
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2006

On the lower bound of local optimums in k-means algorithms On the lower bound of local optimums in k-means algorithms

Zhenjie ZHANG

Bing Tian DAI
Singapore Management University, btdai@smu.edu.sg

Anthony K.H. TUNG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
ZHANG, Zhenjie; DAI, Bing Tian; and TUNG, Anthony K.H.. On the lower bound of local optimums in k-
means algorithms. (2006). Proceedings of Sixth International Conference on Data Mining, Hong Kong,
2006, December 18-22. 775-786.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3757

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3757&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

On the Lower Bound of Local Optimums in K-Means Algorithm

Zhenjie Zhang Bing Tian Dai Anthony K.H. Tung
School of Computing

National University of Singapore
{zhenjie,daibingt,atung}@comp.nus.edu.sg

Abstract

The k-means algorithm is a popular clustering method
used in many different fields of computer science, such as
data mining, machine learning and information retrieval.
However, the k-means algorithm is very likely to converge
to some local optimum which is much worse than the desired
global optimal solution. To overcome this problem, current
k-means algorithm and its variants usually run many times
with different initial centers to avoid being trapped in local
optimums that are of unacceptable quality. In this paper,
we propose an efficient method to compute a lower bound
on the cost of the local optimum from the current center set.
After every k-means iteration, k-means algorithm can halt
the procedure if the lower bound of the cost at the future lo-
cal optimum is worse than the best solution that has already
been computed so far. Although such a lower bound com-
putation incurs some extra time consumption in the itera-
tions, extensive experiments on both synthetic and real data
sets show that this method can greatly prune the unneces-
sary iterations and improve the efficiency of the algorithm
in most of the data sets, especially with high dimensionality
and large k.

1 Introduction

The k-means algorithm is a popular clustering method
used in many different fields of computer science, such as
data mining, machine learning and information retrieval.
Given a data set P , the k-means algorithm, also known as
Lloyd’s algorithm [13], tries to find k centers in the space
minimizing the cost, which is the sum of the squared Eu-
clidean distance from every point in P to its nearest cen-
ter. At the beginning of the algorithm, k random centers are
chosen from the original data set. Then the algorithm keeps
invoking k-means iterations. Every k-means iteration con-
sists of two operations. First, every point in the data set is
assigned to the nearest center. Second, points are divided
into k groups according to the nearest center in the previ-

ous step and the geometric centers of all groups form a new
set of centers. This procedure continues until the centers do
not move any more. The k-means algorithm is accepted and
used in many different applications because of its simplicity
and efficiency.

However, there are two main problems for k-means al-
gorithm. First, in each iteration, much computation time
is spent on assigning every point in the data set to its new
nearest center. Second, the algorithm is easy to be trapped
in some local optimum, which can be much worse than the
global optimum. For the first problem, there have been sev-
eral works on accelerating the nearest center search proce-
dure based on triangle inequality [6] or indexing structures
[10, 15], which can work well in low dimensional space.
Compared with the first problem, the second problem has
not been well addressed yet. Although there are some stud-
ies on the choices of initial centers [3, 14] to avoid those
local optimums, these methods do not show too much ad-
vantage over the simple random selection in the data set.

To address the second problem as mentioned above, we
propose a novel computation method on the lower bound of
local optimums in the multi-procedure k-means algorithm,
where every procedure is a running of k-means algorithm
with a unique initial center set. With the current center set
of a procedure, the method proposed in this paper is able
to find out a lower bound on the cost of the local opti-
mum, where the algorithm will converge to. As solution
with smaller cost is favored, the current procedure can be
terminated if such a lower bound is greater than the mini-
mum cost achieved by other procedures. The computation
time on the further iterations to reach those worse local op-
timums can thus be saved. Here, we simply assume but not
limit to the assumption that all procedures are run one by
one on a single machine.

In order to lower bound the cost at the local optimum, our
algorithm works in two steps. In the first step, it tries to find
a maximal region inside which the local optimum will defi-
nitely fall in. Despite that the general maximal region for a
center set is hard to compute, we propose a special type of
maximal region which is looser but easy to calculate. In the

1

Algorithm 1 Original k-means algorithm (data set P , k)
1: Randomly choose k points as the center set M
2: while M is not still do
3: M =SimpleIterate(P,M) //See Algorithm 2 //
4: end while
5: Return M

second step, it calculates the lower bound on local optimum
by estimating how the movements of the centers can affect
the overall cost. Although the searching of such maximal
region will result in extra computation time consumption,
the benefit from early pruning by the lower bound can sig-
nificantly speed up the whole k-means algorithm. This ef-
fect can be verified by our extensive experiments on both
synthetic and real data sets.

The rest of the paper is organized as follows. Section
2 defines the problem and discusses some intuition. Sec-
tion 3 proposes the concept of maximal region and derive
the lower bound based on a special type of maximal re-
gion. Section 4 presents the new iteration algorithm and the
new accelerated k-means algorithm by exploiting the lower
bound on local optimums. Section 5 gives some experi-
mental results, and Section 6 reviews some related work.
Finally, we conclude this paper in Section 7.

2 Problem and Intuition

In this paper, we put our focus on the k-means clus-
tering algorithm in Euclidean space Rd. We use p =
(p[1], p[2], . . . , p[d]) to represent a point p in this space. The
distance defined in Euclidean space D(p, q) can thus be cal-

culated by D(p, q) =
√∑d

i=1(p[i] − q[i])2 = ‖p − q‖.
Given a center set M = {m1,m2, . . . ,mk}, we define

the cost of the center set with respect to data set P as the
sum of squared Euclidean distance of points in P to their
corresponding nearest center within M , i.e., C(M,P) =∑

p∈P mini D2(p,mi). Without ambiguity, we simplify
C({q}, P) as C(q, P).

