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Abstract—Android requires third-party applications to request
for permissions when they access critical mobile resources, such
as users’ personal information and system operations. In this
paper, we present the attacks that can be launched without
permissions. We first perform call graph analysis, component
analysis and data-flow analysis on various parts of Android
framework to retrieve unprotected APIs. Unprotected APIs
provide a way of accessing resources without any permissions. We
then exploit selected unprotected APIs and launch a number of
attacks on Android phones. We discover that without requesting
for any permissions, an attacker can access to device ID, phone
service state, SIM card state, Wi-Fi and network information,
as well as user setting information, such as airplane, location,
NFC, USB and power modes of mobile devices. An attacker can
also disturb Bluetooth discovery services, and block the incoming
emails, calendar events, and Google documents. Moreover, an
attacker can set volumes of devices and trigger alarm tones and
ringtones that users personally set for their devices. An attacker
can also launch camera, mail, music and phone applications even
when the devices are locked. We compare our research on two
Android versions, and discover that as platform providers incor-
porate more APIs, the number of unprotected APIs increases and
new attacks become possible. We thus suggest platform providers
to inspect Android frameworks systematically before releasing
new versions.

I. INTRODUCTION

Android adopts a permission system to protect users’ secu-
rity and privacy. To access resources that are out of applica-
tion’s sandbox, an application needs to request for permissions
from users. In recent years, it has been reported that the
Android permission system suffers from several flaws. For
instance, unprivileged applications may leverage privileged
applications to perform privileged tasks due to privilege es-
calation attacks [1] [2]. Several applications may collude to
launch attacks with combined permissions from all of the
applications [3] [4]. However, no rigorous study has been
made on what potential attacks an application can launch
on Android smartphone systems without requesting for any
permissions. Therefore, in this paper, we question the coverage
of the current protection mechanisms and investigate to what
extent critical resources are exposed to malicious applications
via APIs without any protection mechanisms. There are two
steps in our study. In the first step, we analyze unprotected Ap-
plication Programming Interfaces (APIs), which allow third-
party applications without any permissions to interact with

mobile system resources, such as GPS and camera, or to
access users’ personal information. In the second step, we
demonstrate several attacks that can be easily launched by
leveraging on the unprotected APIs obtained in the first step.

To retrieve unprotected APIs from Android framework,
we perform the following source-code static analysis: (1)
inter-procedural call graph analysis on system services for
the discovery of all Android Interface Definition Language
(AIDL) interfaces that are not protected by any permission
checking or Linux ID checking mechanisms, (2) component
analysis on system applications for identifying the exposed and
unprotected broadcast receivers, activities and services, and
(3) intra-procedural data-flow analysis for locating unprotected
dynamically registered broadcasts in both system services and
system applications. We apply our analysis on Android Open
Source Project (AOSP) versions 5.1.0 r1 and 4.4.0 r1. On
AOSP version 5.1.0 r1, we identify 735 unprotected APIs
in system services. In system applications, we discover 612
unprotected components, where 156 are unprotected broadcast
receivers, 423 are unprotected activities and 33 are unprotected
services. Moreover, we discover 206 unprotected dynamically
registered broadcasts, where 50 exist in system services and
156 exist in system applications. It is alarming that a high
number of unprotected APIs is discovered in different parts of
Android frameworks. We also compare our analysis results on
versions 5.1.0 r1 and 4.4.0 r1. We discover that the number
of unprotected APIs increases on the newer version due to the
newly added functionalities. This is contrary to the common
belief that the security of a new version should improve, since
many security flaws in an old version are reported and fixed.

After obtaining unprotected APIs, we create an adver-
sary third-party application without any permissions, which
launches Java reflection attacks, broadcast injection attacks,
broadcast hijacking attacks, malicious activity launch attacks,
activity hijacking attacks, malicious service launch attacks,
and service hijacking attacks. We discover that on Android
version 4.4.0 r1, an attacker can block the synchronization of
emails, calendar events, browser bookmarks, browsing history,
browser extension, Google documents, and Google notes. In
addition, an attacker can send notifications, set car mode, set
night mode, wake up the device at certain time, and set screen-
off time. We reported our attacks on AOSP version 4.4.1 r1 to



Google and some of the reported vulnerabilities are fixed on
version 5.0.0 r1. Nonetheless, we still discovered more attacks
on version 5.1.0 r1, which are also subsequently reported and
fixed on version 5.1.1 r35 and version 6.0. This shows that
while the platform providers make their effort in improving
the security of Android framework, they need a powerful tool
to win the “arms race”.

On version 5.1.0 r1, we discover that an attacker can
obtain country, Wi-Fi information, subscriber information,
tether state, airplane mode, NFC state, GSM/ CDMA strength,
location mode, USB state, power state and security setting for
lock screens. Moreover, some resources, such as device ID
and SIM card state, which should be accessed by permission-
granted applications only, are accidentally made available to all
applications via unprotected APIs. An attacker can arbitrarily
set the volumes of Android phones and play users’ incoming
call ringtones, alarms, and notification sounds. An attacker
can block Bluetooth discovery services, and launch camera,
mail, music and phone system applications even when the
targeted devices are locked. An attacker can also hijack various
activities of system applications, including the interfaces for
setting VPN (Virtual Private Network), Bluetooth and Wi-
Fi, as well as the interfaces for adding device administrators
and user accounts. These attacks show that the negligence in
designing API-level permission enforcement causes various
threats to users’ security and privacy. We suggest platform
providers to systematically analyze unprotected APIs before
releasing new versions, so that similar attacks are prevented
in the future.

