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ABSTRACT

Geographical characteristics derived from the historical check-in
data have been reported effective in improving location recommen-
dation accuracy. However, previous studies mainly exploit geo-
graphical characteristics from a user’s perspective, via modeling
the geographical distribution of each individual user’s check-ins.
In this paper, we are interested in exploiting geographical charac-
teristics from a location perspective, by modeling the geographi-
cal neighborhood of a location. The neighborhood is modeled at
two levels: the instance-level neighborhood defined by a few near-
est neighbors of the location, and the region-level neighborhood
for the geographical region where the location exists. We pro-
pose a novel recommendation approach, namely Instance-Region
Neighborhood Matrix Factorization (IRenMF), which exploits two
levels of geographical neighborhood characteristics: a) instance-
level characteristics, i.e., nearest neighboring locations tend to share
more similar user preferences; and b) region-level characteristics,
i.e., locations in the same geographical region may share similar
user preferences. In IRenMF, the two levels of geographical char-
acteristics are naturally incorporated into the learning of latent fea-
tures of users and locations, so that IRenMF predicts users’ prefer-
ences on locations more accurately. Extensive experiments on the
real data collected from Gowalla, a popular LBSN, demonstrate the
effectiveness and advantages of our approach.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information Filtering

Keywords

Geographical Neighborhood; Location Recommendation; Matrix
Factorization; Location-based Social Networks

1. INTRODUCTION
In recent years, we have witnessed the rapid growth and increas-

ing popularity of location-based social networks (LBSNs), e.g.,
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BrightKite, Foursquare and Gowalla, where users explore their sur-
rounding places and share life experiences via “check-ins”. The
available check-in data in LBSNs contain rich knowledge about
users’ interests, and thus are beneficial to a wide range of applica-
tions such as location recommendation [33], friend recommenda-
tion [23], and activity recommendation [34].

As an important application in LBSNs, the personalized loca-
tion recommender systems (PLRs) can help users explore new lo-
cations to enrich their experiences. On the other hand, PLRs can
also facilitate third-party developers (e.g., advertisers) to provide
more relevant services at the right locations. Therefore, PLRs have
drawn great research attention from both academia and industry
in recent years [35, 36]. For example, Foursquare, a well-known
LBSN that has over 50 million users and 6 billion check-ins (last
updated May, 2014), has launched its location recommendation en-
gine since March 2011.1

The primary idea of PLRs is to predict a user’s preferences on
unvisited locations. Among existing PLRs developed for LBSNs,
the approaches established on collaborative filtering technique are
most widely used to model users’ preferences, according to the his-
torical interactions between users and locations [34]. To improve
location recommendation accuracy, auxiliary information such as
social information and geographical information, has also been ex-
ploited. For instance, social opinions from users’ online social
friends [27] or local experts in a new city [2] have been consid-
ered for location recommendation. In contrast to social informa-
tion, geographical information has been found to play a much more
important role in the location recommendation task [3].

Prior work that employs geographical information for location
recommendation mainly explores geographical characteristics of
check-in data from user perspective. Based on the empirical ob-
servation that users tend to check-in at nearby locations, the geo-
graphical distances between users and locations are considered for
location recommendation tasks, using an inverse proportional rule
in [17]. To better describe users’ preferences on locations, different
methods have been proposed to model users’ check-in behaviors in
LBSNs. For example, in [26], a power-law probabilistic model
is used to describe the power-law distribution of a user’s check-
ins. The approach in [3] utilizes a multi-center Gaussian model to
study users’ multi-center check-in behavior. To summarize, exist-
ing PLRs only exploit the geographical characteristics from user
perspective, via modeling the geographical distribution (e.g., the
power-law distribution or multi-center distribution) specific to a
particular user’s check-ins.

To the best of our knowledge, geographical characteristics from
location perspective have not been exploited for location recom-

1http://engineering.foursquare.com/2011/03/22/building-a-
recommendation-engine-foursquare-style/



mendation (see Section 2.3 for details). This kind of characteristics
are independent from individual users and should have potential
benefits to location recommendation. Motivated by this, in this pa-
per, we propose to study geographical characteristics from location
perspective, with an emphasis on the geographical neighborhood.

Through our empirical analysis, we found that nearest neighbor-
ing locations tend to share more common visitors. This observa-
tion indicates that, in general, a user shares similar preferences
on nearest neighboring locations. In our method, this pattern is
used as the instance-level geographical neighborhood charac-

teristics. Specifically, by introducing a similarity measure, the re-
lationship underlying a user’s preferences on a few nearest neigh-
boring locations is captured and utilized to characterize her prefer-
ence on a target location.

In addition, our study on check-in data also shows that locations
in a geographical region may share similar user preferences. Each
geographical region is usually associated with a specific function
(e.g., business, entertainment, and education) [4, 29]. Such geo-
graphical regions contain additional prior knowledge about the in-
teractions between users and locations. Therefore, we use the geo-
graphical region structure as the region-level geographical neigh-

borhood characteristics. Specifically, a group lasso penalty is
employed to integrate the geographical region structure within the
check-in data into the learning of latent factors of users and loca-
tions. To summarize, the major contributions made in this paper
are as follows:

• We empirically analyze geographical characteristics from loca-
tion perspective using historical check-in data collected from
Gowalla. Two levels (i.e., instance-level and region-level) of
geographical neighborhood characteristics have been studied.

• We propose a novel location recommendation framework, i.e.,
Instance-Region Neighborhood Matrix Factorization (IRenMF),
to incorporate aforementioned geographical neighborhood char-
acteristics for improving location recommendation accuracy. In
particular, to solve the optimization problem in IRenMF, we pro-
pose an alternating optimization strategy, in which an acceler-
ated proximal gradient (APG) method is used to learn the latent
factors of locations, considering the geographical region struc-
ture of the check-in data.

• We extensively evaluate IRenMF on the datasets collected from
Gowalla. Experimental results show that: (1) Compared to the
baseline matrix factorization model (i.e., WRMF) without uti-
lizing geographical characteristics, our methods that use either
instance-level or region-level geographical neighborhood char-
acteristics significantly improves recommendation accuracy; the
improvement is on average by 30.78% and 17.2% respectively,
in terms of precision metric P@5. (2) Utilizing both two lev-
els of geographical neighborhood characteristics, IRenMF sub-
stantially outperforms two state-of-the-art location recommen-
dation methods, which consider geographical characteristics de-
rived from user perspective.

