolio. The second term penalizes the shortfall of the portfolio return from the highest

benchmark return. When there is a constraint that fixes the expected portfolio return, the sec-

ond term will vanish in the minimization problem, and our model reduces to a single-benchmark

tracking-error model with the persistency weighted benchmark portfolio as the only benchmark.

In general, our model anchors in the persistency weighted benchmark portfolio, and it is adjusted
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to recover the loss in the expected portfolio return from the highest benchmark return. This result

shows that model (T ) is related to the single-benchmark tracking-error literature in the following

ways:

• If we fixed a target expected return, Problem (T) reduces to a tracking error minimization

problem, where the benchmark tracked is PE [p (r̃)], the persistency strategy formed by the

set of portfolio used as benchmarks.

• If we fixed a budget for the variance of the tracking-error, (x− PE [p (r̃)])T Σ (x− PE [p (r̃)]),

then Problem (T) will find a strategy that has expected return as close as possible to the

expected returns of the best strategy in the portfolio. Our model therefore uses E [ZB (r̃)] to

anchor the selection of the portfolio strategy in the tracking-error model, to avoid excessive

risk, instead of limiting the total risk (variance of the returns), as commonly used. The selec-

tion of the benchmarks used in our model is thus crucial to the performance of the portfolio

strategy.

2.3 Closed-Form Solution

In this subsection, we present the closed-form expression of the multiple-benchmark tracking-error

portfolio when the return vector r̃ satisfies the multivariate normality assumption. To simplify the

expression, we introduce three constants, A = µTΣ−1µ, B = µTΣ−1e, and C = eTΣ−1e. These

constants are also used to describe the closed-form expression of the Markowitz mean-variance

portfolio (cf. Steinbach (2001)). Note that by Assumption (A), A > 0 and C > 0.

Theorem 1 Define the set of feasible portfolios as X =
{
x ∈ Rn : eTx = 1

}
. Under Assumption

(A), the optimal multiple-benchmark tracking-error portfolio in (T) is given by

PE [p(r̃)] + Σ−1

(
Cµ−Be

(A+ 1)C −B2

)(
E [ZB(r̃)]− µTPE [p(r̃)]

)
. (1)

Define µp := µTPE [p(r̃)], the mean return of the persistency weighted portfolio. It is well-

known that if the returns of the portfolios in the set of benchmarks are negatively correlated, then

it is possible for the variance of the persistency portfolio to be smaller than the variance of the

individual portfolio. Our strategy builds on the persistency portfolio, and adjusts for higher mean

returns through the term,

Σ−1

(
Cµ−Be

(A+ 1)C −B2

)(
E [ZB(r̃)]− µTPE [p(r̃)]

)
.

In this way, we can ensure that the mean returns of our strategy is at least as good as the persistency

portfolio.

Proposition 2 Under Assumption (A), the expected return of our multiple-benchmark tracking-

error portfolio is not less than µp. In particular, when µ ̸= e, the portfolio has a strictly higher

expected return than µp.
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2.4 Comparison with the Markowitz Mean-Variance Portfolio

The pioneering work of modern portfolio theory by Markowitz (1952) quantified the relationship

between the expected return and risk of portfolios, which is measured by the variance in portfolio

returns. Markowitz introduced the notion of an efficient portfolio as the portfolio with minimal

variance at a given level of expected return. The continuum of such portfolios forms an efficient

frontier in the mean-variance space of the portfolios.

In this subsection, we exploit the advantage of the closed-form solution and compare our port-

folio with the Markowitz mean-variance portfolio.

2.4.1 Optimal Portfolio Weights

Consider the Markowitz portfolio optimization model of the following form:

min
eTx=1

1

2
xTΣx− γµTx,

where γ is the risk aversion parameter. The closed-form solution (cf. Steinbach (2001)) is

Σ−1

(
(1− γB)e+ γCµ

C

)
=

1

C
Σ−1e− γ

C
Σ−1 (Be− Cµ) .

Rearranging the closed-form expression of the multiple-benchmark tracking-error portfolio in The-

orem 1 helps to make the comparison more explicit as follows:

PE [p(r̃)] +
E [ZB(r̃)]− µTPE [p(r̃)]

(A+ 1)C −B2
Σ−1 (Cµ−Be) .

From these formulas, it is clear that both portfolios consist of two components: (a) a baseline

portfolio, and (b) an adjustment term with a common factor, Σ−1 (Be− Cµ). The baseline portfo-

lio of the Markowitz mean-variance portfolio is the minimum-variance portfolio, Σ−1e/C, and the

adjustment is related to the risk aversion parameter, γ. For the multiple-benchmark tracking-error

portfolio, the baseline portfolio is the persistency weighted benchmark portfolio. The adjustment

term accounts for the impact of the random return on the performance of the benchmark portfolios,

in other words, the selection of the best performer as the target expected return.

To better under the adjustment terms, consider the following optimization problem:

(M0) min
eTx=0,µTx=K′

1

2
xTΣx,

which attempts to find the minimum variance adjustment that gives the target expected return

K
′
. The closed-form solution to this problem reads

K
′ Σ−1 (Cµ−Be)

AC −B2
.

The detailed derivation can be found in the proof of Proposition 5. Knowing this, the adjustment

9



term of our multiple-benchmark tracking-error portfolio can be interpreted as the minimum vari-

ance adjustment that tries to bring the expected return of the portfolio close to E [ZB(r̃)]. The

resulting expected return of our portfolio is

C

AC −B2 + C
µTPE [p(r̃)] +

AC −B2

AC −B2 + C
E [ZB(r̃)] .

which is the convex combination of the expected return of the persistency weighted benchmark

portfolio and the expected highest benchmark return.

To provide some intuition on the difference between these two portfolios, consider a simple

example of investment between a risk-free asset and a risky asset.

Example 1 Suppose an investor has to decide a portfolio among two uncorrelated assets, one of

which is risk-free with zero variance, and the other is risky with a variance of 1. Both assets have

zero-mean returns. In this case, the investor who follows the Markowitz strategy will always choose

the risk-free asset for any nonnegative risk aversion parameter. On the other hand, suppose we

choose two extreme strategies as the benchmark portfolios – each strategy investing solely in one of

the two assets. The multiple-benchmark tracking-error portfolio we obtained is one that divides the

capital among the two assets with equal weights (under the normality assumption). This is simply

the equally weighted investment strategy often used by practitioners.

2.4.2 Volatility

It has been observed that the Markowitz mean-variance portfolio suffers from severe volatility in

portfolio returns due to estimation errors in mean and covariance (cf. Michaud (1989) and Best

& Grauer (1991)). Our multiple-benchmark tracking-error portfolio tends to exhibit less volatility

since the risk of estimation errors is mitigated by the persistency values, which are more robust

to estimate. This difference is indeed observed in the numerical studies we did using the real data

in Section 3. In what follows, we use an experiment to illustrate such difference. We include the

equally weighted portfolio (a.k.a. the 1/n portfolio) as a reference portfolio, since it is known to

be effective in minimizing volatility, in particular, for a large pool of assets.

In the experiment, we simulate the monthly returns of 48 risky assets under multivariate nor-

mality assumption. We use the 48 Industry Portfolios from the Fama French online data library (in

the period from 1981 to 2010) as the setup for this experiment. We adopt a rolling horizon method

with an estimation window of 80 periods and investment horizon of 400 periods. We use the first

80 sample points to obtain sample mean, variance and covariance, of the returns parameters, based

on which the portfolios are determined. The performance of the portfolios are evaluated using the

81st sample point, which is an out-of-sample return. Next, the whole process moves one period

forward, and we update the estimation of the sample mean, variance and covariance, using the

last 80 sample points. We continue this experiment for 400 periods. The out-of-sample returns of

the three portfolios over the whole investment horizon are plotted in Figure 1. In this experiment,

there were 48 benchmark portfolios, each corresponding to an individual industry.
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Figure 1: Out-of-sample returns of the 1/n, Markowitz mean-variance (MEAV), and multiple-
benchmark tracking-error (MBTE) portfolios over an investment horizon of 400 periods

The out-of-sample return of the 1/n portfolio is stable and shows only slight fluctuation over

the course of the experiment. The Markowitz mean-variance portfolio however exhibits much larger

volatility. In comparison, our multiple-benchmark tracking-error portfolio’s performance is close to

that of the 1/n portfolio, with significantly smaller fluctuations than the Markowitz mean-variance

portfolio.

