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Comparative Relation Generative Model
Maksim Tkachenko and Hady W. Lauw

Abstract—Online reviews are important decision aids to consumers. Other than helping users to evaluate individual products,
reviews also support comparison shopping by comparing two (or more) products based on a specific aspect. However, making a
comparison across two different reviews, written by different authors, is not always equitable due to the different standards and
preferences of authors. Therefore, we focus on comparative sentences, whereby two products are compared directly by a review
author within a sentence. We study the problem of comparative relation mining. Given a set of comparative sentences, each
relating a pair of entities, our objective is three-fold: to interpret the comparative direction in each sentence, to identify the aspect
of each sentence, and to determine the relative merits of each entity with respect to that aspect. This requires mining comparative
relations at two levels of resolution: at the sentence level, and at the entity level. Our insight is that there is a significant synergy
between the two levels. We propose a generative model for comparative text, which jointly models comparative directions at
the sentence level, and ranking at the entity level. This model is tested comprehensively on Amazon reviews dataset with good
empirical outperformance over pipelined baselines.

Index Terms—generative model, comparison mining, comparative sentences

F

1 INTRODUCTION

G IVEN the abundance of text reviews on the Web,
we seek to mine them to assist consumers in

comparing entities. Thus, consumers can benefit from
the wisdom of the crowd in determining the relative
quality of entities, from users’ vantage point.

For comparison mining, the basis for comparison is
a comparative sentence about two entities [1]. The
following example compares CANON EOS 50D vs.
CANON EOS 40D in terms of image quality: “The 50D
is sharper than my 40D and the images are not soft.” One
user provides a common benchmark and context in
comparing two entities. Table 1 shows several more
examples for two pairs of digital cameras. To maintain
focus, we deal with sentences involving two entities.
From sentences s1 to s3, we observe some variance
in terms of which entity is considered better, and the
words used to express the comparison. Sentences s4
and s5 give examples for different entities and aspect.

Problem. Given a corpus of comparative sentences,
relating pairs of entities in a domain (e.g., digital
cameras), we derive the comparative relations among
the entities, i.e., between any two comparable entities,
which one is better with respect to each aspect. The in-
put corpus of comparative sentences may be obtained
from user-generated content expressing user prefer-
ences, such as reviews [2], [3], through comparative
sentence identification (see Section 5).
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pore Management University, 80 Stamford Road, Singapore 178902,
Republic of Singapore.
E-mail: maksim.tkatchenko@gmail.com
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E-mail: hadywlauw@smu.edu.sg

Comparative relations ought to be modeled at two
levels. First, at the level of a sentence, e.g., s1 in
Table 1 favors CANON EOS 40D, while s3 favors
CANON EOS 50D. Second, at the level of entity pairs,
sentence-level relations are aggregated into the com-
parative relation, e.g., CANON EOS 50D is better than
CANON EOS 40D. The former provides supporting
evidence, the latter provides a summative view.

In addition, comparative relations also need to be
studied in the context of each aspect. For instance,
if one camera is lighter than another, it does not
necessarily imply that it would also have a better
image quality. Moreover, the words used to express
superiority or mediocrity vary across aspects. While
“higher” may connote positively for functionality or
image quality, it may connote negatively for price.

Approach. The previous approach to deal with the
afore-mentioned two levels of comparison is to solve
them as a pipeline, by first determining sentence-level
comparisons, and then aggregating them into entity-
level comparisons. Not only is this fragmentation
unnecessary, but it could also be detrimental when
errors from one level propagate to the next.

In this paper, we propose an integrated approach
to exploit the synergy owing to the inherent relation
between sentence-level and entity-level comparisons.
Intuitively, if one entity is indeed better than another,
we would expect that many comparative sentences
would compare the former favorably to the latter.
Thus, knowing which entity is better helps to deter-
mine the comparison in a sentence, and vice versa.

We now illustrate this important intuition with
a mock-up example in Figure 1 involving the 6
sentences shown in Table 2, concerning 5 entities
{e1, e2, e3, e4, e5}. Let us suppose the meaning of
the first four sentences {d1, d2, d3, d4} with the word
“smaller” is already known. For form factor, “smaller”
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TABLE 1
Example Comparative Sentences about Digital Cameras from Amazon.com

Entities ID Aspect Example Comparative Sentences
CANON EOS 40D s1 Image Quality I am surprised to see that the images on the 40D are better than the 50D.
CANON EOS 50D s2 Image Quality And from the research I did it appears the 50D’s images can be sharpened and still have more detail

than the 40D.
s3 Image Quality The 50D is sharper than my 40D and the images are not soft.

CANON REBEL XSI s4 Functionality After visiting Best Buy and actually trying the cameras out the XSi felt like a toy compared to its big
brother the 40D.

CANON EOS 40D s5 Form Factor I picked the XSi over the 40D primarily because of weight (I like to hang cameras off telescopes ,
weight is an issue).

(a) (b) (c)

Fig. 1. Comparison Graph Based on Table 2

TABLE 2
Illustrative Corpus

ID Training Sentence ID Testing Sentence
d1 e1 is smaller than e2 d5 e1 is thinner than e3
d2 e2 is smaller than e3 d6 e4 is thinner than e5
d3 e3 is smaller than e4
d4 e3 is smaller than e5

is better. That will allow us to confidently rank some
pairs, by drawing a bold directed edge from the worse
entity to the better entity, e.g., from e2 to e1, since “e1
is smaller than e2”. Figure 1(a) show the comparison
graph constructed from these “known” sentences.

From here, we could make further inferences to
answer another couple of questions. One is which
of e4 or e5 is better, since there is no clue from the
bold edges alone. Another is the meaning of the last
two sentences, since we have not yet understood the
meaning of “thinner”. Considering these two ques-
tions separately does not offer an answer. However,
jointly they allow us to arrive at an answer to both.

Since e1 ← e2 ← e3, by transitivity, we can infer that
e1 ← e3, and update the comparison graph with the
dotted arrow as in Figure 1(b). In turn, if e1 ← e3, the
interpretation of “e1 is thinner than e3” can be inferred,
i.e., “thinner” implies the first-mentioned entity is
better. This allows us to parse the last sentence to infer
that e4 ← e5 (dotted). We thus can recover the correct
rank order e1 ← e2 ← e3 ← e4 ← e5 (see Figure 1(c)).

Contributions. We leverage on the above intuition
to build a joint model for learning the comparative
relations among entities, both at the sentence level and
the entity level. We make the following contributions.

First, in Section 2, we propose an integrated ap-
proach for comparative relation mining, that is novel
compared to the pipelined approaches (see Section 5).

Second, we design a generative model (see Sec-
tion 3), called CompareGem, which stands for COM-
PArative RElation GEnerative Model. Generative
modeling offers significant advantages in connect-
ing sentence-level and entity-level comparisons seam-
lessly. It flexibly accommodates supervised and un-
supervised settings. Where [4] deals with a single
aspect, we now accommodate multiple aspects, either
partially supervised or completely latent.

Third, we allow different formats of ranking entities,
either via a discrete or a continuous range of rank
scores. An earlier version of Gibbs sampling for a sin-
gle aspect first appeared in [4]. We now develop two
new inference algorithms for CompareGem, based on
Gibbs sampling and Variational method respectively
(see Section 4) that accomodates multiple aspects.

Fourth, through experiments on real datasets (see
Section 6), we show that CompareGem outperforms
the pipelined baselines, underlining the utility of in-
tegrated approach for comparative relation mining.