The rest of this paper is organized as follows. Section 2 reviews
the most relevant work about this study. Section 3 introduces our
empirical analysis of check-in data and provides some background
about matrix factorization. Next, Section 4 presents the details of
IRenMF and describes the optimization solution to IRenMF. Then,
in Section 5, we report the experimental results conducted on real-
world datasets, which demonstrate that the geographical character-
istics derived from location perspective can significantly improve
location recommendation accuracy. Finally, Section 6 draws the
conclusion of this study.

2. RELATED WORK
This study relates with three research areas: collaborative filter-

ing, structured sparsity learning, and personalized location recom-
mendation. Next, we will present an overview of the most related
work in each area.

2.1 Collaborative Filtering
The collaborative filtering (CF) technique has been widely used

for personalized recommendation tasks [1]. In the literature, there
are two main categories of CF methods, namely memory-based CF
and model-based CF.

The most popular memory-based CF approaches are user-based
CF and item-based CF. The user-based CF predicts a user’s prefer-
ence on a given item based on the preferences of other similar users
on the target item. In contrast, the item-based CF first finds similar
items to the target item and then predicts a user’s preference on the
target item, according to her preferences on other similar items. In
previous work [26,27], the user-based CF has been successfully ap-
plied for the location recommendation tasks, and it has been found
to significantly outperform item-based CF. Similar results have also
been found in our experiments (see Section 5.2.1).

The model-based CF approaches aim to learn an algorithmic
model to explain the observed user-item interactions. Most exist-
ing model-based CF models deal with rating prediction problems,
in which users’ preferences are explicitly indicated by the rating
values given to items. However, in most practical scenarios, users’
rating data are unavailable. The personalized recommendations are
based on users’ implicit feedback, e.g., purchase history [20], click
history [5], and check-in history [3]. In [8], Hu et al. introduced the
first attempts applying model-based CF approaches for large scale
implicit feedback datasets. Instead of ignoring all missing entries
in the user-item interaction matrix, they treated all missing entities
as negative examples and assigned vastly varying confidence lev-
els to the positive and negative examples. Then, a least square loss
function was used to learn the latent features of users and items.
To simplify the computation, Pan et al. [19] proposed a sampling
framework to collect a fraction of missing entries in the user-item
matrix as negative examples. Recently, Rendle et al. [21] presented
a Bayesian Personalized Ranking (BPR) approach for recommen-
dation with users’ implicit feedback. This method only assumed
that the unobserved items (or negative items) were less interesting
than the observed items (or positive items) to an individual user. Its
objective was to rank the positive items above the negative items in
the positive-negative item pairs of each user.

2.2 Structured Sparsity Learning
For feature learning problems in high-dimensional space, spar-

sity is a desirable property of feature vectors. The L1-norm penalty
has been widely used to enforce sparsity to the learned feature
vectors. Numerous methods have been proposed to solve the L1-
regularization regression problems in statistics, machine learning
and computer vision. The readers can refer to [6] (Chapter 18) for
more discussions.

However, the standard L1-norm penalty does not consider any
dependency (e.g., the group structure) among inputs. This limits
its applicability in many complex application scenarios. In recent
years, a lot of structured sparsity learning approaches have been
proposed to induce different joint sparsity patterns to related vari-
ables, by employing more structured constraints on inputs. Yuan
and Lin [30] proposed the group lasso model that assumes disjoint
group structures of inputs and enforces sparsity on the pre-defined
groups of features. It employed a L1/Lp mixed norm penalty, with
p > 1, to achieve group level variable selection. In practice, L1/L2



and L1/L∞ are the most popular mixed norms. Theoretically, it
has also been demonstrated that the L1/L2 penalty has the poten-
tial to improve the accuracy of estimator [9]. Moreover, the group
lasso has been extended to allow more complex structures such as
hierarchical groups and overlapping groups [11].

These structured sparsity learning approaches have been applied
to different real scenarios. For example, Kim and Xing [13] studied
the gene selection problems. They proposed a tree-guided group
lasso regression method, which applied group lasso to the groups
of output variables defined by a hierarchical clustering tree. In [12],
Jenatton et al. presented an extension of sparse PCA based on a
structured regularization that encoded high order information of
the input data. Their experiments on face recognition task demon-
strated the advantages of structured approach over unstructured ap-
proaches. In addition, the group lasso models have also been ap-
plied in time series data analysis problems [14].

2.3 Personalized Location Recommendation
In recent years, the personalized location recommendation in

LBSNs has been widely studied. Prior work provides location rec-
ommendation via analyzing users’ historical check-ins in LBSNs.
Ye et al. [27] reported the first research work about providing loca-
tion recommendation services for large scale LBSNs. Two friend-
based CF approaches were proposed to predict a user’s preferences
on locations, considering the preferences of her social friends. The
recent work by Bao et al. [2] generated location recommendations,
taking advantage of both the user preference and the opinions from
local experts in a new city.

To achieve more accurate recommendations, different approaches
have been proposed to exploit the geographical characteristics of
check-in data. Ye et al. [26] proposed a unified recommendation
framework to incorporate the user preference, geographical influ-
ence and social influence into one recommendation process. They
designed a probabilistic model to capture the geographical influ-
ence from a specific user’s visited locations. Note that this ap-
proach is different from our instance-level exploitation that con-
siders the geographical influence from a few nearest geographical
neighbors of the target location (see Section 4.1 for more details).
Cheng et al. [3] studied users’ multi-center check-in behavior and
employed a multi-center gaussian model to capture the geograph-
ical influence. Then, a matrix factorization model was fused with
geographical and social influence for location recommendation in
LBSNs. Levandoski et al. [16] proposed a location-aware recom-
mender system, namely LARS, which employed the location-based
ratings to provide recommendation. In [17], Liu et al. introduced
a probabilistic recommendation framework that employs the geo-
graphical influence on a user’s check-in behavior, the user mobility
pattern and the user check-in count data for location recommenda-
tion. Recently, Zhang et al. [32] developed a unified geo-social rec-
ommendation framework, namely iGSLR, in which a kernel den-
sity estimation approach was used to personalize the geographical
influence on users’ check-in behaviors as individual distributions.
Wang et al. [25] proposed algorithms that generated recommenda-
tions based on the past user behavior (visited locations), the longi-
tude and latitude of each location, the social relationships among
users, and the similarity between users. Moreover, Yin et al. [28]
introduced a location-content-aware recommender system that of-
fered a user a set of venues or events, considering both personal
interest and the local preference of each individual city.