Given a data set P , we use c(P) = 1
|P |

∑
p∈P p to denote

the geometric center of P . It is well known that c(P) is the
optimal solution of 1-mean on data set P , which has the
following property [9, 12].

Lemma 1 Given a data set P and an arbitrary point q
in the same space, we have C(q, P) = C(c(P), P) +
|P |D2(q, c(P)).

2.1 K-Means Algorithm

In Algorithm 1, we present the detail of the original k-
means algorithm. At the beginning, the original center set

Algorithm 2 SimpleIterate (data set P , M)
1: for every point p in P do
2: Assign p to the closest center in M
3: end for
4: for every mi in M do
5: Use the geometric center of all points assigned to mi

to replace mi

6: end for
7: Return M

M is constructed by randomly choosing k points from the
original data set P . Then, the algorithm keeps improving
the cost of the solution by invoking the SimpleIterate (Al-
gorithm 2) algorithm. This procedure stops when the cen-
ters do not move any more, i.e., no point changes its assign-
ment in the last iteration.

In SimpleIterate, it first assigns the points in P to the
closest center in M (line 1-3), then updates the centers by
replacing the old ones with the new geometric center of the
clusters (line 4-6). It is easy to verify that such an iteration
can always decrease the overall cost before the convergence
of the k-means algorithm.

In this paper, we are trying to improve the efficiency of
multi-procedure styled k-means algorithm, where several
procedures with different initial centers are run and the best
solution is returned as the final result. These procedures are
assumed to run one by one on a single machine.

2.2 Local Optimums in K-Means Algo-
rithm

Just like the other geometrical optimization problems, k-
means algorithm can not guarantee to converge to global
optimum every time. The algorithm is very likely to stop at
some local optimum much worse than the global optimum.
To clearly illustrate the severity of the local optimum prob-
lem in k-means algorithm, we give some statistics on some
real data set here.

We run 20 procedures of k-means algorithm on KDD99
data set with parameter k = 4. The results show that 80%
of random initial centers lead k-means algorithm to some
local optimum with cost larger than 110,000, while 10% of
procedures end with cost smaller than 100,000. Most of the
computation time is wasted on the useless iterations if the
initial centers are not well chosen!

To discover such bad initial centers as early as possible,
we focus on deriving a lower bound on the local optimums
achievable in the future iterations. In Fig 1, we give a run-
ning example of the accelerated k-means algorithm with
lower bound computation. The curve above shows the costs
of the center set after every iteration, while the curve below
shows the corresponding lower bounds on the local opti-

2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 4 6 8 10 12

C
os

t

Iterations

Cost
Lower Bound

Figure 1: Lower Bound Example

mum computed after every iteration. Here the lower bound
at any iteration is guaranteed to be smaller than the final
convergence cost. While the original k-means algorithm
can stop only after totally converging to local optimum, the
lower bound estimation can be used to terminate the proce-
dure earlier. For example, if the cost of current best solution
is below 100,000, there is no need to further iterate after the
5th iteration since it is impossible to find a better solution.
The termination in such situation can save more than half
of the computation time in this procedure since there are
another 7 iterations before convergence.

3 Maximal Region and Lower Bound

There are two steps in the computation of the lower
bound on local optimums. In the first step, we find a maxi-
mal region within which the centers can move in the future
iterations. In the second step, we bound the cost of any cen-
ter set in the maximal region.

3.1 Maximum Region of Local Optimum

To facilitate the analysis on the movements of the centers
in k-means algorithm, we define a kd-dimensional solution
space S for all center sets of size k. Given a center set M =
{m1,m2, . . . ,mk}, we can find a corresponding point in S,
µM = (m1[1], . . . , m1[d], . . . , mk[1], . . . , mk[d]). Without
ambiguity, we directly use M to denote both a center set
and its position µM in S.

1n

2n
1m

2m

1t

2t

p

q
)(1 pd

)(3 pd

)(1 qd
)(2 qd

Figure 2: Center movement in one iteration

In Fig 2, we show an example of one 2-means iteration
in a 2-dimensional space. With N = {n1, n2} as the pre-
vious center set, points on the left side of the solid line
are assigned to center n1 while the others are assigned to
center n2. The geometric centers of the two sets are m1

and m2, and thus M = {m1,m2} replaces N as the new
center set. Therefore, we say the center set moves from
(n1[1], n1[2], n2[1], n2[2]) to (m1[1],m1[2],m2[1],m2[2])
in the solution space S. We call a center set T Intermediate
Center Set between N and M , if every center ti in T lies on
the line segment joining mi ∈ M and ni ∈ N . Obviously,
T is also on the line segment between M and N in solution
space S. T = {t1, t2} is such an intermediate center set in
Fig 2.

In the following, we denote the neighborhood of center
mi by NH(mi,M, P), which contains points in P nearer
to mi than any other center in M .

Lemma 2 Assume N is the center sets before a k-means it-
eration, and M is the center set after the k-means iteration.
If T is an intermediate center set between M and N , we
have C(N,P) ≥ C(T, P).