2 PROBLEM FORMULATION

As input, we consider a set of entities E (e.g., digital
cameras). For each pair of entities ei, ej ∈ E, Sij
denotes the set of comparative sentences involving ei
and ej . In Table 1, the pair CANON EOS 50D and
CANON EOS 40D are associated with three compara-
tive sentences {s1, s2, s3} on image quality. Some pairs
may not have any comparative sentence, if they are
never compared by any user, i.e., Sij = ∅. The union is
denoted S =

⋃
ei,ej∈E Sij . We will describe how S can

be obtained from a corpus of reviews in Section 6.1.
We learn the comparative relation between any two

entities ei or ej . Using the example of CANON EOS
50D and CANON EOS 40D in Table 1, we see that
s1 favors CANON EOS 40D, whereas s2 and s3 favor
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CANON EOS 50D. There is slightly more evidence
that CANON EOS 50D is better in image quality. The
more evidence there is, the more confident we would
be. The aspect a ∈ A of a comparison (e.g.., image
quality) is to be derived, where A denotes a set of
possible aspects. We assume a sentence belongs to
only one aspect. Sija denotes a set of comparative
sentences on aspect a involving entities ei and ej .

To capture the notion of aggregative “quality”, we
associate each entity with an aspect-specific rank score
ria ∈ R. ei is “better” than ej on aspect a if ria > rja.
This rank score is latent, and needs to be learnt.

With the notations in place, we are now ready to
state our problem formally, as follows.

Problem 1 (Comparative Relation Mining): Given
a set of entities E and the associated corpus of
comparative sentences S, find:
• For every sentence s ∈ S, its aspect a,
• For every sentence s ∈ S about a pair of entities ei

and ej , the comparative direction (or comparison
outcome), i.e., whether ei or ej is favored by s,

• For every entity ei ∈ E and every aspect a ∈ A,
the rank score ria of the entity.

3 MODEL

We discuss feature modeling for comparative sen-
tences, then describe our CompareGem model. We may
refer to sentences s1− s3 from Table 1 for illustration.

3.1 Bag of Features
The convention of modeling a document as a bag
of words [5], [6] is not appropriate for comparative
sentences. Recognizing the favored entity in a compar-
ative sentence is challenging due to complex sentence
structure, whereby word order now becomes impor-
tant. Consider the comparative sentence: “The 50D is
sharper than my 40D”. Bag of words allows the order
between 50D and 40D to be swapped exchangeably.
In fact, swapping those two words would change the
meaning of the comparison completely.

We distinguish whether a word appears before the
first-mentioned entity, in between, or after the second-
mentioned entity. For example, the word “sharper”
may translate to a feature 〈#1 sharper #2〉, where #1
and #2 refer to first- and second-mentioned entities.

We model each comparative sentence s as a bag of
features, where each feature w is drawn from a vocab-
ulary of features W . The bag representation maintains
the feature frequencies within each sentence. The
complete representation for the considered compar-
ative sentence follows: {〈the #1 #2〉, 〈#1 is #2〉,
〈#1 sharper #2〉, 〈#1 than #2〉, 〈#1 my #2〉}.

3.2 Generative Model
Generating Features We first observe that within a
corpus, there are sentences that belong to different

aspects (e.g., image quality, functionality), but fre-
quently each sentence focuses on one aspect. Each
sentence s is associated with one of |A| aspects using a
categorical distribution π over A. Furthermore, some
features provide information on background words
or words that encode the relevant aspect (e.g., “sur-
prised”, “images”, “detailed”). We therefore introduce
for each aspect a background distribution θba, which
defines a distribution over common features.

Others are helpful in discovering the compari-
son outcome, whether a sentence favors the first-
mentioned entity (e.g., “sharper”, “more”) or the sec-
ond (e.g., “heavier”). We introduce two more feature
distributions. θ�a is a distribution over features when
the first-mentioned entity is favored. Features involv-
ing “better”, “sharper” have higher probabilities. θ≺a
is for when the second-mentioned entity is favored.

Every feature in a sentence is associated with binary
variable ν indicating whether the feature is drawn
from the background distribution θba, or from one of
θ�a or θ≺a. Every ν is a sample of the Bernoulli dis-
tribution with parameter γ, which can be understood
as the expected proportion of common features.

Comparison Outcome. Each sentence s expresses
a comparison outcome involving two entities (say ei
and ej). Which of θ�a or θ≺a is used to draw the
comparative features in a sentence is indicated by a
variable cs ∈ {≺,�}. The event cs =� means the first-
mentioned entity is favored, whereas cs =≺means the
second-mentioned entity is favored. For simplicity, we
do not model a draw, which would not influence the
ranking between the two entities. We now can specify
the distribution over sentence feature, as follows:

P(w|θ, cs, as, νsw) =
(
P(w|θbas)

)I[νsw=0](
P(w|θ�as)

)I[νsw=1∧cs=�]
(
P(w|θ≺as)

)I[νsw=1∧cs=≺] (1)

where I[ · ], an indicator function, equals 1 when its
condition is true, and 0 otherwise.

The outcome of cs depends on an underlying dis-
tribution. We associate each entity ei ∈ E with a rank
score ria that reflects the quality of ei with respect
to aspect a. Intuitively, the higher ria is than rja, the
higher is the probability that a comparative sentence
favors ei. One suitable probability function is sigmoid,
as in (2), supposing the first-mentioned entity is ei and
the second-mentioned entity is ej .

P(cs = 0|ria, rja) = P(ei is better than ej |ria, rja)

= συ(ria − rja) =
1

1 + e−υ(ria−rja)
(2)

If ria is significantly higher than rja, the probability
would tend towards 1, reflecting ei’s much higher
quality. If ria = rja, the probability is 0.5, reflecting the
uncertain outcome between two evenly matched en-
tities. Conversely, if ria is significantly lower than rja,
the probability would tend towards 0. The parameter
υ models the sensitivity to the difference between two
rank scores. If υ is large, small differences in scores
would have a high impact on the probabilities.
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γ

ν w |s|

a

c |S|

θb θ≻ θ≺ |A|
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α

Fig. 2. CompareGem in Plate Notation.

Generative Process. CompareGem’s plate notation is
shown in Figure 2, the notation is explained in Table 3.
First, the model assigns each sentence s ∈ S to one of
the |A| aspects. Once the aspect is assigned, two enti-
ties mentioned in the sentence can compete along the
comparison dimension specified by the aspect, and
we generate the comparison outcome (which entity
is favored in s). Thereafter, based on the comparison
outcome, we generate each feature w ∈ s.

The full generative process is as follows:
1) For a given corpus, we sample π, an aspect

proportion from the Dirichlet distribution1:

π ∼ Dirichlet(β)

2) For every aspect, all θ�a, θ≺a and θba are sam-
pled from the Dirichlet distribution with α prior:

θ�a, θ≺a, θba ∼ Dirichlet(α)

3) For each entity ei ∈ E and for each aspect a ∈ A,
we sample rank score ria from distribution F
with some parameter set τ , we will discuss the
form of the distribution in Section 4:

ria ∼ F (τ)

4) For every sentence s ∈ S involving two entities
ei (first-mentioned) and ej (second-mentioned):

a) Sample the sentence aspect as:

as ∼ Categorical(π)

b) Sample the comparison outcome cs:

cs ∼ Bernoulli(συ(rias − rjas))

c) Sample νsw for each feature w in s:

νsw ∼ Bernoulli(γ)

d) Sample each w in sentence s using appro-
priate feature distribution, see (1):

w ∼ P(w|θ, cs, as, νsw)

1. For detailed information on the distributions used in this
study: Dirichlet, Categorical, Bernoulli, please refer to [7].