Summary. The aforementioned PLRs exploit geographical char-
acteristics from user perspective. Our work differs from existing
work in that it exploits geographical characteristics from location
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Figure 1: It shows the instance-level geographical neighbor-

hood characteristics: (a) the relationship between common vis-

itor ratio β and the distance between locations, (b) the common

visitor ratio between a typical location (id: 23092, latitude:

51.5144313985, longitude: −0.152746439) and other locations.

perspective, with an emphasis on the geographical neighborhood.
Moreover, it also proposes a unified framework to consider two lev-
els of geographical neighborhood characteristics for location rec-
ommendation.

3. PRELIMINARIES
In this section, we first analyze geographical neighborhood char-

acteristics of the check-in data from location perspective. Then, we
briefly introduce matrix factorization for recommendation.

3.1 Empirical Data Analysis
To gain a better understanding of users’ check-in activities, we

study the check-in data collected from Gowalla, a popular LBSN
(see Section 5.1.1 for details). More specifically, we study the geo-
graphical neighborhood characteristics at two levels: instance-level
and region-level. We make two observations from the data analy-
sis: a) nearest neighboring locations tend to share more similar user
preferences; and b) locations in the same geographical region may
share similar user preferences. These patterns are independent of
any particular user. We now report the details of the data analysis.

Instance Level. At the instance level, we measure the similarity
of users’ check-ins at two different locations ℓj and ℓk using Jac-
card similarity coefficient, denoted by β(ℓj , ℓk). This measure is
also known as the common visitor ratio of the two locations in our
discussion.

β(ℓj , ℓk) =
|U(ℓj) ∩ U(ℓk)|
|U(ℓj) ∪ U(ℓk)|

, (1)

where U(ℓj) and U(ℓk) denote the two sets of users who have vis-
ited ℓj and ℓk respectively.

Figure 1(a) plots the relationship between β(ℓj , ℓk) and the ge-
ographical distance d(ℓj , ℓk) between ℓj and ℓk.2 As shown in
Figure 1(a), β decreases with the increasing of d, which indicates
that geographically adjacent locations tend to share more common
visitors. In other words, neighboring locations are more likely to
be visited by the same set of users, or users have similar prefer-
ences on neighboring locations. As an example, Figure 1(b) shows
the common visitor ratio between a randomly sampled location (id:
23092, latitude: 51.5144313985, longitude: −0.152746439) and
the other locations. It reflects that location 23092 shares more com-
mon visitors with its neighboring locations.

Region Level. To study the geographical characteristics of loca-
tions at region level, we cluster the locations into groups. The clus-

2Here, the common visitor ratio is averaged over all pairs of loca-
tions with same distances, and the distance between two locations
is computed by using the Haversine formula.



Figure 2: The checked-in locations around Chicago are clus-

tered into 10 groups, denoted in different colors. It shows

the region-level geographical neighborhood characteristics of

check-in data.

tering can be conducted by using different similarity/distance mea-
sures between locations, e.g., geographical distance, user check-in
similarity (i.e., β(ℓj , ℓk)), or the combination of the two.3 For il-
lustration purpose, here we present a clustering result by using user
check-in similarity with geographical constraint, similar to that re-
ported in [4]. A spectral clustering algorithm is utilized to group
the locations [18]. More specifically, we compute an affinity ma-
trix M ∈ R

n×n on all observed locations {ℓj}nj=1. For a given
location ℓj , let N (ℓj) denote the set of N closest locations to ℓj
by the geographical distance. In this analysis, we set N at 10. The
element Mjk in M is determined as,

Mjk =

{
β(ℓj , ℓk) + ε, if ℓj ∈ N (ℓk) or ℓk ∈ N (ℓj)

0, otherwise,
(2)

where ε is a small constant used to keep each location connecting
to arbitrary other locations either directly or indirectly. Then, the
spectral algorithm is used to partition locations into groups, con-
sidering users’ check-ins at each location and the geographical dis-
tances between locations.

Figure 2 shows an example of 10 clusters of the locations around
Chicago area. The location clusters are denoted in different colors.
Observe that the locations are distributed in geographical regions
and the shapes of the regions are determined by user check-in be-
havior. In other words, locations in the same geographical region
may share similar user preferences. Suggested in earlier studies,
each of these geographical regions is usually associated with a spe-
cific function such as education, business, entertainment and so
on, considering the category information of the locations in the
region [4, 29]. Note that, this observation is consistent with the
instance-level geographical characteristics. Nevertheless, a region
refers to a much larger geographical area than the area containing
a few nearest neighbors of a specific location.

Motivated by the two observations, we propose incorporating the
above geographical characteristics of check-in data for location rec-
ommendation, so as to improve location recommendation accuracy.

3.2 Recommendation by Matrix Factorization
The recommendation task studied in this paper can be defined

as: given the historical check-ins of m users {ui}mi=1 over n loca-
tions {ℓj}nj=1, for a target user, recommend her a set of locations

3The three kinds of similarity/distance measures are evaluated in
our experiments (see Section 5.2.3).

that she might be interested in but has not visited before. Here, we
first introduce a rating matrix R ∈ R

m×n to describe users’ prefer-
ences on locations, where each element Rij ∈ {0, 1} denotes ui’s
preference on ℓj . If ui has checked-in at ℓj at least once, we set
Rij to 1, otherwise, we set Rij to 0. Note that Rij = 0 does not
explicitly indicate ui is not interested in ℓj . It can also be caused
by that ui does not know ℓj .