The rest of the paper is organized as follows. In Section II,
we define our adversary model. In Section III, we describe
how we retrieve unprotected APIs. In Section IV, we show
a set of proof-of-concept attacks on AOSP version 5.1.0 r1.
In Section V, we compare our results with AOSP version
5.1.0 r1. In Section VI, we provide some discussions on our
research. In Section VII, we summarize the related work.
Finally, we conclude the paper in Section VIII.

II. ADVERSARY MODEL

Our adversary is a third-party application without any
privileges or permissions, which launches malicious opera-
tions using unprotected Android APIs. We refer to it as “an
attacker” in this paper. We classify Android APIs into three
categories: (1) normal APIs supported by system services,
(2) loosely-coupled APIs supported by system applications,
and (3) dynamically registered broadcasts in both system
services and system applications. In the first category, API
calls from applications are handled by system services, which
provide main client-server interfaces between system-level
processes and third-party application processes. For instance,
to exercise a complete control over cameras, such as chang-
ing the zoom and flash light settings, an application may
access com.hardware.camera2 API, which in turn com-
municates with the system service, android.hardware.
ICameraService. In the second category, loosely-coupled
APIs are supported by system applications, which provide easy

access to mobile phone functions. For instance, to take a photo
or a video, an application may call the system application
Camera using intents. Unlike normal APIs and loosely-
coupled APIs, dynamically registered broadcasts in the third
category are undocumented APIs. They are mainly used for
internal communications among system services and system
applications. All these types of APIs can be abused by an
attacker when they are not properly protected.

A. System Services

Third-party applications access APIs of system services
by calling the method getSystemService(name) of the
Context class. The parameter name represents the name of
the required system service. The returned object is then casted
into the Manager class. For example, AlarmManager
object can be retrieved by invoking the method with parameter
“alarm”. However, security checks performed inside the
Manager class can be easily bypassed [5]. Moreover, APIs
listed inside the Manager class are not complete; third-party
applications can use Java reflection to invoke private APIs,
which are marked with “@hide” annotations. Thus, we assume
that an attacker may use Java reflection to interact with all
unprotected APIs, including public and private APIs. Using
Java reflection, an attacker invokes the getService(name)
method inside the hidden ServiceManager class. Even
though ServiceManager is a hidden class, it is unlikely to
change, as the android.jar library relies on it to support
normal APIs. The getService(name) method returns an
IBinder object, which can be used to invoke any exposed
methods inside the corresponding system services. Listing 1
shows an example attack on AOSP version 4.4.4 r1, where
an attacker attempts to set the maximum screen-off time on
mobile devices.

B. System Applications

System applications provide loosely coupled APIs
by exposing their components in the applications’
AndroidManifest.xml files. In each XML file,
<application> is the parent element, which contains
some sub-elements for the application’s components, such as
<service>, <activity>, and <receiver>. Several
tags and attributes are used to protect the components
of system applications from other applications. They
include intent-filter, exported, permission and
enabled. Each exported and enabled component without
any permission protection represents an unprotected API.
We consider the following types of attacks: broadcast theft,
malicious broadcast injection, activity hijacking, malicious
activity launch, service hijacking, and malicious service
launch. Our paper is the first to consider these types of
attacks on AOSP system applications and analyze them
as a part of Android framework, although they have been
applied on third-party applications and vendor-customized
system applications by Chin et. al. [6] and Wu et al. [7]
respectively. Note that we consider broadcast receivers of
system applications or both broadcast theft and malicious



1 //Invoke ServiceManager.getService("power") method and obtain IBinder object of PowerManagerService
2 Class serviceManagerClass = Class.forName("android.os.ServiceManager");
3 Method getServiceMethod = serviceManagerClass.getDeclaredMethod("getService", String.class);
4 IBinder iBinder = (IBinder) getServiceMethod.invoke(null, "power");
5

6 //Get Stub object of IPowerManager by passing IBinder object to asInterface() method
7 Class stubClass = Class.forName("android.os.IPowerManager$Stub");
8 Method asInterfaceMethod = stubClass.getMethod("asInterface", new Class[]{IBinder.class});
9 Object IPowerManagerObj = asInterfaceMethod.invoke(null, iBinder);

10

11 //Invoke IPowerManager.setMaximumScreenOffTimeoutFromDeviceAdmin(0) method using Java reflection
12 Class IPowerManagerClass = Class.forName("android.os.IPowerManager");
13 Method setScreenOffTimeoutMethod = IPowerManagerClass.getDeclaredMethod

("setMaximumScreenOffTimeoutFromDeviceAdmin", Integer.TYPE);↪→

14 System.out.print(setScreenOffTimeoutMethod.invoke(IPowerManagerObj, 0));

Listing 1: An Example Attack using an Unprotected API from a System Service

broadcast injection attacks, so that we can discover as many
attacks as possible on AOSP framework.

In addition to intent-filter, exported,
permission and enabled tags and attributes used
in AndroidManifest.xml files, the concept of protected
broadcasts is used for limiting broadcast injection. Protected
broadcasts are broadcasts that can only be sent by applications
running in system-level processes. Protected broadcasts
are defined in the AndroidManifest.xml file of
AOSP root source code. For example, if the file includes
the <protected-broadcast android:name =
"android.intent.action.PACKAGE_INSTALL"/>
tag, Android system allows no applications except system-
level applications to send broadcasts with the action string,
android.intent.action.PACKAGE_INSTALL. Thus,
when launching broadcast injection attacks, we exclude these
protected broadcasts from a list of our discovered broadcasts.