TABLE 3
Notations

Notation Description
α feature-related Dirichlet distribution parameter
β aspect-related Dirichlet distribution parameter
γ Bernoulli distribution parameter
τ ranking score distribution parameters
θba background feature distribution for aspect a

θ�a, θ≺a
feature distributions for aspect a when the first-
mentioned and the second-mentioned entities are
favored respectively

π topic proportion
w feature
as aspect of sentence s
cs comparative direction of sentence c
ria ranking score for entity ei with respect to aspect a
νsw background indicator for feature w in sentence s

As in Figure 2, the only observed (shaded) variables
are the features w’s within each sentence s. All oth-
ers are latent. The likelihood function of an assign-
ment of scores R = {ria}ei∈E,a∈A, comparison out-
comes C = {cs}s∈S , aspects A = {as}s∈S , latent dis-
tributions over features θ = {θ�a, θ≺a, θba}a∈A and as-
pects π, and background indicators H = {νsw}s∈S,w∈s,
is shown in (3).

L(π, θ,R,A,C,H|α, β, γ, τ) =

P(π|β)×
∏
s∈S

P(as|π)×
∏
a∈A

P(θba|α)P(θ�a|α)P(θ≺a|α)×∏
a∈A

∏
ei∈E

P(ria|τ)×
∏

ei,ej∈E

∏
s∈Sij

P(cs|rias , rjas)×∏
s∈S

∏
w∈s

P(νsw|γ)P(w|θ, cs, as, νsw) (3)

Once the model parameters are learned, we obtain
the solution to the Problem 1 defined in Section 2.

We now illustrate how CompareGem captures the
intuition of the integrated approach with only one
aspect. We use the same corpus as before (see Table 2).
The rank scores of entities are samples of some F (τ)
distribution. A priori, we assume no difference among
the entities. When sentences d1 − d4 are given for
training, the scores of the entities should be shifted
to satisfy the corpus observation: e1 should be better
than e2 (r1 > r2), e2 is better than e3 (r2 > r3), etc.

There are two interpretations for the test sentences.
In one interpretation, we infer the wrong meaning of
sentences d5 and d6, so the second-mentioned entity
is considered better. This places e5 before e4 (r5 > r4)
and e3 before e1 (r3 > r1). However, the last placement
makes this ranking less probable, since it is in conflict
with r1 > r2 > r3 according to training sentences d1
and d2. In the other interpretation, when d5 and d6
are correctly parsed, this contradiction is resolved. As
d5 is consistent with d1 and d2, the scores satisfying
r1 > r2 > r3 > r4 > r5 give higher likelihood.
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4 INFERENCE

There are two options in modeling the rank score
distribution. One is to model it along a continuous
spectrum, with a Gaussian prior for the distribution of
ria’s, which encode the prior belief that most entities
are of “average” rank scores, while some are very high
or low. F can be a Gaussian specified by its mean and
standard deviation τ = (µ, σ). The mean is assumed
to be zero. σ acts as a regularization parameter.

Another option is to have a discretized model, with
n ranking steps in the scale of 0 to n− 1. The prior
F (τ) can thus be simulated by a binomial distribution
Binomial(n−1, p0), where p0 is the probability of suc-
cess in a Bernoulli trial (p0 = 0.5 for our model). This
prior encodes the same information as a Gaussian,
shrinking the rank scores towards the mean.

Both approaches for rank score modeling are ac-
ceptable. The use of a particular model can come from
the specific tasks and needs. Due to the difference
in mathematical formulations, these two models can
take advantage of different optimization methods.
Variational method is employed to fit the model with
continuous rank scores. Gibbs sampling is used to
maximize a posteriori distribution over the hidden
variables when discrete model is assumed.

4.1 Continuous Model via Variational Method
Variational approximation can be used to solve com-
plex Bayesian models. To make the posterior distri-
bution tractable for computation, one can assume a
family of distributions over the hidden variable with
its own parameters. The approximate distributions are
denoted q( · ). The lower bound optimization of the
likelihood can be performed. For Bayesian model, the
factorized form of a distribution stemming from the
mean field theory has been used with great success.
We assume that every hidden variable has its own
distribution, which is independent from the others:

L(π, θ,R,A,C,H|α, β, γ, τ) ≈ q(R)q(π)∏
a∈A

q(θba)q(θ�a)q(θ≺a)×
∏
s∈S

q(cs)q(as)
∏
w∈s

q(νsw) (4)

Since the priors for the rank scores R are not
conjugate, direct computation may not be tractable.
We assume a parametric form of q(R) = q(R|R̂):

q(R|R̂) =
∏
a∈A

q(Ra|R̂a) =
∏
a∈A

∏
ei∈E

I[ria=r̂ia] (5)

Ra = {ria}ei∈E denotes the set of aspect-specific
rank scores. Though aspect-specific factorization is not
necessary, rank scores are assumed independent. This
factorization is employed for parameter optimization.
An indicator probability function put the whole prob-
ability mass to the value specified by parameter set R̂.

Let Z be the set of the hidden variables. q(zi)
denotes a probability density function for variable zi.
Once approximation distributions are specified, we

can run Variational Method to estimate {q(zi)}zi∈Z
and optimize model parameters. To find q(zi) that
maximizes the lower bound given {q(zj)}zj 6=zi fixed,
the following equation has to be solved:

q(zi) =
1

L
eEzj 6=zi [lnL(Z)], where (6)

L =

∫
eEzj 6=zi [lnL(Z)] dzi.

We work with (6) in logarithmic form:

ln q(zi) = ln Ezj 6=zi [lnL(Z)]− lnL (7)

Taking into account the fact that constant lnL can be
obtained through normalization, we can drop it in our
notation. Instead of Equation 7 we write:

ln q(zi) ∼= ln Ezj 6=zi [lnL(Z)]. (8)

We iteratively estimate required distributions in
a round robin manner. The update procedures are
shown below. ψ(x) denotes the digamma function. [s]1
is the index of the first-mentioned entity in sentence s,
[s]2 is the index of the second-mentioned entity.

Estimating q(π).

ln q(π) ∼= ln
∏
a∈A

πβa−1
a , where (9)

βa =
∑
s∈S

q(as = a) + β (10)

Estimating q(θba).

ln q(θba) ∼= ln
∏
w∈V

(θba)
αw
ba

+1
w , where (11)

αwba =
∑
s∈S

∑
w′∈s

I[w′=w]q(νsw = 0)q(as = a) + α (12)

Estimating q(θ≺a) and q(θ�a).

ln q(θca) ∼= ln
∏
w∈V

(θca)
αwca+1
w , where (13)

αwca =
∑
s∈S

∑
w′∈s

I[w′=w]q(νsw = 1)q(as = a)q(cs = c) + α

(14)

Estimating q(νws).

ln q(νws) ∼= ln P(νws|γ)+

I[νws=0]

∑
a∈A

q(as = a)
(
ψ(αwba)− ψ(

∑
w∈V

αwba)
)
+

I[νws=1]

∑
c∈{≺,�}

∑
a∈A

q(as = a)
(
ψ(αwca)− ψ(

∑
w∈V

αwca)
)
, (15)
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Estimating q(as).

ln q(as) ∼= ψ(βas)− ψ(
∑
a∈A

βa)+∑
c∈{≺,�}

q(cs = c) ln P(c|r̂[s]1as , r̂[s]2as)+∑
w∈s

q(νsw = 0)
(
ψ(αwbas)− ψ(

∑
w∈V

αwbas)
)
+∑

c∈{≺,�}

q(cs = c)
∑
w∈s

q(νsw = 1)
(
ψ(αwcas)− ψ(

∑
w∈V

αwcas)
)