In the literature, matrix factorization based approaches are the
most successful and widely used recommendation methods [15].
The primary idea of matrix factorization is to map both users and
locations into a shared space with dimension r ≪ min(m,n), and
represent ui and ℓj using Ui ∈ R

1×r and Lj ∈ R
1×r , which are

known as the latent factors of ui and ℓj respectively. The prefer-
ence of ui on ℓj can then be approximated using

R̂ij = UiL
⊤
j . (3)

Biases for users and locations can also be incorporated in Eq. (3)
to produce more accurate models [15]. In general, we denote the
latent factors of all users and locations by U ∈ R

m×r and L ∈
R

n×r respectively, where Ui is the ith row in U and Lj is the
jth row in L. The model parameters, U and L, can be learned by
minimizing a weighted regularized square error loss [8, 15, 19],

min
U,L

1

2

∑

i,j

Wij(Rij − R̂ij)
2 +

λ1

2
‖U‖2F +

λ2

2
‖L‖2F , (4)

whereWij gives a confidence level to the preference feedbackRij ,
‖ · ‖F is the Frobenius norm of a matrix, λ1 and λ2 are regulariza-
tion parameters.

Once the latent factors U and L have been learned, the prefer-
ence value associated with any user-location pair (ui, ℓj) can be
predicted using Eq. (3).

4. EXPLOITATION OF NEIGHBORHOOD

CHARACTERISTICS
In this section, we present the details of IRenMF, the objective of

which is to exploit two levels (i.e., instance-level and region-level)
of neighborhood characteristics to provide more accurate location
recommendations. Firstly, at the instance level, a geographical
weighting strategy is used to consider the strong relations among
users’ preferences on the target location and a few nearest neigh-
bors of it. Secondly, at the region level, a group lasso penalty is
introduced to take advantage of the geographical region structure
derived from the check-in data.

4.1 Instance-Level Exploitation
Through mapping users and locations into a shared latent space,

MF can effectively estimate the overall relations associated with
most or all locations. However, the classical MF based approach
introduced in Section 3.2 ignores the strong relations among geo-
graphical nearest neighboring locations.

Our empirical analysis of check-in data shows that nearest neigh-
boring locations tend to share more common visitors. Inspired by
this observation, we propose to characterize ui’s preference on ℓj
using her preferences on a few nearest neighboring locations of ℓj .
Thus, we modify the prediction of Rij as,

R̂new
ij = αUiL

⊤
j + (1− α) 1

Z(ℓj)

∑

ℓk∈N (ℓj)

Sim(ℓj , ℓk)UiL
⊤
k ,

(5)
where α ∈ [0, 1] is the instance weighting parameter used to con-
trol the influence from neighboring locations, N (ℓj) denotes the



Figure 3: An example of the structured sparsity assumption of

the location latent factors. The locations are clustered into 4
groups, and both users and locations are mapped into a shared

latent space with dimension 4. In L
⊤, the red and white cells

denote nonzero and zeros values respectively.

set of N nearest neighboring locations of ℓj . In the following ex-
periments, we empirically set N at 10.4 In Eq. (5), Sim(ℓj , ℓk)
is the geographical weight denoting the geographical influence of
ℓk on ℓj . Z(ℓj) is a normalizing factor formulated as Z(ℓj) =∑

ℓk∈N (ℓj)
Sim(ℓj , ℓk). We define Sim(ℓj , ℓk) using a Gaus-

sian function as follows based on our observation in Figures 1(a)
and 1(b).

Sim(ℓj , ℓk) = e
−

‖xj−xk‖2

σ2 ∀ℓk ∈ N (ℓj), (6)

where xj and xk represent the geographical coordinates (latitude
and longitude) of ℓj and ℓk respectively, σ is a constant which is
empirically set at 0.1 in our experiments.

Note that this instance-level exploitation is essentially different
from the approach proposed in [26]. Our approach is from location
perspective and considers the relationship between a target loca-
tion ℓj and a few nearest geographical neighborsN (ℓj) of ℓj . The
prediction of ui’s preference on ℓj is determined by the charac-
teristics of ui, ℓj and N (ℓj). However, in [26], the probability
that ui would check-in at ℓj is determined by the distances be-
tween ℓj and ui’s visited locations L(ui) (i.e., from user perspec-
tive). Usually,N (ℓj) andL(ui) are entirely different or with a very
small overlap, as ui has only visited a small proportion of locations.
Therefore, these two methods are modeling two different kinds

of geographical characteristics. In all experiments, the proposed
instance-level exploitation outperforms the approach in [26] (see
Section 5.2.1 for details).

4.2 Region-Level Exploitation
As aforementioned, locations in the same geographical region

may share similar user preferences. In this section, we are in-
terested in incorporating this region-level characteristics into the
learning of latent factors (or latent features) of users and locations.

In the feature learning problems, the structured sparsity learning
approaches (e.g., group lasso) have been widely used to consider
the prior knowledge of the group structure of inputs. Inspired by its
successful applications in real scenarios [10, 12–14], we propose
to utilize group lasso to exploit the geographical region structure
of locations, via assuming the latent factors of locations from the
same region share the same sparsity pattern, namely the structured
sparsity assumption of location latent factors. In this assumption,
the locations are assumed to be clustered into G disjoint groups:
{L(g)}Gg=1. The location latent factors L are divided intoG groups

as L = {L(g)}Gg=1, where L(g) ∈ R
ng×r denotes the latent factors

of locations belonging to L(g), ng is the number of locations in

4We have also evaluated the performances with respect to different
setting of N . The experimental results indicate that the location
recommendation accuracy is not very sensitive to the size of nearest
neighbors.

L(g). Accordingly, the rating matrix R is divided into G groups as

R = {R(g)}Gg=1, where R(g) ∈ R
m×ng .

Figure 3 gives an example of the structured sparsity assumption.
As shown in Figure 3, the column vectors in L

⊤
(2) share the same

sparsity pattern since all their third rows are zeros. Therefore, the
reconstruction of elements in R(2) only relies on the first, second

and fourth row components in L
⊤
(2). With this sparsity structure

of L, the associations of latent factors of users and locations can
be understood at the group level instead of instance level, as the
geographical structure information of locations is embedded in the
location latent factors.