2.4.3 Efficient Frontier (In-Sample)

Next, we compare our multiple-benchmark tracking-error frontier with the mean-variance efficient

frontier. To give an immediate idea, we first plot the multiple-benchmark tracking-error frontier

and the efficient frontier assuming the full knowledge on the distributional parameters of the

random returns. Here, we consider the following multiple-benchmark tracking-error model:

(T′′) min
eTx=1,µTx=K

E
[(
ZB(r̃)− r̃Tx

)2]
,

which is a variant of Problem (T) with additional target expected return constraint. Similar to the

case without target expected return constraint, we can derive the closed-form solution to Problem

(T′′) as follows:

PE [p(r̃)] +
(
µTPE [p(r̃)]−K

)
Σ−1

(
Be− Cµ

AC −B2

)
. (2)
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To obtain the mean-variance efficient frontier, we consider the Markowitz model with a target

expected return constraint as follows:

(M) min
eTx=1,µTx=K

1

2
xTΣx

We use an experiment to illustrate the different in the two frontiers. We simulate the monthly

returns of 10 risky assets under multivariate normality assumption. We use the estimated mean,

variance and covariance of the monthly returns of the 10 Industry Portfolios from the Fama French

online data library (in the period from 1981 to 2010) as the underlying distributional parameters.

We assume the complete knowledge of means and variances of returns when solving (T′′) and (M).

We consider a sequence of target expected returns, K, from 0 to 0.2 with a step size of 0.0001.

For each K, we solve (T′′) and (M) to obtain our multiple-benchmark tracking-error portfolio

and the Markowitz mean-variance portfolio, respectively. Then we compute the variance of the

two portfolios. The continuum of such K-variance pairs constitutes the frontier for each portfolio

selection model, as plotted in Figure 2. Similarly, in this experiment, the benchmark portfolios are

chosen to be all the extreme portfolios that invest solely in individual assets.
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Figure 2: Risk and return with known distributional parameters and simulated data

Comparing the two frontiers in the risk-return plot, we observe a constant shift of the multiple-

benchmark tracking-error frontier from the mean-variance efficient frontier. Note that a similar

feature was observed for single-benchmark tracking-error portfolios by Roll (1992). The magnitude

of the shift corresponds to the magnitude of the agency problem in this environment - when the

portfolio manager focuses on minimizing the variability of the tracking error, the resulting portfolio

is often inefficient and lies in the interior of the efficient frontier. We give an analytical expression

12



for the constant shift next.

Proposition 3 Under Assumption (A), the multiple-benchmark tracking-error frontier obtained

from solving Problem (T′′), is a constant shift from the mean-variance efficient frontier. More

specifically, the distance between the two frontiers at each level of expected return is

E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C
.

Note that the first term in the summand corresponds to the variance of the returns of the

persistency weighted portfolio strategy, and the term B/C corresponds to the mean returns of the

minimum variance strategy. We can assume that the mean returns of each portfolio used in the

set of benchmarks generate higher mean returns than the minimum variance strategy. Hence(
µTPE [p(r̃)]− B

C

)2

corresponds to the square of the excess returns of the persistency weighted portfolio strategy above

the minimum variance strategy. We can now use this result to rank the performance of the tracking

error models using different benchmarks:

Theorem 2 If

Var(r̃TPE [p(r̃)])− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

≤ Var(r̃TPj)−
C

AC −B2

(
µTPj −

B

C

)2

,

then the frontier constructed from the multiple benchmark tracking error model (T ′′) dominates the

frontier for the single benchmark tracking error model constructed using benchmark Pj.

This result can be used to identify complementary benchmark portfolio that can help improve

the performance of the single benchmark tracking error model using Pj . For instance, if there

exists portfolio Qj such that

• µTPj = µTQj ,

• Var(r̃TPj) = Var(r̃TQj), and

• r̃TPj and r̃TQj are independent or negatively correlated,

then

Var

(
r̃T (κPj + (1− κ)Qj)

)
≤ κ2Var(r̃TPj) + (1− κ)2Var(r̃TQj) ≤ Var(r̃TPj),

for any κ in [0, 1]. Thus Qj can be used in our multiple benchmark model to improve the per-

formance of the single benchmark tracking error model. This result shows the potential of the

multiple benchmark tracking error model in reducing the impact of the agency problem for the

investor, as it can bring the frontier of the tracking error model closer to the efficient frontier.
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We can also show an interesting result similar to the famous Two-Fund Theorem, which says

that any affine combination of two distinct mean-variance efficient portfolios is itself a mean-

variance efficient portfolio.

Proposition 4 Under Assumption (A), when the set of benchmark portfolios contains exactly two

distinct efficient mean-variance portfolios, our multiple-benchmark tracking-error frontier coincides

with the mean-variance efficient frontier. Consequently, the multiple-benchmark tracking-error

portfolio obtained from solving Problem (T) falls on the mean-variance efficient frontier.

This proposition shows that our multiple-benchmark tracking-error model has the flexibility to

generate the entire mean-variance efficient frontier if the benchmark portfolios are chosen prop-

erly. Indeed, this result can be extended to the case with more than two mean-variance efficient

benchmark portfolios.

2.4.4 Efficient Frontier (Out-of-Sample)

For the purpose of completeness, we conduct further numerical analysis by drawing the frontiers for

both portfolios based on out-of-sample estimation in Figure 3. We simulate 130 samples from the

underlying distributional parameters same as the previous experiment, and use the first 120 sample

points to obtain sample mean, variance and covariance. We consider the sequence of values for

K as before. For each K, we determine our multiple-benchmark tracking-error portfolio with the

sample mean and covariance, and calculate the out-of-sample mean return and variance using the

last 10 periods of data. By drawing such return-variance pairs for all K’s, we get an out-of-sample

multiple-benchmark tracking-error frontier. The out-of-sample mean-variance efficient frontier is

obtained in a similar way.

Although the theoretical frontier of the Markowitz mean-variance portfolio could be more

efficient in-sample, in the out-of-sample experiment, the estimation errors in mean and variance

leads to much less efficient Markowitz portfolios.

2.5 Comparison with the Linear Combination Rule

To improve the performance of the Markowitz mean-variance portfolio under estimation errors,

Tu & Zhou (2011) proposed to combine more sophisticated strategies with the naive 1/n rule.

They found that the optimal affine combination of the estimated Markowitz portfolio and the 1/n

portfolio often outperforms both portfolios in terms of expected mean-variance utility. In order to

derive the desired result, the authors focused on the unconstrained version of the Markowitz model,

i.e., without the requirement that the sum of portfolio weights equals to one. In a later study,

Kirby & Ostdiek (2012) pointed out the importance of research design in driving the performance

of the Markowitz portfolio. In particular, high target expected return will significantly inflate the

estimation errors and result in extremely risky position for the Markowitz portfolio.

We investigate next the relationship between our multiple-benchmark tracking-error model and

the linear combination rule, for different ranges of the target expected return. Let p1 and p2 be
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Figure 3: Risk and return of different portfolios using out-of-sample estimations of mean and
variance

two distinct portfolios with different expected return, i.e., µTp1 ̸= µTp2. The linear combination

rule generates a series of portfolios of the form,

δp1 + (1− δ)p2,

where δ is the linear combination coefficient. To facilitate the comparison, for our model, we use

the same two portfolios to construct our benchmark. Note that given a target expected return, the

solution for the linear combination rule can be uniquely determined. Similarly, Equation (2) gives

the closed-form solution of our multiple-benchmark tracking-error portfolio at the target expected

return K.

In general, the variance of the linear combination portfolio will usually increase at a faster rate

as the target expected return increases. On the other hand, as demonstrated earlier, the frontier

of our multiple-benchmark tracking-error portfolio is a constant shift to the right from the mean-

variance efficient frontier. As the target expected return increases, we expect our portfolio to be

more efficient, i.e., having smaller variance than the solution produced by linear combination rule.

We have the following result.

Proposition 5 Under Assumption (A), the multiple-benchmark tracking-error frontier will dom-

inate the linear combination rule frontier when the target expected return is high enough.

The above result shows that there exists a threshold such that once the target expected re-
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turn exceeds this threshold, the linear combination rule would be less efficient than the multiple-

benchmark tracking-error portfolio. In fact, from our numerical tests, such threshold value is

usually very small, and the performance of the linear combination rule deteriorates significantly

when the target expected return increases.

Remark 3 We can also interpret the above result from the perspective of utility theory. Suppose

that the portfolio manager has the mean-variance utility of the form,

µTx− γ

2
xTΣx,

where γ is the risk aversion parameter. Then our multiple-benchmark tracking-error portfolio will

be preferred over the linear combination rule for relatively small γ, i.e., less risk aversion. From

the figures, the portfolio manager has to be extremely risk averse for the linear combination rule to

be preferred to the multiple-benchmark tracking-error portfolio.

2.6 Transaction Cost

Transaction costs are often inevitable in real investment activities. As discussed before, we can

explicitly include the buy-and-hold strategy as a benchmark portfolio to control the transaction

volume. In this subsection, we show that our model is also capable of handling transaction cost in

the conventional way by adding a penalty term into the objective function.