Proof: Since mi = c(NH(ni, N, P)), by Lemma 1, we
have

C(N,P) =
∑

C(ni, NH(ni, N, P))

=
∑

C(mi, NH(ni, N, P))

+
∑

|NH(ni, N, P)|D2(ni,mi) (1)

On the other hand, the cost of the center set T is

C(T, P) ≤
∑

C(ti, NH(ni, N, P))

=
∑

C(mi, NH(ni, N, P)

+
∑

|NH(ni, N, P)|D2(ti,mi) (2)

Combining (1) and (2), we have C(N,P) ≥ C(T, P)
since D(ni,mi) ≥ D(ti,mi). �

The above lemma shows that when k-means algorithm
moves the centers after one iteration, any solution on the
line segments between them must be a better solution than
the previous one. This further implies that if the current cen-
ter set are surrounded, in the solution space S, by a group
of center sets with higher costs, then the centers must con-
verge at some local optimum in the “basin”, which is proven
rigourously in the following theorem.

Theorem 1 Assume M is a k-means center set in S and is
covered by a closed region R ⊂ S. If every center set T on
the boundary of R has C(T, P) > C(M,P), the k-means
algorithm with M as initial centers must converge at some
solution M ′ ∈ R.

3

Proof: If from current center set M , k-means algorithm
can converge at some solution out of R, there must be one
iteration from solution M1 to solution M2, where M1 is
in R but M2 is not. There must be an intermediate cen-
ter set M3 on the boundary of R between M1 and M2.
Since C(M1,D) ≤ C(M,D) by the property of itera-
tions, and C(M3,D) > C(M,D) by assumption, we have
C(M3,D) > C(M1,D) which contradicts lemma 2. �

Based on the above theorem, we know that if we can find
a region R containing the current center set M in the solu-
tion space S with costs larger than C(M,P) on the bound-
ary, the movements of the centers are constrained in such
a region R. We call such a region Maximum Region of the
k-means local optimum.

m 1

m 2

����
��
��
��

20
30

40

O

10

L
M

Figure 3: Maximal Region Example

In Fig 3, we show an example of the solution space S for
a 1-dimension 2-means clustering. In the figure, the vertical
axis represents the position of the first center and the hori-
zontal axis represents the position of the second center, so
any point in the figure is a 2-point center set on 1-dimension
space. We use contour lines to present the costs of the center
sets in the solution space, and use the square point to repre-
sent the local optimum in the space. Assume the circle point
M is the current center set after the last iteration. Since M
is on the contour line of cost 10, we have C(M,D) = 10.
By Theorem 1, any contour line of cost larger than 10 must
form a boundary of a maximal region for M , such as the
contour line of cost 20 or 30. The dashed rectangle, whose
center is M , also forms a maximal region, since any center
set on the boundary of the rectangle must have cost larger
than 10. It is straightforward to verify that the local opti-
mum L is enclosed by any of such maximal regions.

3.2 A Special Type of Maximum Region

As is shown in the example of Fig 3, maximum re-
gions can be of complex shape, which makes it impos-
sible to exhaustively search for such regions in the kd-
dimensional space S. We therefore propose a special
type of maximum regions, which is easier to manipulate.
Given a center set M , we define R(M,∆) = {M ′ =

{m′
1,m

′
2, . . . ,m

′
k} | ∀i, 1 ≤ i ≤ k, ‖m′

i−mi‖ ≤ ∆}. That
is, for any M ′ ∈ R(M,∆), there is no center m′

i ∈ M ′ is
away from mi ∈ M by ∆ distance. Therefore, the bound-
ary of R(M,∆) is ∂R(M,∆) = ∪B(mi,M,∆), where
B(mi,M,∆) = {M ′ ∈ R(M,∆)| ‖m′

i − mi‖ = ∆}. By
Theorem 1, R(M,∆) is maximum region if C(M ′, P) >
C(M,P) for all M ′ ∈ B(mi,M,∆) for any i.

Recall the 1-dimension 2-means example in Fig 3. The
dashed rectangle forms the boundary of a maximal region
R(M,∆), since (1) the difference on either axis between
M and any other center set in the rectangle is smaller than
∆, and (2) any center set on the rectangle must have cost
larger than 10.

We use R(M,∆) as our maximal region not only for its
easiness to represent but also for its simpler analysis on the
costs of the center sets on the boundary. Assume we are
at the beginning of a new iteration in k-means algorithm
and L = {L1, . . . , Lk} is the point assignment after last
iteration, i.e., all points in Li ⊆ P are assigned to mi ∈ M
and mi is the geometric center of the point set Li. Given a
point p ∈ Li, we define d1(p) to be the distance from p to
its current cluster center mi, d2(p) to be the distance from
p to its nearest center in M and d3(p) to be the distance to
p’s second nearest center in M .

To find out whether R(M,∆) is a maximal region pro-
vided the value of ∆, we divide the data set P into three
subsets P1, P2 and P3 according to the value of ∆ used
in R(M,∆). P1 contains all the points which will be as-
signed to some other center after the current k-means it-
eration, i.e., P1 = {p ∈ P |d1(p) > d2(p)}. P2 con-
tains all the points in P − P1 that might be assigned to
other cluster if centers move to M ′ ∈ ∂R(M,∆), i.e.,
P2 = {p ∈ P |d1(p) > d3(p) − 2∆}. P3 contains all
the other points not in P1 and P2. In Fig 2, when the
centers move from N = {n1, n2} to M = {m1,m2},
q is in P1 since d1(q) > d2(q), while p may be in P2 if
d1(p) > d3(p) − 2∆, otherwise p is in P3.

Let X(p) = d2
1(p)−d2

2(p) for any point p ∈ P1, we have
the following lemma.