Taking into account the structured sparsity assumption, we use a
group lasso penalty of L as,

λ3

G∑

g=1

r∑

d=1

ωg‖Ld
(g)‖2, (7)

to integrate the geographical region structure information into the
learning of latent factors U and L. In Eq. (7), λ3 is the group
sparsity regularization parameter. Ld

(g) ∈ R
ng×1 is the dth column

vector in L(g). ωg is a weight assigned to L
d
(g). A simple setting

of ωg is ωg = n
1
2
g , which enables the amount of penalization to be

adjusted according to the size of each group [30].

4.3 IRenMF
In this section, we present the final formulation of IRenMF. By

plugging Eq. (5) and Eq. (7) into Eq. (4), the optimization problem
of IRenMF is formulated as follows,

min
U,L
F(U,L) = 1

2

∑

i,j

Wij

(
Rij − R̂new

ij

)2
+
λ1

2
‖U‖2F

+
λ2

2
‖L‖2F + λ3

G∑

g=1

r∑

d=1

ωg‖Ld
(g)‖2. (8)

For simplicity, we rewrite the problem in Eq. (8) as,

min
U,L
F(U,L) = 1

2
‖W̃ ◦ (R−UL

⊤
Sα)‖2F +

λ1

2
‖U‖2F

+
λ2

2
‖L‖2F + λ3

G∑

g=1

r∑

d=1

ωg‖Ld
(g)‖2, (9)

where W̃ ∈ R
m×n is a weighting matrix. ◦ denotes the Hadamard

product of two matrices. Sα = αI + (1 − α)S⊤. I ∈ R
n×n

is an identity matrix. S ∈ R
n×n, in which each element Sjk =

Sim(ℓj , ℓk)/Z(ℓj).
In general, as ui’s check-in times Cij at ℓj grows, we have a

strong indication that ui indeed likes ℓj . Therefore, a simple setting

of the element W̃ij in W̃ is as,

W̃ij = (1 + δCij)
1
2 (10)

where the constant δ is used to control the rate of increase. Empir-
ically, we set δ = 10 in our experiments.

4.3.1 Optimization Algorithms

Here, we present the solution to the optimization problem stated
in Eq. (9), which is a non-convex problem, and can be further
decomposed into two convex optimization problems by fixing one
variable (U or L) and optimizing the other one. Therefore, we use
the following two-step alternating optimization strategy to solve the
problem in Eq. (9).



Algorithm 1: APG Optimization

Input : L(0), λ2, λ3, τ (0), ε, η, t(0), {ωg}Gg=1

Output: L
(k)

1 Initialize: L(1) ← L
(0), k ← 1, σ ← 1.0

2 Use Eq. (12) and L
(0) to calculate ϕ(L(0))

3 while k ≤ maxIter && σ ≥ ε do

// maxIter is the maximum number of iterations

4 τ ← ητ (k−1), t(k) ← 1+
√

1+4(t(k−1))2

2
,

X
(k) ← L

(k) + t(k−1)−1

t(k) (L(k) − L
(k−1))

5 while 1 do

6 Z← X
(k) − 1

τ
∇p(X(k))

7 Use Eq. (16) to calculate L
∗

8 Use Eq. (13) and Eq. (14) to compute p(L∗) and

pτ (L
∗,X(k));

9 if p(L∗) ≤ pτ (L∗,X(k)) then

10 τ (k) ← τ , break;

11 else

12 τ ← τ
η

13 L
(k) ← L

∗

14 Use Eq. (12) to update ϕ(L(k−1)) and ϕ(L(k))

15 σ ← |ϕ(L(k))−ϕ(L(k−1))|

|ϕ(L(k−1))|

16 k ← k + 1

17 Return L
(k);

Optimize U: when L is fixed, the optimization problem with re-
spect to U is as follows,

min
U

φ(U) =
1

2
‖W̃ ◦ (R−UL

⊤
Sα)‖2F +

λ1

2
‖U‖2F . (11)

To solve the problem in Eq. (11), we directly use the alternating
least squares (ALS) algorithm proposed in [8, 19].

Optimize L: when U is fixed, the optimization problem becomes,

min
L

ϕ(L) = p(L) +
λ2

2
‖L‖2F + λ3

G∑

g=1

r∑

d=1

ωg‖Ld
(g)‖2, (12)

where

p(L) =
1

2
‖W̃ ◦ (R−UL

⊤
Sα)‖2F . (13)

The problem in Eq. (12) can be solved using the accelerated proxi-
mal gradient (APG) method [24]. The key point of APG approaches
is to construct the Taylor approximation of p(L) at the point X as,

pτ (L,X) =
τ

2
||L− Z||2F −

1

2τ
||∇p(X)||2F + p(X) (14)

where τ > 0 and Z = X − 1
τ
∇p(X). For a fixed point X, we

need to solve the following optimization problem,

min
L

ψ(L) =
τ

2
||L− Z||2F +

λ2

2
‖L‖2F + λ3

G∑

g=1

r∑

d=1

ωg‖Ld
(g)‖2.

(15)
The solution to the problem in Eq. (15) is given in Theorem 1.

THEOREM 1. Let L∗ be the optimal solution to problem (15).
L

∗ is unique and can be calculated via a soft-threshold operator

Algorithm 2: IRenMF Optimization

Input : R, W̃, r, ε, {λi}3i=1, {ωg}Gg=1

Output: U
(k), L(k)

1 Initialize U
(0) and L

(0) with random elements, k ← 1,
σ ← 1.0

2 while k ≤ maxIter && σ ≥ ε do

// maxIter is the maximum number of iterations

3 Compute U
(k) by solving the problem in Eq. (11)

4 Compute L
(k) by solving the problem in Eq. (12)

5 σ ← |F(U(k),L(k))−F(U(k−1),L(k−1))|

|F(U(k−1),L(k−1))|

6 k ← k + 1

7 Return U
(k) and L

(k);

defined as

[L∗]d(g) =











Z
d
(g)(‖Z

d
(g)‖2−

λ3ωg
τ

)

(1+
λ2
τ

)‖Zd
(g)

‖2
, if ‖Zd

(g)
‖2 >

λ3ωg

τ

0, otherwise,

(16)

where [L∗]d(g) ∈ R
ng×1 and Z

d
(g) ∈ R

ng×1 are the sub-vectors at

the dth dimension of the gth group of L∗ and Z respectively.