C. Dynamically Registered Broadcasts

Both system services and system applications may
register broadcast receivers dynamically using APIs, such as
registerReceiver(BroadcastReceiver,Intent
Filter) or send broadcasts using APIs, such as
sendBroadcast(Intent). For simplicity, we refer
to these types of broadcast receivers and broadcasts as
“dynamically registered broadcasts” or simply “broadcasts”
under related sections. Using them, an attacker may launch
broadcast theft and broadcast injection attacks.

III. RETRIEVING UNPROTECTED APIS

Retrieving unprotected APIs is not trivial due to a wide
variety of API types, vast presence of APIs in Android
framework and different protection mechanisms enforced. In
this section, we apply three types of analysis for retrieving
unprotected APIs: (1) call graph analysis on APIs provided by
system services, (2) component analysis on APIs supported by
system applications ,and (3) data flow analysis on dynamically
registered broadcasts. The result of our analysis provides a
broad overview of unprotected APIs in Android framework.
Our analysis is first applied to AOSP version 5.1.0 r1 with
API level 22 (Lollipop). We perform call graph analysis and

data flow analysis based on Soot [8] version 2.5, which is
an existing Java source code analysis tool. We also develop
our own tool written in Python for scanning and identifying
necessary source code files, and for analyzing components of
system applications. We use an LG Nexus 5 for testing.

A. Call Graph Analysis on System Services

Using Android Debug Bridge (ADB) command, we discover
97 system services in Android 5.1.0 r1 version, where 11 of
them are listed without any interface names. These 11 system
services are designed to communicate with other system-level
processes only. We identify all the unprotected APIs of system
services using call graph analysis. A call graph is a directed
graph, where each node represents a method and each edge
indicates the invocation of one method to another. Our call
graph analysis involves three steps: (1) finding all available
APIs from a system service, (2) finding all security checking
methods protecting the APIs, and (3) finding whether there
exists at least one method call chain from an exposed API to
any security checking method.

Step 1: Finding Source Methods - The source methods are
the public methods of system services that are exposed via
AIDL interfaces. We apply Soot to load a list of system service
classes, and loop through all their public methods. In this
way, we discover 1,751 APIs that are exposed to third-party
applications.

Step 2: Finding Sink Methods - The sink methods are
the methods that perform security checks. In this paper, we
consider permission and Linux ID checking mechanisms of
system services. Some methods in Andriod framework are
dedicated for permission checking [9], and we identify 35 of
them, including 18 methods from the ContextImpl class, 2
methods from the ActivityManager class and 15 methods
from the PackageManagerService class.

There is no specific method dedicated for Linux ID check-
ing. System services normally perform the following steps for
Linux ID checking. First, they obtain the UID or PID of the
calling application or process using getCallingPid() and
getCallingUid() methods from the Binder class. After
that, they perform conditional check, such as “callingUid



!= Process.SYSTEM_UID”, where SYSTEM_UID rep-
resents 1000. To locate ID checking methods, we first
identify whether a method calls getCallingPid() and
getCallingUid(). We then determine whether the re-
turned variables are checked against any system-level Linux
IDs in any If statements in the following source code. Note
that the UIDs for system applications range from 0 to 9999.
For instance, the UID for root user is 0, and the UID for
telephony is 1001. The most commonly used UID is 1000,
and it is used for running system server codes with certain
privileges. As long as there exists at least one check against
system-level IDs, we regard this method as a sink method.

Step 3: Building Call Graph - A context-insensitive inter-
procedural call graph is built using Soot. The set of publicly
accessible methods (i.e. source methods) are marked as entry
points of the call graphs. After building the call graph, we loop
through the method calls, and check if each source method
ends up with any sink methods. We then exclude the methods
with any security checking. In this way, we discover a list of
methods that are not protected by any security mechanisms.
Our analysis discovers 735 unprotected APIs, which count
for 41.98% of total public APIs of system services. Our call
graph analysis shows that a large number of Android APIs
are unprotected and accessible by any third-party applications
without any privileges.

B. Component Analysis on System Applications

We apply component analysis to retrieve unprotected com-
ponents of system applications. There are altogether 69 system
applications. We extract the component information from the
AndroidManifest.xml files of system applications. We
discover altogether 110 broadcast receiver components, 414
activity components and 140 service components from 69
system applications. A single system application component
may have multiple <intent-filter> tags with multi-
ple action strings. To discover unprotected action strings of
system components, we first analyze if the system applica-
tions implement any application-level permissions. We then
explore the components of system applications that satisfy the
following conditions: (1) the components’ attributes contain
intent-filter, (2) permission is set to none, and
(3) exported is set to none or true. In our analysis,
we do not consider the enabled attribute, since it can be
changed dynamically. Table I shows the result of our compo-
nent analysis on system applications. Activities represent the
most common type of unprotected action strings, followed by
broadcast receivers and services.

Unlike other components, broadcasts can be further
protected by Android system. Such broadcasts are
called protected broadcasts, which are defined with
<protected-broadcast> tag. Only system-level
processes are allowed to send protected broadcasts. We
obtain a list of protected broadcasts from the manifest file
located under directory frameworks/base/core/res/
AndroidManifest.xml. In total, we discover 225
protected broadcasts in the manifest file. Among the 86

Broadcast
Receivers

Activities Services

No of unprotected action strings 156 423 33
No of unique unprotected action
strings

86 189 23

No of unprotected system appli-
cations

30 45 9

TABLE I
ANALYSIS RESULT OF SYSTEM APPLICATIONS

broadcast action strings exposed from system applications, 34
of them are protected system broadcasts. Thus, an attacker
may launch broadcast injection attacks with the remaining 52
broadcasts.

