
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2017

H-Binder: A hardened binder framework on Android systems H-Binder: A hardened binder framework on Android systems

Dong SHEN
Beijing University of Aeronautics and Astronautics (Beihang University)

Zhangkai ZHANG
Beijing University of Aeronautics and Astronautics (Beihang University)

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Zhoujun LI
Beijing University of Aeronautics and Astronautics (Beihang University)

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
SHEN, Dong; ZHANG, Zhangkai; DING, Xuhua; LI, Zhoujun; and DENG, Robert H.. H-Binder: A hardened
binder framework on Android systems. (2017). Security and privacy in communication networks: 12th
International Conference, SecureComm 2016, Guangzhou, China, October 10-12, Proceedings. 198, 24-43.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3763

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

H-Binder: A Hardened Binder Framework
on Android Systems

Dong Shen1, Zhangkai Zhang1, Xuhua Ding2, Zhoujun Li1(B),
and Robert Deng2

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

{dongshen,lizj}@buaa.edu.cn, zhangzhangkai315@gmail.com
2 School of Information Systems, Singapore Management University,

Singapore, Singapore
{xhding,robertdeng}@smu.edu.sg

Abstract. The Binder framework is at the core of Android systems due
to its fundamental role for interprocess communications. Applications
use the Binder to perform high level tasks such as accessing location
information. The importance of the Binder makes it an attractive target
for attackers. Rootkits on Android platforms can arbitrarily access any
Binder transaction data and therefore have system-wide security impact.
In this paper, we propose H-Binder to secure the Binder IPC channel
between two applications. It runs transparently with Android and COTS
applications without making changes on their binaries. In this work, we
design a bare-metal ARM hypervisor with a tiny code base at runtime.
The hypervisor interposes on the main steps of a Binder transaction by
leveraging ARM hardware virtualization techniques. It protects secrecy
and integrity of the Binder transaction data. We have implemented a
prototype of the H-Binder hypervisor and tested its performance. The
experiment results show that H-Binder incurs an insignificant overhead
to the applications.

Keywords: Android · Binder · Virtualization · ARM · System security ·
Hypervisor

1 Introduction

Android is designed with an object-oriented philosophy where a variety of built-
in system applications (named as managers by Android) are abstracted as
objects and tasked to manage system-wide resources, such as display and net-
work I/O. User applications such as games and m-banking apps usually do not
directly access system resources like their counterparts on a PC. To access system
resources or to distribute data, applications heavily utilize interprocess commu-
nication (IPC) to remotely call other objects’ methods. The Linux kernel in the
Android system offers the Binder mechanism [28] as the main avenue for IPC
transactions. Functionality-wise, the centerpiece of Android’s Binder framework
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 24–43, 2017.

DOI: 10.1007/978-3-319-59608-2 2

Published in Security and privacy in communication networks: 12th International Conference, SecureComm
2016, Guangzhou, China, October 10-12, 2016, Proceedings. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol 198. Springer, Cham. pp. 24-43.
http://doi.org/10.1007/978-3-319-59608-2_2

H-Binder: A Hardened Binder Framework on Android Systems 25

is its Binder driver residing in the kernel, although a large portion of code is in
user space for marshaling the data.

Of the similar consequence of a rogue router attacking networking applica-
tions, a malware with kernel privilege can attack the Binder-based interprocess
communications. Recent attacks [4,24,34] have demonstrated the feasibility and
easiness of reading and manipulating the Binder transaction data, including key-
board inputs, SMS messages. Note that the Binder IPC is also sometimes used
for an application’s internal data exchanges. For instance, an m-banking app’s
user-interface thread may use the Binder to forward the transaction amount to
its processing thread. The usage of the Binder could be transparent to the app
developer. As shown in [4], an app using HTTPS for its Internet communica-
tions does not send out ciphertext directly. Instead, its plaintext data is firstly
forwarded to Android’s Network Manager through the Binder channel. In short,
the corrupted Binder framework is a single point of failure of system security
because the rootkit can easily read/write all applications’ transaction data by
accessing their memory buffers, without applying any sophisticated tricks. Most
existing schemes of secure Binder transactions [5,30,35] focus on application-
level protection, which cannot deal with rootkit attacks.

In this paper, we design a tiny trustworthy hypervisor called H-Binder with a
small trusted computing base (TCB) to protect sensitive Binder transaction data
against the rootkit on the ARM platform. H-Binder interposes on the Binder
transactions to ensure the secrecy and integrity of the transaction data against
the rootkit’s malicious accesses.

H-Binder functions transparently to the Linux kernel, Android middleware
and COTS applications without any modification on their binary codes. It can
smoothly work in tandem with other virtualization based schemes [9,10,20,36]
to harden the platform’s security such as data protection in the kernel. To the
best of our knowledge, H-Binder is the first work on Binder security against
the rootkit. We have built a proof of concept of H-Binder and evaluated its
performance. The results show that it is practical to use H-Binder on mobile
phones to protect critical Binder transactions.

Organization. In the next section, we explain the background of Android
Binder framework and recent virtualization techniques introduced to ARM
processors. In Sect. 3, we present an overview of H-Binder including the security
problem, the threat model and the challenges. We present two building blocks
of H-Binder in Sect. 4 and the details of H-Binder workflow in Sect. 5. A report
on H-Binder implementation and performance evaluation is in Sect. 6. We then
present related work in Sect. 7 and a conclusion in Sect. 8.

2 Background

We explain below the background information of Android’s Binder framework
and the virtualization techniques on ARM platforms.

26 D. Shen et al.

2.1 The Binder Framework

The Android platform is designed with an object oriented style with a wide
range of system manager applications managing various resources and providing
capabilities for user applications. The Binder IPC is the primary channel for
user applications to interact and collaborate with system services or among
themselves to carry out their intended tasks. For instance, a user application
needs to interact with Android’s LocationManager to access the mobile phone’s
location data.

