
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2018

A model of competition between perpetual software and software A model of competition between perpetual software and software

as a service as a service

Zhiling GUO
Singapore Management University, ZHILINGGUO@smu.edu.sg

Dan MA
Singapore Management University, madan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Citation Citation
GUO, Zhiling and MA, Dan. A model of competition between perpetual software and software as a service.
(2018). MIS Quarterly. 42, (1), 101-120.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3744

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

RESEARCH ARTICLE

A MODEL OF COMPETITION BETWEEN PERPETUAL
SOFTWARE AND SOFTWARE AS A SERVICE1

Zhiling Guo and Dan Ma
School of Information Systems, Singapore Management University, 80 Stanford Road,
Singapore 178902 SINGAPORE {zhilingguo@smu.edu.sg} {madan@smu.edu.sg}

Software as a service (SaaS) has grown to be a significant segment of many software product markets. SaaS
vendors, which charge customers based on use and continuously improve the quality of their products, have
put competitive pressure on traditional perpetual software vendors, which charge a licensing fee and periodi-
cally upgrade the quality of their software. We develop an analytical model to study the competitive pricing
strategies of an incumbent perpetual software vendor in the presence of a SaaS competitor. We find that,
depending on both the SaaS quality improvement rate and the network effect, the perpetual software vendor
adopts one of three different strategies: (1) an entry deterrence strategy, (2) a market segmentation strategy,
or (3) a sequential dominance strategy. Surprisingly, we find that vendor competition does not always result
in higher consumer surplus, and it might lead to a socially inefficient outcome under certain conditions. We
further show insights into how the incumbent perpetual software vendor can defend its market position by
providing incremental quality improvement through patching and/or by releasing consecutive versions with
major quality upgrades. Finally, we extend our model to include the vendor’s quality improvement cost and
users’ switching cost. These additional analyses help to identify the effect of different quality and cost factors
on the market competitive equilibrium.

Keywords: Software as a service (SaaS), network effects, pricing and competition, switching cost, game
theory, analytical modeling

Introduction1

The emergence and growth of software as a service (SaaS)
has fundamentally changed how software can be delivered,
used, and managed. SaaS represents a new software delivery
and pricing model, in which the vendor hosts, maintains, and
manages the application from a central location; serves clients
through a network; and charges them based on use. In the
past decade, SaaS has been one of the fastest growing market
segments and is now the third largest component of the total

cloud computing industry. Gartner (2017) forecasts that the
SaaS market will increase 20.1% in 2017 to total $46.3
billion, up from $38.5 billion in 2016, and reach $75.7 billion
by 2020. Today almost every software segment—office
suites, database management systems, supply chain manage-
ment systems, financial and accounting applications, human
resources management software, business intelligence appli-
cations, and customer relationship management applica-
tions—have been transformed by SaaS (Columbus 2013).

SaaS vendors have exerted strong competitive pressure on
traditional perpetual vendors in many software niche markets.
A recent example is the competition between Blackboard and
Canvas in the learning management system (LMS) market-
place. Blackboard is a perpetual software system that many
universities have used since the mid-1990s. Blackboard held
90% market share in the LMS market in 2006, but it more

1Sulin Ba was the accepting senior editor for this paper. Zhengrui Jiang
served as the associate editor.

The appendices for this paper are located in the “Online Supplements”
section of the MIS Quarterly’s website (http://www.misq.org).

MIS Quarterly Vol. 42 No. 1, pp. 1-XX/March 2018 1

Guo & Ma/Perpetual Software and Software as a Service

recently has dropped to about 34% (Bogage 2015). Black-
board lost many clients to new rivals, among which Canvas is
the most remarkable. Canvas is a cloud-based SaaS product
that was initially developed in 2008; it quickly became a
strong competitor of Blackboard, accounting for 9.3% market
share in 2015 (wiki.listedtech.com). Many high-profile
clients of Blackboard, such as the University of Texas at
Austin and Northwestern, have moved to Canvas. Both
researchers and industrial users have been intrigued: How
could the new cloud-based entrant successfully compete with
the well-established incumbent, which represented the indus-
try standard and held a monopoly in the market for almost 20
years? Our goal in this research is to understand the market
competition between these two types of software vendors,
which have different pricing schemes, product delivery and
operating models, and unequal initial market positions.

Prior research has examined the competition between
perpetual software and SaaS vendors in terms of their distinct
pricing methods (Fan et al. 2009; Ma and Seidmann 2015),
cost structures (Huang and Sundararajan 2011), and internal
IT infrastructures (Chen and Wu 2013). However, studies
have not yet considered the continuously increasing software
quality of SaaS, which is an important factor in the competi-
tion. Because of the centralized location and management of
SaaS applications, the vendor is able to add new function-
alities, offer more features, correct defects, patch the software
almost anytime during its life cycle, and therefore continu-
ously increase product quality. More importantly, these
quality improvements are free to users. In contrast, the qual-
ity improvement of perpetual software takes a step-up form.
To satisfy the demand for quality upgrades from existing
users and to attract new users, the perpetual software vendor
typically adopts a leapfrog strategy: When the current version
has been in the market for some period of time, the vendor
releases a new, higher quality version as a replacement (Bala
and Carr 2009; Ellison and Fudenberg 2000). In many cases,
the vendor prices the new version strategically by offering a
lower upgrade price to existing customers while charging new
clients the full purchase price (Bala and Carr 2009).2

Although (Choudhary 2007) has noted these differences
between the two types of vendors’ quality improvement stra-
tegies, he limits his analysis by assuming that, at the end of
the product life cycle, SaaS offers the same quality as per-
petual software. In contrast, we allow SaaS quality to be
either lower or higher than perpetual software, so that the two
vendors might take turns being the higher quality provider

over the planning horizon. As a result, we expect to see
strategic users switching from one vendor to the other. This
perspective renders our analysis more realistic and interesting,
which enables us to generate richer insights than those offered
by the extant literature.

We also consider other features of the perpetual software and
SaaS competition that have largely been neglected in previous
studies. First, perpetual software vendors have a much longer
history than their SaaS competitors. In most software niche
markets, and for many decades, they have had an established
customer base and extensive market power. In contrast, SaaS
vendors have only recently begun encroaching on perpetual
vendors’ territory. This delayed entry by the latter suggests
that the two types of vendors are in unequal positions and that
the perpetual software vendor has a first-mover advantage.
Second, the software market is expanding. Existing perpetual
software users who have built in-house systems continue to
demand higher quality products; and new users, with new
demands, also enter the market. To retain existing users and
attract new users, the perpetual software vendor releases a
new version of its software during market expansions (Mehra
et al. 2014). It also makes the new version backward-com-
patible with the previous version (Ellison and Fudenberg
2000), so that it can leverage its existing market base to
compete with the new SaaS entrant.

In this research, we propose an analytical model to study the
competition between an incumbent perpetual software vendor,
which has an established market base, and a new SaaS
entrant. We aim to answer the following research questions:
What are the incumbent perpetual software vendor’s competi-
tive pricing strategies in the presence of pressure from a new
SaaS entrant? Can it successfully deter the entry of the SaaS
vendor by relying on its first-mover advantage? If SaaS
quality rapidly increases, how should the perpetual software
vendor defend its market share? How do existing and new
users make decisions about software adoption? What are the
implications for consumer surplus and social welfare?

We find that a SaaS entrant’s competitiveness depends on
how fast it can improve product quality and how strong the
network effect is. In general, the SaaS vendor’s competitive
power increases when its quality improvement rate is high or
when the network effect is weak. Meanwhile, when the SaaS
becomes a stronger competitor, the incumbent perpetual
software vendor is advised to adjust its pricing strategy
accordingly, by moving from an entry deterrence strategy, in
which it uses low prices to successfully deter the SaaS’s
entry, to a market segmentation strategy, in which the two
vendors charge high prices to exploit their respective client
segments while avoiding direct competition, and ultimately to
a sequential dominance strategy, in which the vendors aggres-

2For example, Microsoft’s upgrade price for Office Professional 2007 was
16% less than the full purchase price ($263.95 vs. $312.79). In contrast,
Adobe charged 69% less for its Photoshop CS3 upgrade ($195.99 versus
$629.49).

2 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

sively compete on price and all users first adopt the perpetual
software and then switch to the SaaS when the SaaS product
quality bypasses the perpetual software. Surprisingly, we find
that vendor competition does not always benefit customers.
When the SaaS quality improvement rate is low, the new
entrant brings a low-quality product to users and thus reduces
consumer surplus and social welfare.

Our analysis also suggests that the perpetual software vendor,
as the incumbent, can better defend its market position by
offering periodic quality improvement using two strategies.
One strategy is to provide free incremental quality patching
during the software life cycle. In this case, the vendor must
consider the tradeoff between the patching time and the
magnitude of the quality improvement. We show that the
optimal patching time depends on both the SaaS vendor’s
quality improvement rate and users’ perceived total value of
the patch. The other strategy is to release consecutive new
versions that provide major quality jumps. We find that, com-
pared with the single-period competition, the perpetual soft-
ware vendor is more likely to adopt entry deterrence and
market segmentation strategies over a longer competition
horizon.

Furthermore, we extend the baseline model in several ways to
gain richer insights into the vendors’ and users’ decision
making. We find that the ongoing quality improvement costs
for the SaaS vendor allow the incumbent to more easily block
the new rival’s entry to the market. We further show that
when existing perpetual software users face a switching cost,
the perpetual software vendor can more easily preserve its
existing installed base and earn a higher profit.

The paper is organized as follows. First, we discuss related
past research and highlight our contributions to multiple re-
search fields. We then present our baseline model, including
vendors’ competition and users’ strategies. In the following
section, we derive the two vendors’ optimal pricing strategies
and market equilibrium outcomes. We then provide in-depth
analysis on how the perpetual software vendor can defend its
market power through appropriate quality improvement stra-
tegies. We further extend the baseline model in relation to
several aspects of the vendors’ and users’ decision making.
Finally, we discuss the main findings of this research and
their implications, conclude the paper, and present limitations
and suggestions for future research.

Literature Review

Our work is related to several streams of literature: the SaaS
business model, product quality differentiation, and software
network externality.

Prior research has examined several interesting features of the
SaaS business model, including its on-demand pricing,
discontinuous cost structure, contract design, and risk-sharing
mechanism. For example, based on transaction-cost econ-
omics, Susarla et al. (2009) argue that, because of contractual
incompleteness and opportunism by vendors, the SaaS con-
tract design should be multidimensional, should address ex
post transaction costs, and should offer effective governance
structures to protect users. Huang and Sundararajan (2011)
identify two types of costs in SaaS provision: infrastructure
costs and service costs. They find that, with discontinuous
costs and shared infrastructure, the widely adopted full-cost
pricing mechanism is typically suboptimal. Huang et al.
(2015) propose a hybrid service delivery and pricing mech-
anism for a monopoly SaaS vendor and demonstrate that their
proposed scheme outperforms a pure on-demand subscription
pricing approach. Kim et al. (2010) propose a risk-sharing
mechanism between SaaS vendors and customers to improve
software reliability. August et al. (2014) study the effect of
security risks on a software vendor’s versioning strategy when
it chooses to offer a SaaS variant in addition to an existing on-
premise product.

Another line of research compares the SaaS and perpetual
software business models and examines their competition.
Choudhary (2007) finds that a vendor’s incentive to invest in
quality is higher under the SaaS model than under the per-
petual licensing model. Zhang and Seidmann (2009) show
that when the network effect is sufficiently strong, a monop-
oly software vendor should provide both perpetual licensing
and SaaS subscription pricing. Fan et al. (2009) study short-
term price competition and long-term quality competition
between a SaaS vendor and a traditional shrink-wrap software
firm, and they find that the SaaS vendor’s high service opera-
tion costs affect its competitiveness. In addition, Ma and
Seidmann (2015) show that SaaS’s lack-of-fit costs play a
critical role in the outcome of market competition. In this
paper, we study how perpetual software vendors and SaaS
vendors compete when they have different pricing schemes,
disparate software quality improvement models, and unequal
market positions. We also take into consideration the behav-
ior of different user generations with respect to software
adoption, upgrades, and switching over a finite time horizon.

Much research has been conducted on product quality dif-
ferentiation. Firms can adopt different product-differentiation
strategies to avoid head-to-head competition (Tirole 1992).
They can provide products with heterogeneous features to
differentiate horizontally (Hotelling 1929), or they can offer
products that have varying quality levels to differentiate verti-
cally (Shaked and Sutton 1983). Product differentiation leads
to market segmentation, which enables competing firms to
profit by serving their respective customer segments. For
example, Salop (1979) shows that a monopolistic competitive

MIS Quarterly Vol. 42 No. 1/March 2018 3

Guo & Ma/Perpetual Software and Software as a Service

equilibrium exists for two horizontally differentiated firms
when each serves only local customers and behaves like a
local monopolist in its own market segment. Many other
studies (Bhargava and Choudhary 2001; Moorthy 1984;
Vandenbosch and Weinberg 1995) suggest that firms can
offer products at different quality levels and charge different
prices so that they can price-discriminate among users and
thus realize higher profits. Interestingly, when competing
with vertically differentiated products, the low-quality pro-
vider under certain conditions can take a more advantageous
position in the market (Lambertini and Tampieri 2012; Ma
and Kauffman 2014). A key limitation of these studies is that
they assume constant product quality, which neglects and
precludes the examination of SaaS’s dynamic product quality
improvement. In this paper, the SaaS vendor improves its
software quality continuously. The quality advantage might
switch from one vendor to the other during the product life
cycle. This consideration of product quality differentiation in
a dynamic environment distinguishes our work from previous
studies in this area.

The third stream of literature to which our study relates
focuses on product life cycle, upgrade and patch management,
and the network effects of software applications. Offering
successive upgrades and patching existing software is a com-
mon strategy in the software market (Arora et al. 2006; Bala
and Carr 2009; Cavusoglu et al. 2008; Kim et al. 2010). Be-
cause software has a limited life cycle and becomes obsolete
quickly (Mehra et al. 2014), existing users always demand a
better product with more features and higher quality to replace
the old one. In addition, the market for new products expands
over time (Bass 1969; Norton and Bass 1987, 1992). When
new users enter the market, they create new business oppor-
tunities for software vendors. Prior research has shown that
a perpetual software vendor is able to price-discriminate when
selling successive software versions by offering a lower up-
grade price to its existing users and a full purchase price to
new clients (Bala and Carr 2009; Ellison and Fudenberg
2000).

Finally, network effects play an important role in the con-
sumption of software products, which is characterized by
network externality (Choi 1994). Ellison and Fudenberg
(2000) argue that selling new backward-compatible-only
upgrade versions is now a common practice in the software
market. Backward compatibility encourages existing users to
upgrade, which generates extra network value that, in turn,
induces new users to buy the new version. As a result, the
vendor with an established customer base has the first-mover
advantage in the competition with the new entrant. We pro-
pose an integrated framework that takes into account the
perpetual software vendor’s price discrimination, the SaaS
vendor’s continuous quality improvement, the network effects

of the software, and user behavior regarding upgrades and
switching. Our model offers rich insights into the competitive
strategies the two types of vendors can adopt in the software
market.

The Baseline Model

In this section, we first introduce our model setup, focusing
on the two vendors’ distinct pricing methods and quality
improvement strategies. We then define users’ utility func-
tions and discuss their various software adoption strategies.

The Model Setup

Consider a finite selling horizon [0, 1], which also represents
the life cycle of a perpetual software product. At t = 0, an
incumbent firm—the traditional vendor that offers a perpetual
software product—has an installed base of users with mass 1.
We call these users old generation (OG) users, and the soft-
ware they have purchased is the old version perpetual soft-
ware. OG users already paid a one-time licensing fee to enjoy
a lifetime use of the old version perpetual software. We
assume the quality of the old perpetual software is q.