Lemma 3 Given the assignment L and center set M before
a k-means iteration, the cost of M with respect to P is

C(M,P) =
∑

i

C(mi, Li) −
∑
p∈P1

X(p)

Proof:
∑

i C(mi, Li) is the cost by assigning every point
p ∈ Li to mi ∈ M , while X(p) is the cost reduction by
reassigning p ∈ P1 to the nearest center in M instead of
mi. The difference gives the cost of C(M,P). �

We also define the following two functions for points in
P1 and P2 respectively. For point p ∈ P1, we define

Y (p) =
{

(d1(p) + ∆)2 − (d2(p) − ∆)2 ∆ ≤ d2(p)
(d1(p) + ∆)2 ∆ > d2(p)

4

For point p ∈ P2, we define

Z(p) =
{

(d1(p) + ∆)2 − (d3(p) − ∆)2 ∆ ≤ d3(p)
(d1(p) + ∆)2 ∆ > d3(p)

Lemma 4 Given the current center set M , its point assign-
ment L, and any center set M ′ ∈ B(mi,M,∆), C(M ′, P)
is lower bounded by

∑
j

C(mj , Lj) + |Li|∆2 −
∑
p∈P1

Y (p) −
∑
q∈P2

Z(q)

Proof: Given M = {m1, . . . ,mk}, L = {L1, . . . , Lk},
and M ′ = {m′

1, . . . ,m
′
k}, we first assign every p ∈ Lj to

m′
j , whose cost is at least

∑
j C(mj , Lj) + |Li|∆2. This

is because mi must move to m′
i by distance ∆, and m′

j can
stay at mj for all j 	= i.

For every point p ∈ P1 ∩ Lj , 1 ≤ j ≤ k, the maximum
distance to m′

j is d1(p) + ∆. The minimum distance to any
center m′

l 	= m′
j is d2(p) − ∆ if d2(p) > ∆, otherwise the

minimum distance is 0. So, the cost reduction by reassign-
ment for p can be no more than Y (p).

For any point q ∈ P2 ∩Lj , the maximum distance to m′
j

is still d1(q)+∆. But the minimum distance to m′
l 	= m′

j is
d3(q) − ∆ if d3(q) > ∆ and is 0 otherwise. Z(q) can fully
capture such cost reduction. So, the actual cost of M ′ ∈
B(mi,M,∆) is lower bounded by the function above. �

Theorem 2 R(M,∆) is a maximum region if

∆2 min
i

|Li| −
∑
p∈P1

(Y (p) − X(p)) −
∑
q∈P2

Z(q) > 0 (3)

Proof: M ′ ∈ B(mi,M,∆) for 1 ≤ i ≤ k con-
sist of the whole boundary of R(M,∆), R(M,∆) is a
maximum region if C(M ′, P) > C(M,P) for any i and
M ′ ∈ B(mi,M,∆). By combining Lemma 3 and Lemma
4, for M ′ ∈ B(mi,M,∆), we have

C(M ′, P)−C(M, P) ≥ ∆2|Li|−
�

p∈P1

(Y (p)−X(p))−
�

q∈P2

Z(q)

If we iterate all the boundary faces B(mi,M,∆) 1 ≤
i ≤ k, the only difference in the inequality above is the
number of points in Li. If the inequality above can be sat-
isfied for the smallest |Li|, it must be valid for all boundary
faces. So, inequality (3) is a sufficient condition to prove
R(M,∆) is a maximal region. �

Since Y (p) and Z(p) are actually functions on ∆, we call
left hand of inequality (3) the incremental function f(∆).
Then R(M,∆) is a maximum region if f(∆) > 0. In the
following part of the section, we will look at how we can
lower bound the cost of the local optimum in a maximal
region R(M,∆).

3.3 Bounding Local Optimum in R(M,∆)

If a ∆ is found to satisfy the condition of Theorem 2, we
can lower bound the cost of local optimum from the current
center set M by the following theorem.

Theorem 3 Given a positive ∆ satisfying f(∆) > 0, if k-
means algorithm converges to a center set M ′, C(M ′, P) ≥
C(M,P) − |P |∆2.

Proof: Since the distance between every pair of corre-
sponding centers mi ∈ M and m′

i ∈ M ′ is no more than ∆.
The difference between the costs C(M,P) and C(M ′, P)
is less than |P |∆2 by Lemma 1. �

The previous theorem provides an obvious lower bound
on the local optimums falling in the maximal region
R(M,∆). It is obvious that the smaller ∆ is, the higher
the lower bound can be. So, we should find the smallest ∆
satisfying f(∆) > 0 to give the tightest lower bound. The
details about how to find the smallest ∆ will be covered in
the next section.

4 Algorithms

In the section, we provide the new algorithms. The first
one is the bound iteration algorithm as the substitute of sim-
ple iteration algorithm, which can calculate the lower bound
on the local optimum during the iteration process. The sec-
ond one is the accelerated k-means algorithm as the substi-
tute of the original k-means algorithm, which invokes the
bound iteration algorithm or simple iteration algorithm on
necessary.

4.1 Bound Iteration Algorithm

To combine the lower bound computation and simple
iteration algorithm, we first need to find the information
about d1(p), d2(p) and d3(p) for every p ∈ P by simply
calculating the distances during the search of p’s nearest
center.

What is more difficult is how to find the smallest ∆ satis-
fying f(∆) > 0. There are two issues which make solving
this inequality difficult. First, the sets of P1 and P2 are dy-
namic with different ∆. Second, the values of Y (p) and
Z(p) depend on ∆ as well.