A Binder transaction follows the traditional client-server model. In a typical
scenario, it involves three parties: a thread of a resource manager app acting
as a server, a thread of a user app as a client, and the Binder driver in the
kernel. To facilitate applications to engage in a Binder transaction, Android’s
ServiceManager works as a registry service for user apps to look up a registered
service provider. In a high level view, the client and server thread interact in a
Binder transaction with the following steps. Note that the server has a pool of
worker threads in sleeping mode waiting for processing the requests.

(1) To request the service from a service thread, the client thread issues a block-
ing ioctl system call through which it issues a command to the Binder driver.

(2) The Binder driver saves the client thread information, locates the intended
server’s sleeping worker thread, and wakes it up to handle the request.

(3) The wakened worker thread immediately processes the request and issues
an ioctl system call to return the reply to the Binder driver.

(4) The Binder driver uses the information saved in step 2 to locate the client
thread, wakes it up and passes the data to it.

One of the most critical data structures in the Binder framework is the
binder transaction data (as depicted in Fig. 1) which is passed by the user-
space threads to the Binder driver as one of the parameters of ioctl. The shadowed
boxes are those bytes which are not changed by an honest kernel. In essence, code
specifies the method for the receiving app to execute, while the buffer pointed to
by data.ptr.buffer stores the parameters and objects needed by that remote
method with length data size. For ease of reference, we collectively call the
bytes in the shadowed boxes as transaction raw data throughout the paper. As
shown later, we are concerned with the integrity of the transaction raw data and
secrecy of bytes pointed to by data.ptr.buffer.

It is necessary to highlight how a client application looks up and identifies the
service application it intends to engage, because it is relevant to authentication
issues of a Binder transaction. The lookup procedure is also a Binder transaction.

The target field in Fig. 1 is a local handler passed to the Binder driver to
specify the intended destination. To look up a service application, the client
sets target as 0 in a Binder request containing a text string. The Binder driver
forwards this lookup request to Android’s ServiceManager which then returns
a handler to the client. Therefore, to engage with the service application, the
client sets its target with the handler in its Binder request.

H-Binder: A Hardened Binder Framework on Android Systems 27

target
cookie

code

flags
send_pid
send_euid

datast
ru

ct
 b

in
de

r_
tr

an
sa

ct
io

n_
da

ta

data …data.ptr.buffer

offsets …
data.ptr.offsets

data_size
offsets_size

Fig. 1. Binder transaction data. The shadowed regions refer to the Binder transaction
raw data which are the actual payload of a Binder communication.

2.2 Hardware Virtualization on ARM Processor

The recent ARMv7-A [1] architecture introduces hardware-assisted virtualiza-
tion on ARM processors as an architectural extension. Different from x86 hard-
ware virtualization where the CPU runs in the root mode (for the hypervisor) or
the non-root mode (for the guest), ARM’s hardware virtualization introduces a
new privilege mode called the hyp mode for the hypervisor, which has a higher
privilege level, i.e., Privilege Level 2 (or PL2 for short), than the svc mode used
by the kernel.

When the CPU runs in the hyp mode, it accesses not only to those general
registers and banked registers, but also to a set of new mode-specific registers
including the Hyp Configuration Register (HCR) and the Hyp Syndrome Register
(HSR). The former is used to configure the types of exceptions to be trapped
into the hypervisor. For example, when HCR’s Trap General Exception (TGE)
bit is set to 0× 1, the supervisor call exception will be trapped to the hypervi-
sor, which allows the hypervisor to intercept system calls from user space. HSR
records the information about the exceptions trapping to the hypervisor. The
Exception Class (EC) bits HSR[31:26] indicate the cause of the trap, e.g., 0× 12
for a hypervisor call.

The HVC instruction can be used to enter into the hyp mode from the svc mode
by raising a hypervisor call exception. After handling the call, the hypervisor
uses the ERET instruction to switch the mode and returns to the next instruction
following the HVC instruction. All exceptions trapping to the hyp mode use the
exception vector at offset 0 × 14 of the hypervisor vector table.

Similar to memory virtualization on x86 platforms, ARM virtualization also
supports two-stage address mapping for the virtual machine (VM). A virtual
address (VA) in both usr and svc modes in the non-secure world is mapped to
an intermediate physical address (IPA) by the Stage-1 page table managed by the
kernel. Then, the IPA is mapped to the physical address (PA) by the Stage-2 page
table managed by the hypervisor and is beyond the kernel’s control. Therefore,

28 D. Shen et al.

the hypervisor can control the attribute bits in the Stage-2 page table entries
(PTEs) to regulate memory accesses from the VM for interception and isolation
purposes.

3 Overview

This section presents an overview of our work. We begin with the explanation
of the security problems.

3.1 The Problem Scope

Our aim is to protect the secrecy and integrity of sensitive transaction data
transmitted between two Android applications through the Binder IPC. We
consider the following adversary model and design restrictions.

Adversary Model. We consider rootkits whose attacks are targeted at the
Linux kernel, e.g., reading and writing arbitrary kernel objects and manipulating
the kernel’s control flow. For instance, a rootkit can start its attack on Binder
transactions by locating the global kernel object called binder context mgr
node which contains a pointer pointing to an array of buffers used for each
Binder transaction.

Caveat. Out of several reasons, we do not consider rootkits that directly
reads/writes an application’s user space data and tampers with its control flow.
Firstly, most rootkits do not target a specific application because it is less cost-
effective to attack user space. It requires non-significant semantic knowledge of
the victim application (e.g., the source code) while the damage is limited to the
victim. Secondly, attacking on the kernel objects is much more catastrophic as
it impacts all applications. Lastly, user-space protection techniques have been
proposed on x86 platforms. Systems like Overshadow [9], InkTag [20], TrustPath
[36], AppShield [11] can be exported to the ARM platform to cope with the user
space security problem. The systems can run in tandem with H-Binder for the
full protections. We do not attempt to re-invent the wheel.