(16)

Estimating q(cs).

ln q(cs) ∼=
∑
a∈A

q(as = a)
(

ln P(cs|r̂[s]1a, r̂[s]2a)+∑
w∈s

q(νsw = 1)
(
ψ(αwcsa)− ψ(

∑
w∈V

αwcsa)
))

(17)

Estimating q(R|R̂). To update R̂, we compute ev-
idence lower bound F of the log likelihood and
maximize it via gradient ascent. The form of q(R|R̂)
allows us to update all the parameters at a time. The
form of F makes it possible to update the parameters
independently for every aspect a ∈ A, i.e., R̂a. The
lower bound is computed up to an additive constant,
which can be ignored for optimization purposes:

F(R̂a) ∼=
∑
ei∈E

ln P(r̂ia|τ)+∑
s∈S

q(as = a)
∑

c∈{≺,�}

q(cs = c) ln P(c|r̂[s]1a, r̂[s]2a) =

−
∑
ei∈E

r̂2ia
2σ2
−
∑
s∈S

q(as = a)

∑
c∈{≺,�}

q(cs = c) ln
(

1 + e−υk(c)(r̂[s]1a−r̂[s]2a)
)

(18)

k(c) equals to 1, when c =�, and to −1 otherwise.
The derivative w.r.t. r̂ia for ei ∈ E and a ∈ A is:

F ′r̂ia(R̂a) = − r̂ia
σ2

+
∑
s∈S

q(as = a)
∑

c∈{≺,�}

q(cs = c)

υk(c)

(
I[i=[s]1]

1 + e−υk(c)(r̂[s]2a−r̂ia)
−

I[i=[s]2]

1 + e−υk(c)(r̂ia−r̂[s]1a)

)
(19)

Equations (18) and (19) may seem similar to the
Bradley-Terry-Luce model, but with significant differ-
ences due to the uncertainties for aspect and compar-
ison outcome, as well as a Gaussian prior on rank
score.

The time required by each iteration scales linearly
with the corpus size, O(|S|). The gradient descent step
requires O(ξ|S|), where ξ is the number of iteration
until convergence. ξ depends on the properties of an
individual dataset and optimization parameters, in
practice the procedure converges fast, and ξ reduces
from one iteration to another.

4.2 Discrete Model via Gibbs Sampling

Gibbs sampling [8] provides a mechanism to infer
hidden variables of a graphical model. It is a special
case of Monte Carlo algorithm that defines a Markov
chain in the space of possible variable assignments.
We sample one variable at a time from the condi-
tional distribution of that variable, conditioned on all
the others. The stationary distribution of the Markov
chain is the joint distribution over the variables and
samples drawn in a such way are guaranteed from
the joint distribution. In comparison to variational
approximation, Gibbs sampling does not impose any
constraint on the form of the distribution to be ap-
proximated. When the number of samples is large,
we can arrive at a good approximation of the true
posterior probability distribution over parameters.

We use the collapsed version of Gibbs sampling, by
integrating out continuous variables θ≺a, θ�a, θba, and
π. The derivation is provided below.

L(R,A,C,H|α, β, γ, τ) =∫
π

∫
θ

L(π, θ,R,A,C,H|α, β, γ, τ) dθ dπ =∫
π

∏
s∈S

P(as|π)× P(π|β) dπ×∏
a∈A

∏
ei∈E

P(ria|τ)×
∏

ei,ej∈E

∏
s∈Sij

P(cs|rias , rjas)×

∏
s∈S

∏
w∈s

P(νsw|γ)×
∫
θ

∏
a∈A

P(θba|α)P(θ≺a|α)P(θ�a|α)×∏
a∈A

∏
s∈S

∏
w∈s

((
P(w|θba)

)I[νsw=0]
(
P(w|θ�a)

)I[νsw=1∧cs=�]

(
P(w|θ≺a)

)I[νsw=1∧cs=≺]

)I[as=a]
dθ (20)

The integral for π is the Dirichlet-multinomial dis-
tribution over aspects. If K = |A| and na denotes the
number of sentences assigned to aspect a, we have:∫

π

∏
s∈S

P(as|π)× P(π|β) dπ =
Γ(βK)

ΓK(β)

∏
a∈A Γ(na + β)

Γ(βK +
∑

a∈A na)

(21)

We separately integrate the all θ-expressions out.
We can regroup factors as follows:∏
a∈A

∫
θba

P(θba|α)
∏
s∈S

∏
w∈s

(
P(w|θba)

)I[as=a∧νsw=0] dθba (22)∫
θ≺a

P(θ≺a|α)
∏
s∈S

∏
w∈s

(
P(w|θ≺a)

)I[as=a∧νsw=1∧cs=≺] dθ≺a

(23)∫
θ�a

P(θ�a|α)
∏
s∈S

∏
w∈s

(
P(w|θ�a)

)I[as=a∧νsw=1∧cs=�] dθ�a

(24)

The integral expressions in (22), (23), and (24) repre-
sent Dirichlet-multinomial distributions over features.
Let n(w, ν, a, c) be the number of times feature w
sampled from the background distribution (ν = 0)
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or the comparative distributions (ν = 1) occurs in a
given corpus within a sentence assigned to aspect a
with comparison preference c. Assume that the corpus
feature vocabulary is V , M = |V | is the vocabulary
size. We can rewrite, for instance, the integral in (24)
for every aspect a as follows:

Γ(αM)

ΓM (α)

∏
w∈V Γ

(
n(w, 1, a,�) + α

)
Γ
(
αM +

∑
w∈V n(w, 1, a,�)

) . (25)

Similarly with the integrals in (22) and (23).
P(ria|τ) and P(cs|rias , rjas) are defined below.

P
(
ria = r|τ = (n, p0)

)
=

(
n− 1

r

)
pr0(1− p0)(n−1)−r (26)

P(cs = c|ria, rja) =
(
1− συ(ria − rja)

)c(
συ(ria − rja)

)1−c
(27)

We iteratively sample background indicator νsw for
every feature w in each sentence s ∈ S , comparison
outcome cs and aspect as for each sentence, and rank
scores ria for each entity ei ∈ E and aspect a ∈ A.

Sampling Background Indicators H . We want to
sample νsw for each word w in sentence s ∈ S,
keeping the rest variables fixed. Let H−sw be the set
of background indicator variables without νsw, then:

L(νsw|H−sw, R,A,C) ∝ P(νsw|γ)×(
I[νsw=0]

α+ n̄(w, 0, as, ∗)
αM +

∑
w∈V n̄(w, 0, as, ∗)

+

I[νsw=1]
α+ n̄(w, 1, as, cs)

αM +
∑

w∈V n̄(w, 1, as, cs)

)
. (28)

We assume n(w, 0, a, ∗) = n(w, 0, a,≺) + n(w, 0, a,�).
n̄(w, ν, a, c) is defined the same way as n(w, ν, a, c),
but without the count for feature position w in s.

Sampling Aspects A. The re-sampling of the aspect
variable of sentence s affects the feature distributions
and entity rankings. A−s denotes the set of aspect
variables excluding as.