To facilitate the computation, we first remove the impact
of ∆ on the functions Y (p) and Z(p) by further dividing
the sets P1 and P2. We construct a subset of P1, P ′

1 = {p ∈
P |d1(p) > d2(p) & d2(p) < ∆}. In the same way, we con-
struct another subset of P2, P ′

2 = {p ∈ P |d3(p) − d1(p) <
2∆ & d3(p) < ∆}. By such construction, incremental
function f(∆) becomes f(∆) = A∆2 − 2B∆ − C, where

5

the following parameter equations are easy to verify from
Theorem 2.

A = min |Li| − |P ′
1| − |P ′

2|
B =

∑
P1

(d1 + d2) +
∑
P2

(d1 + d3) −
∑
P ′

1

d2 −
∑
P ′

2

d3

C =
∑
P2

(d2
1 − d2

3) +
∑
P ′

1

d2
2 +

∑
P ′

2

d2
3

We note that a point can be in P1 and P ′
1 at the same time

and likewise for P2 and P ′
2. When the sets P1, P ′

1, P2 and
P ′

2 are static, the incremental function is a pure quadratic
function on ∆. Since there are positive solutions for ∆ in
f(∆) > 0 only when A > 0, if we have an interval of
∆ ∈ [i1, i2] on which P1, P ′

1, P2 and P ′
2 are static, the

maximal value of the incremental function must be achieved
on either end of the interval. This gives us the intuition that
we only need to test the extreme points on each interval with
static P1, P ′

1, P2 and P ′
2. Fortunately, the following lemma

shows, the number of such intervals must be no more than
2|P |.
Lemma 5 There are at most 2|P | possible configurations
of P1, P ′

1, P2 and P ′
2.

Proof: For every point p, it can change the configurations
of the sets at most twice. For p ∈ P1, p is always in P1

no matter what ∆ is, and it is in P ′
1 when ∆ > d2(p). For

p ∈ P −P1, it is in P2 and P ′
2 when ∆ > (d3(p)−d1(p))/2

and ∆ > d3(p) respectively. Since these changes on the
configuration can be sorted by ∆, there are at most 2|P |
configurations. The bound is tight when no point is in P1,
which takes place at the convergence of the algorithm. �

With the analysis above, we give a scan algorithm which
can find the minimum ∆ for f(∆) > 0 if such ∆ ex-
ists. Briefly speaking, the algorithm gradually increases the
value of ∆ from 0, keeping ∆ jumping to next event for
configuration update. This can be done by sorting all the
configuration update events for every point p as is shown in
the proof of Lemma 5.

The detail of the algorithm is listed in Algorithm 3. For
every point p ∈ P , the algorithm (Line 6 to 12) stores, in
array Ar, the smallest ∆s at which p changes the configu-
ration, and how such change can influence the parameters
in the function f(∆). Such information is summarized in a
4-attribute element, where the first attribute is the ∆ value
when update happens and the rest three are the differences
on the parameters {A,B,C} when update takes place.

By visiting the elements in Ar in ascending order on the
first attribute, the parameters A, B and C are updated ac-
cordingly. If at any moment, a ∆ satisfying f(∆) > 0
is found, the algorithm returns the new center set M ′ as
well as the lower bound by Theorem 3, otherwise the lower
bound is 0, which is the trivial lower bound.

Algorithm 3 BoundIterate (center set M , data set P , cur-
rent best cost C∗)

1: construct an array Ar
2: set A = min |Li|, B = C = 0
3: for every point p ∈ P do
4: assign p to its nearest center in M
5: compute d1(p), d2(p) and d3(p)
6: if p changes its clustering then
7: [d2(p),−1,−d2(p), d2

2(p)] is inserted into Ar
8: B+ = d1(p) + d2(p)
9: else

10: [d3(p)−d1(p)
2 , 0, d1(p)+d3(p), d2

1(p)−d2
3(p)] is in-

serted into Ar
11: [d3(p),−1,−d3(p), d2

3(p)] is inserted into Ar
12: end if
13: end for
14: recompute the centers of the clusters and store in M ′

15: sort all the elements in Ar in ascending order on the
first attribute

16: for every element r = [r1, r2, r3, r4] in Ar do
17: A+ = r2, B+ = r3 C+ = r4 and ∆ = r1

18: if A < 0 then
19: return (M ′, 0)
20: end if
21: if A∆2 − 2B∆ − C > 0 then
22: return (M ′, C(M ′, P) − |P |∆2)
23: end if
24: end for
25: return (M ′, 0)

Note that B and C must be positive and A is non-
ascending with the increase of ∆ because any element in-
serted into Ar must have a non-positive second attribute.
So, when A becomes negative, it is impossible to find any
positive solution for ∆ any more. The iteration stops here
and returns (M ′, 0) (Line 18).

The complexity of the bound iteration algorithm con-
sists of four parts: points assignment, element insertion,
element sorting and ∆ searching. Points assignment can
be finished in O(|P |d) time. The insertion and searching
take at most O(|P |) time since there are at most O(|P |) ele-
ments in Ar and every single operation in them can be done
in constant time. The sorting on the elements in Ar takes
O(|P | log |P |) time by simply invoking existing sorting al-
gorithms such as quicksort [4]. So, the total complexity of
the bound iteration is O(|P |(log |P | + d)).