To facilitate the following exposition, we introduce some additional notation. Let W denote the

wealth at the beginning of the current investment period, and define x0 as the starting portfolio,

i.e., the initial weights of capital on each asset. As before, x represents the current investment

decision. In this case, it can also be referred to as portfolio repositioning decision. The transaction

volume is measured by
∑n

i=1W
∣∣xi − x0i

∣∣ = WeT
∣∣x− x0

∣∣. However, the problem becomes non-

smooth if we directly work with the transaction cost that is linear in the transaction volume. To

make the problem more tractable and emphasize on avoiding high transaction volume, we extend

the basic model in Problem (T) by adding a penalty term on the quadratic transaction volume.

The problem is formulated as follows:

(TC) min
eTx=1

E

(ZB(r̃)−
n∑

i=1

r̃ixi

)2
+ ν(x− x0)T (x− x0),

where ν ≥ 0 is a penalty parameter that captures the effect of the quadratic transaction volume,

W 2(x − x0)T (x − x0). Since ν is a constant, we can absorb W 2 into ν. The new objective can

be interpreted as an adjusted disutility function of the investor with a penalty on the transaction

volume, where ν characterizes the investor’s aversion to high transaction volume. With such

change, Problem (TC) remains a convex quadratic programming problem, and we are able to

establish its closed-form solution as shown in the following proposition.
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Proposition 6 Under Assumption (A), the closed-form solution to Problem (TC) is given by

x =
De

eTDe
+

(
In − DJn

eTDe

)
D
(
µE [ZB(r̃)] + ΣPE [p(r̃)] + νx0

)
, (3)

where D =
(
Σ+ µµT + νIn

)−1
; In is the identity matrix; and Jn is the matrix in Rn×n with all

entries being 1.

3 Numerical Studies

In this section, we will present some numerical studies based on real data to test the performance

of the models proposed in this paper. We start by describing the setup of these studies, including

data sets, comparison portfolio strategies, methodology and performance measures.

3.1 Data Sets

We evaluate the performance of our model in four empirical data sets listed in Table 1. The

data sets we choose fall into two categories. The first three data sets are portfolios representing

the U.S. stock market, and the last one is comprised of individual U.S. stocks. We present the

analysis on the risk and return of these data sets in Figure 4. The first graph in each panel shows

the annualized mean return and the second graph shows the annualized standard deviation of the

returns. All the sample points are used in the calculation. From the figure, we observe that the four

data sets demonstrate distinct risk and return characteristics, such as different spreads of mean

returns within the same data set, and different risk levels, etc.

Abbreviation Data Set and Description n Time Period Source

10Ind
Ten industry portfolios representing the
U.S. stock market

10
07/1963
–12/2011

K. French

48Ind
Forty-eight industry portfolios
representing the U.S. stock market

48
07/1963
–12/2011

K. French

25FF

Twenty-five Fama and French portfolios
of firms sorted by size and
book-to-market

25
07/1963
–12/2011

K. French

8Stock

Eight U.S. stocks (Crude Oil, J.P.
Morgan Funds, General Electric
Company, The Coca-Cola Company,
Johnson & Johnson, International
Business Machines Corp., Gold Ounce,
AT & T Inc.)

8
08/1980
–01/2013

Bloomberg

Notes: “K. French” refers to the Kenneth R. French data library available online at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

Table 1: Data sets used in empirical experiments
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Annualized Mean Return Annualized Standard Deviation
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Figure 4: Risk and return characteristics of the data sets
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3.2 Portfolio Models

The portfolio strategy developed in this chapter depends on the group of benchmark portfolios

that are being tracked. To evaluate the performance of the multiple-benchmark tracking-error

portfolio, we compare the performance of our portfolio against that of its benchmarks as well as

that of the 1/n portfolio. We choose the buy-and-hold strategy in addition to another competitive

portfolio as benchmarks. All the benchmark portfolios are listed in Table 2.

No. Portfolio Selection Model Abbreviation
0a Multiple-benchmark tracking-error portfolio MBTE

0b
Multiple-benchmark tracking-error portfolio with penalty
on transaction volume

MBTEP

1 Equally-weighted (1/n) portfolio (DeMiguel et al. (2007)) 1/n

2
Markowitz mean-variance portfolio with target expected
return (Markowitz (1952))

MEAV

3 Minimum-variance portfolio without short-sale constraints MINU

4

Minimum-variance portfolio with covariance matrix being a
weighted average of sample covariance matrix and the
single-index covariance matrix (Ledoit & Wolf (2003))

M1FAC

5

Minimum-variance portfolio with covariance matrix being a
weighted average of sample covariance matrix and the
diagonal covariance matrix (Ledoit & Wolf (2003))

MIND

6

Minimum-variance portfolio with covariance matrix being a
weighted average of sample covariance matrix and the
identity matrix (Ledoit & Wolf (2003))

M1PAR

7
Minimum-variance portfolio with generalized constraints
(DeMiguel et al. (2007))

GMC

8
On-line portfolio using multiplicative updates (Helmbold et
al. (1998))

MUL

9
Minimum CVaR (Conditional Value-at-Risk) portfolio
(Rockafellar & Uryasev (2000), Rockafellar & Uryasev
(2004))

CVAR

10

Partial minimum-variance portfolio with k calibrated by
maximizing the portfolio return in previous period
(DeMiguel et al. (2009))

PARR

11 Buy-and-hold strategy B-N-H

Table 2: List of portfolio strategies considered

The multiple-benchmark tracking-error portfolio is listed as Portfolio 0a and the multiple-

benchmark tracking-error portfolio with penalty on transaction volume is listed as Portfolio 0b

in Table 2. We use the closed-from solutions in Equation (1) and Equation (3) to compute our

multiple-benchmark tracking-error portfolios.

Portfolios 1–11 listed in Table 2 serve two purposes. First, a subset of these portfolios are used

as benchmark portfolios to compute the multiple-benchmark tracking-error portfolios. Second, all

of these portfolios serve as comparison portfolios to gauge the out-of-sample performance of our

multiple-benchmark tracking-error portfolios.

The first comparison portfolio is the 1/n strategy, which simply assigns equal weights to all the

assets in the data set. The Markowitz mean-variance portfolio (MEAV) relies on estimates of mean,
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variance and covariance of the returns, and is computed from Problem (M). The target expected

return is set to be the expected return of the 1/n portfolio. Such a target has been observed to be

more appropriate for the Markowitz model (cf. Kirby & Ostdiek (2012)). Then we consider the

class of minimum-variance portfolios, the first of which is the minimum-variance portfolio without

short-sale constraints (MINU). The next three minimum-variance portfolios (M1FAC, MIND, and

M1PAR) are formed using different covariance estimation techniques as described in Ledoit & Wolf

(2003) and Ledoit & Wolf (2004). The last portfolio in this set (GMC) is adopted from DeMiguel et

al. (2007). It is a combination of the 1/n policy and the constrained minimum-variance portfolio.

The additional constraint is x ≥ ae with a = 1/(2n). We also consider the on-line portfolio (MUL)

using multiplicative updates as studied in Helmbold et al. (1998). The portfolio that minimizes

the Conditional Value-at-Risk (CVAR), a coherent risk measure, is also included in our study.

This portfolio is supposed to be very conservative and would refrain from taking highly risky

positions. For detailed discussion on CVaR, the reader is referred to Rockafellar & Uryasev (2000)

and Rockafellar & Uryasev (2004). In addition, we consider the minimum-variance portfolio with

a constraint on the portfolio norm developed in DeMiguel et al. (2009). In particular, PARR is the

partial minimum-variance portfolio with k calibrated using cross-validation over portfolio variance,

where k indicates which of the n− 1 partial minimum-variance portfolios will yield the maximum

last period portfolio return. Finally, we consider the buy-and-hold strategy, which makes no change

in the allocation of capital in different assets. The initial portfolio for the buy-and-hold strategy

is set to be the 1/n portfolio in all the experiments3.

3.3 Methodology

In each data set, we apply the rolling-horizon procedure to conduct the empirical analysis. Consider

the benchmark portfolios chosen from one of the two groups listed in Table 2. The details of the

methodology are summarized as follows:

1. Denote the total number of returns in the data set to be τ̂ . We choose a history of length

τ with τ < τ̂ , over which we conduct the estimation. In our experiments, τ = 240, which

corresponds to 20 years of monthly data.

2. Using the data in the estimation window, we estimate the parameters µ, Σ, E[ZB(r̃)], and

PE[p(r̃)], and compute the portfolios of investment strategies listed in Table 2.

3. The performance of the portfolios are then evaluated. The details of these measures are

discussed in the next subsection.

4. Roll forward the time horizon by adding the next data point of the data set and dropping

the first data point of the current estimation window.

5. By doing this repeatedly until the last time period, we obtain τ̂ − τ portfolio-weight vectors

for each strategy.