C. Data Flow Analysis on Dynamically Registered Broadcasts

Both system services and system applications may register
and send broadcasts dynamically. We first retrieve the source
code files of system services and system applications. After
that, we apply data flow analysis to obtain the broadcast action
strings from the source code files.

1) Identifying Dynamically Registered Broadcasts: From
the AIDL interfaces obtained from the ADB command, we
retrieve the Java files of system services. For instance, we
find AlarmManagerService file from IAlarmManager
AIDL interface. To achieve this, we scan the entire framework,
and obtain Java files that (1) extend AIDL interfaces, (2)
create new Stub classes with AIDL interface names or (3)
implement AIDL interfaces and later extend them. These are
the different ways by which system services implement their
AIDL interfaces. In total, we discover 80 files of system
services. The remaining services are only exposed via na-
tive codes, and thus excluded from our analysis. To obtain
the source code of system applications, we scan the AOSP
source code directories, read in every Java file, and look for
package names of system applications. In total, we collect
1,392 source code files for 69 system applications. From the
identified source code files of system services and system
applications, we search for broadcast registering methods,
such as registerReceiver(BroadcastReceiver,
IntentFilter), and broadcast sending methods, such as
sendBroadcast(Intent), of Context class. We apply
data flow analysis on these methods so as to obtain the action
strings of dynamically registered broadcasts.

2) Data Flow Analysis: IntentFilter is a parameter
of broadcast registering methods, and Intent is a parameter
of broadcast sending methods. Both IntentFilter and
Intent are defined using action strings. IntentFilter
can be initialized with an action string using new
IntentFilter(String action) method, or it can be
initialized first using new IntentFilter() method and
later defined using the addAction(String action)
method. We perform a backward data flow analysis on these
methods using Soot so as to identify the required action
strings. In total, we discover 130 unique broadcast action
strings (238 instances) from system services and 207 unique



action strings (424 instances) from system applications. Af-
ter that, we determine whether the retrieved action strings
are protected. By extracting protected broadcasts from our
discovered broadcasts, we have 50 unprotected broadcasts in
system services and 156 unprotected broadcasts in system
applications, which can be abused by an attacker.

IV. ATTACKING WITHOUT PERMISSIONS

Our static analysis provides a list of unprotected APIs from
system services, a list of unprotected components from system
applications, and a list of unprotected dynamically registered
broadcasts. We confirm the attacks by exploiting them with a
third-party application without any permissions. In particular,
we show that Java reflection attacks can be launched on APIs
supported by system services and that intent-based attacks can
be launched by exploiting the APIs supported by system ap-
plications and dynamically registered broadcasts. The attacks
are performed semi-automatically: many codes used in the
attacks are generated automatically, while parameters required
for some attacks are identified manually. For instance, we auto-
matically generate the codes, such as sendBroadcast(new
Intent("actionString"));, where actionString
is replaced by the real action strings discovered from our static
analysis. Note that we aim not to provide an exhaustive list of
all possible attacks but to show how easily serious attacks
can be launched to Android smartphone systems without
requesting for any permissions.

A. System Services

We identify two main types of possible attacks via the
unprotected APIs supported by system services. An attacker
may control various audio functions of mobile devices and
steal users’ information.

1) Audio Control: A system serivce, IAudioService,
provides several unprotected APIs for controlling the audio
systems. Without requesting for any permissions, an attacker
may trigger call ringtones and alarms that users personally set
for their phones. An attacker may produce other special sound
effects, such as notification, click, and keypress sounds. To do
so, an attacker first uses the getRingtonePlayer() API
to obtain an IRingtonePlayer object, and then invokes
its play() method. Moreover, an attacker may arbitrarily set
the volumes of call ringtone, alarm, notification, music, system
and voice call sounds using the setStreamVolume() API.
An attacker abusing both unprotected APIs can be dangerous.
For instance, an attacker may set the devices to their highest
volumes and start playing ringtone or alarm sounds continu-
ously. In such cases, even when devices are set to silent mode,
they start ringing, which may disturb users in various social
situations, such as in meetings. The only way for users to stop
such attacks is to shut down their phones. In similar attacks,
an attacker may confuse users by playing notification sounds
without sending any notifications. Alternatively, an attacker
may set the volume to 0 so that users become unaware of any
incoming calls or alarms.

2) Information Leakage: An attacker may obtain infor-
mation about user’s device ID, SIM card state, call state,
ringer mode, input devices, country and copied data from
clipboard. The unprotected APIs exploited for such attacks
are shown in Table II. Interestingly, we discover that device
ID and SIM card state are accidentally made available via
unprotected APIs, although they are supposed to be pro-
tected by android.permission.READ_PHONE_STATE
permission. An attacker, who tracks such information contin-
uously, can easily identify individual users and infer users’
behaviours, which violates users’ privacy.

B. System Applications

By exploiting unprotected APIs of system applications,
an attacker may launch the following attacks: broadcast
theft, malicious broadcast injection, activity hijacking, mali-
cious activity launch, service hijacking, and malicious ser-
vice launch. Broadcast theft, activity hijacking, and ser-
vice hijacking attacks occur when an attacker intercepts
intents by registering intent filters with unprotected ac-
tion strings in its AndroidManifest.xml file. Malicious
broadcast injection, malicious activity launch, and malicious
service launch attacks occur when an attacker sends in-
tents with sendBroadcast(Intent), startActivity
(Intent) and startService(Intent) methods. Such
intents are initialized with unprotected action strings identified
in the previous section. The intent theft attacks normally result
in information leakage and component hijacking, while the
other attacks result in unintended changes of system state.