L(as|A−s, R, C,H) ∝ (n̄as + β)P(cs|r[s]1as , r[s]2as)∏
w∈V

∏ls(w,0)

i=1

(
n̄(w, 0, as, ∗) + α+ i− 1

)
∏∑

w∈V
ls(w,0)

i=1

(
αM +

∑
w∈V n̄(w, 0, as, ∗) + i− 1

)∏
w∈V

∏ls(w,1)

i=1

(
n̄(w, 1, as, cs) + α+ i− 1

)
∏∑

w∈V
ls(w,1)

i=1

(
αM +

∑
w∈V n̄(w, 1, a, cs) + i− 1

) (29)

ls(w, ν) returns the count of feature w with back-
ground indicator ν in sentence s.

Sampling Comparison Outcomes C. We indepen-
dently sample comparison outcome cs for each sen-
tence s ∈ S. C−s is the comparison outcome variable
set without cs

L(cs|C−s, R,A,H) ∝ P(cs|r[s]1as , r[s]2as)∏
w∈V

∏ls(w,1)

i=1

(
n̄(w, 1, as, cs) + α+ i− 1

)
∏∑

w∈V
ls(w,1)

i=1

(
αM +

∑
w∈V n̄(w, 1, as, cs) + i− 1

) (30)

Sampling Rank Scores R. We sample rank score
ria for each entity ei independently from each other

rather than simultaneously. This allows us dramat-
ically reduce computational complexity of the algo-
rithm. In comparison to Gibbs sampling, Variational
method makes it possible to optimize rank scores
simultaneously (see Section 4.1). R−ia denotes the
rank score variables excluding ria

L(ria|R−ia, A, C,H) ∝ P(ria|τ)∏
s∈S

(
P(cs|r[s]1a, r[s]2a)

)I[[s]1=i∨[s]2=i]

(31)

Gibbs Sampling with Simulated Annealing. Al-
though Gibbs sampling allows estimating the shape of
a probability distribution, one can modify this process
to maximize the model likelihood. We used simulated
annealing, the technique used in optimization to find
global optimum of a given (non-convex) function. We
sample each variable from the modified distribution:

P(zj = z|...)→ P(zj = z|...)1/tj∑
z P(zj = z|...)1/tj , (32)

where the sequence T = (tj)
n
j=1 defines the cooling

schedule and particular value tj is called the temper-
ature. As tj → 0 the distribution becomes sharper
(setting tj = 1 for every j recovers standard Gibbs
sampling procedure) and the modified distribution
concentrates all the mass on the maximal outcome.

A single iteration of the Gibbs sampler scales lin-
early with respect to the corpus size, and takes O(|S|)
time. Each sampling subroutine requires only one sen-
tence at a time. The rest of the parameters are consid-
ered fixed and bounded by some constant. However,
the number of aspects and score ranks, when large,
can substantially increase the computational time.

4.3 Discussion: Unsupervised vs. Supervised
Thus far, we have assumed unsupervised setting.
We will explore both unsupervised and supervised
settings in Section 6. To introduce “light” supervision,
we label a subset of sentences in terms of their com-
parison outcomes and aspect assignments. Where in
the unsupervised setting, only the w’s are observed,
in the supervised setting, we consider some cs and as
variables (corresponding to a subset of labeled sen-
tences) to also be observed (having known outcomes).
This has the effect of grouping together sentences
of the same label, which would then influence the
respective feature distributions θ�a, θ≺a, and θba.

An alternative form of supervision is to consider
the rank score ria of some entities to be observed.
However, there is a major shortcoming with this alter-
native. It would require annotators with a high level
of domain expertise, who knows how certain aspects
of the entities translates into the actual ranking. This is
heavy-handed in imposing an ordering of entities, and
runs counter to learning the crowdsourced ranking
based on user-generated content. In contrast, sentence
labeling requires annotators to interpret comparative
sentences, which is a less demanding task.
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5 RELATED WORK

Our focus is on mining comparative relations, pioneered
by [1]. It is traditionally studied as two separate levels.

At the sentence level, the aim is to determine which
entity being mentioned is better. Previous works use
patterns [9], classification [10], or “pros” and “cons”
in reviews [11]. Since classification is more recent and
general, we use two classifiers as baselines: Support
Vector Machine (SVM) [12] and Naive Bayes (NB) [5],
as implemented in Weka [13], using the same features
described in Section 3. Where unsupervised learning
is concerned, we employ Expectation Maximization to
estimate Naive Bayes model (EM-NB) [14].

At the entity pair level, the objective is to determine
which of the two entities is better overall [9], [15], [16].
One way is aggregating sentence-level comparisons
into an overall ranking of entities [9] via PageRank
[17]. This was previously shown in [4] to be inferior
to another baseline Bradley-Terry-Luce (BTL) model
[18], [19], which is a form of latent ability model [20]–
[22]. BTL shares a similar sigmoid-based probability
as our model. The key difference is that in our case
the outcomes are latent and unknown, and need to be
learned from text. This synergy between competition
modeling and generative modeling of text is novel.

Learning to rank [23] can be applied to rank previ-
ously unseen entities based on their features. How-
ever, in our study, entities are not represented by
entity-specific features, but rather by their relations
to other entities via comparative sentences.

Comparative relations are based on mining a cor-
pus of comparative sentences. Once the comparative
sentences have been identified [2], [24], the next task
is to extract the entities being compared within each
sentence [1], [25], and to resolve mentions of the same
entity across sentences [26]. These tasks are orthog-
onal, and yet complementary to our problem. We
discuss how we deal with these issues in Section 6.1.

The feature distributions of CompareGem are related
to topic modeling [6]. In our case, “topics” correspond
to the comparison outcomes (not an arbitrary number
of topics), the distribution is over features (and not
over words), and the primary mechanism for learning
is the comparison model in addition to feature co-
occurrences (and not word co-occurrences alone).

Comparison mining is related to sentiment analysis
[27], which aims to identify and interpret subjective
information from opinionated texts. Polarity detection
is a building block for sentiment analysis, distributing
excerpts into positive or negative sentiment classes
[28]. Different from comparison mining involving
pairs of entities, aspect-based opinion mining focuses
on study of sentiment polarity and emotions that
people express on individual items [29]–[31].

Often words or phrases bear information about
aspect discussed in the sentence (e.g., image quality,
size). Thus, the basic approaches to aspect extraction

employ frequency analysis in order to locate the
salient nouns [30], [32]. The supervised labeling meth-
ods [33], [34] are widely adapted for aspect extraction.
Due to diversity in the ways one can introduce the
aspect in text, some proposed topic modeling-based
approaches [35]–[37]. There are also works that model
the correlation between topics and user ratings [38].

Comparative summarization addresses the problem
of summarizing two (or more) separate corpora in
terms of a comparison. This is a different setting from
ours, where each pair of entities are compared within
a sentence. One formulation of comparative summa-
rization is sentence alignment, which selects pairs of
sentences (one from each corpus), so that each pair of
sentences describes the same “aspect” [39]. In some
cases, it is desired that sentences within a pair are
contrastive [40], [41]. Another formulation of compar-
ative summarization is comparative topic modeling, to
identify different “viewpoints” of a topic [42].

Competitor mining deals with identifying the set of
competitors of a given entity, by finding relationships
[43] or similarities among entities [44], [45].

6 EXPERIMENTS

Our focus here is on effectiveness, rather than effi-
ciency. All experiments were conducted on a PC with
Intel Core i5 CPU 3.3 GHz and 12GB of RAM.

6.1 Datasets
The corpus of comparative sentences S can be ob-
tained from user evaluation of pairs of products.
We crawled reviews from the Digital Camera and
Cell Phone categories of Amazon. The latter was aug-
mented with data constructed by [3], which in turn
was based on corpus presented in [46]. We describe
a methodology we used for extracting comparative
sentences from reviews. For practical purposes, off-
the-shelf approaches are available (e.g., [2], [3]). There
are four key information to determine: whether a
sentence is comparative, the entities being compared,
the comparison direction, and the aspect of interest.