3We have tested various initial portfolio positions, and found that the results for the buy-and-hold strategy are
not sensitive to this initial condition.
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3.4 Performance Measures

Let t index the time periods with t = 1, . . . , τ̂ . We compute the portfolios at the beginning of

period t for t = τ + 1, . . . , τ̂ using past information from the previous τ periods. Let r̃t denote

the return for period t. For a portfolio strategy, we use xt to represent the investment decision

made for period t, and xt0 to represent the portfolio position at the beginning of period t before

the repositioning decision xt is made. The performance measures are listed as follows:

1. In-sample tracking error :

1

τ̂ − τ

τ̂∑
t=τ+1

t−1∑
t′=t−τ

[(
r̃t

′
)T

xt − ZB

(
r̃t

′
)]2

.

2. Turnover rate:

1

τ̂ − τ

τ̂∑
t=τ+1

n∑
i=1

∣∣xti − xt0i
∣∣ .

3. Out-of-sample Sharpe ratio net of proportional transaction costs of 50 basis point (net Sharpe

ratio):
µ̂

σ̂
,

where

µ̂ =
1

τ̂ − τ

τ̂∑
t=τ+1

[(
1 +

(
r̃t
)T

xt
) (

1− 0.005 ·
∣∣xti − xt0i

∣∣)− 1
]
,

and

σ̂ =

√√√√ 1

τ̂ − τ − 1

τ̂∑
t=τ+1

[(
1 + (r̃t)T xt

) (
1− 0.005 ·

∣∣xti − xt0i
∣∣)− 1− µ̂

]2
.

4. Out-of-Sample Net Aggregate Return:
∏T

t=τ+1

(
1 +

(
r̃t
)T

xt
) (

1− 0.005 ·
∣∣xti − xt0i

∣∣) ,
if
(
1 +

(
r̃t
)T

xt
) (

1− 0.005 ·
∣∣xti − xt0i

∣∣) > 0, ∀t = τ + 1,

0,
otherwise.

The out-of-sample net aggregate return measures the long-term wealth growth of the portfolio

strategies, where the second situation represents bankruptcy. It is possible since the model

allows short sales.

3.5 Normality Assumption

The closed-form solutions in the previous section are established under the assumption that the

return follows a multivariate normal distribution. We first check the validity of the normality

assumption by drawing the Quartile-Quartile plot (QQ plot) of the Mahalanobis distance of the

data from the first estimation window against that of a multivariate normal distribution for each
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data set. For comparison, we use the sample mean and sample covariance in place of their respective

true values for the multivariate normal distribution. The plots are presented in Figure 5.

5 10 15 20 25

0
10

20
30

40
50

60

10Ind

D2 under Multivariate Normality

M
ah

al
an

ob
is

 D
2

30 40 50 60 70 80

20
40

60
80

10
0

12
0

48Ind

D2 under Multivariate Normality

M
ah

al
an

ob
is

 D
2

10 20 30 40 50

20
40

60
80

25FF

D2 under Multivariate Normality

M
ah

al
an

ob
is

 D
2

5 10 15 20 25

0
5

10
15

20
25

30
35

8Stock

D2 under Multivariate Normality

M
ah

al
an

ob
is

 D
2

Figure 5: QQ plots of the distributions of asset returns against multivariate normal distribution

From these QQ plots, we observe that the sample Mahalanobis distance of the risky asset

returns in all data sets demonstrate significant deviation from the normality assumption with

heavy tails. However, as we will see later, the discrepancies shown in the QQ plots do not appear

to be a major problem, and our multiple-benchmark tracking-error portfolio demonstrates greater

superiority in the out-of-sample performance even though the normality assumption might not be

completely satisfactory.

3.6 Results and Discussion

In this subsection, we first present results on the basic model, where the buy-and-hold strategy is

included in the set of benchmark portfolios to control the transaction volume. Next, the results

on the extended model, i.e., Problem (TC), are discussed.

3.6.1 Multiple-Benchmark Tracking-Error Portfolio with the Buy-and-Hold Strategy

as a Benchmark

We first report results on the tracking error for each data set to show that our portfolio provides

good tracking of the highest benchmark return. Next, we use all the other performance measures

discussed before to evaluate the performance of our portfolio against its benchmarks. Finally, we

22



discuss the results of the robustness tests on net aggregate returns, where we consider random

starting times and random lengths of the investment horizon to gauge the out-of-sample perfor-

mance of our portfolio strategy. Since all the performance measures except the tracking error are

computed out-of-sample, we often drop the descriptive terms, “out-of-sample” and “in-sample”, in

the following discussion.

In all the experiments here, we use two benchmark portfolios to obtain our multiple-benchmark

tracking-error portfolio, one from Portfolio 1–10 in Table 2, and the other is Portfolio 11 in Table

2, i.e., the buy-and-hold strategy. We report the results of the first benchmark portfolio and the

corresponding multiple-benchmark tracking-error portfolio, as the buy-and-hold strategy for each

single period only serves the purpose of controlling for transaction volume.

Tracking Error

As the portfolio is constructed to track a set of benchmark portfolios, the first step is to evaluate

how closely our portfolio tracks the best return from the benchmark portfolios. The results on

tracking errors are summarized in Table 3. Comparing the performance of the MBTE portfolio

with that of its benchmarks, we observe that the tracking error of the MBTE portfolio is always

smaller than those of its benchmarks. Note that the returns are not exactly normally distributed,

so it is not guaranteed that the MBTE portfolio would be the best even in terms of in-sample

mean squared tracking errors. However, the results in Table 3 provide partial justification that the

MBTE portfolio might still perform well even when the normality assumption is not completely

satisfied.

To visualize the tracking error, we plot the percentage decrease in in-sample mean squared

tracking errors at every period from our portfolio compared to the PARR portfolio in Figure 6. Our

multiple-benchmark tracking-error portfolio is constructed by using the buy-and-hold strategy and

the PARR portfolio as benchmark portfolios. The figure shows a significant difference in tracking

errors between the two portfolios. All the differences are positive, and on average, the in-sample

tracking error of the MBTE portfolio demonstrates a 40% to 60% reduction from that of the PARR

portfolio, which shows that the MBTE portfolio better tracks the highest return from the group

of benchmark portfolios. Figures for the other scenarios are similar, so only one is reported here

as an illustration.

Out-of-Sample Net Sharpe Ratio

Table 4 reports the out-of-sample net Sharpe ratio and the corresponding p-value that the net

Sharpe ratio of each benchmark strategy is smaller than that of the respective multiple-benchmark

tracking-error portfolio. The one-sided p-values are computed based on the studentized circular

block bootstrapping method used in Ledoit & Wolf (2008). From the table, we observe that

the MBTE portfolio consistently dominates the benchmark portfolio used in its construction. In

particular, the MBTE portfolio has higher net Sharpe ratios than the 1/n portfolio and all the

differences are significant at 0.005 level for all except the “8Stock” data set. Moreover, the MBTE

portfolio has higher net Sharpe ratios than the MUL portfolio across all the data sets, and all the

differences are significant at 0.05 level. The MBTE portfolio also outperforms the PARR portfolio

across all the data sets, and the differences are significant at 0.005 level in all but the “8Stock”

23



10
In
d

1
/n

M
B
T
E

P
A
R
R

M
B
T
E

M
E
A
V

M
B
T
E

M
IN

U
M
B
T
E

M
1
F
A
C

M
B
T
E

3.
77
2E

-5
1.
69
6E

-5
2.
52
7E

-2
1
.2
3
2E

-2
6
.4
4
7
E
-4

2
.9
3
9
E
-4

7
.1
2
0
E
-4

2
.9
6
2
E
-4

6
.9
1
2
E
-4

2
.8
6
3
E
-4

(4
4.
96
%
)

(4
8.
7
4%

)
(4
5.
5
8
%
)

(4
1.
6
0
%
)

(4
1.
4
1
%
)

M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
V
A
R

M
B
T
E

6.
10
2E

-4
2.
52
0E

-4
5.
89
8E

-4
2
.4
3
3E

-4
1
.7
7
8
E
-4

7
.7
7
8
E
-5

3
.5
9
6
E
-5

1
.6
0
8
E
-0
5

1
.8
2
3
E
-3

8
.2
0
5
E
-4

(4
1.
30
%
)

(4
1.
2
5%

)
(4
3.
7
5
%
)

(4
4.
7
2
%
)

(4
5.
0
0
%
)

48
In
d

1
/n

M
B
T
E

P
A
R
R

M
B
T
E

M
E
A
V

M
B
T
E

M
IN

U
M
B
T
E

M
1
F
A
C

M
B
T
E

1.
31
9E

-4
2.
89
5E

-5
1.
27
0E

-1
3
.9
0
1E

-2
4
.8
5
0
E
-3

1
.6
5
8
E
-3

5
.3
2
8
E
-3

1
.8
0
5
E
-3

4
.6
6
8
E
-3

1
.5
8
0
E
-3

(2
1.
95
%
)