1) Broadcast Theft: We discover that an attacker
is able to obtain network, alarm, and account related
information by intercepting unprotected broadcast intents.
From the broadcast with action string android.net.
conn.CONNECTIVITY_CHANGE, an attack may
obtain network name, network state (e.g. connected,
disconnected, connecting), network type (e.g. Wi-Fi or
mobile LTE), and roaming status. An attacker may receive
android.app.action.NEXT_ALARM_CLOCK_CHANGED
broadcast when a next alarm is set on the device. An
attacker can also obtain android.accounts.LOGIN_
ACCOUNTS_ CHANGED broadcast when user account
information (e.g., Gmail, Facebook, Skype account) is
changed. Although some information leakage seems benign,
it becomes serious when combined with other information.
For instance, by constantly retrieving device ID and network
name, an attacker may identify an individual user and
determine the user’s home and work locations.

2) Malicious Broadcast Injection: Various attacks can
be launched by sending broadcasts with unprotected action
strings. An interesting finding is that the action string
android.bluetooth.intent.DISCOVERABLE_TIME
OUT is unprotected. By continuously sending broadcasts
with this action string, an attacker can block other
Bluetooth phones from discovering the exploited device.
This attack disables the scan mode of the device’s Bluetooth
adapter and thus, makes its Bluetooth service unusable.



Leaked Infor-
mation

Description Exploited Method Exploited Class

Device ID Unique device ID, such as IMEI for GSM and the MEID or ESN for
CDMA phones

getDeviceId() IPhoneSubInfo

SIM Card
State

Whether SIM card is ready, absent or requires PIN to unlock getSimStateForSubscriber() iSub

Lock Setting Whether user sets password or pattern lock havePassword() and havePattern() ILockSettings
Call state Whether there is an incoming call, established telephony call, or

established audio/video chat or VoIP call
getMode() IAudioService

Ringtone
mode

Whether ringer mode is silent and vibrate, silent and not vibrate or
normal

getRingerModeInternal() IAudioService

Input Device External and internal input devices, such as joystick or keyboard type getInputDevice() IInputManager
Country Current country of user detectCountry() ICountryDetector
Copied data Copied data from clip board addPrimaryClipChangedListener() IClipboard

TABLE II
INFORMATION LEAKAGE FROM SYSTEM SERVICES

Another finding is that by exploiting the action strings,
android.btopp.intent.action.OPEN_RECEIVED_
FILES and android.intent.action.DOWNLOAD_
NOTIFICATION_CLICKED, an attacker may open
the folders where the mobile user receives files from
Bluetooth transfer, and where the downloaded files
exist. Finally, an attacker may launch an input method
chooser for different languages using action string
android.settings.SHOW_INPUT_METHOD_PICKER.

3) Activity Hijacking: During activity hijacking, an
attacker launches its own applications when intents with
unprotected action strings are triggered. From our analysis,
we discover that android.intent.action.DIAL and
android.media.action.STILL_IMAGE_CAMERA_
SECURE action strings are not protected by any permissions.
Thus, an attacker may hijack phone and camera applications,
when users launch them from their lock screens. Another
finding is that an attacker may hijack Bluetooth, Wi-
Fi, account (e.g. Gmail account), and Virtual Private
Network (VPN) setting pages, when they are launched
from the Setting application. The exploited action strings
include android.settings.BLUETOOTH_SETTINGS,
android.settings.WIFI_SETTINGS, android.set
tings.ADD_ACCOUNT_SETTINGS, and android.net.
vpn.SETTINGS. However, activity hijacking is hindered by
the application chooser, which is launched, when there are
conflicting applications handling the same intent. It is thus
difficult for an attacker to launch these attacks without being
noticed.

4) Malicious Activity Launch: We discover that an attacker
may launch several unprotected activities from system ap-
plications. Since some activities are entry points of system
applications, this attack leads to the launching of the corre-
sponding applications. An attacker may launch lock screen,
emergency dialer, camera, mail, and music applications in
such attacks. Some attacks, such as launching lock screen
and emergency dialer, may confuse users, while other attacks,
such as launching camera, may drain device batteries. In the
following, we provide more details about such attacks for
different system applications.

Warnings: An attacker may launch activities for the follow-

ing warning messages: “Network monitoring: A third party is
capable of monitoring your network activity, including emails,
apps, and secure websites. A trusted credential installed on
your device is making this possible.”, “‘Attention. You need
to set a lock screen PIN or password before you can use
credential storage,” “Attention. Remove all contents? Cancel
or Ok,” and “Oops! This device is already set up.” A severe
consequence of these attacks is that user’s selection from the
warning messages takes real effect on the state of the phone.

Setting UIs: 67 activities of the system setting application
are exposed to third-party applications in our findings. These
activities include setting User Interfaces (UIs) for security
(lock screen, encryption, credential storage and device admin-
istration), privacy (factory reset, restore and backup), devel-
oper options, Bluetooth, Near Field Communication (NFC)
payment, Wi-Fi, location, sound, USB, and system notifica-
tion. An attacker may launch these interfaces at any time
without requesting for any permissions.