4.2 Accelerated K-Means Algorithm

Here, we present the complete accelerated k-means al-
gorithm in Algorithm 4 to exploit the benefit from bound
iteration algorithm. Similar to the original k-means algo-

6

Algorithm 4 Accelerated k-means algorithm (data set P ,
k, current best cost C∗)

1: Randomly choose k points as the center set M
2: while M does not change any more do
3: if C(M,P) > C∗ then
4: (M,β) =BoundIterate(M,P,C∗)
5: if β ≥ C∗ then
6: Return NULL
7: end if
8: else
9: M =SimpleIterate(M,P)

10: end if
11: end while
12: if C(M,P) < C∗ then
13: Return M and Update C∗

14: else
15: Return NULL;
16: end if

rithm, it first randomly chooses k points from the data set
as the initial center set. Then, the algorithm keeps iterating
until any of the following three cases happens: (1) a lower
bound larger than current best cost is found; (2) the algo-
rithm converges to some better solution than ever seen; (3)
the algorithm converges but no better solution is found.

The iteration procedure in this algorithm can run ei-
ther bound iteration algorithm or simple iteration algorithm.
When the cost of the current center set is larger than the
current best cost seen so far, C∗, the algorithm invokes the
bound iteration algorithm (Line 4). If the lower bound re-
turned by bound iteration is larger than C∗, it immediately
stops the computation and return NULL (Line 5-6). When
the cost of the current center set becomes smaller than C∗,
the algorithm switches to the original simple iteration algo-
rithm. This is because any lower bound in future iterations
must be smaller than current best solution, which can not
help to prune any more (Line 9). If the centers finally con-
verge, the algorithm return the center set if its cost is smaller
than C∗, otherwise NULL is returned (Line 12-15).

4.3 Further Optimization

Lemma 5 shows that we only need to test O(|P |) possi-
ble values to find a ∆ satisfying f(∆) > 0. The number
of possible ∆ values can be further reduced. There are two
types of ∆ values that we do not need to test. The first type
contains all ∆s whose corresponding B and C satisfying
the condition ∆ < 2B/A, since quadratic equation has no
positive solution in such situation. Second, ∆ can not be
too large either. When ∆ is large enough, the lower bound
achieved by such ∆ must be smaller than the best known
cost C∗. Such a bound is useless since we cannot prune any

iteration if the lower bound is below C∗. The combination
of the two ideas leads to the following lemma.

Lemma 6 Given the current optimal cost C∗, to find
∆ satisfying f(∆) > 0 and C(M,P) − |P |∆2 >
C∗, the algorithm only needs to test ∆ in the interval

[2
�

p∈P1
d1(p)

min |Li| ,
√

(C(M,P)−C∗)
|P |].

Proof: Since f(0) = 0, 0 < A < min |Li|, B >∑
p∈P1

d1(p) and C is non-decreasing with the increase of
∆. The positive solution of ∆ for f(∆) = 0 must be larger
than 2

∑
p∈P1

d1(p)/min |Li|. On the other hand, when

∆ ≥ √
(C(M,P) − C∗)/|P |, the lower bound must be

larger than C(M,P) − |P |∆2 > C∗. We have no interests
on such lower bound, since it can not be used to prune the
current procedure any more. �

With such a lemma, we only need to sort and test the
∆ values in a certain interval, which can save much time
in the calculation of the lower bound. This makes two
changes on the bound iteration algorithms. First, only el-
ements with first attribute smaller than the upper bound of
interval are inserted. Second, the elements smaller than the
lower bound of interval are directly used to update the pa-
rameters in f(∆) without testing f(∆) > 0.

5 Experiments

5.1 Experimental Setup

Since the result of k-means algorithm is fairly random,
we run any single experimental item 5 times with different
random seed for different algorithm. The average results are
used in our performance evaluation. In this section, we use
OKM to denote the original k-means algorithm and AKM
to denote the accelerated k-means algorithm.

The generation of synthetic data sets follows the method
used in previous studies on clustering problem, such as
BIRCH [16]. We created 4 different data sets with
1,000,000 points on 4, 8, 16 and 32 dimensional spaces,
respectively. The value of the points on every dimension
is a float value between 0 and 1. Every data set consists
of 40 small clusters, each of which occupies about 2.5% of
the whole data set. Every cluster follows a Gaussian dis-
tribution, whose center and variance follow some uniform
distributions. There are also some noisy points uniformly
distributed in the space, whose size is 5% of the whole data
set.

There are also two algorithm parameters in considera-
tion, the target cluster number k and the k-means algorithm
procedure number. The procedure number is the time the
algorithm chooses the random initial center set and recom-
pute the k-means result.

7

The performances of the algorithms were measured on
the total computation time, the total number of iterations
invoked and the individual numbers of both types of itera-
tions invoked (simple iteration and bound iteration). Since
AKM always outputs the correct clustering result, we omit
the comparison of costs in these two algorithms.

In addition, we also conducted experiments on KDD98
data set1 and KDD99 data set2. KDD98 data set is a 32 di-
mension data set with 95000 records and KDD99 data set
is a 41 dimensional data set with 310000 records. Both
of the two data sets are collected for previous KDD-cups.
Before using them in our experiments, we pruned all the
non-numerical attributes and normalized those numerical
attributes to float number between 0 and 1.

All experiments were carried out on a PC with 2GHz
AMD Athlon processor and 2GB main memory. The pro-
grams were compiled with gcc 3.4.3 in Linux system.

5.2 Results on Synthetic Data Sets

The synthetic data tests are tested with varying dimen-
sionality (D), target cluster number (K) and procedure
number (R). Unless otherwise stated, the default setting
of the experiment is D = 8, K = 16 and R = 20.