(3
0.
7
2%

)
(3
4.
1
8
%
)

(3
3.
8
7
%
)

(3
3.
8
4
%
)

M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
V
A
R

M
B
T
E

4.
29
4E

-3
1.
40
3E

-3
4.
22
4E

-3
1
.3
8
8E

-3
6
.3
1
9
E
-4

1
.7
4
6
E
-4

1
.2
4
3
E
-4

2
.7
4
9
E
-5

5
.5
2
8
E
-2

1
.5
1
5
E
-2

(3
2.
68
%
)

(3
2.
8
6%

)
(2
7.
6
3
%
)

(2
2.
1
2
%
)

(2
7.
4
0
%
)

25
F
F

1
/n

M
B
T
E

P
A
R
R

M
B
T
E

M
E
A
V

M
B
T
E

M
IN

U
M
B
T
E

M
1
F
A
C

M
B
T
E

3.
62
6E

-5
1.
02
3E

-5
7.
64
7E

-2
2
.5
0
2E

-2
2
.6
3
0
E
-3

9
.7
0
5
E
-4

2
.9
4
9
E
-3

9
.9
9
1
E
-4

2
.6
8
4
E
-3

9
.0
6
7
E
-4

(2
8.
23
%
)

(3
2.
7
2%

)
(3
6.
9
1
%
)

(3
3.
8
8
%
)

(3
3.
7
8
%
)

M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
V
A
R

M
B
T
E

2.
28
9E

-3
7.
83
3E

-4
2.
31
6E

-4
7
.9
1
5E

-4
2
.5
0
9
E
-4

8
.1
2
9
E
-5

3
.2
1
6
E
-5

9
.3
5
7
E
-6

9
.4
0
7
E
-3

3
.3
0
4
E
-3

(3
4.
22
%
)

(3
4.
1
7%

)
(3
2.
4
0
%
)

(2
9.
0
9
%
)

(3
5.
1
2
%
)

8S
to
ck

1
/n

M
B
T
E

P
A
R
R

M
B
T
E

M
E
A
V

M
B
T
E

M
IN

U
M
B
T
E

M
1
F
A
C

M
B
T
E

4.
06
4E

-4
1.
94
5E

-4
2.
18
4E

-2
1
.0
8
2E

-2
9
.7
1
8
E
-4

4
.6
5
5
E
-4

1
.8
4
3
E
-3

9
.2
5
5
E
-4

1
.8
9
1
E
-3

9
.5
2
7
E
-4

(4
7.
87
%
)

(4
9.
5
3%

)
(4
7.
9
0
%
)

(5
0.
2
2
%
)

(5
0.
3
8
%
)

M
IN

D
M
B
T
E

M
1P

A
R

M
B
T
E

G
M
C

M
B
T
E

M
U
L

M
B
T
E

C
V
A
R

M
B
T
E

1.
76
2E

-3
8.
87
3E

-4
1.
43
9E

-3
7
.2
1
8E

-4
1
.6
4
1
E
-3

8
.2
2
7
E
-4

3
.9
6
4
E
-4

1
.8
9
1
E
-4

2
.0
3
5
E
-3

1
.0
0
4
E
-3

(5
0.
36
%
)

(5
0.
1
6%

)
(5
0.
1
4
%
)

(4
7.
7
1
%
)

(4
9.
3
1
%
)

N
o
te
:
T
h
is

ta
b
le

re
p
or
ts

th
e
in
-s
am

p
le

tr
ac
k
in
g
er
ro
r
a
n
d
th
e
co
rr
es
p
o
n
d
in
g
p
er
ce
n
ta
g
e
re
d
u
ct
io
n
in

in
-s
a
m
p
le

tr
ac
k
in
g
er
ro
r
b
y
th
e
M
B
T
E

p
or
tf
ol
io

(i
n
b
ra
ck
et
s)
.

T
ab

le
3
:
C
om

p
a
ri
so
n
o
n
in
-s
a
m
p
le

tr
a
ck
in
g
er
ro
r

24



0 50 100 150 200 250 300
35

40

45

50

55

60

65

Investment Time

In
−S

am
pl

e 
T

ra
ck

in
g 

E
rr

or
 D

iff
er

en
ce

 (
%

)

 

 

Notes: This figure plots the percentage decrease in the in-sample mean squared tracking errors at

every period from the MBTE portfolio compared to the PARR portfolio.

Figure 6: Tracking-error difference (in percentage) between the PARR portfolio and our multiple-
benchmark tracking-error portfolio using the buy-and-hold strategy and the PARR portfolio as
benchmarks in the “10Ind” data set

data set. Additionally, the MBTE portfolio shows significant difference from the MEAV, GMC,

M1FAC, and CVAR portfolios in the “25FF” data set. It is worth noting that except the case when

CVAR is used as one benchmark, all the other MBTE portfolios have much higher net Sharpe ratio

than the 1/n portfolio, independent of the choice on the benchmark portfolio, in all the data sets

we consider.

Turnover Rate

Table 5 reports the turnover rate and the corresponding percentage deduction in turnover

rate by the MBTE portfolio. From the table, we observe that the MBTE portfolio has lower

turnover rates than its respective benchmark portfolio in all cases except for the GMC portfolio

in the “48Ind” data set, where the GMC portfolio has a slightly smaller turnover rate than the

corresponding MBTE portfolio. This is exactly the desired effect of introducing the buy-and-hold

strategy as one of the benchmark portfolios. In particular, the turnover rates of its corresponding

MBTE portfolio are only half as large as the turnover rates of the PARR portfolio across all the

data sets. The MBTE portfolio demonstrates a decrease in turnover rate of over 40% from the

MUL portfolio across all the data sets. In addition, the turnover rates of the respective MBTE

portfolios are at least 30% less than those of the 1/n and MEAV portfolios, and the turnover rates

of the respective MBTE portfolios are over 20% less than those of the MIND, M1PAR, MINU,

25
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M1FAC, and CVAR portfolios.

Net Aggregate Return

Table 6 reports the out-of-sample net aggregate return. From the table, we observe that the

MBTE portfolios almost always dominate their respective benchmark portfolios over the whole

investment period (07/1983–12/2011 for the “10Ind”, “48Ind”, “25FF” data sets, and 08/2000–

01/2013 for the “8Stock” data set). In particular, the MBTE portfolio shows great superiority over

the PARR portfolio. The net aggregate return of the MBTE portfolio is twice as large as that of

the PARR portfolio in the “10Ind” data set, nearly 10 times larger in the “48Ind” portfolio, and

37 times larger in the “25FF” data set. Furthermore, the MBTE portfolio outperforms the CVAR

portfolio by 88.6% in the “25FF” data set and the MINU portfolio by 38.6% in the same data set.

However, the net aggregate return of the MBTE portfolio does not always outperform the GMC

portfolio or the MUL portfolio, though the difference is small (of order 0.1%) in these two cases.

After all, these aggregate returns only provide partial information as we only consider one

investment horizon. To demonstrate the robustness of the findings, we consider random starting

times and random lengths of the investment horizon. Some results for the “48Ind” data set are

provided in Figure 7 and 84.

In both Figure 7 and 8, we observe that the net aggregate returns of our multiple-benchmark

tracking-error portfolios are constantly higher than or comparable to those of the 1/n portfolio.

Figure 7 shows that the shorter the investment periods, the less difference in net aggregate returns

between the MBTE portfolio and the 1/n portfolio. When the investment activity is conducted

for the whole 28 years, we observe a clear difference between the net aggregate returns from these

two portfolios.

Note that the MBTE portfolios in Figure 8 are obtained using the PARR and buy-and-hold

portfolios as benchmarks, which do not contain the 1/n portfolio, but the performance of the

1/n portfolio at the same time periods are included for comparison. It is interesting to observe

that although the PARR portfolio dominates the 1/n portfolio in terms of Sharpe ratio, when the

transaction costs are considered, the resulting performance of the PARR portfolio is usually worse

than the 1/n portfolio. However, if we put the PARR portfolio together with the buy-and-hold

strategy in the set of benchmark portfolios, our model yields a new portfolio that combines the

strength of both portfolios. The resulting portfolio provides a high level of return while requiring

much less transaction, and the net aggregate returns clearly outperform both the 1/n portfolio and

the PARR portfolio.

3.6.2 Multiple-Benchmark Tracking-Error portfolio with Penalty on Transaction Vol-

ume

We dedicate this part to evaluate the alternative way to control transaction volume as proposed

in Section 2.6, in which we penalize the transaction volume directly in the objective function. In

particular, we solve Problem (TC) to obtain the multiple-benchmark tracking-error portfolio with

4We have done similar tests on all the other data sets, and tried many other random starting points with random
investment horizons. As the findings are similar, we only report part of the results here.
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Note. From the group of plots, we observe that the MBTE portfolio tracks its benchmark (the
1/n portfolio) very well while surpassing the benchmark return now and then.