The proof of Theorem 1 is shown in the Appendix. The details of
the APG solution to Eq. (12) are presented in Algorithm 1.

The entire optimization procedure for the problem in Eq. (9)
is summarized in Algorithm 2. Although the objective function
of IRenMF (like the objective function of other “standard” recom-
mender systems) is certainly non-convex [15] and subject to local
minima, in our experiments it yields stable recommendation accu-
racy when restarting with different initial conditions.

5. EXPERIMENTS
In this section, we first introduce the experimental settings and

then present the analysis of experimental results. The experiments
focus on the following aspects: (1) the comparison of the perfor-
mances of our proposed method and baseline recommendation al-
gorithms, (2) the sensitivity of IRenMF to different parameter set-
tings, and (3) the impact of different location clustering strategies.

5.1 Experimental Settings

5.1.1 Dataset Description

The experimental data used in this study was collected from
Gowalla, a popular LBSN, which has more than 600, 000 users
since November 2010 and was acquired by Facebook in Decem-
ber 2011.5 In practice, we used the Gowalla APIs to collect user
profiles and check-in data made before June 1, 2011. Finally, we
have obtained 36, 001, 959 check-ins made by 319, 063 users over
2, 844, 076 locations. Each check-in contains user id, location id,
longitude, latitude, timestamp, etc.. To evaluate the performances
of IRenMF, we construct four datasets via extracting the check-in
data generated in four popular cities: Berlin, London, Chicago, and
San Francisco. The detailed statistics of the check-in data in the
four datasets are summarized in Table 1.

5http://techcrunch.com/2011/12/02/report-facebook-has-acquired-
gowalla/



Table 1: Statistics of datasets.
Berlin Chicago London S.F.

#users 5,510 13,852 17,112 21,591

#locations 15,528 38,505 63,466 66,142

#check-ins 238,972 490,998 942,877 1,545,407

avg. #users per loc. 23.98 20.28 32.11 41.35

avg. #loc. per user 8.51 7.30 8.66 13.50

5.1.2 Data Partition

In our experiments, each of the four datasets is partitioned into
three non-overlapping parts. More specifically, within one dataset,
if a user ui has visited ni different locations L(ui) = {ℓ1i , ℓ2i , · · · ,
ℓni
i }, we randomly choose 60% of her visited locations L(ui) as

training data, and choose another 10% of L(ui) as development
data to tune parameters. The remaining 30% of L(ui) are used
as testing data to evaluate the effectiveness of recommendation
methods. Similar experimental settings have been used to validate
the performances of location recommendation methods in previ-
ous work [3, 26, 31]. After splitting the check-in data, the densi-
ties of the training data of Berlin, Chicago, London and San Fran-
cisco datasets are 1.17 × 10−3, 4.13 × 10−4, 3.84 × 10−4, and
4.68× 10−4 respectively.

5.1.3 Evaluation Metrics

In this work, the quality of location recommendations is assessed
using two metrics (precision and recall), as suggested by [3, 26].
The precision and recall of the top-K location recommendations to
a target user are denoted by P@K and R@K respectively. P@K
measures the ratio of recovered locations to the K recommended
locations, and R@K measures the ratio of recovered locations to
the set of locations in the testing data. Given an individual user ui,
LT (ui) denotes the set of corresponding visited locations in the
testing data, and LR(ui) denotes the set of recommended locations
by a method. The definitions of P@K and R@K are:

P@K =
1

|T |
∑

ui∈T

|LT (ui) ∩ LR(ui)|
K

,

R@K =
1

|T |
∑

ui∈T

|LT (ui) ∩ LR(ui)|
|LT (ui)|

, (17)

where T denotes the set of users in the testing data. Specifically,
we choose P@5, P@10, R@5, and R@10 as evaluation metrics in
our experiments.

Note that all the four datasets in this study have low density,
which usually leads to relatively low precision and recall. Thus,
the low values of precision and recall shown in our experiments are
reasonable and in similar range of values reported in other work [3,
26, 31]. In this paper, we present the relative improvements our
approach achieved, instead of the absolute values.

5.1.4 Evaluated Recommendation Algorithms

We compare the performances of the following personalized lo-
cation recommendation methods:

UserCF: This is the user-based CF approach used in [26] that
predicts a user’s preferences, considering the preferences of
other similar users. The user similarity is computed using
cosine similarity and k = 150.

ItemCF: This is the item-based CF approach [22] that predicts a
user’s preference on a target location, considering her pref-
erences on similar locations. The location similarity is com-
puted using cosine similarity and k = 150.

WRMF: This is the weighted regularized matrix factorization model
designed for processing large scale implicit feedback datasets [8,
19]. It is a special case of IRenMF without considering the
geographical characteristics of check-in data (via settingα =
1 and λ3 = 0 in Eq. (9)).

BPRMF: The Bayesian personalized ranking (BPR) is another
state-of-the-art CF framework for implicit feedback data [21].
BPRMF indicates the choice of using matrix factorization as
the learning model in the BPR optimization criterion. In this
method, the visited locations are assumed to be more inter-
esting than unvisited locations to an individual user.

GeoCF: This is the user preference/geographical influence based
recommendation model proposed in [26]. In this method,
a power-law distribution model is used to capture the geo-
graphical influence from a user’s visited locations. A uni-
fied location recommendation framework is used to linearly
combine the geographical influence and the user preference
derived by a user-based CF approach.

MGMMF: This approach [3] is based on the observation that a
user tends to check-in around several centers. A Multi-center
Gaussian Model (MGM) is employed to model the probabil-
ity that a user will check-in at a given location. Moreover,
a fusion framework is used to fuse the user preference (de-
rived by a MF model) and the MGM check-in probability for
location recommendation.

InMF : It is a special case of IRenMF that only exploits the instance-
level geographical neighborhood characteristics for location
recommendation (via setting λ3 = 0 in Eq. (9)).