At t = 0, market expansion occurs and another group of users
with mass 1 enters the market, generating new demand for
software use. We call them new generation (NG) users.3 In
addition, the perpetual software vendor releases a new version
of its software with quality ρq, where ρ > 1 represents the
quality improvement over the old version. The OG users have
the option of upgrading to the new version by paying an up-
grade price, pu, while the NG users can purchase the new
software by paying a purchase price, pn $ pu. A strict
inequality means that the vendor offers a price discount to its
existing customers. Both the old version and the new version
of the perpetual software simultaneously exist in the market,
and their qualities remain unchanged throughout the software
life cycle.4

This market expansion also attracts a potential new com-
petitor, the SaaS vendor. We assume that the SaaS quality is
θq at t = 0, where 1 < θ < ρ. Thus, the initial quality of the
SaaS software is higher than the old version perpetual soft-

3Our model considers the market expansion at a fixed time—namely, all NG
users enter the market and make the software adoption decision at t = 0. In
Appendix K, we analyze an alternative setting in which NG users arrive in
the market continuously in the time interval [0, 1].

4In a later section, we provide an in-depth analysis of the competition when
the quality of the perpetual software improves as a step function over time.

4 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

ware, recognizing that progress in software technology gener-
ally makes a new system better than the old one. However,
the SaaS quality is lower than the new version perpetual soft-
ware, showing the traditional software vendor’s technological
leapfrog. The SaaS quality continuously increases over time
because the vendor is able to release new functionalities,
deliver advanced features, and fix identified errors from the
centralized server where the SaaS application is installed
(Choudhary 2007; Zhang and Seidmann 2009). For sim-
plicity, we assume that SaaS quality is a linear function of
time, q(t) = θq + αt, where α is the rate of quality
improvement.

Note that the two vendors have different quality improvement
strategies. The perpetual software vendor typically packages
major updates into the new version of its software, releases
the new version at the end of the life cycle of the existing one,
and sells it to the market for new profits. In contrast, the SaaS
vendor improves product quality continuously during the soft-
ware life cycle and offers frequent upgrades free of charge.
Consequently, the quality advantage might switch from one
vendor to the other during the competition period [0, 1],
depending on how fast the SaaS quality increases. In our
analysis, we consider the following two scenarios. In the first
scenario, α is small (i.e., α # (ρ – θ)q), so that q(1) = θq + α #
ρq, implying that the SaaS is always inferior to the new
perpetual software during the entire software life cycle. In the
second scenario, the SaaS quality improvement rate α is large
(i.e., α > (ρ – θ)q), so that q(1) = θq + α > ρq, meaning that by
the end of the software life cycle, the SaaS quality exceeds the
new perpetual software. The SaaS offering becomes the
highest quality product on the market. Figure 1 illustrates
software quality over the entire time horizon in the case of a
significant improvement in SaaS quality.

Furthermore, in terms of pricing, the perpetual software ven-
dor charges a one-time price, while the SaaS vendor charges
a price ps per unit of time, allowing users to pay as they go.
Therefore, the SaaS user’s total payment to the vendor is
calculated as the unit price times the length of the period of
use. We assume the SaaS price ps remains unchanged in the
planning horizon.5 A complete list of notations is provided in
Table A1 in Appendix A.

User Utility Definition and Strategy Analysis

Both OG and NG users must choose their software adoption
strategies over the selling horizon [0, 1]. We assume com-
plete information so that users know the two software ven-
dors’ prices, (pu, pn) and ps, and they are aware of the quality
of the two perpetual software versions, q, ρq, and the SaaS’s
initial quality θq, as well as its quality improvement rate α.
We define a user’s total utility as the sum of a base utility
from consuming the software product (without consideration
of the network effect) and an additional network utility
derived from the positive network effect. When network
effects exist, users must form expectations about the size of
the network. Following the literature of network externality
(Katz and Shapiro 1985; Kreps 1977; Stokey 1981), we use
the rational (or fulfilled) expectations equilibrium concept,
which means that the users’ expected software network size
is equal to the actual network size in equilibrium.

We first present OG users’ feasible strategies and the corre-
sponding base utilities:

Old: The user keeps using the old perpetual software over the
entire period [0, 1]. The base utility is q.

Old + SaaS: The user keeps using the old perpetual software
in the period [0, ts1]. It switches to SaaS in the period [ts1, 1].

The base utility is ()qt q t p dts s
ts

1

1

1

+ + − θ α .

SaaS: The user uses the SaaS software over the entire period

[0,1]. The base utility is ()θ αq t p dts+ −0
1

.

Upgrade: The user upgrades to the new perpetual software
at time 0 and uses the new version over the entire period
[0, 1]. The base utility is ρq – pu.

Upgrade + SaaS: The user upgrades to the new perpetual
software at time 0 and uses it in the period [0, ts2]. It switches
to SaaS in the period [ts2, 1]. The base utility is ρqts2 – pu +

()θ αq t p dts
ts

+ − .
2

1

NG users do not have the option of using the old version
perpetual software. Their feasible strategies and cor-
responding base utilities are:

New: The user purchases the new perpetual software at time
0 and uses it over the entire period [0, 1]. The base utility is
ρq – pn.

5In reality, many SaaS vendors (e.g., Salesforce.com) have maintained stable
prices in the past decade. The strong competition in the software market has
led to an industry standard in which most SaaS vendors patch their products
and offer upgrades for free. Even with the improved quality over time, peer
pressure makes price increases by SaaS vendors unrealistic—especially when
the perpetual software vendor maintains a constant price during its product
life cycle. In fact, cloud service providers are facing downward pricing
pressure, and many of them, including Google, Amazon, and Microsoft, have
been involved in a round of price cuts for their cloud services in recent years
(Babcok 2013; Sullivan et al. 2012).

MIS Quarterly Vol. 42 No. 1/March 2018 5

Guo & Ma/Perpetual Software and Software as a Service

Figure 1. Quality Comparison Between Perpetual and Saas Software

New + SaaS: The user purchases the new perpetual software
at time 0 and uses it in the period [0, ts3]. It switches to SaaS
in the period [ts3, 1]. The base utility is ρqts3 – pn +

()θ αq t p dts
ts

+ − .
3

1

SaaS: The user uses the SaaS software over the entire period

[0, 1]. The base utility is ()θ αq t p dts+ −0
1

.

Network effect in the software market is well documented in
the literature (Choi 1994; Jing 2007). A user obtains higher
utility when more others adopt the same or compatible soft-
ware. We assume that the SaaS is not compatible with either
version of the perpetual software and that the new version
perpetual software is backward-compatible with the old
version. In our context, the network utility a user derives in

the time period [t1, t2] is expressed as where k is
t

t

tkn dt
1

2

 ,

the coefficient to measure marginal network effect, and nt,
where nt = 1 or 2, is the network size of that software product
at time t.

Table 1 presents the strategy matrix. The rows show the OG
users’ strategies, and the columns show the NG users’
strategies. For example, row Upgrade + SaaS, column SaaS,
can be understood as the situation in which the OG users
upgrade to the new perpetual software for a period of time
(until ts2) and switch to the SaaS afterward, while the NG
users adopt SaaS over the entire period [0, 1]. In this case,
OG users’ total utility is (ρq + k)ts2 – pu +

 and NG users’ total utility is ()θ αq t k p dts
ts

+ + − 2
2

1

 Because the two() ()[]θ αq t p dt kt k ts s s+ − + + − 2 2
0

1
2 1 .

groups of users adopt incompatible software in [0, ts2], the
network size for each group is 1, and each group enjoys a
network value k over this time period. After OG users switch
to SaaS at time ts2, both groups of users are using the same
software, and so both are better off, deriving 2k network value
over the period [ts2,1].

In Table 1, we see in total 5 × 3 = 15 strategy pairs (SPs). We
can safely eliminate some of them from the vendors’ profit
maximization perspective. For example, vendors would never
opt for the strategy pairs in the first row, marked with “Φ.”
Instead of leaving the OG users completely out of the market
and earning zero profit from this group of users, both vendors
would compete to serve the OG users by offering them a
competitive price. Thus, in equilibrium, OG users are
induced to either upgrade to the new perpetual software or to
adopt SaaS, so they will not undertake the action “Old.”6

Similarly, those marked with “Φ” in the last column are
overridden because the perpetual software vendor does not
make any profit from any group of users in these scenarios;
again, they cannot emerge as equilibrium user strategies under
the vendor’s optimal pricing decision.

6Note that we do not directly eliminate “Old+SaaS” here because OG users
are served by the SaaS vendor under this strategy, even though we show in
a later section that this strategy is not an equilibrium strategy.

6 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Table 1. OG and NG Users’ Feasible Strategy Pairs and Corresponding Outcomes

User Strategies New New+SaaS SaaS

Old Φ Φ Φ

Old+SaaS SP3 SP5 Φ

SaaS NA NA Φ

Upgrade SP1 NA SP2
Upgrade+SaaS NA SP6 SP4

Also note that four of the strategy pairs are marked with
“NA.” They are inconsistent among the two groups of users’
actions. For example, row SaaS, column New, states that OG
users opt for SaaS, while NG users buy the new perpetual
software. This option is impossible because the upgrade price
(for OG users) should always be lower than or equal to the
new purchase price (for NG users). As a result, if the OG
users prefer SaaS rather than upgrading to the new perpetual
software because the upgrade price is not attractive, then the
NG users also prefer SaaS rather than paying a possibly
higher price to buy the new perpetual software. Similarly,
other NA strategy pairs can be proven infeasible in equi-
librium (see Appendix B). Finally, we are left with six SPs,
and we number them from SP1 to SP6. Figure C1 and Table
C1 in Appendix C provide detailed parameter configurations
under which each of the six SPs might appear as equilibrium
outcomes.

Especially worthy of mentioning is that both groups of users
have the switching option. They can choose to use the per-
petual software first and then switch to SaaS at a later time.
SP1 and SP2 do not involve user switching; SP3 and SP4
involve switching by only one group of users; and SP5 and
SP6 involve switching by both groups of users. Multiple
factors play a role in a user’s switching decision, including
how fast the SaaS quality increases, the SaaS vendor’s price,
which version of the perpetual software the user currently
uses, the expected strategy of other users, and how the
network utility before and after switching would change.
Overall, users switch if their expected net utility from the
SaaS is higher than the utility from the perpetual software that
they currently use. Switching time needs to be solved
endogenously if switching does happen. For example, the OG
users in SP4 switch to the SaaS when the net utility of
adopting SaaS equals the utility from continuing to use the
new perpetual software, given that the NG users adopt SaaS.
The switching time is determined by solving for the equality,

 so that .θ α ρq t k p q ks s+ + − = +2 2 ,
()

ts
SP p q ks
2

4 = + − −ρ θ
α

Vendor Pricing Strategies and
Equilibrium Analysis

We now analyze the vendors’ optimal pricing strategies and
study the consequent equilibrium outcomes. To help us
understand the effect of competition, we take as the bench-
mark the case in which no threat of SaaS entry arises. We
then analyze the competitive outcomes when the SaaS vendor
has both a low and a high quality improvement rate α. Fin-
ally, we discuss the influence of key factors on the different
types of market equilibria.

The Monopoly Benchmark

The monopoly benchmark analysis shows the perpetual soft-
ware vendor’s pricing decisions for its new version software,
upgrade price pu and purchase price pn, without the competi-
tive pressure of SaaS’s entry into the market. We see that the
vendor should always set its prices in a way that induces OG
users to upgrade and NG users to buy the new version.
Because both user groups adopt the perpetual software, the
network size is 2. The total utility for OG users is ρq + 2k –
pu and for NG users is ρq + 2k – pn. We have the following
result:

Proposition 1 (Monopoly Market Equilibrium) Without the
SaaS, the perpetual software vendor serves both user groups:
The equilibrium user strategy is SP1 (Upgrade, New), where
OG users upgrade and NG users buy the new version of the
software; the equilibrium upgrade price is

, and the new purchase price is()p q ku
M = − +ρ 1

.p q kn
M = +ρ 2

We see that , suggesting that the OG users alwaysp pu
M

n
M<

get a price discount. The vendor’s monopoly profit is

. Consumer surplus for the OG and()π ρM q k= − +2 1 3

MIS Quarterly Vol. 42 No. 1/March 2018 7

Guo & Ma/Perpetual Software and Software as a Service

NG users is and , respectively. CS q kOG
M = + CSNG

M = 0

The vendor extracts all surplus from NG users while giving
OG users a positive surplus that is equal to their reservation
utility from using the old perpetual software, which is just
enough to induce them to upgrade. Social welfare is the sum
of the vendor’s profit and the consumer surplus: SWM = 2ρq
+ 4k.

Competition When SaaS’s Quality
Improvement Rate Is Low

When the SaaS’s quality improvement rate is low (i.e., α # (ρ
– θ)q), the SaaS remains an inferior quality product in the
entire software life cycle. In this case, once users have
adopted the new perpetual software, they would not switch to
SaaS.

We find that the network effect critically affects the equilib-
rium outcome. We identify a threshold value

. When k exceeds this threshold, the()
K

q
1

2 1

2
= − − +α ρ θ

perpetual software vendor chooses to deter the SaaS from
entering the market by reducing prices significantly. When
k is below this threshold, the perpetual software vendor shares
the market with the SaaS vendor, with each one serving
different user groups. These findings are summarized in
Propositions 2 and 3.

Proposition 2 (Entry Deterrence Equilibrium) When the
network effect is strong enough (i.e., k > K1), the perpetual
software vendor deters the SaaS’s entry into the market: The
equilibrium user strategy is SP1 (Upgrade, New), where OG
users upgrade and NG users buy the new version of the soft-
w a r e ; t h e e q u i l i b r i u m p r i c e s a r e

.()p p q ku
SP

n
SP1 1

2
= = − − +ρ θ α

Compared to the monopoly benchmark, we see that the
perpetual software vendor has to reduce both the upgrade and

purchase prices significantly () top p p pu
SP

n
SP

u
M

n
M1 1= < <

deter the SaaS entry. This is because the threat of a SaaS
entry creates an outside option for users, which limits the
perpetual software vendor’s ability to set a high price. In
addition, the OG users receive no price discount for up-
grading. Intuitively, because both groups of users have the
same outside option and derive the same network utility ρq +
2k under SP1 (Upgrade, New), they pay the same price.
Facing the competitive pressure from the SaaS, the perpetual
software vendor has to pass some of its profit to users. It hence

earns a lower profit (), and()π ρ θ α πperp
SP Mq k1 2 2= − − + <

b o t h g r o u p s o f u s e r s a r e b e t t e r o f f

(). Total socialCS CS q k CS CSOG
SP

NG
SP

OG
M

NG
M1 1

2
= = + + > >θ α

welfare remains the same as in the monopoly benchmark

() because the two cases lead toSW q k SWSP M1 2 4= + =ρ
the same user strategy pair, SP1 (Upgrade, New), and thus the
total value created in the social system is the same.

Proposition 3 (Market Segmentation Equilibrium—α Low)
When the network effect is relatively weak (i.e., k < K1), the
perpetual software and SaaS vendors segment the market:
The equilibrium user strategy is SP2 (Upgrade, SaaS), where
OG users upgrade to the new perpetual software and NG
users adopt the SaaS software. The equilibrium prices are

, , a n d()p qu
SP2 1= −ρ ()p q kn

SP2 1 2= − +ρ

.()p q ks
SP2

2
1= − + +θ α

When the network effect is weak, the perpetual software
vendor gives up on deterring the SaaS vendor’s entry. Note
that the prices under the entry deterrence equilibrium, as
given in Proposition 2, decrease in the network effect k.
When k drops below the given threshold value K1, the entry
deterrence strategy becomes too costly. Instead, the perpetual
software vendor benefits from giving up NG users to the SaaS
vendor. Declining to compete for NG users enables it to raise
the upgrade price for OG users, which results in a higher
profit than would be possible if the perpetual software vendor
tries to deter the SaaS vendor’s entry using very low prices.