Figure 7: Wealth growth of the multiple-benchmark tracking-error (MBTE) portfolio using the
1/n and buy-and-hold portfolios as benchmarks, and the 1/n portfolio with random starting times
and evaluation periods in the “48Ind” data set

a penalty on transaction volume (MBTEP). We choose the 1/n, M1FAC, and CVAR portfolios

as benchmarks. In choosing the penalty parameter, ν, we use an in-sample calibration approach,

where the transaction volume of the multiple-benchmark tracking-error portfolio is restricted to

be less than that of the 1/n portfolio in the last period of estimation window. We fix W = 1
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Figure 8: Wealth growth of the multiple-benchmark tracking-error (MBTE) portfolio using the
PARR and buy-and-hold portfolios as benchmarks, the 1/n portfolio, and the PARR portfolio
with random starting time for evaluation period in the “48Ind” data set

throughout the investment horizon to facilitate the search of ν.

Table 7 presents a comparison of the performance between our multiple-benchmark tracking-

error portfolio (MBTEP) and the 1/n portfolio. From the table, we observe that the in-sample

tracking errors of the MBTEP portfolio are consistently smaller than that of the 1/n portfolio across

all the data sets. The net Sharpe ratios of our MBTEP portfolio outperform the 1/n portfolio

31



across all the data sets, and the difference is statistically significant in all but the “8Stock” data

set. Furthermore, over the whole investment period of the data sets, the MBTEP portfolio tends

to yield higher net aggregate returns than the 1/n portfolio5. However, the turnover rates of

the MBTEP portfolio are always higher than those of the 1/n portfolio. This is expected as the

in-sample calibration of the penalty parameter might induce large out-of-sample turnovers.

Overall, the MBTEP portfolio provides better results than the 1/n portfolio. The flexibility in

choosing a value for the penalty parameter could be either a bonus or a burden as determining the

value is a judgment call of the portfolio manager. The desired performance can only be induced by

appropriately chosen penalty values. Adding the buy-and-hold strategy to the set of benchmarks

seems to be more natural and effective in controlling the transaction volume.

Data Portfolio Tracking Net Sharpe Turnover Net Aggregate
Set Model Error Ratio Rate Return

10Ind
1/n 0.1130 0.2260 0.0238 19.2912

MBTEP 0.09597 0.2364 0.0370 19.3359
(15.03%) (0.0460∗) (−35.68%) (0.23%)

48Ind
1/n 0.7323 0.1805 0.0306 15.0473

MBTEP 0.6160 0.2224 0.0723 18.5023
(15.89%) (0.0050∗∗∗) (−57.68%) (22.96%)

25FF
1/n 0.4768 0.1999 0.0174 20.5105

MBTEP 0.4149 0.2317 0.0365 29.8953
(12.97%) (0.0040∗∗∗) (−52.33%) (45.76%)

8Stock
1/n 0.02817 0.1807 0.0406 2.0784

MBTEP 0.01712 0.2126 0.0493 2.2427
(39.22%) (0.1169) (−17.65%) (7.91%)

Note: The number inside the brackets under “Tracking Error” column is the
corresponding percentage decrease in in-sample tracking error by the MBTE portfolio
from the 1/n portfolio. The number inside the brackets under “Net Sharpe Ratio”
column is the corresponding one-sided p-value that the net Sharpe ratio of the 1/n
portfolio is smaller than that of the respective MBTE portfolio. Star symbols are
included for p-values: (.∗) for significance at 0.05 level, (.∗∗) for 0.01, and (.∗∗∗) for 0.005.
The number inside the brackets under “Turnover Rate” column is the corresponding
percentage deduction in turnover rate by the MBTE portfolio from the 1/n portfolio.
Negative numbers indicate increased turnover rate. The number inside the brackets
under “Net Aggregate Return” column is the corresponding percentage increment in net
aggregate return by the MBTE portfolio from the 1/n portfolio.

Table 7: Comparison on the performance of the 1/n portfolio and the multiple-benchmark tracking-
error portfolio with penalty on transaction volume (MBTEP)

4 Conclusion

We propose a new multiple-benchmark tracking-error model for portfolio selection. The target

return being tracked is the highest return from a set of given benchmark portfolios. Our model

5We have also conducted a robustness test in this case. As the results are similar as before, we do not report it
here.
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differs from existing literature by directly capturing the concerns arising from real investment

activities. By resorting to Stein’s identity, we obtain the closed-form expression for the optimal

portfolio weights under the assumption of normal return distribution. The closed-form solution

reveals that persistency is the basic component of the optimal portfolio, which partially explains

the robustness of our portfolio against the estimation errors, as the probability of one benchmark

outperforming the rest are less prone to estimation errors on the expected returns of the financial

assets.

The closed-form solution allows us to conduct more in-depth analysis of our model, especially,

the comparison with the Markowitz mean-variance portfolio and the linear combination rule pro-

posed by Tu & Zhou (2011). In particular, we showed that the linear combination rule would be

inferior to our portfolio if the portfolio manager has a mean-variance utility with low risk aversion.

This further strengthens the motivation of our multiple-benchmark tracking-error model. In ad-

dition, we prove that the entire mean-variance efficient frontier can be generated from our model

when two distinct mean-variance portfolios are used as the benchmark portfolios, a result similar

to the well-known Two-Fund Theorem.

To address the common problem of whether to reposition the portfolio, our modelling frame-

work allows a natural solution by including the buy-and-hold strategy as one of the benchmark

portfolios. Our numerical analysis showed that adding the buy-and-hold strategy as a benchmark

can significantly reduce the turnover rate, which might be attractive to investors when transac-

tion costs are considerable. When combining the buy-and-hold strategy with other benchmarks,

we demonstrated using the real data sets that our portfolio has consistently provided higher net

Sharpe ratio, higher net aggregate return, and lower turnover rate compared to the benchmark

portfolios, in particular, the 1/n portfolio, a well-known tough benchmark to beat.

Although our theoretical analysis is built upon the assumption that the return distribution is

multivariate normal, the results from the numerical analysis shows that the power of our model

framework is strong enough to cover the violation of the assumption in real data. On the other

hand, there have been some extensions of Stein’s Identity to other probability distributions (cf.

Adcock (2007), Barbour et al. (1992)). It would be interesting to extend some of the results in

this paper to these cases.
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Appendix A. Proof of Stein’s Identity

The proof is consolidated from Stein (1972), Stein (1981), and Liu (1994).

We begin by showing the uni-variate version of Lemma 1 (cf. Stein (1972) and Stein (1981)).

Let ỹ follow a standard normal distribution N (0, 1), and ϕ (y) denote the standard normal

density with the derivative ϕ′ (y) = −yϕ (y). For any function g : R → R such that g′ exists almost

everywhere and E[|g′(ỹ)|] < ∞,

E [g′ (ỹ)] =

∫ ∞

−∞
g′(y)ϕ (y) dy

=

∫ ∞

0
g′(y)

[
−
∫ ∞

y
−zϕ (z) dz

]
dy +

∫ 0

−∞
g′(y)

[∫ y

−∞
−zϕ (z) dz

]
dy

=

∫ ∞

0
zϕ (z)

[∫ z

0
g′(y)dy

]
dz −

∫ 0

−∞
zϕ (z)

[∫ 0

z
g′(y)dy

]
dz

=

(∫ ∞

0
+

∫ 0

−∞

)
[zϕ (z) [g(z)− g(0)]] dz

=

∫ ∞

−∞
zϕ (z) g(z)dz

= E [ỹg (ỹ)] ,

where the third equality is justified by Fubini’s Theorem. Note that since E[ỹ] = 0 and V ar(ỹ) = 1,

the equality proved above is essentially

Cov (ỹ, g (ỹ)) = V ar(ỹ)E
[
g′ (ỹ))

]
. (4)

Next, the result is generalized into the multivariate case (cf. Stein (1981) and Liu (1994)).

Let z̃ = (z̃1, . . . , z̃n)
T , where z̃j ’s are independent and identically distributed standard normal

random variables. It is straightforward to show by Equation (4) that for any function ĥ : Rn → R
satisfying the same conditions as h,

E
[
z̃j ĥ (z̃)

∣∣∣ (z̃2, . . . , z̃n)] = E

[
∂ĥ (z̃)

∂zj

∣∣∣∣∣ (z̃2, . . . , z̃n)
]
, ∀j = 1, . . . , n.

Taking the expectation of both sides, we find that

E
[
z̃j ĥ (z̃)

]
= E

[
∂ĥ (z̃)

∂zj

]
, ∀j = 1, . . . , n, i.e., Cov

(
z̃, ĥ (z̃)

)
= E

[
∇ĥ (z̃)

]
.