Comparative Sentence & Aspect Identification. Our
scope covers sentences containing two entities. For
Digital Camera, we pick the four most frequent as-
pects: functionality, form factor, image quality, and price.
Cell Phone is represented by the general aspect of
overall quality, due to the lack of a meaningful volume
of comparative sentences for more specialized aspects.
We take a random sample of sentences and manually
label them for comparative sentence identification and
aspect identification. We train a comparative sentence
identification classifier2, and apply it to the remaining
sentences, followed by manual inspection to remove
false positives to ensure a high quality of the dataset.

2. For the comparative sentence (positive) class, Naive Bayes clas-
sifier reaches 70% precision and recall on 10-fold cross validation.
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TABLE 4
Dataset Sizes

Domain/Aspect # sentences #1 is
favored (%)

#2 is
favored (%)

DIGITAL CAMERA
Functionality 457 38.5 61.5
Form Factor 78 61.3 38.7
Image Quality 129 58.1 41.9
Price 165 52.1 47.9

CELL PHONE 544 67.1 32.9

TABLE 5
Ranking Benchmarks (Digital Camera)

Aspect Specification Crowdsourced
# entities # pairs # entities # pairs

Functionality 65 171 69 87
Form Factor 40 110 21 14
Image Quality - - 28 17
Price 34 103 37 27

Entity Recognition & Linking. There is no ready-
made named entity recognition (NER) system for the
domain we are considering. Therefore, we employ
a dictionary matching approach3 that works well in
tying the mentions of an object together. We construct
the dictionary of entities from product titles, which
we employ to perform token-based partial matching
search. Then, sentences are manually reviewed. This
works well for cameras, but not for cell phones due
to many generic references (e.g., it, this phone, etc.). As
co-reference resolution is manually time-consuming
and difficult to automate, we will use the Cell Phone
dataset in a pseudo-synthetic scenario replacing men-
tions with artificial entity tokens (see Section 6.3.3).

Table 4 shows the dataset properties. The number
of products being compared for Digital Camera is 180.
The four aspects respectively have 457, 78, 129, and
165 comparative sentences. Cell Phone is represented
by 544 sentences. The distributions between the two
classes (whether the first-mentioned (#1) or second-
mentioned (#2) entity is favored) are relatively well-
balanced. These data sizes are significant, in light
of the need to carefully annotate the data, not just
with labels, but also with ranking benchmarks (see
Section 6.1.1). These datasets are also larger than that
used in the previous work on entity ranking [9].

6.1.1 Entity Ranking Benchmarks
Because there is no definitive ranking ground truth,
we use two benchmarks that together provide a more
complete picture. Their sizes are presented in Table 5.

Specification Benchmark. The intuition is that
users’ preferences can be traced to some specific at-
tribute of the entities. We collect product specification
information from dpreview.com4 and wikipedia.com.

3. The dictionaries are manually crafted from the Amazon and
Epinions product pages corresponding to the related domains.

4. Digital Photography Review has a large database with detailed
information about individual digital cameras.

For form factor, we say that entity ei is better than
ej if both the volume and weight of ei are smaller
than those of ej . For functionality, the entity with the
later release date is better, assuming that the newer
model is more functional (comparison is only within
product lines). To ensure that the functionality has
indeed changed, we only consider differences of more
than one year. For price, we consider the lower price to
be better. To be conservative against price fluctuations,
we only consider differences of more than 1000USD.
There are 291 entity pairs for functionality, 5836 pairs
for form factor, and 1479 pairs for price. After pruning
the pairs whose ranking cannot be inferred from data,
it contains 171, 110, and 103 pairs from functionality,
from factor and price respectively. It is not defined for
image quality and Cell Phone, for a lack of correspond-
ing knowledge base.

Crowdsourced Benchmark. This benchmark is cre-
ated from the set of labels used for comparative
direction classification. For each pair of entities, we
consider each sentence to vote based on its label. The
entity with the majority votes is considered better.
This benchmark reflects how users in general rank
these entities, which may not always be consistent
with the specifications. There are 175 entity pairs for
functionality, 53 pairs for form factor, 102 pairs for price,
and 90 pairs for image quality.

For an evaluation pair, we refer to the difference
between the majority votes and the minority votes as
“support”. For greater confidence in the evaluation
pairs, we only include such pairs with support of at
least two. This leave us 87, 14, 17, and 28 evaluation
pairs for functionality, form factor, image quality, and
price respectively. The average support per entity pair
is at least 2.5, and goes up to 3.9 for functionality,
reducing the probability of choosing a comparison
direction by chance. This benchmark is smaller than
the specification one because it is defined only for
pairs that have been explicitly compared within the
data. However the variety of entities is comparable to
the specification benchmark (see Table 5). We did not
use transitive extension for the benchmark generation.

6.1.2 Evaluation Tasks and Metrics
We evaluate the performance of CompareGem along
three dimensions, as follows.

Comparative Direction Classification. All the com-
peting algorithms are given a set of labeled (training)
and a set of unlabeled (test) data. Each algorithm iden-
tifies the favored entity for each comparative sentence
in the test data. One can see this essentially as a binary
classification problem. To measure the performance
of an algorithm, we calculate its classification accuracy,
i.e., the fraction of correctly classified sentences (over
the total number of sentences in the test set).

Entity Ranking. We also want to assess the quality
of ranking scores produced by the competing algo-
rithms. It is not always feasible to have a ground truth
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in the form of a rank list, because some pairs may
not be comparable. We assume that the ground truth
(see Section 6.1.1) has the form of a set of entity pairs
X , where the favored (higher-ranked) entity for each
pair in X is known. We transform the output ranking
scores into a set of ordered pairs Y , which we compare
in terms of its agreement with the ground truth X .

As metric, ranking accuracy is the agreement be-
tween the ground truth X and the output Y in terms
of the fraction of concordant pairs over all pairs in the
intersection, expressed as a percentage. It is closely
related to Kendall’s tau [47]. Whereas Kendall’s tau
is defined for the totally ordered sets, the proposed
metric accepts partially ordered sets, and, thus is more
suitable here, as comparison makes sense only for
comparable entities. Two entities are comparable if
there is at least one comparative sentence of aspect
a involving them. Comparability is also transitive.

Aspect Identification. We first investigate the pre-
vious two primary tasks in the scenario where indi-
vidual aspects are known. As CompareGem’s flexibility
allows for latent aspects, we then investigate the
second scenario where aspects are pooled and latent,
and assess the aspect identification using balanced F-
measure. This gives a better assessment, as the aspect
distribution in the dataset is very skewed, and simple
majority vote alone already attains 55% accuracy.

6.2 Parameter Setting

CompareGem involves a number of hyperparameters.
To tune them, we perform two-step grid search. The
first step optimizes the parameters (α, β, γ) when
the ranking component is switched off (υ = 0). Once
these hyperparameters are fixed, the ranking-related
parameters (υ, σ, n) are optimized in the second step.

The number of comparative features (e.g., “more”,
“better”) in a sentence is usually fewer than the
number of the background words (e.g., emph“tried”,
“actually”, “’pixel”). This suggests a reasonable set of
possible values for γ, which should lie within (0.5, 1).
We use the same non-informative hyperparameters
for the feature distributions over all aspects.