In the market segmentation equilibrium, the SaaS vendor
serves NG users and earns a positive profit

, and the perpetual software vendor()π θ α
SaaS
SP q k2

2
1= − + +

serves OG users and earns . The()π ρ πperp
SP

perp
Mq2 1= − <

two vendors focus on exploiting their respective user groups.
This outcome is similar to the monopolistic competition result
established in Salop (1979), in which two competing vendors
serve only their own local customer segments and thus
mitigate the price competition. However, allowing a low-
quality SaaS vendor to enter the market is not socially
optimal. Compared to the entry deterrence equilibrium, both

generations of users are worse off (andCS q CSOG
SP

OG
SP2 1= <

). Specifically, the NG users areCS q k CSNG
SP

NG
SP2 1= + <

worse off not only because they pay higher prices, but also
because they use a lower quality SaaS product. Social
w e l f a r e i s a l s o r e d u c e d a s a w h o l e

8 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

(). The stronger the()SW q k SWSP SP2
2

12= + + + <ρ θ α

network effect, the greater is the efficiency loss in social
welfare. The insight holds even without considering the
network effect (i.e., when k = 0). Moreover, social welfare in
this equilibrium would be lower than the monopoly bench-
mark (SWSP2 < SWM). Figure F2 in Appendix F shows that the
consumer surplus registers a significant drop when the market
moves from the entry deterrence equilibrium to the market
segmentation equilibrium, and that total social welfare is even
lower than the monopoly benchmark. These results suggest
that allowing the SaaS vendor to enter the market is socially
inefficient. Formally, we have the following result:

Corollary 1 (Socially Inefficient Competition) If the SaaS
quality is always lower than the new perpetual software,
software vendor competition leads to a loss both in consumer
surplus and in social welfare when the network effect is
relatively weak.

Competition When SaaS’s Quality
Improvement Rate Is High

When SaaS’s quality improves at a rapid rate (i.e., α > (ρ –
θ)q), the SaaS software eventually outperforms the new per-
petual software. In this case, users might switch from the
perpetual software to the SaaS at some point to enjoy higher
quality, and both vendors engage in a fierce price war.

Because software development costs have been sunk, a
vendor can reduce its price to any marginally positive level.
Thus, as long as a vendor has the quality advantage over its
competitor, it can earn a positive profit by charging a low
enough competitive price. This reasoning enables us to
eliminate SP1 (Upgrade, New) as an equilibrium, in which the
SaaS vendor earns zero profit. Similarly, because the per-
petual software vendor has a quality advantage over the SaaS
vendor at time 0, it is always able to induce OG users to
upgrade and NG users to purchase its new software version by
charging low enough prices. This reasoning eliminates SP3,
SP4, and SP5 as equilibria. These eliminations allow us to
focus on user strategies in SP6 (Upgrade + SaaS, New +
SaaS) and SP2 (Upgrade, SaaS). We again find that the
equilibrium outcome depends on the network effect, as shown
in Propositions 4 and 5.

Proposition 4 (Sequential Dominance Equilibrium) When the
network effect is large enough (i.e., k > K2), the perpetual
software and SaaS vendors sequentially dominate the market:
The equilibrium user strategy is SP6 (Upgrade +SaaS, NEW
+ SaaS), where OG users upgrade and NG users purchase the

new version perpetual software at the beginning, and both

switch to the SaaS at . The equilibrium
()

ts
SP q
3

6
2

= + −α ρ θ
α

prices are as follows:

(a) If , then() ()ρ θ α ρ θ− < ≤ + −q q2

 andp pu
SP

n
SP6 6= = ()[] ()[]α ρ θ α ρ θ

α
+ − + + −q k q4

8

;
()

ps
SP q6

2
= − −α ρ θ

(b) If α > (ρ + θ – 2)q, then

,
()() () ()[]

pu
SP k q k q6 1 1 1

2

2

=
− − − + − + −α ρ θ α ρ ρ θ

α

, and
()[] ()[]

pn
SP q k q6 4

8
=

+ − + + −α ρ θ α ρ θ
α

.
()

ps
SP q6

2
= − −α ρ θ

The threshold K2 is given in Appendix E. In this equilibrium,
users always choose the vendor that has the quality advan-
tage. Note that once OG users upgrade and NG users buy the
perpetual software at time 0, they face the same decision
trade-off because payment is sunk. Therefore, they always
act in the same way and at the same time. With this knowl-
edge, the SaaS vendor offers a price low enough to induce
both groups to switch. As a result, the two vendors take turns
serving the whole market—the perpetual software vendor first
and the SaaS vendor next; hence, we call it the sequential
dominance equilibrium. The SaaS vendor’s profit is

. The perpetual software vendor’s pro-
()[]π

α ρ θ
αSaaS

SP q6
2

2

=
− −

fit is in case (a), which is()[] ()[]π
α ρ θ α ρ θ

αperp
SP q k q6 4

4
=

+ − + + −

higher than ()[] ()[] ()[]π
α ρ θ α ρ θ α ρ θ

αperp
SP q k q q6 2 4 2

8

2

=
+ − + + − − − + −

in case (b). Consumer surplus for each user group and total
social welfare, under both case (a) and case (b), are reported
in Table D1 in Appendix D.

We have several observations to make. First, note that the
switching time under SP6 decreases as the SaaS quality

improvement rate increases (i.e.,). In addition, the
∂

∂α
ts

SP
3

6

0<

switching time is always greater than (i.e.,). 1
2 ts

SP
3

6 1
2

>
This result implies that, although faster SaaS quality improve-
ment always induces earlier switching, both user groups use
the perpetual software through at least half of the software life
cycle.

MIS Quarterly Vol. 42 No. 1/March 2018 9

Guo & Ma/Perpetual Software and Software as a Service

Second, both vendors’ equilibrium prices are affected by the
SaaS quality improvement rate. A higher quality improve-
ment rate suggests that the SaaS vendor gains the quality
advantage more quickly, which thus supports a higher SaaS

price . The perpetual software vendor also adjusts itsps
SP6

pricing strategy based on the SaaS quality improvement rate.
When the SaaS quality improvement rate is relatively small
(i.e., case (a)), the SaaS vendor does not create strong com-
petitive pressure. As a result, the perpetual software vendor

charges both user generations the same price, ,p pu
SP

n
SP6 6=

and no price discount is given to OG users. When the SaaS
quality improvement rate is relatively large (i.e., case (b)), the
SaaS vendor imposes high competitive pressure, and the
perpetual software vendor has to offer a price discount to OG
users to induce them to upgrade at time 0. Therefore, SaaS
quality improvement benefits OG users more than NG users.

Such a sequential dominance equilibrium appears only when
the network effect is strong enough. When k is smaller than
the threshold K2, a market segmentation equilibrium emerges.

Proposition 5 (Market Segmentation Equilibrium—α High)
When the network effect is weak (i.e., k # K2), the perpetual
software and SaaS vendors segment the market: The equi-
librium user strategy is SP2 (Upgrade, SaaS), where OG
users upgrade to the new perpetual software while NG users
adopt the SaaS software. The equilibrium prices are as
follows:

(a) If (ρ – θ)q < α # 2(ρ – 1)q, then ,()p qu
SP2 1= −ρ

, and ;()p q kn
SP2 1 2= − +ρ ()p q ks

SP2 1
2

= − + +θ α

(b) If α > 2(ρ – 1)q, then , ,()p qu
SP2 1= −ρ p kn

SP2
2

2= +α

and .()p k qs
SP2 = + − −α ρ θ

The two vendors’ profits are and ()π ρperp
SP q2 1= − πSaaS

SP2 =

 in case (a) and ()θ α− + +1
2

q k ()π α ρ θSaaS
SP k q2 = + − −

in case (b). The corresponding consumer surplus and social
welfare are reported in Table D1 in Appendix D.

In this equilibrium, no users switch during the entire software
life cycle. Because of the use of incompatible software
products, both OG and NG users can enjoy the network utility
only from their own generation. This situation is similar to
the equilibrium in Proposition 3 for the low α scenario:
Again, it is a monopolistic competition outcome. Two ven-
dors serve the two user groups separately, extracting as much

consumer surplus as possible in their respective market
segment. The perpetual software vendor charges OG users a
high upgrade price, giving OG users the same level of utility
as in the monopoly benchmark. Similarly, the SaaS vendor
sets prices aggressively to extract surplus from NG users.7

Moreover, as the SaaS quality improvement rate increases, the
SaaS vendor charges a higher price to extract more surplus,
resulting in a lower consumer surplus for NG users, even
though they are using a higher quality software product. The
benefits from the SaaS quality improvement therefore are not
shared by users.

This insight compares directly with the insight revealed in the
sequential dominance equilibrium, in which synergy is
created when both groups of users adopt the same software
product. The additional utility generated from the network
effect increases consumers’ willingness to pay, enabling both
vendors to charge higher prices and earn higher profits. As a
result, all parties are better off.

Summary of Equilibria and Comparative Statics

Figure 2 shows how equilibrium outcomes change under
different combinations of the SaaS quality improvement rate
and the network effect. Mathematical expressions for α, K1,
and K2 are presented in Appendix E. The solid lines in Figure
2 define three regions for three types of equilibria.

Type I—the entry deterrence equilibrium—appears in Regime
I, when the SaaS software is always inferior to the new
perpetual software during the entire product life cycle (α # (ρ
– θ)q) and when the use of compatible software generates
high network utility for users (k > K1). This equilibrium is
described in Proposition 2. The perpetual software vendor
blocks the SaaS vendor’s entry via a low-price strategy.

Type II—the market segmentation equilibrium—appears in
Regime II, when the SaaS vendor’s quality improvement rate
is relatively large (α > α) and when the network effect is small
enough (k < K1 and k < K2). The SaaS quality might or might
not exceed that of the new perpetual software at the end of the
software life cycle. Each vendor serves only one user gener-

7The perpetual software vendor deliberately gives up competing for NG users

with the SaaS by charging a high new purchase price . The highpn
SP2

 enables the SaaS vendor to charge a high equilibrium SaaS pricepn
SP2

, which in turn makes upgrading a more attractive option for OGps
SP2

users than SaaS. Thus the perpetual software vendor can charge a high

equilibrium upgrade price .pu
SP2

10 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Figure 2. Impact of Network Effect and SaaS Quality Improvement Rate on Equilibria

ation—the perpetual software vendor serves OG users, and
the SaaS vendor serves NG users. The dashed line α = 2(ρ –
1)q further divides Regime II into two parts: II-a and II-b,
which are described in Propositions 3 and 5, respectively.
Note that the area in II-a to the left of the vertical line α = (ρ
– θ)q is the socially inefficient competition regime, as
described in Corollary 1. In this regime, the SaaS quality is
always lower than that of the incumbent perpetual software
vendor; thus, its entry to the market reduces both consumer
surplus and social welfare. Also note that this result stems
from the unique feature of our model in which the SaaS
quality improves continuously over time. As Figure 2 shows,
if continuous quality improvement (i.e., α = 0) is absent,
entry of the lower-quality SaaS will always be deterred.
Furthermore, when the network effect is strong enough (i.e.,
k $ K1), this socially inefficient outcome is not likely to occur.

Type III—the sequential dominance equilibrium—appears in
Regime III, when the SaaS vendor’s quality improvement rate
is high enough (α > (ρ – θ)q) to exceed the perpetual software
quality at some point during the software life cycle, and when
the network effect is strong enough (k $ K2) that the addi-
tional utility from using compatible software encourages the
two groups of users to act in the same way. The dashed line
α = (ρ + θ – 2)q further divides Regime III into two parts, III-
a and III-b, corresponding to the two cases presented in
Propositions 4(a) and 4(b), respectively. Under this equi-
librium, user switching occurs, and each vendor thus serves
both user generations in a sequential manner. The difference
between III-a and III-b is the perpetual vendor’s pricing
strategy: The perpetual software vendor gives OG users a
price discount for upgrading in III-b but not in III-a.

Herd behavior and bandwagon pressure have been well
recognized in the literature in the study of IT adoption and the

diffusion of innovations across organizations. In reality, inno-
vative user organizations might choose to adopt the SaaS and
become early adopters in the market. These early adopters
might influence peer organizations, and organizations might
imitate each other to adopt SaaS. A “tipping point” often
emerges—the point at which a trend catches fire in the popu-
lation. To some extent this phenomenon can be supported by
the sequential dominance equilibrium in our extended model
with continuous user arrival (please see Appendix K), where
we find that OG users and NG users who arrive before a
certain time in the market become early adopters of SaaS, and
NG users who arrive thereafter follow the trend to adopt
SaaS.

The equilibrium outcome critically depends on both the SaaS
vendor’s quality improvement rate α and the marginal
network effect k. Tables F1 and F2 in Appendix F show the
effect of these two key parameters on the vendors’ equilib-
rium prices, profits, consumer surplus, and social welfare.
We summarize the main insights in the following paragraphs.

Corollary 2 (Non-monotonic Impact of α) As α increases, the
benefits from quality improvement are dispersed as follows:
(a) to both generations of users only under the entry deter-
rence equilibrium; (b) to the SaaS vendor only under the
market segmentation equilibrium; and (c) to both vendors and
the new generation users when α is low, and to the SaaS
vendor and both generations of users when α is high under
the sequential dominance equilibrium.

This finding is illustrated in Figures F1 and F2 in Appendix
F. The SaaS vendor’s quality improvement rate can be
viewed as the indicator of its competitive power. The per-
petual software vendor adopts different pricing strategies to
cope with a new SaaS rival based on the rival’s competi-

MIS Quarterly Vol. 42 No. 1/March 2018 11

Guo & Ma/Perpetual Software and Software as a Service

tiveness. When α is small, the incumbent perpetual software
vendor reduces both upgrade and purchase prices to block the
SaaS vendor’s entry, resulting in both a lower profit for itself
and higher consumer surplus. This outcome suggests that the
threat of entrance by a potential competitor benefits cus-
tomers. As α increases, the SaaS vendor becomes more com-
petitive, and deterring its entry is too costly. (This outcome
occurs in the range α > α.) The perpetual software vendor
prefers to increase its prices so that it gives up NG users to the
SaaS vendor and focuses on serving the OG users only.
Conventional wisdom suggests that users are better off when
competition exists. However, in this scenario, users are worse
off when the two vendors segment the market. When α
increases further, the SaaS gets highly competitive, and the
perpetual software vendor changes its pricing strategy again.
It reduces prices to compete with the SaaS vendor effectively.
The head-to-head price war and the relatively high SaaS
quality benefit users. Consumer surplus for both user groups
increases, as does the social welfare. This finding demon-
strates the positive effect of competition.

Different market participants prefer a distinct SaaS quality
improvement rate. Not surprisingly, the perpetual software
vendor prefers slow SaaS quality improvement, so that the
new rival is weak and its entry can be blocked at a low cost.
In contrast, the SaaS vendor prefers to have its quality
improvement rate in the middle range—not so low that its
entry will be deterred, and also not so high that it will have to
compete directly with the perpetual software. The preferred
outcome for the SaaS vendor is to be in a market segmenta-
tion equilibrium so that it can exploit NG users to the maxi-
mum degree and can fully capitalize on this market expansion
opportunity. We find that under certain circumstances, a
SaaS vendor that has a medium quality improvement rate
earns a higher profit than a SaaS vendor that has a high
quality improvement capability (see the graphical illustration
in Figure F1 in Appendix F). This outcome arises because the
first SaaS vendor manages to reap all the benefits from con-
tinuous quality improvement under the market segmentation
equilibrium, while the latter has to pass some benefits of high
quality improvement to users to compete effectively with the
incumbent under the sequential dominance equilibrium. This
interesting observation suggests that sometimes the SaaS
vendor might lack the incentive to improve its quality up to
the socially optimal level. As a result, a SaaS vendor might
not aggressively patch its software product, thus calling into
question its promise that it will always deliver the newest
software features and advanced technologies to its clients.