We first test the effect of dimensionality on the perfor-
mance both on the original k-means algorithm and our ac-
celerated algorithm. As is shown in Fig 4(a), AKM does
not show too much advantage over OKM when the dimen-
sionality of the data set is small. This is because the extra
cost on maintaining the necessary information, and the time
to compute the lower bound is more than the time we can
save on reducing the number of iteration. This can be ver-
ified in Fig 4(b) and Fig 4(c). The total iteration time of
AKM is close to that of OKM and most of the iterations
invoked by AKM on 2D data set are bound iterations. As
the dimensionality grows, AKM becomes much faster than
OKM since both the number of total iteration and the ratio
of bound iteration decrease.

We also evaluate the impact of the parameter k in our
experiments. The group of experiments are conducted on
16 dimensional data set, varying k from 8 to 32. These test
results in Fig 5(a) and Fig 5(b) show that both the compu-
tation time and iteration time of OKM increases with the
growth of k, while those of AKM do not change too much.
Although the bound iteration also takes more time to cal-
culate in every iteration, the increase in the ratio of simple
iteration ensures that the efficiency of AKM is better than
OKM with large k, as shown in Fig 5(c).

In Fig 6, we present the experiment result when we vary
the procedure number for both OKM and AKM. When we
run more times of the procedures on the same data set, the

1http://www.kdnuggets.com/meetings/kdd98/kdd-cup-98.html
2http://www.ics.uci.edu/ kdd/databases/kddcup99/kddcup99.html

computations of OKM and AKM both increase linearly.
From Fig 6(b) and Fig 6(c), we can see that although the
total iteration time of AKM is usually less than OKM, the
ratio of bound iteration time to simple iteration time rises
when procedure number increases.

5.3 Results on Real Data Sets

For the tests on real data set, we only vary two algorithm
parameter: target cluster number k and procedure number
R. The default value of k and R are 4 and 20, respectively.

Our AKM algorithm shows large advantage over OKM
algorithm in the tests on KDD 99 data set. As is shown in
Fig 7, when k is larger than 8, AKM is about 2 times faster
than OKM. Similar to the results on synthetic data set, the
total number of iterations in AKM is much fewer than that
in OKM, which implies the strong pruning ability of our
lower bound computation method. When varying the pro-
cedure number R on this data set, we see stable performance
on AKM algorithm from Fig 8. This is also consistent with
the test results on synthetic data sets.

However, when testing on KDD 98 data set, we see some
results quite different. From Table 1, we can find that AKM
algorithm can not be faster than OKM. The total iteration
time in AKM is almost the same as the OKM. To find out
the underlying reason for this phenomenon, we checked the
procedures carefully and found that 90% of the procedures
converge to the same global optimum in the space. This
example implies the limitation of the algorithm proposed in
this paper. Our algorithm can not estimate the number of lo-
cal optimums in the space, which finally wastes much time
on procedures converging to the same global optimum with
more time-consuming bound iteration algorithm. We also
argue that in such data set, there is no need to use multi-
procedure k-means algorithm, since running k-means algo-
rithm once is enough to find the optimal solution wanted.

6 Related Work

With different criterions on the clustering result, there
are several independent but classic clustering problems,
such as k-centers, k-means and k-medians. Han and Kam-
ber’s book [7] provides a good survey on the different clus-
tering problems in data mining.

Lloyd’s work [13] is one of the earliest application of k-
means algorithm. To speed up the k-means algorithm, there
are many accelerating methods proposed before. These
methods can be divided into two categories. In the first
categories, the triangle inequality property of metric space
is exploited in the calculation of nearest center. Elkan [6]
showed that many distance computation can be skipped if
the triangle inequality is applied in the nearest center update
process. The second category contains different method

8

 0

 500

 1000

 1500

 2000

 2500

16D8D4D2D

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

ds
)

Dimensionality

OKM
AKM

(a) Total Computation Time

 0

 200

 400

 600

 800

 1000

16D8D4D2D

T
ot

al
 It

er
at

io
n

T
im

e

Dimensionality

OKM
AKM

(b) Total Iteration Time

 0

 100

 200

 300

 400

 500

 600

 700

16D8D4D2D

Ite
ra

tio
n

T
im

e

Dimensionality

Simple Iteration
Bound Iteration

(c) Two Types of Iterations

Figure 4: Tests on varying dimensionality on synthetic data set

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

3224168

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

ds
)

k

OKM
AKM

(a) Total Computation Time

 0

 500

 1000

 1500

 2000

 2500

3224168

T
ot

al
 It

er
at

io
n

T
im

e

k

OKM
AKM

(b) Total Iteration Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

3224168

Ite
ra

tio
n

T
im

e

k

Simple Iteration
Bound Iteration

(c) Two Types of Iterations

Figure 5: Tests on varying k on synthetic data set

 0

 500

 1000

 1500

 2000

 2500

 3000

40302010

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

ds
)