Note that the random vector r̃ can be written as r̃ = Σ1/2z̃ +µ. Consider ĥ (z̃) = h
(
Σ1/2z̃ + µ

)
,

then ∇ĥ (z̃) = Σ1/2∇h (r̃). Hence,

Cov (r̃, h (r̃)) = Cov
(
Σ1/2z̃, ĥ (z̃)

)
= Σ1/2E

[
∇ĥ (z̃)

]
= ΣE [∇h (r̃)] .
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Appendix B. Proofs of Results in Section 2

Proof of Proposition 1

Expanding the expectation term in (T), we get the equivalent formulation as follows:

min
x∈X

xT
(
Σ+ µµT

)
x− 2E

[
ZB(r̃)r̃

T
]
x+E

[
(ZB(r̃))

2
]
.

Since the last term is independent of x, we can exclude it from the minimization problem. Note

that

E[ZB(r̃)r̃
T ] = Cov(ZB(r̃), r̃

T ) +E[ZB(r̃)]E[r̃T ] = Cov(ZB(r̃), r̃
T ) +E[ZB(r̃)]µ

T .

Using differentiation by parts, we get

E

[
∂ZB(r̃)

∂r̃l

]
= E

[
∂

∂r̃l

(
n∑

i=1

m∑
j=1

r̃iPi,jpj(r̃)

)]

= E

[
m∑
j=1

Pl,jpj(r̃) +
n∑

i=1

m∑
j=1

r̃iPi,j
∂pj(r̃)

∂r̃l

]
= P(l)E [p(r̃)] ,

where P(l) denotes the lth row of P and Pi,j = pji , ∀i = 1, . . . , n, j = 1, . . . ,m. The last equality

follows from our assumption on r̃ so that ∂pj(r̃)/∂r̃l exists almost everywhere and equals zero

wherever it exists. Applying Stein’s Identity to Cov(ZB(r̃), r̃
T ), we get

Cov(ZB(r̃), r̃
T ) = (ΣPE[p(r̃)])T ,

and thus Problem (T′).

Proof of Theorem 1

Since Problem (T′) is strictly convex, the first-order optimality conditions are both necessary and

sufficient. In particular, the Lagrangian of Problem (T′) is given by

L(x, π) = xT
(
Σ+ µµT

)
x− 2 (ΣPE [p(r̃)] +E [ZB(r̃)]µ)

T x+ 2π
(
1− eTx

)
.

The first-order conditions yield

2
(
Σ+ µµT

)
(l)

x∗ − 2 (ΣPE [p(r̃)] +E [ZB(r̃)]µ)(l) − 2π = 0, l = 1, ..., n,

and
n∑

i=1

x∗i = 1.
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Multiplying Σ−1 to both sides of the first set of equalities, we get

(
Σ−1µµT + In −Σ−1e

)(
x∗

π

)
= Σ−1µE [ZB(r̃)] + PE [p(r̃)] , (5)

where In denotes the identity matrix of dimension n× n. Multiplying µT to both sides, we have

(
µTΣ−1µµT + µT In −µTΣ−1e

)(
x∗

π

)
= µTΣ−1µE [ZB(r̃)] + µTPE [p(r̃)] .

Making the substitution with A, B, and C and dividing both sides by (A+ 1), we get

(
µT − B

A+ 1

)(
x∗

π

)
=

A

A+ 1
E [ZB(r̃)] +

µTPE [p(r̃)]

A+ 1
.

Subtracting E[ZB(r̃)] from both sides gives

(
µT 0

)(
x∗

π

)
−E [ZB(r̃)] =

µTPE [p(r̃)]−E [ZB(r̃)] + πB

A+ 1
. (6)

Back to Equation (5), we can rewrite it as follows:

Σ−1µ

[(
µT 0

)(
x∗

π

)
− E [ZB(r̃)]

]
+
(

In −Σ−1e
)(

x∗

π

)
= PE [p(r̃)] . (7)

Substituting Equation (6) into (7), we have

(
In

Σ−1µB

A+ 1
− Σ−1e

)(
x∗

π

)
= PE [p(r̃)]− µTPE [p(r̃)]−E [ZB(r̃)]

A+ 1
Σ−1µ. (8)

Multiplying eT to both sides of the above equation, we get

eTx∗ +

(
B2

A+ 1
− C

)
π = eTPE [p(r̃)]− B

A+ 1

(
µTPE [p(r̃)]−E [ZB(r̃)]

)
.

Note that eTx∗ = eTPE [p(r̃)] = 1. Canceling these two terms from both side, we have

π =
B

(A+ 1)C −B2

(
µTPE [p(r̃)]−E [ZB(r̃)]

)
.

Substituting the above formula for π into Equation (8), we get

x∗ = PE [p(r̃)] +
(
µTPE [p(r̃)]−E [ZB(r̃)]

)
Σ−1

(
Be− Cµ

(A+ 1)C −B2

)
,

which is the closed-form solution as shown in the theorem.
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Proof of Proposition 2

From the closed-form solution, the expected return of our multiple-benchmark tracking-error port-

folio is

µTPE [p(r̃)] +

(
1− C

(A+ 1)C −B2

)(
E [ZB(r̃)]− µTPE [p(r̃)]

)
.

Note that
E [ZB(r̃)]− µTPE [p(r̃)]

= E
[
ZB(r̃)− r̃TPE [p(r̃)]

]T
= E

[
max

j∈{1,...,m}
r̃Tpj −

m∑
j=1

E [pj(r̃)]
(
r̃Tpj

)]T
≥ 0.

If

1 ≥ C

(A+ 1)C −B2
, (9)

then

µTx ≥ µTPE [p(r̃)] = µp.

Now we shall show (9) holds. Let α = Σ−1/2e, and β = Σ−1/2µ. By Cauchy-Schwartz

Inequality,

B2 =
(
eTΣ−1µ

)2
=
(
αTβ

)2 ≤ (αTα
) (

βTβ
)
=
(
eTΣ−1e

) (
µTΣ−1µ

)
= AC.

We have
1

1 +
AC −B2

C

≤ 1,

i.e.,
C

(A+ 1)C −B2
≤ 1.

The equality holds if and only if α = β or µ = e, since Σ is positive definite and so is Σ−1/2.

Proof of Proposition 3

As shown in Equation (2), the closed-form solution to Problem (T′′) is

xMBTE = PE [p(r̃)] +
(
µTPE [p(r̃)]−K

)
Σ−1

(
Be− Cµ

AC −B2

)
. (10)

The corresponding portfolio variance is

σ2
MBTE = E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]

)2
+

2B

AC −B2
µTPE [p(r̃)] +

CK2 − 2KB

AC −B2
.
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At the return level of K, the optimal Markowitz mean-variance portfolio is given by

xMEAV =
(A−BK)Σ−1e+ (CK −B)Σ−1µ

AC −B2
.

Its variance is

σ2
MEAV =

1

C
+

(KC −B)2

C (AC −B2)
. (11)

At the expected return level of K, the difference in portfolio variances of the two models is given

by

σ2
MBTE − σ2

MEAV = E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C
.

Note that the above difference is independent of K, which indicates that the multiple-benchmark

tracking-error frontier is a constant shift from the mean-variance efficient frontier.

Proof of Proposition 4

Proof. In order to prove this result, suffice it to show that the gap between the two frontiers is

zero.

Let p1 and p2 be two distinct portfolios on the mean-variance efficient frontier, and they serve

as the benchmark portfolios for our multiple-benchmark tracking-error model. Their persistency

values satisfy

E [p1(r̃)] +E [p2(r̃)] = 1.

From the Two-Fund Theorem, we know that the persistency weighted benchmark portfolio,

E [p1(r̃)]p
1 +E [p2(r̃)]p

2 = PE [p(r̃)] ,

is also a mean-variance portfolio with expected return of µTPE [p(r̃)]. From Equation (11), the

variance of this portfolio is

E [p(r̃)]T P TΣPE [p(r̃)] =
1

C
+

(
µTPE [p(r̃)]C −B

)2
C (AC −B2)

.

By Proposition 3, the gap between the multiple-benchmark tracking-error frontier and the

mean-variance efficient frontier is

σ2
MBTE − σ2

MEAV

= E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C

=
1

C
+

(
µTPE [p(r̃)]C −B

)2
C (AC −B2)

− C

AC −B2

(
µTPE [p(r̃)]− B

C

)2

− 1

C

= 0.

Therefore, we have completed the proof.
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Proof of Proposition 5

At the target expected return K, the linear combination coefficient is given by

δ =
K − µTp2

µT (p1 − p2)
.

Then the linear combination portfolio has the closed-form expression as follows:

xLCR =
K

µT (p1 − p2)

(
p1 − p2

)
+

(
µTp1

)
p2 −

(
µTp2

)
p1

µT (p1 − p2)
.