Design Restriction. We restrict our design from modifying the existing Linux
kernel, Android middleware or the applications. It is also refrained from changing
the existing Binder framework, including the protocol and the syntax of relevant
data objects. This is mainly due to compatibility concern.

Caveat. Under the design restriction above, the Binder data integrity pro-
tection only prevents rootkits from modifying the Binder data sent by applica-
tions. It does not deal with forgery. A rootkit can always inject its own Binder
data to an application. Any countermeasure requires changes on either the appli-
cation code or the Binder framework.

3.2 Challenges

The security problems described above present several challenges. Firstly, H-
Binder should not incur significant overhead to the mobile phone. Since mobile

H-Binder: A Hardened Binder Framework on Android Systems 29

phones are power constrained, this requirement is especially more critical than
a secure system on desktop computers. Therefore, the hypervisor should only
interpose on system call for Binder transactions, instead of all system calls.
Unfortunately, the current ARM virtualization technology does not have the
ability to filter out system calls.

Secondly, the interposition on Binder transactions should be at the thread
level rather than in the process level, because Android apps are multi-threaded.
A process level interposition may stall all running threads no matter whether
they are relevant to the security, and therefore downgrades the performance of
the application.

Another challenge is the transparency and compatibility to the COTS
Android system and applications. It precludes any changes to the present Binder
framework, including the IPC protocol and the data structures. A tentative way
to protect Binder IPC is to follow the SSL style on communication protection.
Namely, the Binder client and server run a key exchange protocol (possibly medi-
ated by a trusted party) and then exchange their encrypted Binder requests and
replies. We do not opt for this method because it requires non-negligible changes
not only on the Android runtime, but also the applications’ code.

3.3 Our Contributions

The rest of the paper presents our proposed solution to the aforementioned
problems. In a nutshell, our work makes the following contributions.

– We propose two novel techniques which can be used in hypervisors, i.e., selec-
tive system call issuance interception and thread-level system call return inter-
ception. These techniques can be used in H-Binder and in other hypervisors
as well.

– We propose H-Binder, a security system running in the hyp mode that pro-
tects the Binder transactions to ensure the transaction raw data’s integrity
and secrecy. H-Binder is fully compatible and transparent to Android and its
applications without requiring any changes on their codes.

– We build a prototype of H-Binder and evaluate the performance and com-
patibility with off-the-shelf applications.

4 H-Binder Building Blocks

In the following, we first introduce two novel techniques used as building blocks
for H-Binder, i.e., selective interception for system call issuance and thread-level
interception for system call return. We then present the details of H-Binder
workflow.

4.1 Selective Interception for System Call Issuance

With ARM virtualization extensions, the system calls can be easily trapped to
the hypervisor by setting HCR.TGE bit to 0× 1. Nonetheless, it traps all system

30 D. Shen et al.

calls from user space, which takes a significant performance toll on the whole
system. To avoid unnecessary traps, H-Binder does not set HCR.TGE bit. Instead,
it securely places a hook in the kernel which notifies the hypervisor on selected
system calls according to the system call number and the issuing process. Unre-
lated calls are passed to the kernel directly.

Normal System Call Trap to Svc Mode. The system call trap from the usr
mode to the svc mode is triggered by the SVC instruction. The exception vector
addresses are stored in a vector page shown in Fig. 2 where the base address
vectors start is set according to the 13th bit of the System Control Register

(SCTLR), i.e. SCTLR.V bit.

1 v e c t o r s s t a r t :
2 b v e c t o r r s t
3 b vector und
4 l d r pc , v e c t o r s s t a r t+0x1000
5 b vec to r pabt
6 . . .

Fig. 2. Exception vectors stored in the vector page at either 0×00000000 or
0×FFFF0000 based on SCTLR.V bit.

An SVC instruction causes the Program Counter (PC) to jump to Line
4 in Fig. 2. As a result, the hardware loads PC with the content stored at
vectors start+0×1000, which is exactly the address of the kernel’s SVC han-

dler. Thus, the control flow jumps to the SVC handler which then responds to
the system call.

System Call Hook. We use a hook to filter out unrelated system calls as
depicted in Fig. 3. When H-Binder protection starts (at secure boot up or trig-
gered by a hypervisor call at runtime), the hypervisor writes the hook code into
a reserved memory page in kernel space. It then places the entry address of
the hook into vectors start+0×1000. As a result, whenever a system call
is invoked in the user space, the hardware passes the control to the hook code
instead of the kernel’s handler. The hook code examines the system call number
in R7 and the value of the Translation Table Base Register 0 (TTBR0)1 which
allows the hypervisor to check the identity of the issuer process. For instance, if
it is ioctl issued by a concerned process, the hook issues a hypervisor call to the
hypervisor. When the control returns from the hypervisor, the hook passes the
control back to the original handler.
1 In ARM architecture, TTBR0 points to the translation tables used by the current

running user process and the Translation Table Base Register 1 (TTBR1) points to
the translation tables used by the kernel.

H-Binder: A Hardened Binder Framework on Android Systems 31

Fig. 3. Illustration of hooking the system call control flow where the shadowed boxes
refer to pages that are read-only to the kernel and whose addresses cannot be changed.
Step 2 and 3 are executed when the intercepted system call needs to be trapped.

Hook Protection. A rootkit may tamper with the physical addresses of the
vector page or the hook page to bypass the interception. For this purpose, the
hypervisor freezes the control flow path from the vector page to the hook code,
in the sense that (1) the physical addresses of the vector page and the hook
code page cannot be remapped by the kernel; (2) the code and data in both
pages cannot be altered by the kernel. For this purpose, the hypervisor takes the
following steps before placing the hook code page.

1. Set the Trap Virtual Memory (TVM) bit of HCR to 0× 1 in order to intercept
the kernel’s write access to SCTLR and the Translation Table Base Register 1
(TTBR1) so that the hypervisor blocks all changes to SCTLR.V bit and TTBR1.