The network effect in the underlying software market is the
other important factor in determining the two vendors’ rela-
tive competitive power. As seen in Table F2 in Appendix F
and the following corollary, we find that the value from the

positive network externality is shared by different market
participants under different equilibria.

Corollary 3 (Non-monotonic Impact of k) As k increases, the
benefits from positive network externality are dispersed as
follows: (a) to the perpetual software vendor and both gener-
ations of users under the entry deterrence equilibrium and the
sequential dominance equilibrium; and (b) to the SaaS vendor
and OG users only under the market segmentation equi-
librium.

First, under the entry deterrence equilibrium, both the per-
petual software vendor and the users benefit from the positive
network effect. All else being equal, a stronger network ef-
fect (i.e., k > K1) strengthens the perpetual software vendor’s
entry deterrence capability because users are more likely to
opt for compatible software when the network effect gets
stronger. As a result, the perpetual software vendor finds that
attracting both generations of users is relatively easy. Second,
under the market segmentation equilibrium, the perpetual soft-
ware vendor passes the full network benefit to the OG users
to prevent them from continuing to use the old version per-
petual software. In contrast, the SaaS vendor fully exploits
the NG users and reserves all network benefit for itself.
Third, under the sequential dominance equilibrium, a stronger
network effect increases users’ willingness to act uniformly.
Because the perpetual software vendor has an existing cus-
tomer base and possesses the initial quality advantage, it
always is able to attract both generations of users at the begin-
ning and enjoys the first-mover advantage. In this case, the
network value is shared by the perpetual software vendor and
both user generations, but not by the SaaS vendor.

Perpetual Software Vendor's Discrete
Quality Improvement

Our baseline model assumes the constant quality of perpetual
software. In practice, the perpetual software vendor com-
monly improves its quality in two ways: It offers incremental
quality improvement through free patching within the product
life cycle, and it provides periodic major quality leapfrogs and
sells subsequent updated versions to the market. In the fol-
lowing, we study how these incremental and major quality
improvement strategies could affect competition dynamics.

Incremental Quality Improvement
Through Free Patching

Consider that the perpetual software vendor offers free quality
improvement through patching within the software life cycle

12 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

[0, 1]. The patching occurs at time tδ 0 (0, 1)and leads to a
small-scale quality jump δq, which is significantly smaller
than the quality improvement between two major new
releases (i.e., δq n (ρ – 1)q). Such patching is especially
meaningful when SaaS’s quality improves quickly—namely,
α > (ρ – θ)q, when the SaaS is expected to exceed the

perpetual software at if the perpetual
() ()t

q
* ,= ∈−ρ θ

α 0 1

software vendor does not provide the patching.

We consider two different patching strategies based on the
time of patching—patching before the SaaS exceeds the
perpetual software quality (S1) and patching after the SaaS
exceeds the perpetual software quality (S2). Under S1,
denoted as (δ1, tδ1) the perpetual software vendor patches its
product and offers a free quality jump δ1q at time tδ1 < t*.
Figures 3(a) and 3(b) illustrate two possible scenarios. In the
first scenario, the quality jump δ1q enables the perpetual
software vendor to retain the quality advantage until the end
of the planning horizon. In the second scenario, the SaaS
quality improvement rate is high enough that the perpetual
software vendor eventually loses its leading position before
the end of the planning horizon. Under S2, denoted as (δ2,
tδ2), the perpetual software vendor chooses to patch its product
and offers a quality jump δ2q at time tδ2 > t*. It is illustrated
in Figure 3(c).

Figure 4 shows the graphical comparison of equilibrium out-
comes between the baseline model and the incremental
quality improvement model. The solid lines define regions
for each market equilibrium in the baseline model while
dashed lines define the regions in this extended model. All
mathematical derivations and proofs of the equilibria are
detailed in Appendix G.

Consistent with the baseline model without patching, we see
that the same three types of equlibria appear, except that the
equilibrium regions are shifted toward the right. So no quali-
tative changes occur in the competition outcomes, and all
insights from the baseline model still hold. Intuitively, ven-
dors make a trade-off between the patching time tδ and its
magnitude δq. If a vendor takes more time to fix bugs and
patches the software at a later time (i.e., a smaller value of 1
– tδ), it can offer a larger quality improvement (i.e., a larger
value of δq). We define V = δq(1 – tδ) to measure the per-
ceived patching value and denote VS1 and VS2 as the patching
value under S1 and S2, respectively. Note that a later
patching always delivers higher quality improvement but not
necessarily higher perceived patching value.

We are interested in comparing S1 (δ1, tδ1)—the strategy of an
earlier and smaller patch—and S2 (δ2, tδ2)—the strategy of a
later and bigger patch. Proposition 6 summarizes the pre-

ferred patching strategies for the perpetual software vendor
and the corresponding optimal patching time. Overall, the
choice of patching strategy (S1 or S2) and optimal patching
time depend on both the SaaS quality improvement rate and
the perceived patching value.

Proposition 6 (Patching Strategy and Optimal Patching
Time)

(a) If α < α1, the perpetual software vendor is indifferent
between S1 and S2, and the optimal patching time might
occur either before or after t*; the corresponding market
equilibrium is either entry deterrence or market segmen-
tation.

(b) If (i) α1 < α < α2 and VS2 < v1, or (ii) α > α2 and VS2 < v2,
the perpetual software vendor prefers S1, and the
optimal patching time occurs before t*; the cor-
responding market equilibrium is sequential dominance.

(c) If (i) α1 < α < α2 and VS2 > v1, or (ii) and α > α2 and VS2

> v2, the perpetual software vendor prefers S2, and the
optimal patching time occurs after t*; the corresponding
market equilibrium is market segmentation.

The threshold values α1, α2, v1, and v2 are in Appendix G. The
optimal patching time under each situation is also derived and
presented in Appendix G. To conclude, we find that when the
SaaS competitiveness is low (i.e., α < α1), the two strategies
have the same effect on the vendor’s profit, which linearly
increases in the perceived patching value. So the choice of
optimal patching time becomes straightforward: If late
patching can bring a higher patching value, namely, VS2 > VS1,
then the vendor should opt for S2; otherwise, the vendor is
better off with S1.

However, when the SaaS competitiveness is high (i.e., α > α1),
delaying patching is not always worthwhile. Specifically,
when VS2 does not exceed the given threshold value, even if
the delay does bring users with a higher perceived patching
value (i.e., VS2 > VS1), the vendor’s profit is always lower in
S2 than in S1. So the vendor always prefers to patch early.
The reason is that if the vendor delays patching after t*, users
are not patient enough to wait for it. Instead, they turn to
SaaS, which becomes the temporary quality leader in [t*, tδ2].
Knowing that users would switch to SaaS before the perpetual
software vendor’s patching, the SaaS vendor therefore does
not respond to the incumbent’s patching action, and it keeps
its price the same as in the baseline model. As a result, both
the vendor’s price and profit in S2 are the same as in the base-
line model, and they are lower than the price and profit in S1.
In such a situation, the perpetual software vendor is always
better off adopting S1. As a result, the sequential dominance

MIS Quarterly Vol. 42 No. 1/March 2018 13

Guo & Ma/Perpetual Software and Software as a Service

Figure 3. The Perpetual Software Vendor’s Incremental Quality Improvement

Figure 4. Equilibrium Outcome with Incremental Quality Improvement

equilibrium emerges, in which users’ switching is postponed
because of their anticipation of the impending patching. From
the users’ perspective, the total value of the perpetual soft-
ware is enhanced by patching. So the SaaS vendor has to
reduce its price in response to the perpetual software vendor’s
patching action, which gives the perpetual software vendor
more room to increase its profit margin. The perpetual soft-
ware vendor thus is better off patching before the SaaS
exceeds its quality.

In contrast, late patching, in the presence of a strong SaaS
entrant, is preferred only if the perceived patching value is
sufficiently high, so that users deem it worthwhile to wait for
patching despite the fact that SaaS will become the temporary
quality leader in [t*, tδ2]. The SaaS vendor responds to the
perpetual software vendor’s patching action by lowering its
price significantly. Consequently, the equilibrium outcome is
market segmentation. The SaaS vendor is worse off, and the
perpetual software vendor strengthens its competitive position
and earns a higher profit than in the baseline model.

Major Quality Improvement Through
Consecutive Release

Consider that the perpetual software vendor provides major
quality improvement of its software over two periods: the
first major release occurs at time zero and spans the first
period over [0,1]; the second major release occurs at time 1
and spans the second period over [1,2]. Consistent with our
one-period model, we assume the major quality improvement
between two consecutive versions is (ρ – 1)q. We further
assume that the SaaS does not have absolute quality
advantage over the perpetual software in both periods. That
is, at the second major release, the perpetual software quality
is higher than the SaaS, (2ρ – 1)q > θq + α; hence, α # (2ρ –
θ – 1)q.

We extend our baseline model definition of the user strategy
pair into a vector that involves a two-period expression.
Thus, the one pair becomes double-faceted: [(OG user’s
period 1 strategy, OG user’s period 2 strategy), (NG user’s

14 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

period 1 strategy, NG user’s period 2 strategy)]. We further
distinguish the upgrade and new perpetual software purchase
strategies in the two periods as follows: Upgrade1 and
Upgrade2 denote existing perpetual software users’ upgrade
strategy in period 1 and period 2, respectively, and New1 and
New2 denote new users’ strategy of purchasing the perpetual
software in period 1 and period 2, respectively. For example,
[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]
indicates that the OG users upgrade to the new version
perpetual software at the beginning of period 1, switch to
SaaS at some point later, and then switch to the second
upgrade of the perpetual software in period 2. The NG users
buy the new perpetual software at the beginning of period 1,
switch to SaaS at some later time, and then switch to the
second upgrade version of perpetual software in period 2.

The number of users’ strategy pairs increases significantly
compared to the one-period baseline model. We first apply
the similar reasoning as in the baseline model analysis to
eliminate some of them.8 We finally obtain three equilibrium
outcomes. The details of derivations and proofs are in Ap-
pendix H. Figure 5 compares the equilibrium regions
between the two-period model and the baseline model. The
solid lines depict the boundaries in the two-period model,
while the dashed lines represent the baseline model.

We find that the qualitative insights in the two-period model
remain the same as in the baseline one-period model. When
the SaaS quality improvement rate is low and the network
effect is strong, the perpetual software vendor can deter the
SaaS entry. The entry deterrence equilibrium emerges as
[(Upgarde1, Upgrade2), (New1, Upgrade2)], where OG users
upgrade in both periods and NG users adopt the new perpetual
software in the first period and upgrade in the second period.
Compared with the one-period model, the region of entry
deterrence is pushed down. It suggests that when vendors
compete in a longer horizon, it becomes easier to deter the
SaaS entry if the SaaS quality improvement is low (i.e., α #
(ρ – θ)q).

When the SaaS quality improvement rate is high enough and
the network effect is not too strong, the market segmentation
equilibrium emerges as [(Upgrade1, Upgrade2), (SaaS,
SaaS)], where OG users upgrade their perpetual software in
both periods and NG users adopt SaaS in both periods.
Compared with the one-period model, the region of market

segmentation is pushed up and toward the right. More impor-
tantly, when the SaaS possesses the single-period quality
improvement advantage over the perpetual software vendor
(i.e., α > (ρ – 1)q), segmenting the market is more beneficial
for the perpetual software vendor than competing directly
with the new rival.

Finally, when the SaaS quality improvement rate is high and
the network effect is strong enough, the sequential dominance
equilibrium can occur. In the two-period setting, we identify
two sequential dominance equilibria: [(Upgrade1+SaaS,
Upgrade2), (New1+SaaS, Upgrade2)] when (ρ – θ)q < α #

 and [(Upgrade1+SaaS, Upgrade2+SaaS),
()3 2

3

ρ θ− − q

(New1+SaaS, Upgrade2+SaaS)] when α > . In
()3 2

3

ρ θ− − q

the first equilibrium, the OG (NG) users upgrade (buy new)
perpetual software at the beginning of the first period, switch
to SaaS together at a later time in the first period, and upgrade
to the perpetual software in the second period. This equi-
librium occurs when SaaS quality improvement rate is
moderate. Because the quality gap between the two vendors
widens over time, the SaaS vendor has a relatively greater
quality advantage in the first period than it does in the second
period. Thus, it is able to induce users to switch and serves
the market in the first period, but it forgoes the opportunity to
do so in the second period.

In the second equilibrium, the OG (NG) users upgrade (buy
new) perpetual software at the beginning of the first period,
switch to SaaS together at a later time in the first period, up-
grade to the perpetual software at the time of the second major
release, and switch together to SaaS again before the end of
the second period. This equilibrium occurs when the SaaS is
so competitive that after one period of continuous improve-
ment, its quality is relatively comparable with the perpetual
software. The two vendors now engage in fierce price wars,
and in each period the vendor that brings higher net utility to
users takes over the market.

Other Model Extensions

In this section, we extend the baseline model to consider two
types of costs: the SaaS vendor’s quality improvement cost
and users’ switching cost. We examine how they might affect
the market outcome. We show that all qualitative insights in
our baseline model remain valid, and the results demonstrate
the robustness of our model.

8For example, [(Upgrade1, Upgrade2), (New1, SaaS)] cannot be a consistent
strategy pair because after NG users purchase the perpetual software in the
first period, their decision to trade off in the second period becomes the same
as that of OG users. We use a similar method to eliminate several other
strategy pairs.

MIS Quarterly Vol. 42 No. 1/March 2018 15

Guo & Ma/Perpetual Software and Software as a Service

Figure 5. Equilibrium Outcome in a Two-Period Model

SaaS Vendor’s Quality Improvement Cost

We have omitted the SaaS vendor’s cost of improving soft-
ware quality in our baseline model. In this extension, we
include this cost to examine its effect on the results. The con-
tinuous quality improvement of SaaS is mainly driven by two
facts: The vendor fixes errors and bugs based on clients’
feedback from the software use, and it also applies newly
available technologies to offer more features and function-
alities as time goes by. This process is different from the
R&D process for initial software development, which often
requires huge monetary and human capital investments.

Because the SaaS software is centrally maintained and
managed by the vendor, the quality improvement cost is a
function of the quality improvement rate, rather than the
number of adopted users. Therefore, we assume that the SaaS
vendor incurs an ongoing quality improvement cost cα per unit
of time, where cα is an increasing function of α. The total
quality improvement cost over the time interval [0, 1] is

. We find that including cα changes the
0

1

 =c dt cα α

condition under which entry deterrence equilibrium appears,
but doing so has no effect on all other equilibrium results. All
details related to the new entry deterrence equilibrium are
presented in Appendix I. Figure 6 demonstrates how the
region of the entry deterrence equilibrium shifts when
considering the SaaS quality improvement cost. We use a
linear cost function, cα = bα, in this illustration.9

In Figure 6, the solid lines, (ρ – θ)q and K1, define the border
of Region I (entry deterrence equilibrium), as in our baseline

model, and the dashed lines, and K1' define the()ρ θ−
−

q

b1
border when the SaaS quality improvement cost is considered.
Compared with the baseline model, the perpetual software
vendor is more likely to block the SaaS vendor’s entry,
instead of sharing or segmenting the market with it. Other
than this effect, we find no qualitative changes of the insights,
compared with the baseline model results. In both regions of
the market segmentation and the sequential dominance
equilibria, none of the equilibrium prices and vendor profits
are affected. Although the cost cα is in the SaaS vendor’s
profit function, it does not affect the vendor’s pricing decision
after it enters the market because cα assembles a fixed cost,
instead of a variable cost. The magnitude of the cost is
unrelated to the number of SaaS customers.

