
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-2006 

Rapid identification of column heterogeneity Rapid identification of column heterogeneity 

Bing Tian DAI 
Singapore Management University, btdai@smu.edu.sg 

Nick KOUDAS 

Beng Chin OOI 

Divesh SRIVASTAVA 

Suresh VENKATASUBRAMANIAN 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
DAI, Bing Tian; KOUDAS, Nick; OOI, Beng Chin; SRIVASTAVA, Divesh; and VENKATASUBRAMANIAN, 
Suresh. Rapid identification of column heterogeneity. (2006). Proceedings of the 6th IEEE International 
Conference on Data Mining (ICDM 2006), Hong Kong, 2006, December 18-22. 159-170. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3758 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Rapid Identification of Column Heterogeneity

Bing Tian Dai
National Univ. of Singapore
daibingt@comp.nus.edu.sg

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Beng Chin Ooi
National Univ. of Singapore

ooibc@comp.nus.edu.sg

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Suresh Venkatasubramanian
AT&T Labs–Research

suresh@research.att.com

Abstract

Data quality is a serious concern in every data manage-
ment application, and a variety of quality measures have
been proposed, e.g., accuracy, freshness and completeness,
to capture common sources of data quality degradation. We
identify and focus attention on a novel measure,column het-
erogeneity, that seeks to quantify the data quality problems
that can arise when merging data from different sources.
We identify desiderata that a column heterogeneity mea-
sure should intuitively satisfy, and describe our technique
to quantify database column heterogeneity based on using
a novel combination ofcluster entropyandsoft clustering.
Finally, we present detailed experimental results, using di-
verse data sets of different types, to demonstrate that our
approach provides a robust mechanism for identifying and
quantifying database column heterogeneity.

1. Motivation

Data quality is a serious concern in every data man-
agement application, severely degrading common business
practices – industry consultants often quantify the adverse
impact of poor data quality in the billions of dollars an-
nually. Data quality issues have been studied quite exten-
sively in the literature (e.g., [5, 10, 3]). In particular, a vari-
ety of quality measures have been proposed, e.g., accuracy,
freshness and completeness, to capture common sources of
data quality degradation [13, 17]. Data profiling tools like
Bellman [6] compute concise summaries of the values in
database columns, to identify various errors introduced by
poor database design; these include approximate keys (the
presence of null values and defaults in a column may re-
sult in the approximation) and approximate functional de-
pendencies in a table (possibly due to inconsistent values).
This paper identifies and focuses attention on a novel mea-

sure,column heterogeneity, that seeks to quantify the data
quality problems that can arise when merging data from dif-
ferent sources.

Textbook database design teaches that it is desirable for
a database column to be homogeneous, i.e., all values in a
column should be of the same “semantic type”. For exam-
ple, if a database contains email addresses, social security
numbers, phone numbers, machine names and IP addresses,
these semantically different types of values should each be
represented in separate columns. For example, the column
in Figure 1(a) contains only email addresses and is quite ho-
mogeneous, even though there appears to be a wide diver-
sity in the actual set of values present. Such homogeneity of
database column values has obvious advantages, including
simplicity of application-level code that accesses and mod-
ifies the database.

In practice, operational databases evolve over time to
contain a great deal of “heterogeneity” in database col-
umn values. Often, this is a consequence of large scale
data integration efforts that seek to preserve the “struc-
ture” of the original databases in the integrated database,
to avoid having to make extensive changes to legacy appli-
cation level code. For example, one application might use
email addresses as a unique customer identifier, while an-
other might use phone numbers for the same purpose; when
their databases are integrated into a common database, it
is feasible that the CUSTOMERID column contains both
email addresses and phone numbers, both represented as
strings, as illustrated in Figure 1(b). A third independently
developed application that used, say, social security num-
bers as a customer identifier might then add such values
to the CUSTOMERID column, when its database is in-
tegrated into the common database. As another example,
two different inventory applications might maintain ma-
chine domain names (e.g., abc.def.com) and IP addresses
(e.g., 105.205.105.205) in the same MACHINEID column
for the equivalent task of identifying machines connected to
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(a) (b) (c) (d)

Figure 1. Example homogeneous and heterogeneous columns.

the network. While these examples may appear “natural”
since all of these different types of values have the same
function, namely, to serve as a customer identifier or a ma-
chine identifier, potential data quality problems can arise in
databases accessed and modified by legacy applications that
are unaware of the heterogeneity of values in the column.

For example, an application that assumes that the CUS-
TOMER ID column contains only phone numbers might
choose to “normalize” column values by removing all spe-
cial characters (e.g., ‘-’, ‘.’) from the value, and writing
it back into the database. While such a transformation
is appropriate for phone numbers, it would clearly man-
gle the email addresses represented in the column and can
severely degrade common business practices. For instance,
the unanticipated transformation of email addresses in the
CUSTOMERID column (e.g., “john.smith@noname.org”
to “johnsmith@nonameorg”) may mean that a large num-
ber of customers are no longer reachable.