Others: Several hidden features can be launched using
unprotected action strings. An example is the colour correction
setting. When this activity is launched, the exploited interface
states that this colour correction feature is experimental and
may affect the performance of phones. Another attack is to
launch the mobile emergency alert setting page, which lists
the threats to life and property (e.g., robbery) around the area.
Other unprotected activities includes the Wi-Fi network choos-
ing interface, the brightness setting interface, the wallpaper
setting interface, the live wallpaper choosing interface, and
the downloaded file interface.

5) Service Hijacking: From Android 5.0 and above, only
explicit intents with clearly stated package names can be used
for binding services. Consequently, an attacker cannot launch
any service hijacking attacks by simply declaring similar
services with the same action strings as those of system
applications’ services.

6) Malicious Service Launch: There are two steps in-
volved in launching the malicious service launch. An at-
tacker first binds the services exposed from system ap-
plications and then invokes the methods inside. We dis-
cover that an attacker can successfully bind 15 services of
system applications, including 14 services from Bluetooth



Leaked
Informa-
tion

Description Exploited Broadcast Action String

Network
and Wi-Fi

NetworkInfo object - network name, network
state (e.g. Connected, disconnected, connecting), net-
work type (e.g. Wi-Fi or mobile LTE)
WifiInfo object- SSID, BSSID, MAC address,
link speed, frequency
LinkProperties object - Interface name, link
address, routes, DNS address, domains

android.net.conn.CONNECTIVITY CHANGE
android.net.wifi.STATE CHANGE
android.net.wifi.WIFI STATE CHANGED

Tether
State

Which portable Wi-Fi hotspot is on and available android.net.conn.TETHER STATE CHANGED

Airplane
Mode

Whether airplane mode is on or off android.intent.action.AIRPLANE MODE

NFC State Whether NFC is on or off android.nfc.action.ADAPTER STATE CHANGED
SIM Card
State

Whether SIM card state, such as ready or absent,
changes

android.intent.action.SIM STATE CHANGED

Phone Ser-
vice State

Whether phone is in service, out of service, emer-
gency only or power off

android.intent.action.SERVICE STATE

Subscription
State

Whether data, SMS or voice subscription changes android.intent.action.ACTION DEFAULT SUBSCRIPTION CHANGED
android.intent.action.ACTION DEFAULT DATA SUBSCRIPTION CHANGED
android.intent.action.ACTION DEFAULT SMS SUBSCRIPTION CHANGED
android.intent.action.ACTION DEFAULT VOICE SUBSCRIPTION CHANGED

GSM/CDMA
Strength

Various measurements including LteRsrp, LteRssbr,
LteCqi, CdmaDbm, CdmaEcio, GsmSignalStrength,
EvdoDbm, EvdoSnr, EvdoEcio, GsmBitErrorRate

android.intent.action.SIG STR

Location
Mode

Whether location mode, such as high accuracy (use
GPS, Wi-Fi, cellular network to determine location),
battery saving (use Wi-Fi and cellular network to
determine location) or device only (Use GPS to
determine location), changes

android.location.MODE CHANGED
android.location.PROVIDERS CHANGED

Volume Volum value and whether phone is muted android.media.VOLUME CHANGED ACTION
android.media.RINGER MODE CHANGED
android.media.STREAM MUTE CHANGED ACTION

USB State Whether USB is connected, in ADB mode or con-
figured

android.hardware.usb.action.USB STATE

Power
State

Whether power is connected or disconnected android.intent.action.ACTION POWER CONNECTED
android.intent.action.ACTION POWER DISCONNECTED
TABLE III

INFORMATION LEAKAGE FROM DYNAMICALLY REGISTERED BROADCASTS

system applications and one media service. An attacker
may search for the class names of the exposed services
in AndroidManifest.xml files of system applications,
and use their class names for binding with explicit intents.
After binding, however, an attacker cannot invoke any ex-
posed methods from these services, because these methods
are well-protected inside the source code of services. For
instance, the methods from the Bluetooth system application
are protected by the android.permission.BLUETOOTH
and android.permission.BLUETOOTH_ADMIN per-
missions. Therefore, an attacker cannot launch any useful
attacks by simply invoking these exposed methods.

C. Dynamically Registered Broadcasts

We show that several broadcast theft and malicious broad-
cast injection attacks can be launched by exploiting unpro-
tected dynamically registered broadcasts.

1) Broadcast Theft: Similar to the broadcast theft attacks
to system applications, an attacker may steal user infor-
mation from unprotected dynamically registered broadcasts.
We discover that an attacker is able to obtain network
and Wi-Fi information, tether state, airplane mode, NFC
state, SIM card state, phone service state, subscription state,

GSM/CDMA strength, location mode, volume, USB state,
and power state. A detailed description about the informa-
tion leakage due to broadcast theft is given in Table III.
Although some of the leaked information seems benign, much
useful information can be inferred from it. For example,
location information can be inferred from Wi-Fi data and
GSM/CDMA strength [10]. Users’ payment and travel be-
haviours may be inferred from NFC state and airplane mode.
Users’ sleeping patterns can be inferred from USB state
and power state [11]. We discover that some information is
available to an attack application without any permissions,
even though it is stated in Android API documentation that
such information must be protected by permissions. For in-
stance, according to Android API documentation, network
and Wi-Fi information should be protected by permission
android.permission.ACCESS_NETWORK_STATE; the
SIM card state, phone state, and GSM/CDMS sig-
nal strength information should be protected by permis-
sion android.permission.READ_PHONE_STATE. This
shows that dynamically registered broadcasts leak a lot of
information to third-party applications, and platform providers
should take additional steps to protect these broadcasts.