RenMF : It is a special case of IRenMF that only exploits the region-
level geographical neighborhood characteristics for location
recommendation (via setting α = 1 in Eq. (9)).

IRenMF : This is our proposed approach that exploits both instance-
and region-level geographical neighborhood characteristics
for location recommendation.

In the MF-based approaches, we set the dimension of latent space
r at 200, considering both efficiency and effectiveness. The regu-
larization parameters λ1 and λ2 of IRenMF, are chosen by cross-
validation and finally set at 0.015. The group sparsity regulariza-
tion parameter λ3 is set at 1 on all datasets. The instance weight-
ing parameter α of IRenMF is set at 0.4, 0.4, 0.6, 0.4 on Berlin,
Chicago, London, and San Francisco datasets respectively. The im-
pact of different settings of α and λ3 is discussed in Section 5.2.2.
As a preprocessing step, we use the k-means algorithm to cluster
locations into 50 groups according to their latitudes and longitudes.
The impact of the region structures discovered by different cluster-
ing strategies is discussed in Section 5.2.3. In the experiments, we
ran MF-based approaches five times and report the average results
on the top-5 and top-10 recommendations respectively.

5.2 Experimental Results

5.2.1 Performance Comparison

We report two sets of results for methods with and without uti-
lizing geographical characteristics separately.

Methods without Geographical Characteristics. We first com-
pare the performances of four state-of-the-art top-K recommenda-
tion algorithms (i.e., UserCF, ItemCF, WRMF, and BPRMF) in the
location recommendation task. The precision and recall of these
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methods are reported in Figure 4. On all datasets, UserCF out-
performs WRMF and BPRMF in terms of precision metrics. Par-
ticulary, UserCF attains 12.37% and 132.52% better performance
than WRMF and BPRMF over all datasets, in terms of P@5. A
possible reason is that the classical MF-based CF approaches only
assume a global structure of the check-in data, but ignore the local
structure embedded in the check-in data, e.g., the strong relations
among nearest geographical neighboring locations. On the other
hand, WRMF achieves highest recall values in terms of R@5 and
R@10, on the Chicago, London and San Francisco datasets. This
indicates that WRMF is an appropriate choice to incorporate geo-
graphical characteristics for location recommendation. In addition,
as shown in Figure 4, UserCF significantly outperforms ItemCF.
One possible explanation is that the user similarity is more accu-
rate than location similarity, as many locations only have a few user
check-ins. In this sense, our results are consistent with the results
reported in [26].

Methods with Geographical Characteristics. We evaluate the
effectiveness of the proposed methods utilizing geographical char-
acteristics from location perspective with other two state-of-the-art
methods utilizing geographical characteristics from user perspec-
tive [3, 26]. The precision and recall are reported in Figure 5.

Observing from Figure 5, InMF, RenMF, and IRenMF achieve
better accuracy than WRMF in terms of both precision and re-
call, on all datasets. In terms of P@5, InMF outperforms WRMF

by 43.18%, 37.96%, 22.90%, and 19.08% on the four datasets,
respectively. RenMF outperforms WRMF by 21.76%, 19.39%,
17.71%, and 9.94% on the four datasets. This indicates that both
instance-level and region-level neighborhood characteristics bene-
fit the location recommendation for higher accuracy. In addition,
the observation that InMF has better accuracy than RenMF shows
that the instance-level characteristics are more effective than the
region-level characteristics. This result suggests that nearest neigh-
bouring locations tend to share more user preference. By incor-
porating both kinds of neighborhood characteristics into the learn-
ing of latent factors, the recommendation accuracy of the classical
MF model (i.e., WRMF) can be significantly improved. For exam-
ple, in terms of P@5, the improvements of IRenMF over WRMF
are 56.48%, 43.36%, 29.35%, and 24.67% respectively, on all
datasets.

To predict a user’s preference on a target location, GeoCF con-
siders the geographical influence from her visited locations (i.e., the
geographical characteristics from user’s point of view). In contrast,
InMF exploits geographical influence of the nearest neighbouring
locations to the target location (i.e., the instance-level geograph-
ical characteristics from location’s point of view). Compared to
GeoCF, InMF always achieves better results in terms of all mea-
sures. For example, in terms of P@10, InMF outperforms GeoCF
by 11.78%, on average. This result indicates that the instance-
level geographical neighborhood characteristics derived from lo-
cation perspective have more impacts on the location recommen-
dation accuracy than the geographical characteristics derived from
user perspective. Taking advantage of both levels of neighborhood
characteristics, IRenMF outperforms GeoCF by 17.90%, in terms
of P@10, on average.

Compared to MGMMF, the proposed InMF, RenMF and IRenMF

perform significantly better on all datasets. The average improve-
ments of InMF, RenMF and IRenMF over MGMMF, in terms of
P@5, are 115.47%, 91.38%, and 127.38%, respectively. More-
over, we also observe that MGMMF performs poorer than WRMF.
One possible reason is that MGMMF is based on the probabilistic
factor model (PFM), which only models users’ check-in times at
locations, instead of users’ preferences on locations.

In Figure 5, IRenMF always achieves the best results in terms
of all the evaluation metrics, on all datasets. This demonstrates
the advantage of combining both levels of geographical neighbor-
hood characteristics for location recommendation. Most impor-
tantly, on average, the proposed IRenMF consistently outperforms
the competitors WRMF, GeoCF, and MGMMF, in terms of P@10,
by 38.63%, 17.90%, and 116.49% respectively. In all experiments,
the standard deviations of the recommendation accuracy of IRenMF

are below 0.005, showing the good stability of our method.

5.2.2 Parameter Tuning

In IRenMF, the impact of geographical neighborhood character-
istics on location recommendation are controlled by the instance
weighting parameter α and group sparsity regularization parameter
λ3. Figure 6(a) shows P@5 and R@5 of IRenMF (setting λ3 at 0)
with respect to different α ranging from 0 to 1 with an increment of
0.1. As shown in Figure 6(a), IRenMF achieves comparable results
on Berlin, Chicago and San Francisco datasets with setting α at 0
and 1. This demonstrates that it is possible to characterize users’
preferences on a target location, using their preferences on a few
nearest neighboring locations of it. Specifically, in terms of P@5,
we observe that α set at 0.4 on Berlin dataset obtains the best re-
sults, as well as 0.4 on Chicago dataset, 0.6 on London dataset, and
0.4 on San Francisco dataset respectively. It suggests that α well
tradeoff the importance between a user’s preference on the target
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to different clustering strategies.

location and her preferences on nearest neighboring locations. In
particular, we notice that only considering one of them (i.e., α = 0
or α = 1) will lead to degraded recommendation accuracy.