Locating poor quality data in large operational databases
is a non-trivial task, especially since the problems may not
be due to the data alone, but also due to the interactions
between the data and the multitude of applications that ac-
cess this data (as the previous example illustrates). Identi-
fying heterogeneous database columns becomes important
in such a scenario, permitting data quality analysts to then
focus on understanding the interactions of applications with
data in such columns, rather than having to simultaneously
deal with the tens of thousands of columns in today’s com-
plex operational databases. If an analyst determines that a
problem exists, remedial actions can include:

• modification of the applications to explicitly check for
the type of data (phone numbers, email addresses, etc.)
assumed to exist in the table, or

• a horizontal splitting of the table to force homogeneity,
along with a simpler modification of the applications
accessing this table to access and update the newly cre-
ated tables instead.

We next identify desiderata that a column heterogeneity
measure should intuitively satisfy, followed by a discussion
of techniques to quantify column heterogeneity that meet
these desiderata.

1.1. Heterogeneity: Desiderata

Consider the example shown in Figure 1. This illustrates
many of the issues that need to be considered when coming
up with a suitable measure for column heterogeneity.

Number of Semantic Types:Many semantically differ-
ent types of values (email addresses, phone numbers, social
security numbers, circuit identifiers, IP addresses, machine
domain names, customer names, etc.) may be represented
as strings in a column, with noa priori characterization of
the possible semantic types present.

Intuitively, the more semantically different types of val-
ues there are in a database column, the greater should be
its heterogeneity; thus, heterogeneity is better modeled as a
numerical value rather than a boolean (yes/no). For exam-
ple, we can be confident that a column with both email ad-
dresses and phone numbers (e.g., Figure 1(b)) is more het-
erogeneous than one with only email addresses (e.g., Fig-
ure 1(a)) or only phone numbers.

Distribution of Semantic Types: The semantically dif-
ferent types of values in a database column may occur with
different frequencies.

Intuitively, the relative distribution of the semantically
different types of values in a column should impact its het-
erogeneity. For example, we can be confident that a column
with many email addresses and many phone numbers (e.g.,
Figure 1(b)) is more heterogeneous than a column that has
mainly email addresses with just a few outlier phone num-
bers (e.g., Figure 1(c)).

Distinguishability of Semantic Types: Semantically
different types of values may overlap (e.g., social secu-
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rity numbers and phone numbers) or be easily distinguished
(e.g., email addresses and phone numbers).

Intuitively, with no a priori characterization of the set
of possible semantic types present in a column, we cannot
always be sure that a column is heterogeneous, and our het-
erogeneity measure should conservatively reflect this possi-
bility.

The more easily distinguished are the semantically dif-
ferent types of values in a column, the greater should be its
heterogeneity. For example, a column with roughly equal
numbers of email addresses and phone numbers (e.g., Fig-
ure 1(b)) can be said to be more heterogeneous than a col-
umn with roughly equal numbers of phone numbers and so-
cial security numbers (e.g., Figure 1(d)), due to the greater
similarity between the values (and hence the possibility of
being of the same unknown semantic type) in the latter case.

1.2. Heterogeneity: Our Solution

Given the desiderata outlined above, we now present a
step-wise development of our approach to quantify database
column heterogeneity.

A first approach to obtaining a heterogeneity measure is
to use ahard clustering. By partitioning values in a database
column into clusters, we can get a sense of the number of
semantically different types of values in the data. However,
merely counting the number of clusters does not suffice to
quantify heterogeneity. Two additional issues, as outlined
above, make the problem challenging: the relative sizes
of the clusters and their distinguishability. A few phone
numbers in a large collection of email addresses (e.g., Fig-
ure 1(c)) may look like a distinct cluster, but should not
impact the heterogeneity of the column as much as having a
significant number of phone numbers with the same collec-
tion of email addresses (e.g., Figure 1(b)). Again, a social
security number (see the first few values in Figure 1(d)) may
look similar to a phone number, and we would like the het-
erogeneity measure to reflect this overlap of sets of values,
as well as be able to capture the idea that certain data might
yield clusters that are close to each other, and other data
might yield clusters that are far apart.

To take into account the relative sizes of the multiple
clusters,cluster entropyis a better measure for quantify-
ing heterogeneity of data in a database column than merely
counting the number of clusters. Cluster entropy is com-
puted by assigning a “probability” to each cluster equal to
the fraction of the data values it contains, and computing
the entropy of the resulting distribution [4]. Consider a hard
clusteringT = t1, t2, . . . , tk of a set ofn valuesX, where
clusterti hasni values, and denotepi = ni/n. Then the
cluster entropyof the hard clusteringT is the entropy of
the cluster size distribution, defined as−∑

i pi ln(pi). By
using cluster entropy, the mixture of email addresses and

phone numbers in column Figure 1(b) would have a higher
value of heterogeneity than the data in Figure 1(c), which
consists of mainly email addresses.

The cluster entropy of a hard clustering does not effec-
tively take into account distinguishability of semantic types
in a column. For example, given a column with an equal
number of phone numbers and social security numbers (e.g.,
Figure 1(d)), hard clustering could either determine the col-
umn to have one cluster (in which case its cluster entropy
would be 0, which is the same as that of a column with just
phone numbers) or have two equal sized clusters (in which
case its cluster entropy would beln(2), which is the same
as that of a column with equal numbers of phone numbers
and email addresses). Intuitively, however, the heterogene-
ity of such a column should be somewhere in between these
two extremes to capture the uncertainty in assigning values
to clusters due to the syntactic similarity of values.Soft
clusteringhas the potential to address this problem; each
data value in soft clustering has the flexibility of assigning a
probability distribution for its cluster membership, instead
of belonging to a single cluster, as in hard clustering. Het-
erogeneity can now be computed as the cluster entropy of
the soft clustering.