OG User’s Switching Cost

For users who have already adopted the perpetual software,
switching to the SaaS system is similar to IT outsourcing.
The user organization must change in many ways to adapt to
this new on-demand business model—technologically,
organizationally, and economically. This adjustment process
might take a long time and involve significant costs, both
tangible and intangible—especially for firms that have a long

9Because α is the total value created in the time interval [0, 1] and cα is the
total cost to produce such value, cα < α is the condition for an efficient
production. As a result, b < 1. Also note that our result is not limited to the

linear cost function. In the case of nonlinear cost functional forms, the two
dashed lines that define the borders of Region I might not be linear, but the
same insight still holds.

16 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Figure 6. Market Equilibrium with SaaS Quality-Improvement Cost

 history of in-house IT experience. To incorporate this reality,
we extend our baseline model to include a switching cost for
users when they switch from perpetual software to the SaaS.
Presumably, firms that have used the traditional in-house
software for a longer time face greater challenges because of
the technological lock-in by their existing legacy system,
which reduces their flexibility and makes moving to the on-
demand SaaS model more costly. Without loss of generality,
we normalize the switching cost for NG users to be zero. The
switching cost for OG users is denoted as c. We assume that
no cost is incurred if OG users upgrade from the old to the
new perpetual software because of system compatibility. To
keep our model tractable and to focus on how the switching
cost affects the market competition, we do not consider the
network effect in this extension (i.e., k = 0). All equilibria
and the mathematical proofs are summarized in Appendix J.
The four types of equilibria are shown graphically in Figure
7. All the parameter values for A1, A2, A3, C1, and C2 are
given in Appendix J.

Compared to the baseline model results, a new type of equi-
librium emerges: the competitive lock-in equilibrium. Both
NG and OG users opt for the new perpetual software at the
beginning, but the NG users switch to the SaaS after it takes
the quality leader role in the market. The switching time is

. In contrast, the OG users stay with the
()

tSC
q* = + −α ρ θ

α2

perpetual software because they are locked in by switching
costs. This equilibrium thus appears only when the SaaS
vendor’s quality improvement is high enough, α > A2, and
when the switching cost for OG users is high enough, c > C1.

We note several interesting observations. First, including the
OG users’ switching cost does not enhance the perpetual soft-

ware vendor’s ability to deter the SaaS rival’s entry. We find
that the condition for the entry deterrence equilibrium to
appear (α < A1) and the optimal prices under this equilibrium
are exactly the same as those in the baseline model. Second,
considering switching cost creates more room for market
segmentation equilibrium to occur. In the presence of OG
users’ switching cost, the two vendors have the possibility of
segmenting the market, even at a very high SaaS quality
improvement rate α $ A2, as long as OG users’ switching cost
is in a certain range: It is not high enough to support the
perpetual software vendor's lock-in capability (i.e., c < C1)
and is not low enough to enable both user groups to switch
(i.e., c > C2). Finally, we still observe the sequential domin-
ance equilibrium when α is large (α > A3), but it is limited to
the low switching cost scenario (c # C2).

Conclusion

In this paper we examine the competitive dynamics between
an incumbent perpetual software vendor and an SaaS entrant.
We find that the incumbent should adopt different strategies
to cope with the new rival, based on the SaaS’s quality
improvement rate and the strength of the network effect. It
can adopt an entry deterrence strategy to block a weak SaaS
vendor with a very low quality improvement rate in the
presence of a weak network effect. When the SaaS quality
improvement rate is relatively high but the network effect is
not so strong, the perpetual software vendor might need to
adopt a market segmentation strategy, so that it serves
existing users and leaves the new users to the SaaS vendor.
In the presence of a strong network effect, especially when
the SaaS vendor is a strong competitor and its quality improve-

MIS Quarterly Vol. 42 No. 1/March 2018 17

Guo & Ma/Perpetual Software and Software as a Service

Figure 7. Market Equilibrium with Switching Cost

ment rate is high enough, the perpetual software vendor is
better off adopting a sequential dominance strategy, by which
it aggressively competes with the SaaS vendor. Both the OG
and NG users therefore adopt the perpetual software first and
then switch to SaaS at a later time.

Our model captures the important features of the SaaS ven-
dor’s pay-as-you-go pricing model and continuous quality
improvement pattern, as well as the perpetual software ven-
dor’s one-time pricing method with discrete quality improve-
ment over time. This unique model setup brings several novel
insights. First, we find that the SaaS is able to enter the
market and make a positive profit even if its quality is inferior
to the incumbent perpetual software. This, however, may
result in social welfare loss. Second, the possibility that the
late entrant becomes the quality leader because its continuous
quality improvement leads to the emergence of sequential
dominance equilibrium, in which users switch from the
incumbent perpetual software vendor to the SaaS vendor. In
addition, we suggest that the perpetual software vendor might
pursue two quality improvement strategies: It might patch its
software with an incremental quality jump, and it might
release new versions with major quality leapfrogging. Both
serve to defend the incumbent’s market power and strengthen
its competitiveness when facing a new SaaS rival. We further
make recommendations regarding the vendor’s optimal
patching time and identify conditions under which the vendor
should patch early in the product life cycle.

Our model and results are supported by empirical observa-
tions in the software market. The competition between
Blackboard and Canvas is a good business case to demon-
strate how a new SaaS entrant can successfully compete with
an incumbent. Most users have viewed Blackboard as setting
the highest industry standard and as having a near-monopoly
in the LSM market for almost 20 years, but after several years

of continuous product improvement, Canvas is considered to
be of comparable quality. We have seen Blackboard’s users
switch to Canvas, attracted by its in-the-moment cloud
computing features, such as mobile access, more up-to-date
functionalities, and periodic payment. Although Blackboard
remains a major industry force and retains many of its biggest
clients, it feels the pressure to defend its position by em-
ploying an appropriate quality improvement strategy—for
example, offering appealing cutting-edge technologies and
new features, such as mobile access capability.

The diversity of the software market structure observed in the
real world is also consistent with our analytical findings. For
example, Salesforce—the pure SaaS-based customer relation-
ship management (CRM) software company that entered the
market in 1999—has been very successful in its competition
with the traditional on-premise incumbents, such as SAP,
Microsoft, and IBM (Columbus 2014). Many large enterprise
users, including Amazon, Morgan Stanley, Nokia, Staples,
Target, and Merrill Lynch, have switched from the on-
premise CRM system to Salesforce, consistent with our
model’s prediction of user switching behavior under strong
SaaS competition. However, in some niche markets, new
SaaS rivals have experienced failure. For example, new SaaS
vendors have rarely succeeded in the enterprise resource
planning (ERP) marketplace. Only in the past five years have
we started to see existing perpetual software vendors, such as
SAP and Oracle, adjusting their business model to offer
cloud-based ERP—mainly to complement rather than to sub-
stitute for the on-premise ERP (Williams 2011). In this niche,
we have seen something more like an entry deterrence rela-
tionship between perpetual software vendors and new SaaS-
based companies. In fact, we find that when the SaaS quality
improvement rate is not high and the network effect is rela-
tively weak, deterring the new SaaS vendor’s entry into the
market is socially optimal.

18 MIS Quarterly Vol. 42 No. 1/March 2018

Guo & Ma/Perpetual Software and Software as a Service

We have generalized our model to consider users’ switching
cost and the SaaS vendor’s ongoing cost of quality improve-
ment, and our main insights from the baseline model are
robust. In addition, we suggest that although the SaaS has
been a serious threat, the perpetual software vendor, as the
incumbent, still has competitive advantages in various ways.
For example, many enterprise users have recognized that
moving to SaaS requires a great deal of additional effort,
including IT governance policies and operating model
changes, new types of vendor relationship management (Hsu
et al. 2014), and hidden interoperability issues associated with
legacy system integration (Ma and Seidmann 2015). These
challenges constitute switching costs for users, and we show
that, in a competitive situation, they help the perpetual soft-
ware vendor to preserve its existing market base.

We see several directions for future research. First, we have
assumed constant pricing in this paper. Future research might
study the vendor’s dynamic pricing strategy in a multi-period
setting. For instance, software vendors might consider
offering a low price to attract new users when the installed
user base is small and then raising the price when the user
base becomes large enough. Second, in recent years, we have
observed that many existing perpetual software vendors are
offering SaaS-based versions of their products, too. The
SaaS-based and on-premise versions are used together as
complements for the vendor to reach broader market cover-
age. This hybrid strategy has not been explored in this study.
It definitely offers a promising direction for future research.
Finally, our model does not endogenize vendors’ quality deci-
sions. In reality, quality decisions can be made either simul-
taneously with price decisions or before price decisions are
made. In the latter case, a sequential-move game should be
solved, which is beyond the scope of our current analysis.
We also do not consider software research and development
(R&D) costs. Following the literature, the costs might be
modeled as a convex function of quality. Taking into con-
sideration both software quality decision and initial R&D cost
offers an intriguing avenue for future work.

References

Arora, A., Caulkins, P. J., and Telang, R. 2006. “Research Note—
Sell First, Fix Later: Impact of Patching on Software Quality,”
Management Science (52:3), pp. 465-471.

August, T., Bucykescym M. F., and Shin, H. 2014. “Cloud Impli-
cation on Software Network Structure and Security Risks,”
Information Systems Research (25:3), pp. 489-510.

Babcok, C. 2013. “Amazon Cuts Cloud Prices Again,” Information
Week, July 10.

Bala, R., and Carr, S. 2009. “Pricing Software Upgrades: The Role
of Product Improvement and User Costs,” Production and
Operations Management (18:5), pp. 560-580.

Bass, F. M. 1969. “A New Product Growth Model for Consumer
Durables,” Management Science (15:1), pp. 215 -227.

Bhargava, H., and Choudhary, V. 2001. “Information Goods and
Vertical Differentiation,” Journal of Management Information
Systems (18:2), pp. 85-102.

Bogage, J. 2015. “Blackboard Loses High-Profile Clients as its
Rivals School it in Innovation,” The Washington Post, August 22.

Cavusoglu H., Cavusoglu, H., and Zhang, J. 2008. “Security Patch
Management: Share the Burden or Share the Damage?,”
Management Science (54:4), pp. 657-670.

Chen, P., and Wu, S. 2013. “The Impact and Implications of On-
Demand Services on Market Structure,” Information Systems
Research (24:3), pp. 750-767.

Choi, J. P. 1994. “Network Externality, Compatibility Choice, and
Planned Obsolescence,” The Journal of Industrial Economics
(42:2), pp. 167-182.

Choudhary, V. 2007. “Comparison of Software Quality under
Perpetual Licensing and Software as a Service,” Journal of
Management Information Systems (24:2), pp. 141-165.

Columbus, L. 2013. “Gartner Predicts Infrastructure Services Will
Accelerate Cloud Computing growth,” Forbes, February 8.

Columbus, L. 2014. “Gartner CRM Market Share Update: 41% of
CRM Systems are SaaS-Based, Salesforce Dominating Market
Growth,” Forbes, May 6.

Ellison, G., and Fudenberg, D. 2000. “The Neo-Luddite’s Lament:
Excessive Upgrades in the Software Industry,” Rand Journal of
Economics (31:2), pp. 253-272.

Fan, M., Kumar, S., and Whinston, A. B. 2009. “Short-Term and
Long-Term Competition Between Providers of Shrink-Wrap
Software and Software as a Service,” European Journal of
Operational Research (196:2), pp. 661-671.

Gartner. 2017. “Gratner Says Worldwide Public Cloud Services
Market to Grow 18 Percent in 2017,” Press Release, February 22,
Gartner, Stamford, CT (http://www.gartner.com/newsroom/id/
3616417).

Hotelling, H. 1929. “Stability in Competition,” Economic Journal
(39:153), pp. 41-57.

Hsu, P.F., Ray, S., and Li-Hsieh, Y. Y. 2014. “Examining Cloud
Computing Adoption Intention, Pricing Mechanism, and Deploy-
ment Models,” International Journal of Information Management
(34:4), pp. 474-488.

Huang, K. W., and Sundararajan, A. 2011. “Pricing Digital Goods:
discontinuous Costs and Shared Infrastructure,” Information
Systems Research (22:4), pp. 721-738.

Huang, J., Kauffmann, R. J., and Ma, D. 2015. “Pricing Strategy
for Cloud Computing: A Damaged Services Perspective,”
Decision Support Systems (78), pp. 80-92.

 Jing, B. 2007. “Network Externalities and Market Segmentation in
a Monopoly,” Economics Letters (95:1), pp. 7-13.

Katz, M. L., and Shapiro, C. 1985. “Network Externalities, Compe-
tition, and Compatibility,” The American Economic Review
(75:3), pp. 424-440.

Kim, B. C., Chen, P., and Mukhopadhyay, T. 2010. “An Economic
Analysis of the Software Market with a Risk-Sharing Contract,”
International Journal of Electronic Commerce (14:2), pp. 7-39.

MIS Quarterly Vol. 42 No. 1/March 2018 19

Guo & Ma/Perpetual Software and Software as a Service

Kreps, D. M. 1977. “A Note on Fulfilled Expectations Equilibria,”
Journal of Economic Theory (14:1), pp. 32-43.

Lambertini, L., and Tampieri, A. 2012. “Low-Quality Leadership
in a Vertically Differentiated Duopoly with Cournot Compe-
tition,” Economics Letters (115:3), pp. 396-398.

Ma, D., and Kauffman, J. R. 2014. “Competition Between
Software-as-a-Service Vendors,” IEEE Transaction on Engi-
neering Management (61:4), pp. 717-729.

Ma. D., and Seidmann, A. 2015. “Analyzing Software as a Service
with Per-Transaction Charges,” Information Systems Research
(26:2), pp. 360-378.

Mehra, A., Seidmann, A., and Mojumder, P. 2014. “Product Life-
Cycle Management of Packaged Software,” Production and
Operations Management (23:3), pp. 366-378.

Moorthy, K. S. 1984. “Market Segmentation, Self-Selection, and
Product Line Design,” Marketing Science (3:4), pp. 288-307.

Norton, J., and Bass, F. M. 1987. “A Diffusion Theory of Adoption
and Substitution for Successive Generations of High Technology
Products,” Management Science (33:9), pp. 1069-1086.

Norton, J., and Bass, F. M. 1992. “Evaluation of Technological
Generations: The Law of Capture,” Sloan Management Review
(33:2), pp. 66-77.

Salop, S. C. 1979. “Monopolistic Competition with Outside
Goods,” The Bell Journal of Economics (10:1), pp. 141-156.

Shaked, A., and Sutton, J. 1983. “Natural Oligopolies,” Econo-
metirca (51:5), pp. 1469-1484.

Stokey, N. 1981. “Rational Expectations and Durable Goods
Pricing,” The Bell Journal of Economics (12:1), pp. 112-128.

Sullivan, C., Konary, A., Webster, M., and Mahowald, R. 2012.
“The Price Is Right? Microsoft Reduced Pricing on Office 365
and Azure Cloud Services,” IDC Link, March 30.

Susarla, A., Barua, A., and Whinston, A. B. 2009. “A Transaction
Cost Perspective of Software as a Service Business Model,”
Journal of Management Information Systems (26:2), pp. 205-240.

Tirole, Y. 1992. The Theory of Industrial Organization, Cam-
bridge, MA: The MIT Press.

Vandenbosch, M. B., and Weinberg, C. B. 1995. “Product and
Price Competition in a Two-Dimensional Vertical Differentiation
Model,” Marketing Science (14:2), pp. 224-249.

Williams, J. 2011. “Will Businesses Opt for SaaS in Next ERP
Lifecycle?,” Computer Weekly, June.

Zhang, J., and Seidmann, A. 2009. “Perpetual Licensing vs.
Subscription of Software: A Theoretical Evaluation,” in Pro-
ceedings of the 42nd Hawaii International Conference on System
Sciences, Los Alamitos, CA: IEEE Computer Society Press.