2. It traverses from the root of the Stage-1 page table pointed by TTBR1 to the
page table page pointing to the vector page which resides at 0×00000000 or
0×FFFF0000 depending on the SCTLR.V bit. Set all pages on this path as
read-only by configuring the Stage-2 page table. In this way, any attempt to
remap the physical address of the vector page is then trapped and blocked
by the hypervisor.

3. It traverses from the root of the Stage-1 page table pointed by TTBR1 to the
page table page pointing to the hook code page. In the same fashion as the
previous step, an update on any page on this path is not allowed if it affects
the mapping of the hook code.

4. The hypervisor sets both the vector page and the hook code page as read-only
so that the kernel cannot tamper with their contents.

Therefore, when a system call is invoked, the hardware always locates the vector
page and the hook page at their predefined addresses. Moreover, since both pages
are read-only, the correct hook code is executed as expected.

4.2 Thread-Level Interception for System Call Return

A thread expecting the Binder transaction data sleeps after issuing an ioctl sys-
tem call. When the data arrives, the kernel completes the system call invocation
by waking up the thread.

32 D. Shen et al.

Unlike system call issuance, system call return does not throw out any excep-
tion. Hence we need to inject an exception in order to intercept the event. The
challenge is how to generate a thread-specific event. It is a common practice
for Android applications to use a dedicated worker thread for handling Binder
transactions. Process-level interception affects all threads of the application and
is not a good choice. For instance, setting a code page as non-executable intro-
duces a page fault for all threads attempting to fetch instructions from this page,
because the application’s code (data) sections are shared among threads.

Our proposed method is based on the fact that threads do not share their
stacks. The underlying idea is to manipulate the relevant thread’s user space
stack so that a stack operation after system call return is trapped to the
hypervisor.

The first step is to map an empty physical memory page into the target
application’s heap. This page, named as vault page is to introduce the needed
exception. The application is in fact not aware of its vault page and never uses it.
The hypervisor sets the vault page inaccessible by configuring the Stage-2 page
table, in order to block any access and to introduce the page fault for system call
return. Note that the vault page must be mapped to the application’s virtual
address space. Otherwise, the exception it incurs is trapped to the kernel instead
of the hypervisor.

Next, when the system call for receiving data is issued, the hypervisor inter-
cepts it using the technique described previously. The hypervisor saves the
thread’s SP usr into the hypervisor space, and then sets SP usr to point to
the application’s vault page. The stack manipulation does not affect the kernel’s
execution because both the system call parameters and the return address are
passed to the kernel through registers.

Lastly, when the system call returns upon data arrival, the thread returns
from the svc mode to the usr mode. The user space stack is then used to resume
user space execution. Since SP usr points to the inaccessible page, a stack popup
operation triggers a page fault exception and is trapped to the hypervisor.

5 The H-Binder Workflow

To facilitate the description of H-Binder, we present the basic idea and details
of H-Binder.

5.1 The Approach

While it is straightforward to encipher the Binder raw data for a sending applica-
tion, it is challenging to perform decryption securely. Without a rigorous checking
of the recipient’s identity, the improper decryption may reveal the plaintext to
an imposter application. Therefore, the issues of data confidentiality and entity
authentication are mingled together. It is difficult to authenticate the recipient
thread because of the semantic gap faced by the hypervisor. The actual des-
tination of the Binder transaction data is determined by the Binder driver at

H-Binder: A Hardened Binder Framework on Android Systems 33

runtime, instead of by the user threads. A rootkit can tamper with the data used
by the Binder driver, and as a result, the driver delivers the transaction data to
an imposter.

In a nutshell, the H-Binder scheme uses the building blocks introduced in
Sect. 4 to interpose on each of the four Binder steps. After a step is intercepted,
the hypervisor either saves or restores the data, depending whether it is to
send or to receive the data. Nonetheless, the interception is transaction-agnostic
in the sense that the intercepted data does not exhibit its relation to other
events or any specific Binder transaction. Hence, the hypervisor has to trace the
Binder transaction data flows in order to restore the data properly, including
the lookup transaction. In specific, when a client issues a Binder request, the
hypervisor saves the data and replaces it with a random number as an ID which
is different from the existing entries. When the request arrives at the server end,
the corresponding client’s request is restored by checking the received request’s
ID. Therefore, when the server’s worker thread replies, the hypervisor knows
exactly its intended destination. When the reply arrives at the client end, the
hypervisor checks whether the present application is the intended thread.

5.2 Details

We elaborate the details of H-Binder by explaining its protection over a Binder
transaction between a user app and a resource manager app.

Initialization. When a user app is launched, an untrusted kernel module allo-
cates a vault page whose virtual address is passed to the hypervisor. The hyper-
visor configures the Stage-2 page table to set the vault page inaccessible. It saves
into the hypervisor space a pair 〈ttbr, addr〉 representing TTBR0 data and the
vault page’s physical address, respectively. This page is used to intercept system
call return as described in Sect. 4.2 and save the Binder data.

The hypervisor also maintains a Service Table whose entries pair a service
description with the TTBR0 value of the corresponding system service application,
e.g., LocationManager. For each user application, the hypervisor also maintains
a Handler Table whose entries pair a handler with the corresponding service’s
TTBR0. A user application’s Handler Table is initialized with an entry 〈0, ttbr∗〉
where ttbr∗ is the TTBR0 used by ServiceManager.

The hypervisor creates the Transaction Table shown in Table 1 to save data
related to every Binder transactions such that each intercepted event can be
linked to a Binder transaction. In this table, ClientID is set as the client appli-
cation’s TTBR0 which points to the root of its page table. SApp identifies the
server app by using its TTBR0 value while SThread identifies the server’s worker
thread by using the virtual address of its stack base. ReqID and AckID save
the ID of the request and reply as their respective identifiers. State records the
present transaction states.