For the grid search, the measures (e.g., accuracy,
ranking accuracy) were combined into the harmonic
mean, H(M) = k/

(∑k
i=1m

−1
i

)
, where M = {mi}ki=1

are the appropriate evaluation measures.
The Gibbs sampling algorithm uses simulated an-

nealing and requires specification of initial tempera-
ture and cooling schedule. We analyzed the exponen-
tial cooling and linear cooling schedules. The linear
schedule managed to produce better result for the
same fixed number of iteration and was adopted. The
number of optimization steps were set to 250 for Vari-
ational Approximation and 500 for Gibbs sampling.
Increases did not show substantial improvement.

TABLE 6
Supervised: CompareGem Comparative Direction

Classification

Continuous Discrete

Aspect With
Ranking

Without
Ranking

With
Ranking

Without
Ranking

Functionality 85.0∗ 74.2 83.1 65.5
Form Factor 74.5∗ 62.5 70.0 55.5
Image Quality 76.7 76.3 62.5 61.1
Price 68.6 60.5 68.9 57.1
Overall 75.7 67.7 70.3 59.6

6.3 Supervised Evaluation
The aim is to understand how well CompareGem tack-
les the classification and ranking tasks in the presence
of training data. We lemmatize words before turning
them into features. Rare features are discarded. We
show results for the 50:50 training and test data
splits. Similar results are observed on the 40:60 and
60:40 data splits, but are not discussed here due to
space consideration. We repeat every run 10 times
on different data shuffles, and report the averages.
We conduct randomization test [48] at 5% statistical
significance level for the differences between methods.
The best result among methods is in bold. * indicates
the presence of a significant difference between the
best and second best methods. Lower results with sta-
tistically insignificant differences are shown in italics.

6.3.1 Evaluation on Individual Aspects
First, in this section, we focus on the evaluation of
the two primary tasks of comparative direction clas-
sification and entity ranking to study their synergy.
Therefore, we fully supervise the aspect assignment,
and run these experiments on each aspect separately.

Methods. For the classification task, we compare
to two popular classifiers: Support Vector Machine
(SVM) and Naive Bayes (NB). We used SVM with lin-
ear kernel, and tuned the regularization parameter C
via grid search, C ∈

{
10−1, 100, ..., 103

}
. For the rank-

ing task, our baseline is Bradley-Terry-Luce model
(BTL). Because BTL assumes the comparison outcomes
of sentences are known, we use the classification
output from the first task, together with the training
sentences as inputs to the ranking model. For this rea-
son, BTL is not a complete baseline, because it cannot
operate independently from a source of comparative
directions. For ranking, we create a composite baseline
from pipelining the two steps discussed in this section
(i.e., SVM+BTL).

In contrast to the baseline, as CompareGem is a gen-
erative model, we simply learn the two tasks simulta-
neously. There are two versions of CompareGem: with
Continuous rank scores learnt via Variational Method,
and Discrete rank scores learnt via Gibbs Sampling.

Comparative Direction Classification. We first val-
idate the hypothesis that joint modeling improves
the comparative direction classification. Table 6 shows
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TABLE 7
Supervised: Comparative Direction Classification

Aspect CompareGem
(Continuous) SVM NB

Functionality 85.0∗ 79.3 74.7
Form Factor 74.5∗ 66.8 62.5
Image Quality 76.7∗ 71.6 69.8
Price 68.6∗ 60.9 60.1
Overall 75.7 69.0 66.2

results for the different configurations of CompareGem,
continuous and discrete, with or without modeling
the entity ranking. The ranking component is put
out by setting the sigmoid scaling parameter to zero
(υ = 0) in (2). The versions of CompareGem that take
advantage of the entity ranking information perform
better than their non-ranking counterparts. The Over-
all row5, derived as the harmonic mean across the
four aspects, indicates that CompareGem (Continuous)
performs substantially better that its competitors, thus
we use it latter to compare with the baseline methods.

Table 7 reports the accuracy results of the baseline
methods. For all four aspects, the best performing
method is Continuous CompareGem. The baselines,
SVM and NB, perform worse (statistically significant).

This outperformance validates our hypothesis that
jointly modeling ranking and classification helps the
model do better at classifying sentences.

Between the two baselines, SVM is noticeably better
than NB. It also has better results than non-ranking
versions of CompareGem (Table 6). We keep SVM as
the primary baseline in subsequent experiments.

Entity Ranking. For ranking, we rely on two
benchmarks. Table 8 shows the ranking accuracies
for the crowdsourced benchmark. CompareGem (Con-
tinuous) has the highest ranking accuracies. Though
CompareGem outperforms SVM+BTL significantly, the
magnitude of the difference is less impressive than
for classification task. We hypothesize that ranking
is an “easier” task than classification. Though SVM
performs significantly worse in classification at the
sentence level (Table 7), at the level of entity pairs,
there could still be sufficient number of correctly
classified sentences to get the ranking right.

Table 9 shows the ranking accuracies for the
specification benchmark. Against this benchmark,
CompareGem still performs well for form factor and
price. For functionality, it is worse than SVM+BTL.

Though the absolute numbers are different, the
main conclusions that can be derived from the two
benchmarks are similar. Indeed, the evaluation pairs
that exist in both benchmarks are quite consistent.
Only one disagreement is indicated within functional-
ity between them. The difference in the results can be
explained in part by the difference in benchmark sizes

5. Overall, as harmonic mean, does not lend itself to randomiza-
tion test for significance, and thus does not admit the * indicator.

TABLE 8
Supervised: Entity Ranking (Crowdsourced)

Aspect CompareGem
(Continuous)

CompareGem
(Discrete) SVM+BTL

Functionality 94.9∗ 89.7 93.8
Form Factor 94.3 92.9 90.7
Image Quality 94.1∗ 90.0 89.4
Price 89.6 88.1 86.7
Overall 93.1 90.1 90.0

TABLE 9
Supervised: Entity Ranking (Specification)

Aspect CompareGem
(Continuous)

CompareGem
(Discrete) SVM+BTL

Functionality 75.8 76.6 80.1∗
Form Factor 58.7∗ 53.4 51.0
Price 75.8 75.4 70.0
Overall 69.0 66.6 64.6

(see Table 5). The specification benchmark imposes
more constraints on the entity placement within a
ranking, making it more ‘difficult’ for the methods.

For these datasets, between the two versions of
CompareGem, Continuous is noticeably better across
Tables 6 to 9. Subsequently, we report the results of
CompareGem (Continuous) as a representative.

6.3.2 Evaluation on Combined Aspects
In this section, we pool all aspects together, and
explore the scenario when only partial supervision
on aspect assignment is available. The aim here is to
understand how well CompareGem tackles the major
tasks of comparative direction classification and entity
ranking, while also pursuing aspect identification.

The natural baseline is to use a pipeline of classifiers
and ranking model. The first classifier is trained to
identify the aspect of a sentence. The second one is to
identify the comparative direction. The third model
is to build entity ranking for every aspect based on
the classification outcomes. We report the results for a
SVM+BTL pipeline, i.e., SVM classifiers for aspect and
comparative direction and BTL model for ranking.

Table 10 summarizes the results of CompareGem
(Continuous) vs. the SVM+BTL pipeline on the Digital
Camera dataset. Because we are dealing with a single
pool, we show “overall” figures derived as harmonic
mean across results for individual aspects. For rank-
ing, we use the crowdsourced ranking benchmark,
which is applicable to all four aspects. Evidently,
CompareGem still outperforms the baseline on the two
primary tasks of comparative direction classification
and entity ranking. This is despite a marginally lower
performance in aspect identification, which is still
sufficiently accurate to support the primary tasks. This
speaks of the flexibility of CompareGem, in its higher
capacity for comparative direction classification and
entity ranking, in both scenarios of operating with
known aspects or with partial information on aspects.
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Fig. 3. The Classification and Ranking Accuracies Against Density.