About the Authors

Zhiling Guo is an associate professor of Information Systems at
Singapore Management University. She received her Ph.D. from
The University of Texas at Austin. Her recent research focuses on
innovative business models for digital payments, resource allocation
and management in cloud computing, and data analytics to under-
stand consumer decision making. She has published papers in
leading business and management journals, including Management
Science, Information Systems Research, Journal of Management
Information Systems, Production and Operations Management,
among others.

Dan Ma is an associate professor of Information Systems at
Singapore Management University. She obtained her Ph.D. degree
in Computers and Information Systems from Simon School of
Business at University of Rochester. She studies the economics of
Cloud computing, Software-as-a-Service business model analysis,
pricing information goods, competitive strategy, and the decision-
making of new technology adoption. Her works have been appeared
in research journals including Information Systems Research,
Journal of Management Information Systems, and IEEE Trans-
actions on Engineering Management.

20 MIS Quarterly Vol. 42 No. 1/March 2018

RESEARCH ARTICLE

A MODEL OF COMPETITION BETWEEN PERPETUAL
SOFTWARE AND SOFTWARE AS A SERVICE

Zhiling Guo and Dan Ma
School of Information Systems, Singapore Management University, 80 Stanford Road,
Singapore 178902 SINGAPORE {zhilingguo@smu.edu.sg} {madan@smu.edu.sg}

Appendix A

Modeling Notations

Table A1. Modeling Notations

Notation Definition

t 0 [0, 1] Time within the software life cycle [0,1]

q Quality of the old perpetual software product
ρ New perpetual software quality improvement ratio over the old version
θ The SaaS initial quality improvement ratio over the old perpetual software, 1 < θ < ρ

α Rate of software quality improvement for the SaaS product
pu One-time upgrade price for existing users to upgrade to the new perpetual software
pn One-time purchase price for new users to buy the new perpetual software
ps The SaaS price for per unit time use of the software
nt The network size at time t, where nt = {1, 2}

k Marginal network effect
δ Perpetual software incremental quality improvement ratio over the old version
cα The SaaS vendor's quality improvement cost per unit time
c OG users’ cost of switching to SaaS

MIS Quarterly Vol. 42 No. 1—Appendices/March 2018 A1

Guo & Ma/Perpetual Software and Software as a Service

Appendix B

Elimination of Strategy Pairs in Table 1

Given the software quality improvement ρq > q, the OG consumers are willing to pay a positive price to upgrade to the new perpetual software.
Because all software development costs have been sunk, the perpetual software vendor can always sell to the OG users at a positive price to
earn non-zero profit. So in equilibrium, any strategy pair that involves the OG users that continue to use the old version of perpetual software
is dominated by other induced user strategies. We therefore eliminate the first row of strategy pairs in Table 1.

Similarly, (Old + SaaS, SaaS) and (SaaS, SaaS) can be eliminated because the perpetual software vendor earns zero profit. Because the
perpetual software has the quality advantage over the SaaS at time 0, the perpetual software vendor, by charging a very small positive upgrade
price ε, is able to induce the OG consumers to upgrade and earn a non-zero profit.

Also note that if the OG users choose SaaS, the NG users prefer SaaS as well. The reason is that the OG users are more “sticky” to the perpetual
software than the NG users because of their reserve utility from the old perpetual software. Therefore, neither (SaaS, New) nor (SaaS, New
+ SaaS) can achieve and sustain equilibrium.

Finally, once both OG and NG users adopt the new version perpetual software, they become identical. They should take the same action
afterward—either they both continue to use the new version or they switch to SaaS at some time point simultaneously. This rules out (Upgrade,
New + SaaS) and (Upgrade + SaaS, New). As a result, only six strategy pairs, SP1 ~ SP6, are possible in equilibrium.

Appendix C

Parameter Configuration for Strategy Pairs SP1 ~ SP6

Figure C1 graphically shows how the six possible strategy pairs can be supported by different combinations of the SaaS quality improvement
rate and the SaaS price. The parameter configurations for each strategy pair are presented in Table C1. We observe that the network effect
will affect the appearance of SP2, SP4, and SP5. When the network effect is stronger, users tend to choose the same type of software; that is,
when the dashed line in Figure C1 shifts up to the left, the appearance of SP2 becomes less likely, while that of E4 and E5 becomes more likely.

Figure C1. Possible Outcomes and Feasible Regions

A2 MIS Quarterly Vol. 42 No. 1—Appendices/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Table C1. Parameter Configuration for Each Strategy Pair

Strategy Pair Feasible Conditions

SP1 (Upgrade, New) ps $ α – (ρ – θ)q

SP2 (Upgrade, SaaS) ps $ α + k – (ρ – θ)q

SP3 (Old+SaaS, New) max[(θ – 1)q, α + k – (ρ – θ)q] # ps # α + (θ – 1)q

SP4 (Upgrade+SaaS, SaaS) ps # α + k – (ρ – θ)q

SP5 (Old+SaaS, New+SaaS) (θ – 1)q # ps # α + k – (ρ – θ)q

SP6 (Upgrade+SaaS, New+SaaS) ps # α – (ρ – θ)q

SP1: Because both groups adopt the new perpetual software, they are identical after adoption. In SP1, no groups switch to SaaS over the entire
software life cycle, implying that the SaaS payoff at the end of the software life cycle is no higher than the new perpetual software. Hence,
θq + α + 2k – ps # ρq + 2k, which leads to ps $ α – (ρ – θ)q.

SP2: To prevent the OG users from switching to SaaS, the SaaS payoff at the end of the software life cycle should not be higher than payoff
from the new perpetual software for OG users. Note that, without switching, the OG users derive the network utility k; if switching, they can
enjoy the network utility 2k because the NG users have adopted SaaS. Hence, θq + α + 2k – ps # ρq + k, which leads to ps $ α + k – (ρ – θ)q.

SP3: For the OG users to switch but for NG users not to switch during the software life cycle, we have three conditions: (1) the OG users prefer
the old perpetual software rather than SaaS at time 0 (i.e., θq + k – ps # q + k); (2) the OG users prefer SaaS rather than the old perpetual
software at the end of the software life cycle (i.e., θq + α + k – ps $ q + k); and (3) the NG users prefer the new perpetual software rather than
SaaS at the end of the software life cycle (i.e., θq + α + 2k – ps # ρq + k). All together, we have max[(θ – 1)q, α + k – (ρ – θ)q] # ps # α +
(θ – 1)q.

SP4: For switching to occur, OG users derive higher payoff from SaaS than from the new perpetual software at the end of the software life
cycle. Hence, θq + α + 2k – ps $ ρq + k, which leads to ps # α + k – (ρ – θ)q.

SP5: We have two conditions: (1) the OG users prefer the old perpetual software rather than SaaS at time 0 (i.e., θq + k – ps # q + k); and
(2) the NG users derive higher payoff from SaaS than from the new perpetual software at the end of the software life cycle (i.e., θq + α + 2k
– ps $ ρq + k). Therefore, (θ – 1)q # ps # α + k – (ρ – θ)q.

SP6: Note that both OG and NG users must switch at the same time. They derive higher payoff from SaaS than from the new perpetual
software at the end of the software life cycle. Hence, θq + α + 2k – ps $ ρq + 2k, which leads to ps # α – (ρ – θ)q.

Appendix D

Baseline Model Equilibrium Outcomes

Table D1 presents vendors’ optimal prices, profit, consumer surplus, and social welfare under each equilibrium in the baseline model.

MIS Quarterly Vol. 42 No. 1—Appendices/March 2018 A3

Guo & Ma/Perpetual Software and Software as a Service

Table D1. Equilibrium Prices, Profits, Consumer Surplus, and Social Welfare: Baseline Model

(a) Equilibrium Prices: Baseline Model

Equilibrium pu pn ps

Monopoly (M) ()ρ − +1 q k ρq k+ 2 NA

Entry Deterrence
(I)

()ρ θ α− − +q k
2 ()ρ θ α− − +q k

2
0

Market Segmen-
tation (IIa)

()ρ − 1 q ()ρ − +1 2q k ()θ α− + +1
2

q k

Market Segmen-
tation IIb)

()ρ − 1 q α
2

2+ k ()α ρ θ+ − −k q

Sequential
Dominance (IIIa)

()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

()α ρ θ− − q

2

Sequential
Dominance (IIIb)

() ()[] ()()α α ρ ρ θ ρ θ
α

k k q q+ − + − − − −1 1 1

6

2 ()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

()α ρ θ− − q

2

(b) Equilibrium Profits: Baseline Model

Equilibrium πperp πSaaS

Monopoly (M) ()2 1 3ρ − +q k NA

Entry Deterrence
(I)

()2 2ρ θ α− − +q k 0

Market Segmen-
tation (IIa)

()ρ − 1 q ()θ α− + +1
2

q k

Market Segmen-
tation IIb)

()ρ − 1 q ()α ρ θ+ − −k q

Sequential
Dominance (IIIa)

()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

4
()[]α ρ θ

α
− − q

2

2

Sequential
Dominance (IIIb)

()[] ()[] ()[]2 4 2

8

2α ρ θ α ρ θ α ρ θ
α

+ − + + − − − + −q k q q ()[]α ρ θ
α

− − q
2

2

(c) Equilibrium Consumer Surplus and Social Welfare: Baseline Model

Equilibrium CSOG CSNG SW

Monopoly (M) q k+ 0 2 4ρq k+

Entry Deterrence
(I)

θ αq k+ +
2

θ αq k+ +
2

2 4ρq k+

Market Segmen-
tation (IIa)

q k+ q ()ρ θ α+ + +q k2
2

Market Segmen-
tation IIb)

q k+ ρ αq −
2 ()ρ θ α+ + +q k2

2

Sequential
Dominance (IIIa)

() ()[]3

2

α α ρ θ ρ θ
α

k k q+ + − − () ()[]3

2

α α ρ θ ρ θ
α

k k q+ + − − () ()3 16 2 3 3

4

2 2 2α α α ρ θ ρ θ
α

+ + + + −k q q

Sequential
Dominance (IIIb)

() ()[] ()α α α ρ θ ρ θ ρ θ
α

2 2 212 2 2 4 2

8

+ + + + − − + + −k k q q () ()[]3

2

α α ρ θ ρ θ
α

k k q+ + − − () ()3 16 2 3 3

4

2 2 2α α α ρ θ ρ θ
α

+ + + + −k q q

A4 MIS Quarterly Vol. 42 No. 1—Appendices/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Appendix E

Proofs for Baseline Model

Proof of Proposition 1 (Monopoly Market Equilibrium)

Proof. When no entry threat arises from the SaaS vendor, the perpetual software vendor is the monopolist. When the vendor releases the new

version software at time 0, it charges a purchase price to the NG users so that it extracts all surpluses from them, and so . p q kn
M = +ρ 2

Meanwhile, it charges an upgrade price pu as high as possible to induce the OG users to upgrade to the new version (i.e., ρq + 2k – pu $ q +

k)). Therefore, . The vendor’s profit is . ()p q kn
M = − +ρ 1 ()π ρM

u
M

n
Mp p q k= + = − +2 1 3

Proof of Proposition 2 (Entry Deterrence Equilibrium)

Proof. This is the case in which α # (ρ – θ)q. Because the SaaS quality is always lower than the new perpetual software, users do not switch.
The perpetual software vendor can choose either the entry deterrence strategy to serve both user groups and drive the SaaS vendor out of the
market or it can choose the market segmentation strategy and serve OG users only. The equilibrium strategy pair corresponding to the former
case is SP1 (Upgrade, New), while in the latter case it is SP2 (Upgrade, SaaS).

Consider SP1 (Upgrade, New). Given that NG users adopt the new version perpetual software, the OG users have three strategies to consider.

If they keep using the old version, their total utility is q + k; if OG users choose the SaaS at time 0, their total utility is ;()θ αq t k dt+ +0
1

and if OG users choose to upgrade and then keep using the new perpetual software, their total utility is ρq + 2k – pu.

To ensure that the OG users prefer upgrading to the new version rather than continuing to use the old version, their total utility must be ρq +
2k – pu $ q + k, which is pu # (ρ – 1)q + k (IC1). Meanwhile, the perpetual software vendor needs to make sure that OG users prefer upgrading

rather than adopting SaaS, even if the SaaS price is reduced to zero. That is, the entry deterrence condition is ρq k pu+ − ≥2

, and it gives (IC2). We can show that (IC1) is not binding.()θ αq t k dt+ +0
1

()p q ku ≤ − + −ρ θ α
2

Similarly, given that OG users choose to upgrade, the NG users’ total utility is ρq + 2k – pn if they choose the new perpetual software and

 if they opt for SaaS at time 0 at zero price. To ensure that the NG users prefer the new perpetual software to the SaaS,()θ αq t k dt+ +0
1

even if the SaaS price is zero, their total utility must be ; that is, (IC3).()ρ θ αq k p q t k dtn+ − ≥ + +2
0

1

()p q kn ≤ − + −ρ θ α
2

Because , by (IC2) and (IC3) the perpetual software vendor sets the prices at respective upper bounds: p pu n≤

. Consequently, we obtain the perpetual software vendor’ s profit at ,()p p q kn
SP

u
SP1 1

2
= = − + −ρ θ α ()π ρ θ αperp

SP q k1 2 2= − + −
and the SaaS vendor is out of the market.

Finally, we need to prove that the perpetual software vendor earns a higher profit under SP1 than SP2, which is true when

, as shown in the proof of Proposition 3. Hence, the perpetual software vendor deters the SaaS vendor’s entry when
()

k K
q≥ = − − +

1
2 1

2

α ρ θ

.k K≥ 1

MIS Quarterly Vol. 42 No. 1—Appendices/March 2018 A5

Guo & Ma/Perpetual Software and Software as a Service

Proof of Proposition 3 (Market Segmentation Equilibrium—α Low)

Proof. Consider SP2 (Upgrade, SaaS). Given that the NG users adopt SaaS, if the OG users continue to use the old version perpetual software,

their total utility is q + k; if the OG users choose SaaS, the total utility is ; and if they choose to upgrade and then()θ αq t k p dts+ + − 2
0

1

continue to use the new perpetual software over the entire software life cycle, the total utility is .ρq k pu+ −

To ensure the OG users prefer to upgrade rather than to continue to use the old version, their total utility must be ρq k p q ku+ − ≥ +

and thus (IC4). Also, to ensure that the OG users prefer to upgrade rather than opt for SaaS, their total utility must be()p qu ≤ −ρ 1

 and thus (IC5).()ρ θ αq k p q t k p dtu s+ − ≥ + + − 2
0

1

()p p q ks u≥ − − − +ρ θ α
2

Similarly, given that OG users upgrade, the NG users’ total utility is if they choose the new perpetual software andρq k pn+ −2

 if they opt for SaaS at time 0. To ensure that the NG users prefer SaaS, their total utility must be()θ αq t k p dts+ + −0
1

; that is, (IC6).()ρ θ αq k p q t k p dtn s+ − ≤ + + −2
0

1

()p p q ks n≤ − − − +ρ θ α
2

To maximize its profit, the perpetual software vendor sets pn as high as possible so that the SaaS vendor can also charge a high enough price
ps, which in turn allows the perpetual software vendor to charge a high upgrade price pu. As a result, the perpetual software vendor charges

to make the OG users’ IC constraint (IC4) binding. It sets so that the SaaS vendor charges the()p qu
SP2 1= −ρ ()p q kn

SP2 1 2= − +ρ

highest possible by (IC6) that does not violate (IC5). Finally, under the condition , we can verify()p q ks
SP2

2
1= − + +θ α ()α ρ θ< − q

that the condition for SP2, as specified in Table C1, holds.()p k qs > + − −α ρ θ

Finally, we need to show that the perpetual software vendor’s profit under SP2, , is higher than its profit under SP1. ()π ρperp
SP q2 1= −

Solving , we have k < K1, where K1 is defined in Proposition 2. Hence, SP2 (Upgrade, SaaS) sustains as an equilibrium userπ πperp
SP

perp
SP2 1>

strategy pair when k < K1. Also note that K1 = 0 when α = (ρ – 2θ + 1)q =˙ α.