34 D. Shen et al.

Table 1. The format of the transaction table

ClientID SApp SThread ReqID AckID State

0×96206f40 0×960b4280 0×76ef2000 0×47aa6d75 0×b0aacdf4 2

.

Runtime. The H-Binder hypervisor interposes on all four steps of a Binder
transaction by using the building blocks priorly described. The workflow of H-
Binder proceeds in four phases as depicted in Fig. 4 wherein a user app requests
data from a manager app through a Binder IPC channel.

User AppManagerUser
space

Kernel

2)receive 1) request3) reply 4) receive

data data

Kernel
space

Binder driver
data data

data flow control flow data encrypted data

thread wakeup
interception

system call
interception

HypervisorHypervisor
space

Fig. 4. Overview of H-Binder work flow.

Phase 1: User App Sending Request. Using techniques in Sect. 4.1, the
hypervisor intercepts the user app’s ioctl call right after it traps to the kernel. If
the second parameter of ioctl is BINDER WRITE READ, the hypervisor locates the
binder transaction data structure via the third parameter. Then it executes
the following steps:

(1) It saves the request data in the client’s vault page and replaces it with a
random number which is different from the ReqID entries in the Transaction
Table.

(2) It inserts to the Transaction Table a new record T , where T .ClientID is the
current value of TTBR0; T .ReqID is the generated random number in the
first step; T .State is set to 0 to indicate that a request is sent out. Based on
the target of the intercepted Binder structure, the hypervisor looks up the
client app’s Handler Table to retrieve the corresponding TTBR0 and assigns
it to T .SApp. (An error is returned if no matching record is found in the
Handler Table.) All other fields of the new entry are set as NULL.

H-Binder: A Hardened Binder Framework on Android Systems 35

Phase 2: Manager Receiving Request. When the request is delivered by the
Binder driver to the manager app, the manager’s worker thread is wakened up to
handle it. Using techniques in Sect. 4.2, the control is trapped to the hypervisor
before the request is processed further by the thread. The hypervisor first checks
data integrity and verifies whether the intercepted app is an imposter. It executes
the following steps:

(1) It looks up the Transaction Table for a record with a matching record T
such that T .ReqID equals to the request data.

(2) If no matching record is found or T .State is not 0, it drops this request and
returns an error to the manager because the incoming request’s integrity is
compromised.

(3) To check whether the intercepted app is legitimate for receiving the request,
it compares T .SApp with the present TTBR0. If they do not match, an
exception is thrown out. Otherwise, it loads the data from the client’s
vault page to recover its original Binder request, saves T .SThread with
SP usr&0×FFFFE000 to record the worker thread’s identity, and lastly set
T .State to 1 to indicate that the request is received by the server.

Phase 3: Manager Sending Reply. After handling the user app’s request,
the manager’s worker thread returns a reply to the user app. Using the hook in
Sect. 4.1, the thread’s ioctl is trapped to the hypervisor which then performs the
following steps:

(1) It looks up the Transaction Table for a matching record T such that
T .SThread equals to the present worker thread’s stack base address. If no
matching record is found, it drops the reply and returns an error indicating
that the reply is not associated with any previously checked Binder request.
Otherwise, it goes to the next step.

(2) It checks whether T .State is 1. If not, it drops the reply and returns an error
indicating inconsistent states. Otherwise, it goes to the next step.

(3) It saves the data pointed to by data.ptr.buffer in Binder transaction
data structure in the vault page, and replaces it with a random number
which is different from the AckID entries in the Transaction Table. It then
updates T by assigning T .AckID with the generated random number and
setting T .State to 2.

Phase 4: User App Receiving Reply. When the Binder driver delivers
the manager’s reply to the user app, it wakes up the user’s blocked thread
described in Phase 1. Using the techniques in Sect. 4.2, the control is trapped
to the hypervisor before the thread processes the reply. Similar to Phase 2, the
hypervisor checks both data integrity and the recipient app’s authenticity before
restoring the data. It runs the following steps:

(1) It looks up the Transaction Table to find a matching record T such that
T .AckID equals to the reply data. If no matching record is found, it discards
the reply as its integrity is compromised and returns an error. Otherwise, it
proceeds to the next step.

36 D. Shen et al.

(2) It checks whether the present TTBR0 is the same as T .ClientID and whether
T .State is 2. If either one fails, it returns an error because the present appli-
cation is not the intended destination of the reply.

(3) It loads the data from the server’s vault page, deletes T from the Transac-
tion Table, and passes the control back to the user app. If T .SApp refers
to ServiceManager, the hypervisor obtains the handler from the data and
updates the Handler Table of the client app. Note that if a suitable per-
mission model is in place, the hypervisor can also enforce the access control
policies before restoring data.

5.3 Security Analysis

We provide an informal analysis to explain how the Binder transaction is pro-
tected. The analysis begins with recipient authenticity which is the premise of
proper Binder data protection.

Recipient Authenticity. Recipient authenticity is about whether a Binder trans-
action request/reply is delivered to the intended destination. For the flow from
the client to the server, the hypervisor extracts the intended recipient’s identity
when the request is sent out and verifies the recipient’s identity by checking
its TTBR0 value when the request is delivered. Note that the rootkit’s attack
on an app’s handler only leads to denial-of-service and cannot be used for
impersonation.

For the return trip from the server to the client, the hypervisor verifies
the recipient’s identity by tracking the transactions flows using the Transac-
tion Table. Specifically, for the matching record T , T .ReqID links Phase 1 and
Phase 2, and T .SThread links Phase 2 and 3, while T .AckID links Phase 3 and
4. In this way, the hypervisor has sufficient knowledge to decide the intended
recipient for a Binder reply from the server app.

Application Data Integrity and Secrecy. The rootkit’s attack on the Binder data
is neutralized by the data replacement used by the hypervisor. The sensitive
data in the Binder transaction data structure is replaced before it is passed
to kernel space in a system call issuance. As shown in Phase 2 and 4, a restoring is
only performed after a successful authentication of the recipient app. Therefore,
only the intended applications can access those data.