1.3. Our Main Contributions

The first contribution of this paper is a measure of
database column heterogeneity, namely,

Heterogeneity= cluster entropy of a soft cluster-
ing of the data.

The discussion above justifies this definition, and explains
how it captures the properties of a heterogeneity measure.
However, this general formulation raises two questions:

• How does one pick the “right” soft clustering? Note
this is analogous to asking what the right value of “k”
is for a hard clustering problem.

• How does one define the cluster entropy of a soft clus-
tering? Note that cluster entropy is conventionally de-
fined only for a hard clustering.

To answer the question about the “right” soft clustering,
recall that any clustering algorithm must balance two kinds
of costs. The first, expressed byk in a hard clustering prob-
lem, and somecompressionmeasure in general, encodes
the complexity of the cluster descriptions - the more com-
pact this is, the better. The second cost is aqualitymeasure;
how well the given clustering captures the data. All clus-
tering algorithms must trade off between these two costs.
Our second contribution in this paper is a principled way
of choosing a tradeoff point for soft clustering, based on
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rate distortion theory. We find the point ofdiminishing re-
turns, i.e., the point at which the benefits achieved by higher
quality stop paying for the penalty in compression. In the
language of rate distortion theory, this is the point of unit
slope on the (normalized) rate distortion curve.

Our third contribution in this paper addresses the ques-
tion of cluster entropy of a soft clustering, and proposes the
use ofmutual information of a clusteringto represent clus-
ter entropy; this measure, when applied to a hard clustering,
yields traditional entropy, and thus is a natural relaxation of
entropy to soft clusterings.

Our fourth and final contribution in this paper is a de-
tailed experimental evaluation of these ideas. Using di-
verse data sets of different types, we demonstrate that our
approach of using cluster entropy of a soft clustering pro-
vides an effective and efficient mechanism for quantifying
column heterogeneity.

The rest of the paper is structured as follows. We first
describe related work in Section 2. In Section 3, we present
our general framework for quantifying column heterogene-
ity. This framework is instantiated in Section 4, where we
also provide details of our algorithm implementation. Sec-
tion 5 gives the results of the experimental evaluation of our
technique.

2. Related Work

Data quality issues have been studied quite extensively
in the literature (see, e.g., [5, 10, 3]). A variety of quality
metrics have been proposed, e.g., accuracy, freshness and
completeness, to associate with and query along with the
data [13, 17]. Mihailaet al. [13] associate quality param-
eters with data, and extend SQL to control data retrieval
based on the values of these parameters. Widom [17] pro-
posed theTrio model for integrated management of data,
accuracy, and lineage, focusing on data model (TDM) and
query language (TriQL) issues.

When fields have poor quality data, record linkage tech-
niques using approximate match predicates are fundamen-
tal [12]. These techniques return pairs of tuples from the
tables, each pair tagged with a score, signifying the degree
of similarity between the tuples in the pair according to the
specific approximate match predicate. Such approximate
join operations have received much research attention in
recent years, due to their significance and practical impor-
tance (see, e.g., [9, 11]).

Data profiling tools like Bellman [6] collect concise sum-
maries of the values of the database fields. These summaries
(set and multiset signatures based on min hash sampling and
min hash counts) allow Bellman to determine data quality
problems like (i) fields that are only approximate keys (the
presence of null values and defaults may result in the ap-
proximation), (ii) approximate functional dependencies in a

table (possibly due to inconsistent values), and (iii) approx-
imate joinable keys/foreign keys. However, such profiling
tools do not currently help with our heterogeneity problem.

3. Our Approach

3.1. Definitions

A clustering of a set of points is a partition of the set
into clusters. We can think of this as a probabilistic assign-
ment of points to clusters, where the conditional probability
p(t|x) represents the probability that the pointx is assigned
to clustert. A partition results from assigning only0 or 1
to these probabilities. In asoft clustering, the probabilities
can be arbitrary, with the natural restriction that for anyx,∑

t p(t|x) = 1.
The entropyof a (discrete) probability distributionP is

the sumH(P ) = −∑
i pi log pi, wherepi is the probability

of the ith element. The entropy of a random variableX is
the entropy of the distributionp(X = x), (which we will
often write asp(x), where the context is clear). Given a
(hard) clustering ofn points into clustersT = t1, t2, . . . , tk,
we say that thecluster entropyof T is the quantityH(T ) =
−∑

i pi log pi, wherepi = |ti|/n.
Themutual informationbetween random variablesX, Y

is the expressionI(X; Y ) =
∑

x,y p(x, y) log p(x,y)
p(x)p(y) . In

this expression,p(x, y) represents the joint distribution be-
tweenX, Y , andp(x), p(y) are the marginals. Given a soft
clustering of pointsX into clustersT , we can define the
joint distributionp(t, x) = p(t|x)p(x). Typically,p(x) will
be the uniform distribution, but this may not always be so.