Proof of Proposition 4 (Sequential Dominance Equilibrium)

Proof. Consider SP6 (Upgrade+SaaS, New+SaaS). The switching time ts3 is determined by θq + αts3 + 2k – ps = ρq + 2k, so that

. The SaaS vendor’s profit is expressed as . Solving this optimization problem yields the optimal()
ts

p qs
3 =

+ −ρ θ
α

()
2 1ps

p qs−

+ −ρ θ
α

SaaS price . We can verify that ps
* satisfies the SP6 condition in Table 3. Consequently, . Several()

ps
q* =

− −α ρ θ
2

()
t

q
s3 2
* =

+ −α ρ θ
α

incentive compatibility conditions must be satisfied, as follows.

Given that the OG users choose Upgrade+SaaS, the NG users prefer New+SaaS rather than SaaS if ()ρq k t ps n+ − +2 3
*

. So (IC7).() () ()θ α θ α θ αq t k p dt q t k p dt q t k p dts s s
t

t

t s

s

s

+ + − ≥ + + − + + + − 2 2
3

3

3

1

0

1
* * *

*

*

*
pn ≤

()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

A6 MIS Quarterly Vol. 42 No. 1—Appendices/March 2018

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A7

Given that the NG users choose New+SaaS, the OG users prefer Upgrade+SaaS rather than Old+SaaS if (ݍߩ + ∗௦ଶݐ(2݇ − ௨ + ∗ଵ௧ೞమ ݍߠ) ݐߙ+ + 2݇ − ݐ݀(∗௦ ≥ ݍ) + ∗௦ଵݐ(݇ + ∗௧ೞమ∗௧ೞభ ݍߠ) + ݐߙ + ݇ − ݐ݀(∗௦ + ∗ଵ௧ೞమ ݍߠ) + ݐߙ + 2݇ − ௨ The condition gives .ݐ݀(∗௦ ≤ఈି(ఘିଵ)(ఏିଵ)మା[ఈ(ఘିଵ)ା(ఘିఏ)]ଶఈ (IC8). Note that the switching time ݐ௦ଶ∗ = ∗௦ଷݐ . The switching time ݐ௦ଵ, for Old+SaaS, is determined by ݍߠ + ௦ଵݐߙ + ݇ − ௦ = ݍ + ݇, so that ݐ௦ଵ = ೞି(ఏିଵ)ఈ . Substituting ௦∗ into the expression of ݐ௦ଵ, we have ݐ௦ଵ∗ = ఈି(ఘାఏିଶ)ଶఈ .

If ߙ ≤ ߩ) + ߠ − ∗௦ଵݐ ,ݍ(2 < 0, so that OG users prefer SaaS. To ensure the OG users prefer Upgrade+SaaS rather than SaaS, we need (ݍߩ ∗௦ଷݐ(2݇+ − ௨ + ∗ଵ௧ೞయ ݍߠ) + ݐߙ + 2݇ − ݐ݀(∗௦ ≥ ௧ೞయ∗ ݍߠ) + ݐߙ + ݇ − ݐ݀(∗௦ + ∗ଵ௧ೞయ (θݍ + ݐߙ + 2݇ − ௨ ,that is ;ݐ݀(∗௦ ≤[ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ (IC9). So by (IC7) and (IC9) we have ௨ௌ = ௌ = [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ , and the perpetual software vendor’s

profit is ߨௌ = [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]ସఈ .

If ߙ > ߩ) + ߠ − ∗௦ଵݐ ,ݍ(2 > 0, by (IC7) and (IC8) we have ௨ௌ = ఈି(ఘିଵ)(ఏିଵ)మା[ఈ(ఘିଵ)ା(ఘିఏ)]ଶఈ < ௌ = [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ , and ߨௌ = ଶ[ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]ି[ఈି(ఘାఏିଶ]మ଼ఈ .

Under both cases, the SaaS price is ௦ௌ = ఈି(ఘିఏ)ଶ , and the SaaS vendor’s profit is ߨௌௌௌ = [ఈି(ఘିఏ)]మଶఈ .

Another outcome under the strategy pair SP2 (Upgrade, SaaS) is solved in Proposition 5. Comparing the two vendors’ respective profits
under SP2 and SP6, we show that when the network effect ݇ is stronger than a threshold value ܭଶ (details in the proof of Proposition 5), SP6
(Upgrade+SaaS, New+SaaS) emerges as the final equilibrium user strategy.

Proof of Proposition 5 (Market Segmentation Equilibrium—ࢻ High)

Proof. Consider SP2 (Upgrade, SaaS). The analysis is similar to the proof for Proposition 3. The only difference is that when ߙ > ߩ)2 − ,ݍ(1
the constraint ௦ ≥ ߙ + ݇ − ߩ) − ௦ௌଶ ,is binding. Therefore (refer to Table 3) ݍ(ߠ = ߙ + ݇ − ߩ) − ߙ if ݍ(ߠ > ߩ)2 − Also, we need .ݍ(1
to reexamine the IC conditions. (IC5) becomes ௨ ≤ ఈଶ. Because (ߩ − ݍ(1 ≤ ఈଶ, the perpetual software vendor charges ௨ௌଶ = ߩ) − so ݍ(1

that (IC4) is binding. By (IC6), we have ௌଶ ≥ ఈଶ + 2݇. As a result, when ߙ > ߩ)2 − ௌଶߨ the perpetual software vendor's profit is ,ݍ(1 ߩ)= − ௌௌௌଶߨ and the SaaS vendor's profit is ,ݍ(1 = ߙ + ݇ − ߩ) − .ݍ(ߠ

The optimal prices and profits for ߙ ≤ ߩ)2 − .are the same as in Proposition 3 ݍ(1

Finally, we compare profits of the two vendors under both SP2 (Upgrade, SaaS) and SP6 (Upgrade+SaaS, New+SaaS). The latter is given in
Proposition 4. There are three cases:

Case (1) (ߩ − ݍ(ߠ ≤ ߙ ≤ ߩ) + ߠ − ௌߨ ,For the perpetual software vendor .ݍ(2 < ௌଶߨ if ݇ < ఈ(ఘିଵ)ఈା(ఘିఏ) − ఈା(ఘିఏ)ସ ≐ ݇ଶ. At both

boundary values, ߙ = ߩ) − ߙ and ݍ(ߠ = ߩ) + ߠ − ଶ݇ ,ݍ(2 = (ఏିଵ)ଶ . In addition, we can show that there exists ߙො = [2ඥ(ߩ − ߩ)(1 − (ߠ ߩ)− − ݍ[(ߠ ∈ ߩ)] − ,ݍ(ߠ ߩ) + ߠ − such that [ݍ(2
பమபఈ > 0 for ߙ ∈ ߩ)] − ,ݍ(ߠ ො] andߙ

பమபఈ < 0 for ߙ ∈ ,ොߙ] ߩ) + ߠ − Hence, the perpetual .[ݍ(2

software vendor prefers SP2 if ݇ < ݇ଶ. For the SaaS vendor, ߨௌௌௌ < ௌௌௌଶߨ if ݇ > [ఈି(ఘିఏ)]మଶఈ − ߠ) − ݍ(1 − ఈଶ ≐ ݇ଵ. At ߙ = ߩ) − ݇ ,ݍ(ߠ ଵ ߠ)−= − ݍ(1 − (ఘିఏ)ଶ < 0, and
பభபఈ < 0. Therefore, the inequality always holds. The SaaS vendor always prefers SP2.

Case (2) (ߩ + ߠ − ݍ(2 ≤ ߙ ≤ ߩ)2 − ௌߨ ,For the perpetual software vendor .ݍ(1 < ௌଶߨ if ݇ < ଼ఈ(ఘିଵ)ା[ఈି(ఘାఏିଶ)]మ଼[ఈା(ఘିఏ)] − ఈା(ఘିఏ)ସ ≐݇ଷ. At ߙ = ߩ) + ߠ − ଷ݇ ,ݍ(2 = (ఏିଵ)ଶ . Solving ݇ଷ = 0, we get two roots. One is smaller than the lower bound (ߩ + ߠ − ߙ ,and the other ,ݍ(2 = ߩ)] + ߠ − 2) + 2ඥ(ߩ − ߩ)(1 − ߩ)is greater than the upper bound 2 ,ݍ[(ߠ − So ݇ଷ .ݍ(1 > 0 in this range and the perpetual software
vendor prefers SP2 if ݇ < ݇ଷ. For SaaS, the condition is the same as in Case (1). The SaaS vendor always prefers SP2.

Case (3) ߙ > ߩ)2 − ௌߨ ,For the perpetual software vendor .ݍ(1 < ௌଶߨ if ݇ < ݇ଷ. The analysis is the same as in Case (2). For the SaaS

vendor, ߨௌௌௌ < ௌௌௌଶߨ if ݇ > ି[ఈି(ఘିఏ)][ఈା(ఘିఏ)]ଶఈ ≐ ݇ସ and ݇ସ < 0. So the SaaS vendor always prefers SP2.

Guo & Ma/Perpetual Software and Software as a Service

A8 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

Overall, define ܭଶ = ൜݇ଶ ߙ	݂݅ ≤ ߩ) + ߠ − ଷ݇ݍ(2 ߙ	݂݅ > ߩ) + ߠ − .and we get the results in Proposition 5 ݍ(2

Appendix F

Effect of ࢻ and —Comparative Statics and Graphical Illustration

In this Appendix, we show how the two key parameters, ߙ and ݇, affect equilibrium prices, profits, consumer surplus, and social welfare
using comparative statics, and we also provide a graphical illustration.

Table F1. Comparative Statistics w.r.t. α
Equilibrium ࢃࡿ ࡳࡺࡿ ࡳࡻࡿ ࡿࢇࢇࡿ࣊ ࢘ࢋ࣊ ࢙ ࢛

 Monopoly (M) — — NA — NA — — —
 Entry Deterrence (I) ↓ ↓ — ↓ — ↑ ↑ —
 Market Segmentation (IIa) — — ↑ — ↑ — — ↑
 Market Segmentation (IIb) — — ↑ — ↑ — ↓ ↑
 Sequential Dominance (IIIa) ↑↓ ↑↓ ↑ ↑↓ ↑ ↓↑ ↑ ↑
 Sequential Dominance (IIIb) ↓ ↑↓ ↑ ↑↓ ↑ ↓↑ ↑ ↑

Table F2. Comparative Statistics w.r.t. k

Equilibrium ࢃࡿ ࡳࡺࡿ ࡳࡻࡿ ࡿࢇࢇࡿ࣊ ࢘ࢋ࣊ ࢙ ࢛
 Monopoly (M) ↑ ↑ NA ↑ NA ↑ — ↑
 Entry Deterrence (I) ↑ ↑ 0 ↑ — ↑ ↑ ↑
 Market Segmentation (IIa) — ↑ ↑ — ↑ ↑ — ↑
 Market Segmentation (IIb) — ↑ ↑ — ↑ ↑ — ↑
 Sequential Dominance (IIIa) ↑ ↑ — ↑ — ↑ ↑ ↑
 Sequential Dominance (IIIb) ↑ ↑ — ↑ — ↑ ↑ ↑

The graphic demonstrations in Figures F1 and F2 take the following parameter values: ݍ = ߩ ,1 = ߠ ,2 = 1.2, and ݇ = 0.02. In addition, ߙ = 0.64 indicates the equilibrium transition from entry deterrence to market segmentation; ߙ = 2 indicates the equilibrium transition from
market segmentation II-a to II-b; and ߙ = 2.25 indicates the equilibrium transition from market segmentation to sequential dominance.

Figure F1. Vendors’ Equilibrium Price and Profit Versus SaaS Quality Improvement

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50.64 2.252

Price

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

II-a II-b III-b

SaaS Price
Perpetual New Price
Perpetual Upgrade Price

ߙ 0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Profit

SaaS Profit
Perpetual Profit

0.64 2 2.25

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

II-a II-b III-b ߙ

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A9

Figure F2. Consumer Surplus and Social Welfare Versus SaaS Quality Improvement

As seen in these figures, when the SaaS’s quality improves at a low rate (ߙ ≤ 0.64), the incumbent perpetual software vendor reduces both
upgrade and purchase prices to deter the SaaS vendor’s entry, reducing its own profit and resulting in higher consumer surplus. This suggests
that the threat of entry by a potential competitor benefits customers.

As ߙ further increases, deterring the SaaS vendor’s entry becomes too costly. There is a threshold value (ߙ = 0.64) beyond which the
perpetual software vendor no longer blocks the SaaS vendor’s entry into the market. In the intermediate range of the SaaS quality
improvement rate (0.64 < ߙ ≤ 2.25), the perpetual software vendor pursues the market segmentation strategy by giving up NG users to the
SaaS vendor and focusing on serving only OG users with a high price. As a result, its price and profit are independent of the SaaS quality.
On the other hand, the SaaS vendor is only interested in exploiting NG users. As the SaaS quality increases at a higher rate, we see that the
SaaS’s price and profit monotonically increase.

Meanwhile, we observe that consumer surplus for both user groups drops significantly when the perpetual software vendor moves from the
entry deterrence to the market segmentation equilibrium after ߙ = 0.64. As ߙ increases from 2 to 2.25, the OG users’ surplus is unaffected,
but surprisingly, the NG users’ surplus decreases. The intuition is that, when the SaaS has a large quality advantage over the perpetual
software in the range, adopting the perpetual software becomes less attractive to NG users. Therefore, the SaaS vendor is able to price
aggressively to extract more consumer surplus from NG users without transferring any benefit to them

Finally, when the SaaS quality improvement rate is high enough (ߙ > 2.25), the SaaS becomes very attractive and the perpetual software
vendor finds it difficult to prevent OG users from switching to SaaS. Instead, it should reduce both upgrade and purchase prices significantly
to compete with the SaaS vendor for both user groups, moving to the sequential dominance strategy. The significant price-reduction pressure
from the perpetual software vendor pushes the SaaS vendor to reduce its price as well, which results in a large drop in the SaaS vendor’s
profit at the transition point (ߙ = 2.25). On the other hand, the competition makes users better off, and the consumer surplus for both user
groups jumps significantly upward.

As for social welfare, we also observe discrete upward and downward jumps at ߙ = 0.64 and 2.25, respectively, when the perpetual software
vendor switches its competitive strategy. It is socially inefficient to allow the SaaS vendor to enter the market in the range 0.64 < ߙ < 2;
and after the SaaS vendor enters the market, the resulting social welfare is even lower than the monopoly benchmark. There are two reasons.
First, the SaaS software has a low quality in this range. The NG users who adopt the SaaS therefore derive a lower average utility than in the
monopoly benchmark, leading to a decrease in social welfare. Second, the SaaS vendor’s entry results in a segmented market. Users are not
able to enjoy the highest possible network value (2݇) as they do in the benchmark case. Again, this reduces social welfare.