Run Time

OKM
AKM

(a) Total Computation Time

 0

 200

 400

 600

 800

 1000

40302010

T
ot

al
 It

er
at

io
n

T
im

e

Run Time

OKM
AKM

(b) Total Iteration Time

 0

 100

 200

 300

 400

 500

 600

40302010

Ite
ra

tio
n

T
im

e

Run Time

Simple Iteration
Bound Iteration

(c) Two Types of Iterations

Figure 6: Tests on varying procedure number on synthetic data set

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

16842

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

ds
)

k

OKM
AKM

(a) Total Computation Time

 0

 100

 200

 300

 400

 500

 600

16842

T
ot

al
 It

er
at

io
n

T
im

e

k

OKM
AKM

(b) Total Iteration Time

 0

 20

 40

 60

 80

 100

 120

 140

16842

Ite
ra

tio
n

T
im

e

k

Simple Iteration
Bound Iteration

(c) Two Types of Iterations

Figure 7: Tests on varying k on KDD 99 data set

 0

 50

 100

 150

 200

 250

 300

40302010

C
om

pu
ta

tio
n

T
im

e
(S

ec
on

ds
)

k

OKM
AKM

(a) Total Computation Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

40302010

T
ot

al
 It

er
at

io
n

T
im

e

k

OKM
AKM

(b) Total Iteration Time

 0

 50

 100

 150

 200

40302010

Ite
ra

tio
n

T
im

e

k

Simple Iteration
Bound Iteration

(c) Two Types of Iterations

Figure 8: Tests on varying procedure number on KDD99 data set

9

Table 1: Test Results on KDD98 data set

k OKM AKM
Iteration Time Computation Time Iteration Time Computation Time

2 726 14 Sec 417 9 Sec
4 2942 80 Sec 2939 95 Sec

based on indexing structure [10, 15]. The indexing struc-
ture, such as kd-tree can be used to improve the efficiency
of the nearest center search when a group of points have the
same nearest center. However, all of the studies mentioned
here do not perform well in high dimensional space because
of the curse of dimensionality.

The initial centers of k-means algorithm are very impor-
tant to the result quality. The method proposed by [3] is a
typical initial center refinement algorithm, which chooses
the center set with the minimum distortion from a group of
clustering results on some small samples of the original data
set.

There are also a few of studies on the convergent prop-
erty of k-means algorithm. [2] showed that k-means al-
gorithm works very similar to gradient descent algorithm,
which always moves toward the direction reducing most
of the cost. [8] first proved some bound on the conver-
gence speed of k-means algorithm. They gave an Ω(n)
lower bound on the number of iterations in standard k-
means method, a O(n∆2) upper bound on one-dimensional
standard k-means method and a O(kn2∆2) upper bound on
a variant k-means method, where n and ∆ are the size and
the spread of the data set respectively. Recently, [1] proved
that the lower bound of standard k-means iteration time is
O(2Ω(

√
n)) by constructing a data set in

√
n-dimensional

space.
Besides k-means algorithm, some theoretical computer

scientists try to find good k-means clustering result with
other techniques. [9] proposed a O(nO(kd)) algorithm to
find the optimal solution and an ε-approximate 2-means al-
gorithm with O(n(1/ε)d) complexity. [12] extended the
idea by a (1 + ε)-approximate randomized algorithm with
linear complexity to both dimensionality and data size. [11]
proposed an (9 + ε)-approximate local search algorithm
which keep swapping the centers with other points in the
data set to improve the clustering result. Ding and He
[5] presented the relationship between k-means and PCA,
which can lead to a lower bound on global optimum.

7 Conclusion

In this paper, we derive a lower bound on the cost of
the local optimum based on the current center set. The k-
means procedure can be terminated if the lower bound of

the cost at the future local optimum is higher than current
best solution that has been computed so far. Experiments on
both synthetic and real data sets reveal that such a method
can greatly improve the efficiency in most of the data sets,
especially with high dimensionality and large parameter k.

References

[1] D. Arthur and S. Vassilvitskii. How slow is the k-means
method? In SoCG, pages 144–153, 2006.

[2] L. Bottou and Y. Bengio. Convergence properties of the K-
means algorithms. In NIPS, pages 585–592, 1995.

[3] P. S. Bradley and U. M. Fayyad. Refining initial points for
K-Means clustering. In ICML, pages 91–99, 1998.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms 2nd version. The MIT Press, 2001.

[5] C. H. Q. Ding and X. He. K-means clustering via principal
component analysis. In ICML, 2004.

[6] C. Elkan. Using the triangle inequality to accelerate k-
means. In ICML, pages 147–153, 2003.

[7] J. Han and M. Kamber. Data Mining: Concept and Tech-
niques. Academic Press, 2000.

[8] S. Har-Peled and B. Sadri. How fast is the k-means method?
In SODA, pages 877–885, 2005.

[9] M. Inaba, N. Katoh, and H. Imai. Applications of weighted
voronoi diagrams and randomization to variance-based -
clustering (extended abstract). In Symposium on Compu-
tational Geometry, pages 332–339, 1994.

[10] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silver-
man, and A. Wu. An efficient k-means clustering algorithm:
analysis and implementation, 2002.

[11] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu. A local search approximation
algorithm for k-means clustering. Comput. Geom., 28(2-
3):89–112, 2004.

[12] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear
time (1+ε)-approximation algorithm for k-means clustering
in any dimensions. In FOCS, pages 454–462, 2004.

[13] S. Lloyd. Least squares quantization in pcm. IEEE Trans-
actions on Information Theory, 28:129–137.

[14] M. Meila and D. Heckerman. An experimental comparison
of several clustering and initialization methods, 1998.

[15] D. Pelleg and A. Moore. Accelerating exact k -means algo-
rithms with geometric reasoning. In Knowledge Discovery
and Data Mining, pages 277–281, 1999.

[16] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an ef-
ficient data clustering method for very large databases. In
SIGMOD Conference, pages 103–114, 1996.

10

	On the lower bound of local optimums in k-means algorithms
	Citation

	tmp.1505985472.pdf.44nzl