3.2. A Canonical Soft Clustering

There are numerous methods for performing soft cluster-
ings. Perhaps among the most well known among them is
the class of methods known as expectation-maximization,
or EM [7]. EM returns a probabilistic assignment of points
to clusters. The main problem with this method (and others
like it) is that they require the user to fixk, the number of
clusters, in advance. One can circumvent this problem by
finding the “right” value ofk using model checking criteria
like AIC [1], BIC [14] and others, but these are all based on
assumptions about the distributions the data is drawn from,
using maximum likelihood methods to estimate the “most
likely” value of k.

A different approach is to use the idea of rate-distortion
from information theory [4]. There are two parameters that
constrain any clustering method. The first is representation
complexityR, or how much compression one can achieve
by clustering. The second is the qualityQ, or how accu-
rately the clustering reflects the original data. Often, it is
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Figure 2. Rate-Distortion curve for a mix-
ture of email addresses and IDs. Note that
the tradeoffs achieved are better than those
achieved by fixing K, the number of clusters,
to any specific value.

more convenient to think of the errorE, which is typically
some constant minusQ. For any fixed level of compression
(this is analogous to fixingk), one can determine the best
quality representation, and for any fixed quality level, one
can determine the best compression possible.

The rate distortion theorem shows that the optimal rep-
resentation cost can be measured by the mutual information
between the data and the clusters,R = I(T ;X). The er-
ror E is measured by computing the average distance to the
cluster center over all clusters (E =

∑
x,t p(x, t)d(x, t)).

Compression and quality of the optimal solution vary along
a concave curve known as therate-distortion curve(see Fig-
ure 2). A detailed explanation of rate distortion theory is
beyond the scope of this paper; we merely point out that
the rate distortion curve can be parameterized by a single
Lagrange parameterβ, and the points on the curve may be
found by optimizing a functional of the formF = R−β ·Q.

Each choice ofβ corresponds to a point on the rate dis-
tortion curve and therefore some soft clustering. Choosing
β = 0 implies that quality does not matter, and thus the op-
timal clustering is one in which all points are in the same
cluster (this corresponds to the origin of the rate-distortion
graph, if space is plotted on the x-axis and quality on the y-
axis). Lettingβ go to∞ is equivalent to making space irrel-
evant; in this case, all points are placed in separate clusters
of their own (this is the top right point of the curve). Note
that the slope of the curve at any point is1/β.

It is important to note that each point on the rate distor-
tion curve is a soft clustering that uses as many clusters as
are needed to obtain the optimal value of the rate distor-
tion functionalF , for the corresponding value ofβ. Any
fixed choice of the number of clusters to use will ultimately

be suboptimal, as the data separates into more and more
clusters. Figure 2 also shows the compression and qual-
ity values achieved for clusterings using a fixed number of
clusters: for each such numberK, there is a point at which
the corresponding curve separates from the rate distortion
curve, and proceeds along a suboptimal path (less compres-
sion, lower quality).

A choice of a clustering is thus made by choosingβ.
Normalizing the x-axis and y-axis so that the curve goes
from (0, 0) to (1, 1), we choosethe point of diminishing
returns; namely the point at which the slope of the curve
is one. The reason for our choice is two-fold; the point of
diminishing returns, because it has unit slope, is the point
after which the benefits of increased quality do not pay for
the increasing space needed for the representation. Second,
this point is the closest point to the(0, 1) point, which is the
point representing perfect quality with no space penalty.

3.3. The Information Bottleneck Method

Our proposed choice ofβ is quite general, and is inde-
pendent both of the distance function used, and any distri-
butional assumption. To perform the clustering though, we
must fix a representation for the data, and an appropriate
distance function. As pointed out by Banerjeeet al. [2],
choosing any Bregman distance yields a meaningful rate-
distortion framework, and thus the choice of distance de-
pends on the data representation used.

Choosing`22 as the distance function yields an EM-like
method, which would be appropriate for vector data. Our
data are strings, which we choose to represent asq-gram
distributions. A natural distributional model for string data
is a multinomial distribution (for example, the naive Bayes
method), and the corresponding Bregman distance is the
Kullback-Leibler distance. Using this measure yields a fa-
miliar formulation; the information bottleneck method of
Tishby, Pereira and Bialek [16]. Some algebra yields a sim-
ple description of the rate distortion curve, as the set of
points that minimizeF(β) = I(T ;X) − βI(T ; Y ), where
Y is a variable representing the space of allq-grams. Note
that the choice ofβ that yields the point of unit slope on the
rate distortion curve is now given byβ∗ = H(X)/I(X;Y ).
This is a consequence of the fact thatI(T ; X) is maximized
whenT = X, and thusI(T ; X) = I(X; X) = H(X), and
I(T ; Y ) is maximized whenT = X. We use theiIB algo-
rithm [15] to compute a local optimum ofF(β).

3.4. Estimating Heterogeneity

The central idea of this paper is that the entropy of a clus-
tering is a good measure of data heterogeneity. However,
cluster entropy is defined only for a hard clustering. Since
we know that any hard clustering can be expressed in terms
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of probabilistic cluster assignments using only zero and one
for probabilities, (and uniform priors on the elementsx) we
would like the measure we propose to tend towards (hard
clustering) cluster entropy in this limiting case.