2) Malicious Broadcast Injection: An attacker may broad-
cast false information via malicious broadcast injections. We
discover that intended receivers of these unprotected broad-
casts are third-party applications or vendor-customized system
applications. However, they are excluded from our study, as we
focus only on Android framework as the attack target. Thus,
although we have confirmed that an attacker can send these
broadcasts, further analysis is required to study the impact of
the attacks to third-party applications and vendor-customized
system applications.

We discover that an attacker may send false commands for
music applications, such as “next”, “pause”, “previous”, and
“toggle pause”. The exploited action strings in this attack in-
clude com.android.music.musicservicecommand.
next, com.android.music.musicservicecommand.
pause, com.android.music.musicservicecomma
nd.previous, and com.android.music.musicser
vicecommand.togglepause. Moreover, an attacker
may send malicious information about the status of
currently running music, such as its metadata, play
state, and queue state. The exploited action strings
include com.android.music.metachanged,
com.android.music. playstatechanged, and
com.android.music.queuechanged broadcasts.
We also discover that an attacker may send broadcast
android.security.STORAGE_CHANGED. This
broadcast is triggered when (i) a new Certificate Authority
(CA) is added, (ii) an existing CA is removed or
disabled, (iii) a disabled CA is enabled, or (iv) the
trusted storage is reset. This attack may cause serious
problems to the receiving applications that act according
to the received broadcasts. Moreover, an attacker may
maliciously broadcast user log-in account, NFC state,
data connection state, and emergency callback mode
changes. The exploited action strings in these cases are
android.accounts.LOGIN_ACCOUNTS_CHANGED,
android.nfc.action.ADAPTER_STATE_CHANGED,
android.intent.action.PRECISE_DATA_CONNECT
ION_STATE_CHANGED and android.intent.action
.EMERGENCY_CALLBACK_MODE_CHANGED.

V. ATTACKING A DIFFERENT VERSION

We apply our study to AOSP version 4.4.4 r1, and compare
to what we have discovered on AOSP version 5.1.0 r1. We
discover the differences in terms of unprotected APIs and
viable attacks on these two versions. The attacks on version
4.4.4 r1 have been reported to the Google’s security team, and
most of them have been mitigated in version 5.1.0 r1. Even
so, we still discover more unprotected APIs and new attacks
in version 5.1.0 r1, which have also been reported to Google.
This implies that the ad-hoc effort in mitigating the reported
attacks is not sufficient, and systematic analysis would be
helpful for platform developers to analyze unprotected APIs
and improve the security of new AOSP versions.

A. Retrieving Unprotected APIs

We discover 79 system services and 69 system applica-
tions on AOSP version 4.4.4 r1. Compared to AOSP version
5.1.0 r1, we have 10 less system services, and the same
number of system applications. Some system services, such
as the fingerprint service and the web-view update service
are not included in AOSP 4.4.4 r1. Our analysis reveals 557
unprotected APIs from AIDL interfaces of system services,
which count for 34.77% of all 1,602 public methods on AOSP
version 4.4.4 r1. There are 88 unprotected unique broadcast
action strings (150 instances), 165 unprotected activity action
strings (394 instances) and 18 unprotected service action
strings (30 instances) from system applications in our results.
It is also discovered that 47 out of total 114 dynamically
registered broadcasts in the source code of system services are
unprotected, and 124 out of 171 dynamically registered broad-
casts in source code of system applications are unprotected.
Compared to AOSP 5.1.0 r1, the number of unprotected APIs
is smaller. This result is alarming, since it indicates that more
unprotected APIs are introduced to the framework as new APIs
are added in the later version.

B. Attacking without Permissions

Our attacks on AOSP previous version 4.4.4 r1 can be
summarized as follows.

1) Denial-of-Service Attacks: By exploiting a single un-
protected API, Content.cancelSync(), an attacker may
launch denial of service attacks on the synchronization of
all content providers. This synchronization API is used for
transferring data between an Android device and web servers.
We discover that on Nexus 5, an attacker may block the
synchronization of Gmail, Google Calendar, Google Drive,
Google Note, Chrome and etc. By doing so, the attacker
can prevent users from receiving new emails, even when
users manually click on “refresh” in email apps. An attacker
may also prevent synchronizing new calendar events with
users’ desktop computers, receiving newly shared google drive
documents, and synchronizing Google notes, synchronizing
Chrome’s bookmarks, history, tabs, passwords, extensions and
many browser-related information. Moreover, we discover that
other popular applications, including Dropbox, Twitter, Face-
book, Skype and Mozilla Firefox, also use the synchronization
API Content.cancelSync(). For instance, Skype uses
the API for synchronizing contact information, while Firefox
uses it for synchronizing bookmarks, history, tab and password
information. Thus, their synchronization functions can be
deferred by an attacker.

2) Other Attacks: An attacker may send notifications to
users, set car mode (which is used to open speaker directly
from calls), set night mode (which allows the OS to intelli-
gently change the color theme depending on the time of day),
wake up the device at certain time (without the wake-lock
permission), and set the screen-off time. Moreover, an attacker
may obtain a variety of valuable information from users’
devices, including what password salts are used, whether users
set security for lock screen, whether users use passwords, pins



or pattern locks for log-in, whether the lock screen is on or off,
and whether the screen is turned on. Moreover, a false system
notification can be sent to show that devices have entered into
the emergency callback mode.