Binder data integrity is ensured by T .ReqID and T .AckID. A fraudulent
Binder request is detected in Phase 2 and 4 before the recipient app processes it.
The transaction’s state stored in T .State is used to detect replay attacks which
show inconsistence.

Caveat. The security of H-Binder hypervisor can be protected by the hard-
ware. The hyp mode is transparent to the system so that the rootkits don’t
know the existence of the hypervisor. Furthermore, the small TCB can reduce
the probability of vulnerability.

H-Binder: A Hardened Binder Framework on Android Systems 37

6 Implementation and Performance Evaluation

We have implemented a prototype of H-Binder running in the hyp mode. The
runtime TCB of H-Binder only consists of 1,813 SLOC (1,144 lines of C code
and 669 lines of asm code).

The experimental environment is Linux Ubuntu 14.04 on a PC with an
Intel(R) Core(TM) i7-4790 CPU @3.6 GHz processor and 16 GB main mem-
ory. In this platform, we run ARM FastModels [3] with FVP which emulates a
mobile phone with a Cortex-A15× 1 processor. The H-Binder hypervisor runs
in the emulated phone as a bare-metal hypervisor. On top of the hypervisor,
it runs Android 4.1 with a Linux kernel 3.9.0-rc3+. Due to the emulation, we
do not measure the absolute time in our experiments. Instead, we use the CPU
cycles to evaluate H-Binder performance.

6.1 Component Cost of H-Binder

The overall time overhead incurred by H-Binder is the sum of the CPU time
for context switches due to the hypervisor interceptions or hypervisor calls and
the CPU time spent by the hypervisor’s execution. To evaluate the former cost,
we measure the turnaround time of an empty hypcall which causes the CPU to
enter to the hyp mode and return immediately. Our experiments show that the
average cost for a round-trip mode switch cycle in a hypervisor call is about 96
cycles in our environment.

We also measure the CPU time spent in each of the four phases described in
Sect. 5. The average CPU cycles spent in each of the phases are listed in Table 2
where the transaction involves 100 bytes returned by the server application.
In general, the hypervisor spends 854 CPU cycles for involving in sending the
Binder data, and spends 630 cycles for involving in receiving the Binder data.

Table 2. The number of CPU cycles spent in four phases of a Binder transaction,
where the Binder request has 48 bytes and the Binder reply has 100 bytes

Phase 1 Phase 2 Phase 3 Phase 4

712 607 996 654

As shown in Sect. 5, a Binder IPC upon H-Binder involves 4 traps into the
hypervisor. Therefore, the overall H-Binder cost for protecting a Binder based
IPC is the sum of mode switch costs and the hypervisor’s processing time, which
amounts to 3, 353 CPU cycles. For a mobile phone with 1 GHz CPU frequency,
the time latency for one Binder transaction is about 3.4µs, which is very tiny.

Note that the system call hook has negligible performance overhead as it
only adds few instructions in the existing system call handler.

38 D. Shen et al.

6.2 Application Level Performance Evaluation

To measure the performance impact of H-Binder on Android applications
using the Binder, we measure the time spent for completing a task, e.g.,
to acquire the current location. We use the open-source application RMaps2

as the client requesting for the mobile phone’s location data. The program
is instrumented to count the CPU cycles for invoking the LocationMan-
ager’s getLastKnownLocation() function which runs Binder transactions with
Android’s LocationManager. We conduct the experiment in three different envi-
ronments: the native Android, the Android running inside the host domain of
KVM, and the Android running on the H-Binder hypervisor. Note that all three
environments are hosted by ARM FastModels emulation. The results are pre-
sented in Table 3 below.

Table 3. Turnaround time (in CPU cycles) needed to obtain the location in different
settings

Android KVM H-Binder

Read location 68,577 69,929 77,344

Overhead – 1,352 8,767

It shows that H-Binder incurs about 9,000 CPU cycles to get the location
more than in Android. This relative overhead does not affect the whole applica-
tion’s performance because the absolute time delay is insignificant. For a mobile
phone with 1 GHz CPU frequency, the time latency incurred by H-Binder is less
than 9µs. Note that the physical location is normally obtained in every one sec-
ond or every three meters the device has moved. Therefore, supposing that the
phone is on a running car moving with the speed of 15 m/s, the shortest time
interval of location update is 67 ms. The latency of 9µs is only around 0.01%
compared to the time interval of location update. Hence the delay caused by
H-Binder does not affect the location software’s performance. The delay is also
imperceptible for human users as the shortest time interval a human perceives
is roughly between 50 ms to 150 ms [29].

Caveat. Our selective system call interception technique in Sect. 4.1 allows
for performance isolation since those unrelated system calls are not intercepted
and their performance is not affected by H-Binder. It can be further extended
to select the critical applications and service to protect.

6.3 Time Cost for Different Sizes of Transferred Data

We then analyze how the size of the transferred data affects the overhead.
We implement two Android applications using Binder IPC to transfer data

2 https://github.com/ramnathv/rMaps.

https://github.com/ramnathv/rMaps

H-Binder: A Hardened Binder Framework on Android Systems 39

between them. One app registers itself to Android’s ServiceManager as the ser-
vice providers while the other acts as a client. We vary the size of the data
the server application returns and evaluate the turnaround time of getting the
data, including the time spent for the Binder channel setup. Table 4 reports the
experiment results in three different platforms.

Table 4. A whole binder transaction time in CPU cycles with different sizes of trans-
ferred data

of Bytes Android With KVM H-Binder

4 94,848 94,932 95,170 (0.3%)

8 95,070 95,178 95,781 (0.7%)

12 95,670 95,900 96,812 (1.2%)

20 96,070 96,318 96,960 (0.9%)

40 97,196 97,579 102,871 (5.8%)

80 100,349 100,743 107,118 (6.7%)

200 109,219 109,631 118,508 (8.5%)

400 120,875 121,353 130,496 (8.0%)

It shows that the time cost grows with the size growing. The main overhead
is incurred by H-Binder’s protection. As the size of data is not very large when
the data is transferred in the Binder directly, the overhead of H-Binder in a
whole Binder transaction will be less than 9%.

