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Abstract

We propose a new method for transferring a policy from a
source task to a target task in model-based reinforcement
learning. Our work is motivated by scenarios where a robotic
agent operates in similar but challenging environments, such
as hospital wards, differentiated by structural arrangements or
obstacles, such as furniture. We address problems that require
fast responses adapted from incomplete, prior knowledge of
the agent in new scenarios. We present an efficient selective
exploration strategy that maximally reuses the source task
policy. Reuse efficiency is effected through identifying sub-
spaces that are different in the target environment, thus limiting
the exploration needed in the target task. We empirically show
that SEAPoT performs better in terms of jump starts and
cumulative average rewards, as compared to existing state-of-
the-art policy reuse methods.

Introduction and Related Work

This work addresses a class of problems that requires the
agent to respond quickly in a new environment, and at the
same time adapt to changes. SEAPoT is a new mechanism
for maximal transfer of the source task policy to the target
task in model-based reinforcement learning. The algorithm
detects changes in the target environment as compared to
the source, extracts a sub-space around the changed region,
limiting exploration to this sub-space, and continues to follow
the source task policy when a “known” state with respect to
the source environment is reached in the target task.

We address two major issues in this work: (i) How to as-
certain that the agent’s operational environment has changed?
(ii) Once such a change is detected, how to efficiently learn a
new policy to operate in the current environment with mini-
mal exploration? We focus on the settings where the source
and target tasks share the same state-action space but differ
in the transition dynamics and/or reward functions. The simi-
larities between the environments are captured in the shared
state-action space, and the differences are represented in a
distribution of environmental elements leading to different
transition dynamics. In such settings, policy transfer often
performs better than other transfer mechanisms because it
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requires strictly less information being transferred across the
tasks.

Existing research on policy reuse includes gathering expert
suggestions related to spatial hints (Da Silva et al. 2010),
extracting partial policies using structure of the policy
space (Hawasly et al. 2013), policy reuse with probabilis-
tic exploration (Fernández et al. 2010), reward shaping to
define target task policy from source policy (Brys et al. 2015)
and modeling policy selection as Bayesian optimization prob-
lem (Rosman et al. 2016). Unlike previous methods, our
approach does not require expert suggestions; exploration
is kept minimal in the target task, and no knowledge of the
source policy structure is required for effective transfer. Ap-
plying change detection also eliminates the need to explicitly
specify the task as source or target.

The SEAPoT Algorithm

Our policy transfer learning algorithm includes two major
steps: (i) Detecting change in the agent’s target environment,
and (ii) Selective exploration by sub-space extraction.

Change detection: We model the agent’s observations
as time series, where each data point is derived from an
episode in the agent’s learning history. Bayesian change point
detection (MacKay et al. 2007) is adopted to infer if the
latest data point is a result of a change in the environment.
This method can handle noisy data due to sensor errors or
other environment factors. Change points split the time series
into disjoint segments such that, given a change point, data
appearing before and after the change are independent of
each other. Figure 1 shows an example of how the change
detection mechanism works with the observations from one
particular state in the system. The red curve shows the raw
sensor readings. The blue spike shows the change likelihood
when an obstacle is introduced or removed.

Selective exploration: In the target problem, the agent per-
forms exploration in a small sub-space, which is the location
where the environment has changed and the agent’s histori-
cal knowledge is insufficient to complete the task. Selective
exploration comprises of three steps: (i) Extract sub-space
MDP, M ′, that is smaller than the original task; (ii) Solve M ′
to obtain local policy; (iii) Compose the target task solution
using the source task and the local policies obtained.

Sub-space extraction: We exploit the agent’s knowledge
of the source task in solving the target task. Based on
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Figure 1: Change detection when an obstacle is added (left)
or removed (right)

a factored representation (Guestrin et al. 2002), where
each state in the MDP is represented as a vector of
state variables, we define Adjacency as: states si is
adjacent to sj ⇔ ∃a such that T (si, a, sj) > 0. The
notion of reachability immediately follows. We extract
a sub-space of the target task using the n-step closure
({sj |sj is reachable from si by taking utmost n actions}).
The states reached on executing n actions form the frontier
states and act as local goals. Using a (sub)set of actions
from the parent task and a domain dependent potential based
reward function (Ng et al. 1999), which retains the total
order of policies, we obtain a well-defined sub-space MDP.

Sub-space exploration: We use Factored-RMAX to explore
in the sub-space extracted. The sub-space MDP is visible
only in the agent-space; a table look up mechanism provides
mapping between states in the parent task and those in the sub-
space and vice-versa. Sub-space exploration yields a policy
that circumvents the detected change in the environment.

Policy composition: We identify the location of change,
and invoke the learned policy in that state. Once the agent is
in the frontier state of the extracted sub-space (or the local
goal), it can continue to follow the source task policy. An
ε-greedy approach is used to enforce active exploration of
the target task. If the extracted sub-space is too small, the sub-
space policy may lead to a state that is still blocked, requiring
multiple iterations of extracting and solving the sub-space.

Experiments, Discussion and Future Work

The experimental set-up is based on a simulated home envi-
ronment in an assistive care setting. This environment com-
prises a 10 × 10 grid world, with four landmark locations
(state-space size = 8000); the obstacles are walls and/or
furniture. The environments differ in the placement of fur-
niture in the home. The agent can perform a total of five ac-
tions, forward, left, right, pick up and put
down. The task involves picking up objects from one loca-
tion and dropping it off at any other location. Reward struc-
ture: -1 for each step; -10 for invalid pickup/put down; +20
for successful completion of the episode. The agent transits
to the intended state 80% of the time, but has a 20% chance of
moving in one of the directions perpendicular to the intended
direction. We report the results averaged over 20 runs of 100
episodes each.

We compare our work with three state-of-the-art policy
reuse methods (Fernández et al. 2010; Brys et al. 2015; Ros-
man et al. 2016). See Figure 3. Probabilistic policy reuse
(PPR) applies the same action as the source policy, if the
outcome of the decision is to use the source policy. Hence the
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Figure 2: Performance of
SEAPoT versus no transfer
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Figure 3: Comparison:
SEAPoT, PPR, RS & BPR

agent draws negative rewards. Bayesian policy reuse (BPR)
works well when the set of tasks are known beforehand.
When a new task is presented, it selects a policy from the
library and reuses it. The BPR agent draws negative rewards
due to a similar reason as PPR. The reward shaping agent, on
the other hand, has to learn the target task, albeit with help
from the shaping signal that is obtained from the source task
policy. Hence, the jump start is lost.

We attribute the performance improvement of SEAPoT to
the following reasons: (i) The agent reuses the knowledge
learned in the source to the maximum extent in the target task;
(ii) there is minimal exploration in the target environment.

Our future work includes incorporating active exploration
in the target task, policy selection based on context, and using
simulation to identify task similarity and partial policy reuse
in the target task.
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