VI. DISCUSSIONS

Our research reveals many attacks that can be launched by
applications with no permissions. This discovery is important,
because a significant portion of Android security research
focuses on applications that have permissions, and no one
has looked into the unprotected resources, which are easily
accessible without permissions. Many of our attacks, after
being reported twice for two versions, have been acknowl-
edged and fixed by the platform provider. This shows that our
analysis on unprotected APIs is necessary in improving the
security of Android framework. Note that we do not suggest
to reclassify and protect all the corresponding resources that
are attacked in this paper. The reason is that protecting all
resources may degrade the usability of the framework. For
example, usability researchers state that too many permission
requests may cause users to grant permissions without careful
considerations [12]. Therefore, while we highlight the security
flaws of unprotected APIs in this paper, we believe that an
optimal defense mechanism should consider not only the se-
curity and privacy aspects but also the flexibility and usability
aspects of the framework. Coming up with an optimal solution
for this problem is not trivial and requires involvement from
both research and industry communities. Thus, we leave it as
future work to find various ways of protecting the currently
unprotected resources without degrading other aspects of the
framework. In the meantime, we suggest platform providers to
systematically analyze unprotected APIs before releasing new
versions, so that similar attacks are prevented in the future.

We identify three ways in which our analysis of Android
APIs can be improved and used as a commercial vulnerability
analysis tool. First, our paper focuses only on detecting unpro-
tected APIs and exploiting them for attacks. Thus, a natural
step forward is to determine whether an unprotected API is
indeed vulnerable by analyzing the nature of the API source
code. Second, platform providers may consider analyzing
other types of unprotected APIs, such as callback methods,
listeners and class fields. Callback methods and listeners
provide alternative ways of inter-process communication, and
they may expose some vulnerabilities from Android APIs.
Third, platform providers may consider a more advanced
adversary, which possesses certain privileges or permissions.
Such adversary may be categorized according to its permission
level, such as normal, dangerous, signature, and
signatureOrSystem, and/or according to the types of
Linux users associated to privileges, such as root, system,
keystore, media, nobody, wifi, and u0_a86. A more
advanced adversary would lead to more serious attacks.

VII. RELATED WORK

The mapping between API calls and permission checks on
Android has been investigated in prior research, including

Stowaway by Felt et al. [5], COPES by Bartel et al. [13] and
PScout by Au et al. [14]. Our work is different from these
works in that they focus on permission usage, while our paper
focuses on unprotected APIs and potential exploits. Besides
permission checking, we also consider Linux ID checking in
our analysis.

The topic of system-level vulnerabilities in Android frame-
work has been studied before. DexDiff by Mitchell et al. [15]
investigates the vulnerabilities in vendor- customized frame-
works by comparing them with the official Android systems
in binary analysis. ADDICTED by Zhou et al. [16] performs
the analysis of vendor-customized components. In particular,
it identifies critical Linux files and compares their protection
levels in terms of Linux file permissions between customized
framework and AOSP. If a file is less protected on customized
framework, then it is more likely to be attacked. This line of
works focuses on the vendor-modified components of Android
frameworks, while we focus on unprotected APIs and their
exploits in Android frameworks. Similarly, Wu et al. [7] study
vendor customizations of system applications. They discover
that the vendor-customized applications are vulnerable to per-
mission re-delegation attacks, confused deputy attacks, passive
content leak attacks, and content pollution attacks. Another
way of Android vulnerability analysis is performed by Yang
et al. in IntentFuzzer [17] and Ye et al. in DroidFuzzer [18].
They automatically construct intents and use brute force to
discover vulnerabilities. However, as stated in IntentFuzzer,
their research does not penetrate deep into application logic
nor uncover interesting bugs for launching serious attacks.
Kratos [19] also uses call graph analysis to find vulnerabilities
in Android framework. However, it focuses on the inconsis-
tencies of security checking, while our paper focuses on APIs
without any security checking.

Vulnerable components of third-party applications have
been investigated before. ComDroid by Chin et. al. [6] an-
alyze the inter-application communications among third-party
applications so as to identify vulnerable components of third-
party applications. We use a similar threat model in our
analysis and apply it on system applications. Wu et al. [20]
use the reachability analysis to identify and categorize such
vulnerabilities. Another work, EPICC, by Octeau et al. [21]
show that over 93% of third-party applications contain vul-
nerable components. To exploit the vulnerable components,
Li et al. [22] propose an approach which can automatically
generates an attack application. In comparison to these works,
part of analysis in our research focuses on intent-based vul-
nerabilities of system services and system applications, rather
than third party applications. On the other hand, a line of work
focuses on how to prevent attacks from exploiting vulnerable
components of third-party applications. For example, CHEX
by Lu et al. [23] mitigates such attacks by statically vetting
third-party applications. AppSealer by Zhang and Yin [24]
focuses on how to generate security patches automatically so
as to prevent the intent-based attacks to vulnerable components
of third-party applications. Oh et al. [25] propose a solution
to address the denial of service attacks on ordered broadcasts.



VIII. CONCLUSIONS

In this paper, we show how an attacker, which is a third-
party application without any permissions, can attack Android
smartphone systems by exploiting various unprotected An-
droid APIs, including unprotected AIDL interfaces of system
services, unprotected components of system applications, and
unprotected dynamically registered broadcasts. The attacks we
discover include blocking Bluetooth and email services, con-
trolling audio functions, stealing valuable device information,
and hijacking system activities and broadcasts. The result of
this paper suggests that Android platform providers should
carefully analyze the exposed APIs, and mitigate any identified
attacks. We envision that with more features added to Android
devices, larger source code sizes of Android frameworks, and
faster paced releases of Android versions, such analysis and
mitigations are much needed to achieve better security in
Android system development.
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