We test the performance of IRenMF in the grid λ3 ∈ {0.001, 0.01,
0.1, 1, 10, 100}, while setting α at 1. The performances of IRenMF

are shown in Figure 6(b), which indicates the recommendation ac-
curacy can be gradually influenced by the setting of the group spar-
sity regularization parameter λ3, and λ3 = 1 is the most suitable
setting in all four datasets. As shown in Figure 6(b), the perfor-
mance of IRenMF drops drastically by changing λ3 from 10 to 100.
We speculate this is because that the learned latent factors of lo-
cations are too sparse, and thus the reconstruction of users’ pref-
erences on locations are insufficient to provide accurate location
recommendations. For example, in Berlin dataset, the sparsity of
the location latent factors is 90.70% and 98.89% when setting λ3

at 10 and 100 respectively.

5.2.3 Impact of Different Clustering Strategies

In this section, we explore the impact of different clustering strate-
gies on the location recommendation accuracy. To single out the
impact of region-level neighborhood characteristics, we simply set
the instance weighting parameter α in IRenMF at 1, effectively only
evaluating the performance of RenMF.

We study the performance of RenMF with respect to different re-
gion structures obtained by clustering locations into 50 groups with
the following clustering methods: (1) KG, the k-means clustering
solely based on the geographical distance between locations; (2)
KH, the k-means clustering solely based on users’ check-ins gen-

erated at each location; (3) SP, the spectral clustering [18], which
considers both users’ check-ins at locations and the geographical
distance between locations. Figure 7 presents the recommenda-
tion accuracy of RenMF with respect to different region structures
obtained by KG, KH and SP. We observe that RenMF-KG, RenMF-

KH and RenMF-SP usually outperform WRMF in terms of P@5
and R@5. The average improvements of RenMF-KG, RenMF-KH,
and RenMF-SP over WRMF are 17.2%, 4.73%, and 16.74% re-
spectively, in terms of P@5. This demonstrates the importance
of region-level neighborhood characteristics to location recommen-
dation. Moreover, RenMF-KG and RenMF-SP achieve better per-
formance than RenMF-KH on all datasets. This indicates that the
region structure obtained from the geographical information (lon-
gitude and latitude) contributes more to location recommendation
accuracy than the interactions between users and locations.

This again highlights the importance of geographical neighbor-
hood characteristics at region level.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel approach, namely Instance-

Region Neighborhood Matrix Factorization (IRenMF), to location
recommendation by exploiting two levels of geographical neigh-
borhood characteristics from location perspective. By incorporat-
ing these two levels of neighborhood characteristics into the learn-
ing of latent factors of users and locations, IRenMF has a more
accurate modelling of users’ preferences on locations. To solve the
optimization problem of IRenMF, we propose a novel alternating
optimization algorithm, with which IRenMF achieves stable rec-
ommendation accuracy. The experiments on real data show that
IRenMF leads to significant improvements on the classical MF-
based approach, i.e., WRMF, and other state-of-the-art location
recommendation models, i.e., GeoCF and MGMMF. On average,
IRenMF outperforms WRMF, GeoCF, and MGMMF by 38.63%,
17.90%, and 116.49% respectively, in terms of P@10.

The future work will focus on the following potential directions.
First, we would like to evaluate more similarity measures between
locations to capture the instance-level neighborhood characteris-
tics. Second, we are also interested in extending IRenMF to exploit
other complicated region structures (e.g., hierarchical structures)
for more accurate recommendations. Last but not least, we will ap-
ply IRenMF to other problems, e.g., business rating prediction [7].
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APPENDIX

A. PROOF OF THEOREM 1

Take the sub-gradient of ψ(L) over Ld
(g):

∂ψ(L)

∂Ld
(g)

= τ(Ld
(g) − Z

d
(g)) + λ2L

d
(g) + λ3ωg

∂‖Ld
(g)‖2

∂Ld
(g)

, (18)

where
∂‖Ld

(g)‖2

∂Ld
(g)

=
L
d
(g)

‖Ld
(g)

‖2
, if Ld

(g) 6= 0, and
∂‖Ld

(g)‖2

∂Ld
(g)

= {α ∈

R
n(g)×1|‖α‖2 ≤ 1}, otherwise. WhenLd

(g) 6= 0, plugging
∂‖Ld

(g)‖2

∂Ld
(g)

=

L
d
(g)

‖Ld
(g)

‖2
into Eq. (18), we have

(τ + λ2 +
λ3ωg

‖Ld
(g)‖2

)Ld
(g) = τZd

(g). (19)

Taking the vector ℓ2 norm on both sides of Eq. (19):

‖Ld
(g)‖2 =

τ

τ + λ2
‖Zd

(g)‖2 −
λ3ωg

τ + λ2
(20)

Since Ld
(g) 6= 0, the ℓ2 norm of Ld

(g) should be a positive real value,

which requires ‖Zd
(g)‖2 > λ3ωg

τ
. If the condition ‖Zd

(g)‖2 > λ3ωg

τ

holds, by plugging Eq. (20) into Eq. (19), we can get

L
d
(g) =

Z
d
(g)(‖Zd

(g)‖2 − λ3ωg

τ
)

(1 + λ2
τ
)‖Zd

(g)‖2
. (21)

If ‖Zd
(g)‖2 ≤ λ3ωg

τ
, plugging L

d
(g) = 0 into Eq. (18), we obtain

∂‖Ld
(g)‖2

∂Ld
(g)

=
τ

λ3ωg

Z
d
(g). (22)

As τ
λ3ωg

Z
d
(g) ≤ 1, τ

λ3ωg
Z

d
(g) is a valid sub-gradient of ‖Ld

(g)‖2
over Ld

(g), when L
d
(g) = 0.
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