TABLE 10
Supervised: Combined Aspects

Measure CompareGem
(Continuous) SVM+BTL

Comparative Direction
Classification 68.2 67.4

Entity Ranking 91.4 89.8
Aspect Identification 68.4 69.0

6.3.3 Effect of Sentence Density
To better understand CompareGem, we conduct further
analysis to investigate the effect of the density of
entities in a corpus. The density here is defined as the
expected number of sentences per comparable pair of
entities. The working hypothesis is that CompareGem
produces better quality output for denser corpora.

Data. This experiment requires fitting the model on
several corpora of similar contents, but with varying
density. It is infeasible to find such corpora naturally,
and therefore we rely on a pseudo-synthetic scenario.
Starting with an original corpus, suppose that we
need to come up with another corpus of comparative
sentences involving a desired number of n entities.
Given a corpus of comparative sentences S, we re-
place the original entity tokens within these sentences
with artificial entity tokens from a predefined set
En = {ei}ni=1. As synthetic ground truth, we set the
entity rank scores beforehand. For each sentence in
S, we randomly pick two entities form En and place
them in the sentence in the order consistent with the
comparative outcome based on the rank scores.

The density of a corpus S is defined as:

density(S) = |S|
(
n

2

)−1

. (33)

Figure 3 tracks how the performance of CompareGem
and the baselines on comparative direction classifica-

tion and entity ranking (y-axis) varies with the density
(upper x-axis) or the number of entities (lower x-axis)
in the corpus. For the pseudo-synthetic datasets, we
use two original corpora, namely: the functionality as-
pect of the Digital Camera dataset and the Cell Phone
dataset. For both datasets, the results are consistent.

The higher the density, the higher is the ranking
accuracy performance of both CompareGem and the
SVM+BTL baseline. This is expected as the more com-
parative sentences we have for each a pair of entities,
the easier and the more robust it is to determine the
ranking of entities. Importantly, though the trend is
similar, CompareGem’s ranking accuracy (green line) is
consistently higher than that of SVM+BTL (cyan line).

Interestingly, this trend of increasing ranking accu-
racy with density lifts CompareGem’s performance in
comparative direction classification (navy blue line)
correspondingly. In contrast, the baseline SVM has
a flat accuracy (red line), unaffected by the ranking
accuracy due to its pipeline design. Even at low den-
sities (around 0.02 onwards for Digital Camera, and
0.5 for Cell Phone), CompareGem outperforms SVM.

Notably, the ranking accuracy of CompareGem is
always better than the ranking accuracy of the base-
line even if the classification accuracy drops. This
may be the effect of model regularization and the
probabilistic nature of the comparison outcomes. Un-
certain predictions should not affect the ranking of
the corresponding entities much, while the pipeline
setting does not deal with these situations. That joint
modeling outperforms the pipeline setting validates
our original motivation for developing a joint model
to solve both problems simultaneously.

6.4 Unsupervised Evaluation

CompareGem can also run in unsupervised setting,
when no labeled data is used as input. The goal is
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TABLE 11
Unsupervised: Purity and Ranking Accuracy

Measure CompareGem
(Continuous) NB-EM+BTL Majority

Purity 62.4∗ 52.9 53.6
Ranking Accuracy 64.7∗ 57.0 47.7
Overall 63.5 54.8 50.4

to explore how suitable CompareGem is for modeling
a corpus of comparative sentences. If a model can
find a good fit to a dataset even without any labels,
arguably it encodes some essential parts of the corpus.
In this experiment, we observe the aspect labels, and
the task becomes a binary clustering problem, i.e.,
finding comparison clusters for each aspect. The entire
corpus is observable, not only individual aspects.

As a baseline clustering, we use Naive Bayes with
Expectation Maximization algorithm (NB-EM). This
choice is supported by the argument that CompareGem
reduces to a variation of Naive Bayes when the
ranking component is dropped. The baseline clusters
comparison outcomes for each aspect separately. We
also include a Majority baseline, which simply puts all
the available sentences into one cluster.

We can still use the labels to evaluate this clustering.
We measure the comparison outcome identification
quality via purity. To compute purity, each cluster is
assigned to a class that is most represented within the
cluster. Once the clusters are mapped to the labels, we
measure the accuracy of the assignment. A low quality
clustering has low purity, while a perfect clustering
has the purity of 1. The ranking accuracy is calculated
for each possible mapping of the obtained clusters,
and the maximum value is reported.

Table 11 shows the results of this experiment. Com-
paring the results of supervised vs. unsupervised
configurations, we see that the unsupervised results
are indeed lower, as expected. Interestingly, the com-
parison outcome clustering purity is still relatively
good and significantly better that the baselines. This
supports our intuition that the CompareGem captures
properties of comparative sentence corpora.

6.5 Feature Analysis
To gain further insight into the workings of
CompareGem, here we investigate the features that play
an important role in the supervised settings. Since
there are two comparison outcomes (c =� indicating
the first-mentioned entity #1 in a sentence is favored,
as well as c =≺ indicating the second-mentioned
entity #2 is favored), we focus on features that are
most discriminative between the two classes. In the
same way, we report the top discriminative features
among the aspects. A discriminative feature w is one
that yields top conditional probabilities P(c|w).

In Tables 12 and 13, we show the top features
satisfying the discriminative condition for functionality

TABLE 12
Supervised: Top Features in Functionality

θ�: #1 is favored θ≺: #2 is favored θb: background
#1 from #2 from #1 #2 #1 model #2
#1 improvement #2 #1 #2 improvement amateur #1 #2
recommend #1 #2 #1 recommend #2 nikon #1 #2
#1 much #2 much #1 #2 hobbyist #1 #2
pleased #1 #2 #1 #2 blow old #1 #2

TABLE 13
Supervised: Top Features in Image Quality

θ�: #1 is favored θ≺: #2 is favored θb: background
#1 give #2 #1 #2 give #1 image #2
#1 sharper #2 #1 #2 accurate #1 pic #2
#1 significantly #2 #1 #2 photo #1 capture #2
#1 detail #2 #1 #2 perform shooting #1 #2
#1 upgrade #2 #1 #2 upgrade noise #1 #2

and image quality respectively. The first two columns
report features relate to comparison outcomes, while
the last column shows aspect-related features. For
each feature, #1 and #2 refer to the relative posi-
tions of the first- and second-mentioned entities, with
respect to a word. The relative word positions are
important in discriminating comparison outcome. For
functionality, the features “#1 improvement #2” and “#1
#2 improvement” relate to the different classes. The
background features can give a clue about the aspect.
For example, image quality emphasizes background
words such as “image”, “pic”, “capture”.

7 CONCLUSION

We propose CompareGem as a generative model for
comparative sentences. The key insight is jointly mod-
eling two levels of comparative relations: at the level
of sentences and at the level of entity pairs. This holis-
tic treatment is novel, and is shown to empirically
outperform the previous pipelined approaches.

CompareGem is validated on Amazon reviews
dataset, showing better performance on both the
comparative direction task at the sentence level, and
ranking at the entity level. The empirical result is
revelatory, suggesting that while joint modeling of
entity ranking and sentence classification is useful for
both tasks, ranking seems to help sentence classifica-
tion more than the other way around. Furthermore,
CompareGem works well on these primary tasks when
aspects are fully or partially known, as well as in both
supervised and unsupervised configurations.
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