Using Cluster Marginals The first approach that
comes to mind is to determine the marginalsp(t) =∑

x p(t|x)p(x). Our measure is then the entropy of the
resulting distribution. Clearly, if all assignments are 0-1
andp(x) = 1/n, p(t) = |{x|x ∈ t}|/n, and this reduces
to H(T ). However, by aggregating the individual cluster
membership probabilities, we have lost crucial information
about the data. Consider two different soft clusterings of
two pointsx1, x2 into two clusterst1, t2. In the first cluster-
ing, p(t1|x1) = 0.9, p(t1|x2) = 0.1. In the second cluster-
ing, p(t1|x1) = p(t1|x2) = 0.5. Both clusterings yield the
same marginalp(t) and thus would have the same cluster
entropy using the proposed measure. However, it is clear
that in the first clustering,x1 is essentially int1 andx2 is
essentially int2 (0.9 can be replaced by any number1 − ε
for this purpose), and so the cluster entropy should be close
to log 2. In the second clustering however,t1 andt2 are in-
distinguishable, which means that there is effectively only
one cluster, with a cluster entropy of zero.

Two issues are illuminated by this example. First, aggre-
gating cluster probabilities is not an appropriate equivalent
of cluster entropy. Second,the number of clusters in a soft
clustering is an irrelevant parameter. This is because two
clusters having identical cluster membership probabilities
will be collapsed (intuitively because they are indistinguish-
able from each other). Note that the membership probabili-
tiesp(t|x) for a pointx do not have to be identical for this
to happen.

Using Superpositions of Hard Clusterings The second
approach we might take is to view the probabilistic assign-
ments as the convex superposition of different hard cluster-
ings. In this view, the assignments reflect the superposition
of different “worlds”, each with its own hard clustering. In
this case, our strategy is clear; we assign each point to a
cluster using the distributionp(t|x), and compute the clus-
ter entropy of the resulting hard clustering. Doing this re-
peatedly and taking an aggregate (mean or median) gives
us an estimate. Note that this approach will yieldH(T ), as
desired, when applied to a single hard clustering, because
each point is always assigned to a specific cluster.

However, the second clustering in the above example
outlines a problem with this strategy. If a set of points
have identical cluster memberships in a set of clusters, then
in any particular sample, the points might be distributed
among many clusters, rather than all being placed together
as they should. For example, in some samples,x1 might be
placed int1, andx2 might be placed int2, and in others,
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they might be placed together. To address this problem, we
have tomergeclusters that have similar cluster membership
probabilities, using a threshold parameter and some appro-
priate merging strategy.

The result of doing this, for multiple data sets and over
the range of values forβ, is referred to as sampled cluster
entropy and is shown in Figure 3. In the figure, the x-axis
representsβ/β∗.

Observe that for all data sets, this measure exhibits a
clear minimum aroundβ = β∗. It turns out that the rel-
ative ordering of the heterogeneity values at this value ofβ
correctly reflects the underlying heterogeneity in the data.

The above measure appears quite suitable as a measure
of heterogeneity. However, computing it requires at least
two parameters; the threshold parameter that decides when
clusters are merged, and a parameter deciding the number
of samples required to get an accurate estimate. In the ab-
sence of a rigorous theoretical analysis, the choice of values
for these parameters will inevitably need to be determined
experimentally.

Using Mutual Information I(T ; X) A more compact so-
lution exploits the relationship betweenH(T ) andI(T ;X).
Rate-distortion theory tells us thatI(T ;X) is a measure of
space complexity; it is not hard to see that if the assign-
mentsp(t|x) are 0-1, thenI(T ; X) = H(T ). Thus, the
measure of heterogeneity (and of cluster entropy for a soft
clustering) we propose isI(T ; X).

A brief illustration of this idea is presented in Figure 4.
For each value ofβ and for multiple data sets, we plot
I(T ; X) for the soft clusterings obtained usingiIB . On
the x-axis, we plotβ relative to the chosen valueβ∗ =
H(X)/I(X; Y ). As β increases from zero, there is a sharp
increase inI(T ;X) as we approachβ∗. This increase oc-
curs for all the data sets, and in roughly the same place.
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Figure 4. I(T ; X) as a function of β/β∗.

The measure of heterogeneity of a data set is then the
value ofI(T ; X) at the pointβ = β∗ (i.e atβ/β∗ = 1 on
the graph). As we shall see experimentally in Section 5, this
measure of heterogeneity correctly predicts the true under-
lying heterogeneity in the data.

I(T ;X) increases monotonically; sampled cluster en-
tropy as described above exhibits a series of (increasing)
local minima. It is interesting, and an indication of the ro-
bustness of our proposed choice ofβ, that both measures,
while approaching the problem of heterogeneity differently,
display the same properties: namely, a sharp change close
to β = β∗, and a correct ordering of data sets with respect
to their true underlying heterogeneity at this point.

We can now summarize the entire algorithm in Algo-
rithm 1.

Algorithm 1 Computing Heterogeneity.
1: Convert input strings to distribution ofq-grams. Pre-

pare the data for processing.
2: Computeβ∗ = H(X)/I(X; Y )
3: Compute soft clustering usingiIB with β set toβ∗

4: Estimate heterogeneity by computingI(T ; X).

Given our choice ofI(T ; X) as the preferred measure
of heterogeneity and of cluster entropy of a soft clustering,
when we refer to cluster entropy in the rest of this paper we
meanI(T ;X), unless otherwise indicated.