7 Related Work

Xen [6] is one of the earliest open source hypervisors initially developed for
x86 platforms. Based on the Xen hypervisor, Hwang et al. proposed and imple-
mented Xen-on-ARM [22] for the ARM architecture. Xen-on-ARM is a para-
virtualization hypervisor and requires modifications to the kernel, as it is built on
ARMv4/v5 which does not offer virtualization extension. From ARMv7 onwards,
virtualization extension was introduced to support hardware virtualization on
ARM architecture [1]. The first hypervisor using ARM virtualization extension
was proposed in [31]. EmbeddedXen presents a new virtualization framework
tailored to various ARM-based embedded systems [27]. ARMvisor [15] provides
system virtualization for ARM, and KVM/ARM [13] is the first full system ARM
virtualization solution that can run unmodified operating system on ARM mul-
ticore hardware. KVM/ARM has been integrated to the Linux kernel as a Linux
ARM hypervisor.

H-Binder addresses the security of the Binder framework. A brief study on the
technical details of Binder mechanism and its security weaknesses was described
in [26]. More recent attacks [4] presented in the Black Hat conference further

40 D. Shen et al.

demonstrated the cruciality of Binder security. It is shown in [4] that a malware
which controls the Binder framework by attacking the ioctl system call can access
and manipulate a variety of sensitive data, including keystrokes, in-app data, and
SMS messages. ComDroid [12] proposes a tool to detect the vulnerabilities in
Binder transaction, but it can’t provide a runtime protection. AppFence [21] is
built based on TaintDroid [16], using dynamic taint analysis to track the spread
of the taint data. H-Binder can combine with this method to get stronger ability.
However, TaintDroid can only protect the sensitive data while H-Binder can also
protect the RPC with the Binder transactions.

The protection of Binder transactions has a direct impact on Android’s access
control mechanism. Some fine-grained access control mechanism [8,25,32] are
proposed for diverse security and privacy policies. Android has a systematic
permission model to control how applications access sensitive devices and data
stores [33]. Most sensitive resource accesses are through the Binder framework
where the data is returned or through call-backs by the resource manager app.
The manager app typically checks the permission of the requesting apps before
offering the service. Nonetheless, malicious apps without proper permissions may
bypass the permission check by launching the permission re-delegation attacks
[19]. In [17], Felt et al. analyzed different kinds of permission re-delegation
attacks and proposed some possible ways to address this problem. Their method
is to reduce the privileges of callee. In [7], Bugiel et al. also proposed a solution
for a system-centric and policy-driven runtime monitoring of communication
channels between applications at multiple layers in the inspiration of QUIRE
[14] and a tool called Woodpecker [18] is developed to employ inter-procedural
data flow analysis. The ways above are faced to the usr mode of Android. If the
binder driver is hijacked by attackers, two data buffers will be changed which will
lead to the leakage of some sensitive data. While H-Binder is faced to untrusted
kernel, the encryption will keep the security of the sensitive information.

In a broader sense, H-Binder is related to Android’s malware defense. Copper-
Droid [30] and VetDroid [35] leverage system call analysis and Binder transaction
analysis to detect the application behavior. While Scippa [5] uses a call chain to
get provenance information to implement the defense of the attack in Binder
transaction. Cells [2] provides a virtualization architecture for enabling multiple
virtual smartphones to run in an isolated secure manner. Nonetheless, neither
of these systems can deal with kernel space attacks. To the attacks towards ker-
nel space, many of them are against kernel interfaces like system call interface
[23]. Attackers will hijack the system call handlers to let the kernel execute the
attackers’ instructions. H-Binder may not block all these attacks, but it can pro-
tect the sensitive data from being leaked as the data will be encrypted before
entering the svc mode.

8 Conclusion

We have proposed H-Binder which leverages the recent ARM hardware virtual-
ization techniques to secure Binder transactions in Android platforms. H-Binder

H-Binder: A Hardened Binder Framework on Android Systems 41

ensures secrecy and integrity of the sensitive data transported between two appli-
cation threads interacting via Binder IPC. The H-Binder hypervisor intercepts
the critical system calls from target applications and protects their data by using
replacement techniques against attacks from rootkit. We have implemented a
prototype of H-Binder on ARM FastModels. Our experiments show that the
overhead incurred by H-Binder is not significant. Our future work is to pre-
vent malicious code residing in the Android framework from attacking Binder
transactions.

Acknowledgment. This research work is supported in part by the Singapore National
Research Foundation under the NCR Award Number NRF2014NCR-NCR001-012, the
National Natural Science Foundation of China under grants (Nos. 61170189, 61370126,
61672081), the National High Technology Research and Development Program of China
under grant No. 2015AA016004, and Beijing Advanced Innovation Center for Imaging
Technology (No. BAICIT-2016001).