To emphasize the portfolio variance’s dependence on the target expected return, we denote the

variance of the linear combination portfolio as σ2
LCR (K). Then

σ2
LCR (K) = xT

LCRΣxLCR

= aLCRK
2 + bLCRK + cLCR,

where

aLCR = 1

[µT (p1−p2)]2

(
p1 − p2

)T
Σ
(
p1 − p2

)
,

bLCR = 1

[µT (p1−p2)]2

(
p1 − p2

)T
Σ
((
µTp1

)
p2 −

(
µTp2

)
p1
)

+ 1
[µT (p1−p2)]2

((
µTp1

)
p2 −

(
µTp2

)
p1
)T

Σ
(
p1 − p2

)
, and

cLCR = 1
[µT (p1−p2)]2

((
µTp1

)
p2 −

(
µTp2

)
p1
)T

Σ
((
µTp1

)
p2 −

(
µTp2

)
p1
)
.

At the target expected return K, the multiple-benchmark tracking-error portfolio is given by

Equation (2), and its variance is

σ2
MBTE (K) = aMBTEK

2 + bMBTEK + cMBTE ,

where

aMBTE =
C

AC −B2
,

bMBTE = − 2B

AC −B2
, and

cMBTE = E [p(r̃)]T P TΣPE [p(r̃)]− C

AC −B2

(
µTPE [p(r̃)]

)2
+

2B

AC −B2
µTPE [p(r̃)] .

From Equation (11), the variance of the Markowitz mean-variance portfolio at target expected

return K is

σ2
MEAV (K) = aMEAV K

2 + bMEAV K + cMEAV ,

where

aMEAV =
C

AC −B2
,

bMEAV = − 2B

AC −B2
, and

cMEAV =
1

C
.
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Observe that all three variances are quadratic functions of the target expected return , and

aMBTE = aMEAV , bMBTE = bMEAV .

Before proving the main result, we will first establish two claims.

Claim 1. The multiple-benchmark tracking-error frontier intersects the linear combination rule

frontier at the target expected return equal to the expected return of the persistency weighted bench-

mark portfolio, i.e., when K = µT
(
E [p1(r̃)]p

1 +E [p2(r̃)]p
2
)
.

Proof. When K = µT
(
E [p1(r̃)]p

1 +E [p2(r̃)]p
2
)
, the linear combination portfolio is exactly

the persistency weighted benchmark portfolio, i.e., E [p1(r̃)]p
1 +E [p2(r̃)]p

2. From Equation (2),

the multiple-benchmark tracking-error portfolio is

xMBTE = E [p1(r̃)]p
1 +E [p2(r̃)]p

2

+
(
µT
(
E [p1(r̃)]p

1 +E [p2(r̃)]p
2
)
−K

)
Σ−1

(
Be− Cµ

AC −B2

)
= E [p1(r̃)]p

1 +E [p2(r̃)]p
2,

which is the same as the linear combination portfolio. Thus, Claim 1 is proved.

Claim 2. The quadratic coefficient in σ2
MBTE (K) is less than or equal to the quadratic coefficient

in σ2
LCR (K), i.e., aMEAV ≤ aLCR.

Proof. Consider the following optimization problem:

(M0) min
eTx=0,µTx=K′

1

2
xTΣx.

The system of first-order optimality conditions reads
Σx∗ − λ1e− λ2µ = 0,

eTx∗ = 0,

µTx∗ = K
′
,

where λ1 and λ2 are Lagrange multipliers. From the first equation, we get

x∗ = λ1Σ
−1e+ λ2Σ

−1µ.

Substituting the above expression of x into the last two equations of the optimality conditions, we

have {
eTx∗ = λ1e

TΣ−1e+ λ2e
TΣ−1µ = λ1C + λ2B = 0,

µTx∗ = λ1µ
TΣ−1e+ λ2µ

TΣ−1µ = λ1B + λ2A = K
′
,

which yields

λ1 = − K
′
B

AC −B2
, and λ2 =

K
′
C

AC −B2
.
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Therefore, the optimal solution is

x∗ =
K

′
C

AC −B2
Σ−1µ− K

′
B

AC −B2
Σ−1e,

and the minimum objective value scaled by 2 is

x∗TΣx∗ =
(

K
′
C

AC−B2

)2
µTΣ−1ΣΣ−1µ+

(
K

′
B

AC−B2

)2
eTΣ−1ΣΣ−1e

− K
′2CB

(AC−B2)2
µTΣ−1ΣΣ−1e− K

′2BC
(AC−B2)2

eTΣ−1ΣΣ−1µ

=
(

K
′
C

AC−B2

)2
A+

(
K

′
B

AC−B2

)2
C − 2K

′2CB2

(AC−B2)2

= K
′2C2A−K

′2CB2

(AC−B2)2

= C
AC−B2K

′2.

Observe that
(
p1 − p2

)
is a feasible solution to Problem (M0) with K

′
= µT

(
p1 − p2

)
, then it

must satisfy (
p1 − p2

)T
Σ
(
p1 − p2

)
≥ x∗TΣx∗

= C
AC−B2K

′2

= C
AC−B2

[
µT
(
p1 − p2

)]2
.

Rearrange the terms, we get

1

[µT (p1 − p2)]2
(
p1 − p2

)T
Σ
(
p1 − p2

)
≥ C

AC −B2
,

which is exactly aLCR ≥ aMEAV . Therefore, we have proved Claim 2.

Now in order to prove the proposition, we only need to discuss two cases following Claim 2:

aLCR = aMEAV and aLCR > aMEAV .

Case 1. aLCR = aMEAV .

By the definition of mean-variance efficient frontier, σ2
MEAV (K) ≤ σ2

LCR (K), for any K, i.e.,

bMEAV K + cMEAV ≤ bLCRK + cLCR, ∀K.

Then we must have bMEAV = bLCR. Otherwise, the above inequality will be violated as K → +∞
if bMEAV > bLCR, or K → −∞ if bMEAV < bLCR. Consequently,

aMBTE = aMEAV = aLCR, and bMBTE = bMEAV = bLCR.

Furthermore, since the multiple-benchmark tracking-error frontier has an intersection point with

the linear combination rule frontier, it must be the case that

cMBTE = cLCR,

which implies that the multiple-benchmark tracking-error frontier coincides with the linear combi-
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nation rule frontier. i.e.,

σ2
LCR (K) = σ2

MBTE (K) , ∀K.

Case 2. aLCR > aMEAV .

Recall that aMBTE = aMEAV . Then aLCR > aMBTE . In this case, it is obvious that there

exists a constant K̄ such that

σ2
LCR (K) > σ2

MBTE (K) , ∀K ≥ K̄.

Combining Case 1 and Case 2, we complete the proof.

Proof of Proposition 6

Since the convexity is preserved in Problem (P) by adding the quadratic penalty term, the first-

order optimality conditions are both necessary and sufficient to characterize the solution. The

Lagrangian of Problem (TC) is given by

L(x, π) = E
[
(ZB (r̃)− r̃Tx)2

]
+ ν(x− x0)T (x− x0) + 2π

(
1− eTx

)
.

The first-order conditions yield

∂L(x, π)
∂xl

= 2E
[(
ZB (r̃)− r̃Tx

)
(−r̃l)

]
+ 2ν(xl − x0l )− 2π = 0, l = 1, ..., n, and

n∑
i=1

xi = 1.

The first set of equalities can be rewritten as

(
Σ+ µµT + νIn −e

)(
x

π

)
= E[ZB (r̃) r̃] + νx0.

Applying Lemma 1, we have

(
Σ+ µµT + νIn −e

)(
x

π

)
= µE [ZB(r̃)] + ΣPE [c(r̃)] + νx0.

Since ν ≥ 0 and (Σ+µµT ) is positive definite, (Σ+µµT+νIn) is also positive definite. In particular,

it has an inverse. The we can multiple both sides of above equation by (Σ + µµT + νIn)
−1 and

obtain (
In −

(
Σ+ µµT + νIn

)−1
e
)(

x

π

)
=
(
Σ+ µµT + νIn

)−1 (
µE [ZB(r̃)] + ΣPE [c(r̃)] + νx0

)
.

(12)

Multiplying eT to the above equality and simplifying using the fact that eTx = 1, we get

π =
1− eT

(
Σ+ µµT + νIn

)−1 (
µE [ZB(r̃)] + ΣPE [c(r̃)] + νx0

)
eT (Σ + µµT + νIn)

−1 e
.
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Substituting this expression of π into Equation (12), simplifying the resulting expression with a

substitution of D =
(
Σ+ µµT + νIn

)−1
, we have

x =
De

eTDe
+

(
In − DJn

eTDe

)
D
(
µE [ZB(r̃)] + ΣPE [c(r̃)] + νx0

)
,

where Jn denotes the matrix in Rn×n with all entries being 1. Thus, we obtain the closed-form

solution to Problem (TC).
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