4. Methodology

The previous section described our general framework
for quantifying column heterogeneity. We now present an
instantiation of our framework based on the representation
of string data using a multinomial distribution of q-grams,
and the details of our algorithm implementation. The input
to the algorithm consists of a column of data, viewed as a

set of stringsX.

4.1. Preparing The Data

Weighted q-gram Vectors We first constructq-grams
for all strings inX. In particular, we construct1− and
2−grams for all strings. Let the set ofq-grams beY .
For eachq-gram y, let f(x, y) be the number of occur-
rences ofy in x, and letp(y) be the fraction of strings
containingy. We construct a matrixS whose rows are the
strings ofX and whose columns areq-grams, and the entry
mxy = f(x, y)∗w(y)/Z, whereZ is a normalizing constant
so that the sum of all entries inM is1, andw(y) = H(p(y))
= −p(y) ln p(y)−(1−p(y)) ln(1−p(y)). Note that setting
w(y) = − ln p(y) would yield the standard IDF weighting
scheme.

Note that standard IDF weighting is not appropriate for
our application. IDF weighting was designed to aid in doc-
ument retrieval, and captures the idea of “specificity”, that a
few key phrases could be very useful at identifying relevant
documents. IDF weighting captures this by overweighting
terms with low relative occurrence.

However, for heterogeneity testing, specificity means
that certain rare terms occur only in a few strings. We are
not concerned with such outliers, and IDF weighting will
only give such strings artificially high importance. Rather,
robust heterogeneity testing requires us to to identify terms
that distinguish large sets of data from each other; the en-
tropy weighting scheme captures this as it is maximized
whenp = 0.5, and decays symmetrically in either direc-
tion.

Adding Background Context Any clustering makes
sense within a context; a high concentration of points in a
small range is significant only if viewed against a relatively
sparse, larger background. For example, the collection of
strings in Figure 1(a) form a cluster only with respect to the
set of all strings. If the background for this data were only
the set of email addresses, then this set has no apparent un-
usual properties.

For heterogeneity testing, an appropriate background is
the space of all strings. This needs to be introduced into
each data set in order to define the “bounding volume” of
the space. As we represent data as distributions, the back-
ground consists of random distributions, chosen from the
space of all distributions. These are added to the data be-
fore soft clustering is performed, and are then removed1.

It is well known that the uniform distribution over the
d-dimensional simplex is a Dirichlet distribution, and thus
a uniform sample from this space is obtained by the fol-
lowing simple procedure. Sampled pointsx1, . . . xd from

1This is reminiscent of the subtractive dithering used in signal process-
ing to improve quantization.
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an exponential distribution with parameter1, and normal-
ize the values by dividing each by

∑d
i=1 xi. The resulting

d-vector is a uniform sample from the simplex [8]. A uni-
form sample from an exponential distribution is computed
by samplingr uniformly in [0 . . . 1] and returning the value
ln(1/r).

To generate the background, we use a set ofq-grams dis-
joint from theq-grams inY , of the same cardinality asY .
Using the above procedure, we generate|X| points, yield-
ing a matrixN that is then normalized so all entries sum to
1. BothS andN have dimension|X| × |Y |.

We fix a parameter0 < λ < 1 (the mixing ratio) that
controls the mixture of data and background context. The
final joint density matrixM is of dimension2|X| × 2|Y |,
containingλS as its first|X| rows and|Y | columns and
(1 − λ)N as its last|X| rows and|Y | columns. Note that
M is a valid joint distribution since its entries sum to1. We
will abuse notation and refer to the rows ofM asX and the
columns asY in what follows.

4.2. Computing β∗ And Clustering the Data

In Section 3 we derived an expression for the value ofβ
corresponding to the point on the rate-distortion curve that
balanced error and compression. This value ofβ is given
by β∗ = H(X)/I(X;Y ). We compute this from the ma-
trix M , using only the data rows and columns. We use the
standard empirical estimator for entropy (which treats the
normalized counts as fractions).

GivenM andβ∗, we now run theiIB algorithm[15] for
computing the information bottleneck. This algorithm is
a generalization of the standard expectation-maximization
method. Although the algorithm generates a soft cluster-
ing, it requires as input a target set of clusters (not all of
which may be used in the output). We specify a very large
number of clusters (|X|/2). Empirically, we see that this
is sufficient to find a point on the rate distortion curve. We
emphasize here that wedo notneed to fix a number of clus-
ters in advance; the number of clusters that we supply to
iIB is merely an artifact of the implementation and need
only be a very loose upper bound. It only affects the run-
ning time of the algorithm, and not the final heterogeneity
measure computed.

The output of this algorithm is a soft clusteringT , spec-
ified as the conditional probabilitiesp(t|x), from which the
cluster massesp(t) and the cluster centersp(y|t) can be de-
rived using Bayes’ Theorem and the conditional indepen-
dence ofT andY givenX.

p(t) =
∑

x

p(t|x)p(x)

p(y|t) =
∑

x

p(y|x)p(t|x)p(x)
p(t)

We depict the algorithm in Figure 5, paralleling the steps
of algorithm 1.

4.3. Performance Optimizations

Sampling Of Data Columns in a database have many
thousands of entries. We sample a small fraction of the en-
tries and compute our heterogeneity estimate on this sam-
ple. Since our goal is to detect gross structure in the data,
sampling allows us to discard small outlier sets without sig-
nificantly affecting the results.