References

1. Architecture Reference Manual (ARMv7-A and ARMv7-R edition). ARM DDI C
(2008)

2. Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.: Cells: a virtual mobile smart-
phone architecture. In: 23rd ACM Symposium on Operating Systems Principles,
pp. 173–187. ACM (2011)

3. Fast Models - ARM. http://www.arm.com/products/tools/models/fast-models/
4. Artenstein, N., Revivo, I.: Man in the Binder: He Who Controls IPC, Controls the

Droid. Black Hat (2014)
5. Backes, M., Bugiel, S., Gerling, S.: Scippa: system-centric IPC provenance on

android. In: 30th Annual Computer Security Applications Conference, pp. 36–45.
ACM (2014)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., et al.: Xen and
the art of virtualization. ACM SIGOPS Oper. Syst. Rev. 37(5), 164–177 (2003)

7. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: 19th Annual Network
and Distributed System Security Symposium, pp. 346–360 (2012)

8. Bugiel, S., Heuser, S., Sadeghi, A.R.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: 22nd USENIX
Security Symposium, pp. 131–146 (2013)

9. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., et al.: Overshadow: a virtualization-based approach to retrofitting pro-
tection in commodity operating systems. ACM SIGPLAN Not. 36(1), 2–13 (2008)

10. Cheng, Y., Ding, X., Deng, R.H.: DriverGuard: a fine-grained protection on I/O
flows. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 227–244.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23822-2 13

11. Cheng, Y., Ding, X., Deng, R.H.: Efficient virtualization-based application protec-
tion against untrusted operating system. In: 10th ACM Symposium on Informa-
tion, Computer and Communications Security, pp. 345–356. ACM (2015)

12. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: 9th International Conference on Mobile Systems, Appli-
cations, and Services, pp. 239–252. ACM (2011)

http://www.arm.com/products/tools/models/fast-models/
http://dx.doi.org/10.1007/978-3-642-23822-2_13

42 D. Shen et al.

13. Dall, C., Nieh, J.: KVM/ARM: the design and implementation of the linux ARM
hypervisor. ACM SIGPLAN Not. 49(4), 333–348. ACM (2014)

14. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: QUIRE: Lightweight
Provenance for Smart Phone Operating Systems. USENIX Security Symposium
(2011)

15. Ding, J.H., Lin, C.J., Chang, P.H., Tsang, C.H., Hsu, W.C., Chung, Y.C.: ARMvi-
sor: system virtualization for ARM. In: Proceedings of the Ottawa Linux Sympo-
sium, pp. 93–107 (2012)

16. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., et al.: Taint-
droid: an information flow tracking system for real-time privacy monitoring on
smartphones. ACM Trans. Comput. Syst. 32(2), 99–106 (2014)

17. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. USENIX Secur. Symp. 6, 12–16 (2011)

18. Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability
leaks in stock android smartphones. In: 19th Annual Network and Distributed
System Security Symposium (2012)

19. Hardy, N.: The confused deputy: (or Why capabilities might have been invented).
ACM SIGOPS Oper. Syst. Rev. 22(4), 36–38 (1988)

20. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Inktag: secure appli-
cations on an untrusted operating system. ACM SIGARCH Comput. Archit. News
41(1), 265–278. ACM (2013)

21. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: 18th ACM Conference on Computer and Communications Security, pp. 639–
652. ACM (2011)

22. Hwang, J.Y., Suh, S.B., Heo, S.K., Park, C.J., Ryu, J.M., Park, S.Y., Kim, C.R.:
Xen on ARM: system virtualization using Xen hypervisor for ARM-based secure
mobile phones. In: 5th IEEE Consumer Communications and Networking Confer-
ence, pp. 257–261. IEEE (2008)

23. Lee, H.C., Kim, C.H., Yi, J.H.: Experimenting with system and Libc call inter-
ception attacks on ARM-based linux kernel. In: Proceedings of the 2011 ACM
Symposium on Applied Computing, pp. 631–632. ACM (2011)

24. Li, W.X., Wang, J.B., Mu, D.J., Yuan, Y.: Survey on Android Rootkit. Micro-
processors (2011)

25. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-
driven access control: rethinking permission granting in modern operating systems.
In: 33rd IEEE Security and Privacy, pp. 224–238. IEEE (2012)

26. Rosa, T.: Android binder security note: on passing binder through another binder
(2011)

27. Rossier, D.: EmbeddedXEN: A Revisited Architecture of the Xen Hypervisor to
Support ARM-Based Embedded Virtualization. White Paper, Switzerland (2012)

28. Schreiber, T.: Android binder-android interprocess communication. Seminar thesis,
Ruhr-Universität Bochum (2011)

29. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Pearson Education, India (2010)

30. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-
struction of android malware behaviors. In: 22nd Annual Network and Distributed
System Security Symposium (2015)

31. Varanasi, P., Heiser, G.: Hardware-supported virtualization on ARM. In: 2nd Asia-
Pacific Workshop on Systems (2011)

H-Binder: A Hardened Binder Framework on Android Systems 43

32. Wang, Y., Hariharan, S., Zhao, C., Liu, J., Du, W.: Compac: enforce component-
level access control in android. In: 4th ACM Conference on Data and Application
Security and Privacy, pp. 25–36. ACM (2014)

33. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the android
ecosystem. In: 28th Annual Computer Security Applications Conference, pp. 31–
40. ACM (2012)

34. You, D.H., Noh, B.N.: Android platform based linux kernel rootkit. In: 6th Inter-
national Conference on Malicious and Unwanted Software, pp. 79–87. IEEE (2011)

35. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., et al.: Vetting undesirable
behaviors in android apps with permission use analysis. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security, pp. 611–622. ACM (2013)

36. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted
path on commodity x86 computers. In: 33rd IEEE Symposium on Security and
Privacy, pp. 616–630. IEEE (2012)

	H-Binder: A hardened binder framework on Android systems
	Citation

	H-Binder: A Hardened Binder Framework on Android Systems
	1 Introduction
	2 Background
	2.1 The Binder Framework
	2.2 Hardware Virtualization on ARM Processor

	3 Overview
	3.1 The Problem Scope
	3.2 Challenges
	3.3 Our Contributions

	4 H-Binder Building Blocks
	4.1 Selective Interception for System Call Issuance
	4.2 Thread-Level Interception for System Call Return

	5 The H-Binder Workflow
	5.1 The Approach
	5.2 Details
	5.3 Security Analysis

	6 Implementation and Performance Evaluation
	6.1 Component Cost of H-Binder
	6.2 Application Level Performance Evaluation
	6.3 Time Cost for Different Sizes of Transferred Data

	7 Related Work
	8 Conclusion
	References