Number of Iterations of iIB TheiIB algorithm can of-
ten require many iterations to converge. However, experi-
ments show that it almost always converges to within 1% of
the final answer within 20 iterations. Hence, we terminate
the algorithm after 20 iterations. We present these experi-
ments in Section 5.

5. Experiments

We now present a detailed experimental evaluation of our
heterogeneity detection scheme. We will do this using di-
verse data sets of different types, mixed together in various
forms to provide different levels of heterogeneity. We start
with a description of the platform and the data sets.

5.1. Platform and Data Sets

The machine we run our experiments on has a Intel(R)
Xeon(TM) 3.2 Ghz CPU and 8GB of RAM. It runs Red Hat
Linux with the 2.4 kernel and gcc v3.2.3.

We consider mixtures of four different data sets.email
is a set of 509 email addresses collected from attendees at
the 2001 SIGMOD/PODS conference.ID is a set of 609
employee identifiers,phone is a diverse collection of 3064
telephone numbers, andcircuit is a set of 1778 network
circuit identifiers. Strings inID andphone are numeric
(phone data contains the period as well). Strings inemail
andcircuit are alphanumeric, and may contain special
characters like ’@’ and ’-’.

Each input for our experiments consists of a fixed num-
ber of sampled data elements, mixed with the same number
of background elements (constructed using the procedure
described in Section 4). Elements were sampled from the
data sets uniformly, and data mixtures were constructed us-
ing equal amounts from each source. A two-set mixture
contained equal numbers of elements of each type, and so
on. We tried allk-way mixtures fork = 1, 2, 3, 4.
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Compute β∗

Add background

Do soft clusteringConvert strings to q-
gram distributions

Step 1

Remove background

Step 2
Step 3 Step 4

Compute I(T ;X)

Figure 5. A flowchart for heterogeneity estimation.
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Figure 6. Cluster entropy as a measure of het-
erogeneity. The x-axis plots β/β∗.

5.2. Validation of Heterogeneity Measure

We start by demonstrating the value of cluster entropy
I(T ; X) as a measure of heterogeneity. Figure 6 plots the
estimated cluster entropy as a function ofβ/β∗, for values
of β aroundβ∗ = H(X)/I(X; Y ). Note thatβ∗ might be
different for different data sets. Observe that all the individ-
ual data sets have very small cluster entropies, and are well
separated from the mixtures. Further, mixtures of two data
sets in general have lower cluster entropy than mixtures of
three and four. We observe that as the number of elements
in the mixture increases, the heterogeneity gap decreases,
and that the separations are not strict for the more heteroge-
neous sets; this is natural, as individual data sets may have
characteristics that are similar (e.g.,ID andphone ).

A closer look at the plot illustrates the idea of well-
separatedness and how it is captured in our measure. Con-
sider Figure 7, which plots cluster entropyI(T ;X) only for
2-mixtures, and a mixture of all the data sets.

We see a clear separation between the cluster entropy of
pairs and the cluster entropy of the 4-way mixture. How-
ever, we also notice one 2-mixture that has much lower
cluster entropy, much closer to what we would expect for
a single data source. The two data sets areID andphone ,
both data sets that are predominantly numeric strings, and
which often have the exact same number of digits. It is diffi-
cult to tell these kinds of strings apart, and as a consequence
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Figure 7. Cluster entropy for mixtures of two
sets, and a mixture of all the data sets.

their mixture is not viewed as particularly heterogeneous.
The various mixtures whose cluster entropies are de-

picted in Figures 6 and 7 use equal amounts of data from
each source. In Figure 8, we plot cluster entropy for data
obtained from alogin column of a real data set, contain-
ing an unknown mixture of values. The heterogeneity of
this column was determined to be between a 1-mixture and
a 2-mixture. A subsequent inspection of the data revealed a
large number ofemail values mixed with a smaller num-
ber ofID values.

5.3. Validation of Soft Clustering

Cluster entropy appears to capture our intuitive notion of
heterogeneity. However, it is derived from a soft clustering
returned by theiIB algorithm. Does that soft clustering
actually reflect natural groupings in the data? It turns out
that this is indeed the case. In Figure 9 we display bitmaps
that visualize the soft clusterings obtained for different mix-
tures. In this representation, columns are clusters, rows are
data, and darker probabilities are larger. For clarity, we have
reordered the rows so that all data elements coming from
the same source are together, and we reordered the columns
that have similarp(t|x) distributions.

To interpret the figures, recall that each row of a fig-
ure represents the cluster membership distribution of a data
point. A collection of data points having the same cluster
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membership distributions represent the same cluster. Thus,
notice how the clusters separate out quite cleanly, clearly
displaying the different data mixtures. Also observe how,
without having to specifyk, the number of clusters,iIB is
able to separate out the groups. Further, if we look at Fig-
ure 9, we notice how the clusters corresponding toID and
phone overlap and have similar cluster membership distri-
butions, reinforcing our observation that they form two very
close (not well-separated) clusters.

In addition to performing soft clustering and computing
cluster entropy, our algorithm adds in background context
to aid in the clustering process. In the next experiment, we
establish the need for this step.

5.4. Validation of Background Addition

An important aspect of our algorithm is the addition of a
background context, as discussed in Section 4.1. We argued
that intuitively, the effect of this addition is to “expand” the
space being clustered, so a set of points that is highly clus-
tered shows up clearly in contrast to the background. Obvi-
ously, if the background level is too high, any data will get
swamped, and if too low, will be useless.

Usingemail andID , we illustrate the effect of adding
background in Figure 10. Setting the parameterλ to one
removes all background from the data. As predicted, when
a background context is not added, the data spreads over all
clusters in unpredictable ways. Adding it in immediately
and predictably collapses the data into a few clusters.

5.5. Sample Size

The default sample size used in our experiments was
200. Increasing the sample size increases the running time
of the procedure, but it has the potential for revealing more

(a) (b)

(c) (d)

Figure 9. Soft Clustering of email /ID ,
email /circuit , circuit /phone ,
email /ID /circuit /phone mixtures.

accurate clusterings. 200 samples suffice to capture hetero-
geneity accurately on our data; in Figure 11, we plot cluster
entropy againstβ for 400-sample mixtures. As always, we
use the same number of background elements as data points.
Notice that the behavior of the curves is very similar to the
behavior with 200 samples (Figure 6).

Conversely, could we have reduced our sample size? The
answer, on our data sets, appears to be negative. Figure 12
plots cluster entropy againstβ for 100-sample data sets.
Here we can see that the heterogeneity estimates are starting
to deteriorate, most prominently for some 3-way mixtures.
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(a) No Background (λ =
1.0)

(b) Background added (λ =
0.5)

Figure 10. ID clusters with and without back-
ground.

5.6. Performance

We now look at the performance of our algorithm. Ta-
ble 1 breaks down the time taken by various parts of the
algorithm. For this experiment, we used an input set of size
2n, n = 200, 400, consisting ofn data rows andn back-
ground rows, using 1-grams and a maximum of200 initial
clusters to “seed”iIB . Recall that we do not fix the number
of clusters finally produced by the algorithm.

We also compare the performance impact of using 2-
grams rather than 1-grams when converting the input data
to a collection of distributions, in Table 2. The most signif-
icant time degradation happens in each iteration ofiIB , as
the intrinsic dimensionality of the data increases.

As we can see from the above tables, the main bottle-
neck in the algorithm is aniIB update step. The best way
of reducing this time is being able to pick a single value of
β to start theiIB iteration, and that is an important feature
of our algorithm. Further, each update step ofiIB is ex-
pensive, and so if we can reduce the number of update steps
needed, we can improve the algorithm performance. The
number of update steps is controlled by the rate of conver-
gence ofiIB . It turns out that in practice,iIB converges
rather rapidly, in general requiring 20 iterations or less to
converge to within a few percent of its final value. The con-
vergence numbers are shown in Figure 13. Even for far
larger instances (not shown in the figure), convergence typ-
ically occurs in 30 iterations or less.
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Figure 11. Cluster Entropy with sample size
of 400.
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Figure 12. Cluster Entropy with sample size
of 100.

6. Conclusion and Future Work

In this paper, we proposed a novel measure of database
column heterogeneity as the cluster entropy of a soft cluster-
ing of the data, useful to understand data quality issues that
can arise when merging data from multiple sources. We
addressed the problem of picking the “right” soft cluster-
ing by formulating a principled way of choosing a tradeoff
point between compression and quality for soft clustering,
based on rate distortion theory, asβ∗ = H(X)/I(X;Y ).
We identified mutual information of a clustering,I(T ;X),
as a robust measure of cluster entropy of a soft clustering,
and demonstrated that it quantifies the column heterogene-
ity of the underlying data via a detailed experimental study.

There are many further optimization strategies that we
might adopt in order to improve the performance and qual-
ity of our algorithm. Some that we have experimented with
include reducing the alphabet size, trying different term
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Mixture Prepare data iIB iteration
200 400 200 400

email 0.02 0.04 0.42 0.87
ID 0.01 0.01 0.16 0.48
circuit 0.02 0.04 0.23 0.42
phone 0.02 0.03 0.20 0.76
email ID 0.01 0.03 0.45 1.17
email circuit 0.02 0.04 0.42 1.24
email phone 0.02 0.05 0.36 0.94
ID circuit 0.02 0.03 0.27 0.51
ID phone 0.01 0.03 0.32 0.72
circuit phone 0.01 0.02 0.25 0.72
email ID circuit 0.01 0.02 0.35 0.75
email ID phone 0.01 0.04 0.59 0.70
email circuit phone 0.02 0.03 0.36 0.68
ID circuit phone 0.01 0.02 0.23 0.45
All 0.01 0.03 0.41 0.67

Table 1. Breakup of running time (in sec-
onds). Generation of background and en-
tropy estimation take negligible time (less
than 0.02s) and were omitted.

weighting schemes, and using different models for back-
ground context. We plan on exploring this space further, so
as to be able to employ our algorithm on databases contain-
ing hundreds of thousands of columns.

A central question that comes out of our work is the role
of β∗ and cluster entropyI(T ;X) in determining “good”
clusters. Our choice ofβ∗ was based on intuitive arguments
about the tradeoff between quality and compression. This
was validated by the behavior ofI(T ; X) for different mix-
tures of data sets at, and in the vicinity of,β∗. A better
understanding of this phenomenon might lead to deeper in-
sights into the way soft clusterings evolve, as well as what
structural properties are captured by cluster entropy.
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