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Consumer
Surplus

OG consumer
NG consumer

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

II-a II-b III-b

0.64 2 2.25 ߙ 0

1

2

3

4

5

6

7

Social
Welfare

0.64 2.25

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

Competition
Monopoly

2

II-a II-b III-b ߙ

Guo & Ma/Perpetual Software and Software as a Service

A10 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

Appendix G

Perpetual Software Vendor's Incremental Quality Improvement

S1 (ࢾ,): Patching before the SaaS Exceeds the Perpetual Software Qualityࢾ࢚

First, consider SP1 (Upgrade, New). Under SP1, the SaaS vendor is out of the market, even if it prices at 0. To ensure that the OG users
prefer Upgrade rather than Old, we need ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ௨ ≥ ݍ + ݇; that is, ௨ ≤ ߩ) − ݍ(1 + 1)ݍଵߜ − (ఋଵݐ + ݇ (G1). To ensure

that the OG users prefer Upgrade rather than SaaS, even if SaaS is priced at 0, we need ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ௨ ≥ ଵ ݍߠ) + ݐߙ ௨ ,that is ;ݐ݀(݇+ ≤ ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ఈଶ (G2). To ensure that the NG users prefer New rather than SaaS, even if SaaS is priced

at 0, we must have ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ≥ ଵ ݍߠ) + ݐߙ + ,that is ;ݐ݀(݇ ≤ ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ఈଶ (G3). Therefore,

the optimal price is ௨ௌଵ = ௌଵ = ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ఈଶ. The optimal profit is ߨௌଵ = ߩ)2 − ݍ(ߠ + 1)ݍଵߜ2 − (ఋଵݐ + 2݇ .ߙ−

Next, consider SP2 (Upgrade, SaaS). To ensure that the OG users prefer Upgrade rather than Old, we need ݍߩ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ௨ ݍ≤ + ݇; that is, ௨ ≤ ߩ) − ݍ(1 + 1)ݍଵߜ − ݍߩ ఋଵ) (G4). To ensure that the OG users prefer Upgrade rather than SaaS, we needݐ + 1)ݍଵߜ (ఋଵݐ− + ݇ − ௨ ≥ ଵ ݍߠ) + ݐߙ + 2݇ − ௨ ,that is ;ݐ݀(௦ ≤ ௦ + ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ − ݇ − ఈଶ (G5). To ensure that the NG users prefer

SaaS rather than New, we must have ଵ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ ≥ ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ,; that is ≥ ௦ + ߩ) − ݍ(ߠ + 1)ݍଵߜ (ఋଵݐ− + ݇ − ఈଶ (G6). To ensure that OG users prefers Upgrade rather than SaaS, we need to make sure that at ݐ = 1 the net benefit of switching

to SaaS cannot exceed that of Upgrade: ݍߠ + ߙ + 2݇ − ௦ ≤ ߩ) + ݍ(ଵߜ + ݇; that is, ௦ ≥ ߙ + ݇ − ߩ) + ଵߜ − Therefore, the .(G7) ݍ(ߠ
optimal price is ௨ௌଶ = ߩ) − ݍ(1 + 1)ݍଵߜ − ௌଶߨ ఋଵ), and the optimal profit isݐ = ߩ) − ݍ(1 + 1)ݍଵߜ − ௦ௌଶ ఋଵ). The SaaS price isݐ ߠ)= − ݍ(1 − 1)ݍଵߜ − (ఋଵݐ + ݇ + ఈଶ if ߙ ≤ ߩ)2 − ݍ(1 − ௦ௌଶ ,ఋଵ; otherwiseݐݍଵߜ = ߙ + ݇ − ߩ) + ଵߜ − .ݍ(ߠ

Comparing the perpetual software vendor’s profits under SP1 and SP2, we see that ߨௌଵ > ௌଶߨ if ݇ > ଵᇱܭ ଵᇱ, whereܭ = ఈି(ఘିଶఏାଵ)ଶ −ఋభ(ଵି௧ഃభ)ଶ < ᇱߙ ଵ. Consequently, the lower bound valueܭ = ߩ) − ߠ2 + ݍ(1 + 1)ݍଵߜ − (ఋଵݐ > are critical values in the ߙ ଵ andܭ Both .ߙ

baseline model when the perpetual software vendor does not provide a quality jump. Hence, the ܭଵᇱ line shifts downward and the lower bound ߙᇱ shifts towards right.

Finally, consider SP6 (Upgrade+SaaS, New+SaaS). The switching time is determined by ݍߠ + ூொݐߙ + 2݇ − ௦ = ߩ) + ݍ(ଵߜ + 2݇; that is, ݐூொ = ೞା(ఘାఋభିఏ)ఈ > ௦௦ଷ. The SaaS vendor’s profit is expressed as 2ݐ ቀ1 − ೞା(ఘାఋభିఏ)ఈ ቁ. Under the condition ߙ ≥ ߩ) + ଵߜ − solving ,ݍ(ߠ

this optimization problem yields the optimal SaaS price ௦ௌ = ఈି(ఘାఋభିఏ)ଶ , which is lower than the optimal SaaS price under the baseline

case.

To ensure that NG users prefer New+SaaS rather than SaaS, we need (ݍߩ + ௦ସݐ(2݇ + ௦ସݐ)ݍଵߜ − (ఋଵݐ − + ଵ௧ೞర ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ ௧ೞర≤ ݍߠ) + ௦ݐߙ + ݇ − ݐ݀(௦ + ଵ௧ೞర ݍߠ) + ݐߙ + 2݇ − Simplifying this inequality we have .ݐ݀(௦ ≤ [ఈା(ఘାఋభିఏ)][ସାఈା(ఘାఋభିఏ)]଼ఈ ఋଵ (G8). Furthermore, we need to ensure that OG users prefer Upgrade+SaaS rather than Old+SaaS. The switching time for Old+SaaSݐݍଵߜ−

is ݐ௦ଵ = ೞೄುలି(ఏିଵ)ఈ = ఈି(ఘାఋభାఏିଶ)ଶఈ . If ߙ > ߩ) + ଵߜ + ߠ − ݍߩ) then the incentive compatibility condition is ,ݍ(2 + ௦ସݐ(2݇ + ௦ସݐ)ݍଵߜ (ఋଵݐ− − ௨ + ଵ௧ೞర ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ ≥ ݍ) + ௦ଵݐ(݇ + ௧ೞర௧ೞభ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ + ଵ௧ೞర ݍߠ) + ݐߙ + 2݇ − Simplifying this .ݐ݀(௦

inequality, we have: ௨ ≤ ఈି(ାఋభିଵ)(ఏିଵ)మା[ఈ(ఘାఋభିଵ)ା(ఘାఋభିఏ)]ଶఈ − ߙ ఋଵ (G9). Ifݐݍଵߜ ≤ ߩ) + ଵߜ + ߠ − we need to ensure that OG ,ݍ(2

users prefer Upgrade+SaaS rather than SaaS. Hence, (ݍߩ + ௦ସݐ(2݇ + ௦ସݐ)ݍଵߜ − (ఋଵݐ − ௨ + ଵ௧ೞర ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ ≥ ௧ೞర ݍߠ) ݐߙ+ + ݇ − ݐ݀(௦ + ଵ௧ೞర ݍߠ) + ݐߙ + 2݇ − ௨ which leads to ,ݐ݀(௦ ≤ [ఈା(ఘାఋభିఏ)][ସାఈା(ఘାఋభିఏ)]଼ఈ − ௨ௌ ,ఋଵ (G10). Thereforeݐݍଵߜ =ఈି(ఘାఋభିଵ)(ఏିଵ)మା[ఈ(ఘାఋభିଵ)ା(ఘାఋభିఏ)]ଶఈ − ௌ ఋଵ andݐݍଵߜ = [ఈା(ఘାఋభିఏ)][ସାఈା(ఘାఋభିఏ)]଼ఈ − ߙ ఋଵ ifݐݍଵߜ > ߩ) + ଵߜ + ߠ − ௨ௌ and ;ݍ(2 = ௌ = [ఈା(ఘାఋభିఏ)][ସାఈା(ఘାఋభିఏ)]଼ఈ − ߙ ఋଵ ifݐݍଵߜ ≤ ߩ) + ଵߜ + ߠ − .ݍ(2

Next, we compare the perpetual software vendor’s profits under SP2 and SP6. We find that, compared to the ܭଶ curve in the baseline model,

the new ܭଶᇱ curve shifts downward. Specifically, if we redefine ߩᇱ = ߩ + ଶᇱܭ ଵ, we can writeߜ = ఈ(ఘᇲିଵ)ఈା(ఘᇲିఏ) − ఈା(ఘᇲିఏ)ସ + ߙ ఋଵ ifݐݍଵߜ ≤ ᇱߩ) +

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A11

ߠ − ଶᇱܭ and ݍ(2 = ଼ఈ(ఘᇲିଵ)ା[ఈି(ఘᇲାఏିଶ)]మ଼[ఈା(ఘᇲିఏ)] − ఈା(ఘᇲିఏ)ସ + ߙ ఋଵ ifݐݍଵߜ > ᇱߩ) + ߠ − ଶᇱ curve shifts towards theܭ ଶ, theܭ Compared with .ݍ(2

right. The upper bound ߙௌଵᇱ is given by ܭଶᇱ = 0.

S2 (ࢾ,): Patching After the SaaS Exceeds the Perpetual Software Qualityࢾ࢚

First, consider SP1 (Upgrade, New). The analysis is the same as above. We obtain the same three conditions (G1), (G2), and (G3). So, the
solution is also the same: the optimal price is ௨ௌଵ = ௌଵ = ߩ) − ݍ(ߠ + 1)ݍଶߜ − (ఋଶݐ + ݇ − ఈଶ, and the optimal profit is ߨௌଵ = ߩ)2 ݍ(ߠ− + 1)ݍଶߜ2 − (ఋଶݐ + 2݇ − .ߙ

Next, consider SP2 (Upgrade, SaaS). Following the same analysis, we get the same conditions (G4), (G5), and (G6). In addition, we need to
ensure that OG users prefer Upgrade rather than Upgrade+SaaS. If OG users chooses to switch from the upgraded perpetual software to SaaS,

it must be at ݐ∗ = (ఘିఏ)ାೞିఈ . Note that at ݐ∗, the perpetual vendor has not patched its product yet. To ensure that OG users stay with the

perpetual software, their expected value from not switching, after considering the future quality improvement ߜଶݍ at ݐఋଶ should be higher

than the expected value from switching to SaaS: ௧ഃమ௧∗ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ − ݍߩ) + ఋଶݐ)(݇ − (∗ݐ ≤ ݍߩ) + ݍଶߜ + ݇)(1 − (ఋଶݐ ଵ௧ഃ− ݍߠ) + ݐߙ + 2݇ − ௦ Simplifying and solving this inequality yields .ݐ݀(௦ ≥ ߙ + ݇ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ,ఋଶ) (G11). Using (G4)ݐ

we get the optimal upgrade price ௨ௌଶ = ߩ) − ݍ(1 + 1)ݍଶߜ − ௦ ௨ௌଶ into (G5), we get ఋଶ). Substitutingݐ ≥ ߠ) − ݍ(1 + ݇ + ఈଶ. Now we

compare this lower bound of ௦ with the condition (G11): Define ߂ ≐ ߠ) − ݍ(1 + ݇ + ఈଶ − ൛ߙ + ݇ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ߙ ఋଶ)ൟ. Whenݐ < 1)ݍଶߜ2 − ߂ ,(ఋଶݐ > 0. When ߙ ≥ 1)ݍଶߜ2 − ఈୀଶఋమ(ଵି௧ഃమ)߂ ,(ఋଶݐ > 0 and
ப௱பఈ < 0. So if ߙ exceeds a certain threshold value, ߂ < 0. At

the largest possible value of ߙ௫ = ߩ) + ଶߜ − ఈୀ(ఘାఋమିఏ)߂ we find that ,ݍ(ߠ > 0. Therefore, we always have ߂ > 0. Consequently, the

optimal SaaS price is ௦ௌଶ = ߠ) − ݍ(1 + ݇ + ఈଶ, at which the non-switching condition (G11) is always satisfied. The perpetual software

prices are ௨ௌଶ = ௌଶ = ߩ) − ݍ(1 + 1)ݍଶߜ − ௌଶߨ ఋଶ), and the profit isݐ = ߩ) − ݍ(1 + 1)ݍଶߜ − .(ఋଶݐ

Next, we compare the perpetual software vendor’s profits under SP1 and SP2: ߨௌଵ > ௌଶߨ if ݇ > ଵᇱܭ ଵᇱ, whereܭ = ఈି(ఘିଶఏାଵ)ଶ −ఋమ(ଵି௧ഃమ)ଶ . Note that both the ܭଵᇱ line and lower bound value ߙᇱ are as same as in the above Patching Strategy S1.

Finally, consider SP6 (Upgrade+SaaS, New+SaaS). The switching time is determined by ݍߠ + ∗ݐߙ + 2݇ − ௦ = ݍߩ + 2݇; that is, ݐ∗ =ೞା(ఘିఏ)ఈ . The SaaS vendor’s profit is expressed as 2௦ ቀ1 − ೞା(ఘିఏ)ఈ ቁ. It yields the optimal SaaS price ௦∗ = ఈି(ఘିఏ)ଶ , which is the same

as the optimal SaaS price in the baseline model. For SP6 to be an equilibrium, we need to ensure switching does happen. That is, at ݐ∗, it
must be ௧ഃమ௧∗ ݍߠ) + ݐߙ − ݐ݀(௦ − ఋଶݐ)ݍߩ − (∗ݐ ≥ ݍߩ) + 1)(ݍଶߜ − (ఋଶݐ − ଵ௧ഃమ ݍߠ) + ݐߙ − Simplifying and solving this inequality .ݐ݀(௦

yields ௦ ≤ ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ∗௦ ఋଶ) (G12). Now we check whether the SaaS priceݐ = ఈି(ఘିఏ)ଶ from the above optimization

problem satisfies (G12). We can show that if ߜଶ1)ݍ − (ఋଶݐ ≤ [ఈି(ఘିఏ)]మ଼ఈ ௦ௌ ௦∗ satisfies (G12) and so , = ఈି(ఘିఏ)ଶ ∗ݐ , = ఈା(ఘିఏ)ଶఈ ;

otherwise, ௦∗ does not satisfy (G12), and so ௦ௌ = ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ∗ݐ ,(ఋଶݐ = ఈିඥଶఈఋమ(ଵି௧ഃమ)ఈ .

We need to ensure that NG users prefer New+SaaS rather than SaaS. That is, (ݍߩ + ∗ݐ(2݇ − + ∗ଵ௧ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ ≥ ௧∗ ݍߠ) ݐߙ+ + ݇ − ݐ݀(௦ + ∗ଵ௧ ݍߠ) + ௦ݐߙ + 2݇ − 1)ݍଶߜ When .ݐ݀(௦ − (ఋଶݐ ≤ [ఈି(ఘିఏ)]మ଼ఈ , the condition leads to ≤ [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ

(G13); otherwise, ≤ [ఈିඥଶఈఋమ(ଵି௧ഃమ)][ଶାఈିඥଶఈఋమ(ଵି௧ഃమ)]ଶఈ (G14).

We also need to ensure that OG users prefer Upgrade+SaaS rather than Old+SaaS. The switching time in Old+SaaS is ݐ௦ଵ = ೞೄುలି(ఏିଵ)ఈ .

According to different values of ߜଶ1)ݍ − .ఋଶ), we analyze the following two casesݐ

Case (a) When ߜଶ1)ݍ − (ఋଶݐ ≤ [ఈି(ఘିఏ)]మ଼ఈ ௦ଵݐ , = ఈି(ఘାఏିଶ)ଶఈ . If ߙ > ߩ) + ߠ − ௦ଵݐ ,ݍ(2 > 0, and the incentive compatibility condition is (ݍߩ + ∗ݐ(2݇ − ௨ + ∗ଵ௧ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ ≥ ݍ) + ௦ଵݐ(݇ + ௧∗௧ೞభ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ + ∗ଵ௧ ݍߠ) + ݐߙ + 2݇ − Simplifying it .ݐ݀(௦

we have ௨ ≤ ఈି(ఘିଵ)(ఏିଵ)మା[ఈ(ఘିଵ)ା(ఘିఏ)]ଶఈ (G15). Hence, the optimal perpetual software prices are given by (G13) and (G15). If ߙ ߩ)> + ߠ − ௦ଵݐ ,ݍ(2 < 0, so the incentive compatibility condition is to ensure that OG users prefer Upgrade+SaaS rather than SaaS: (ݍߩ +

Guo & Ma/Perpetual Software and Software as a Service

A12 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

∗ݐ(2݇ − ௨ + ∗ଵ௧ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦ ≥ ௧∗ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ + ∗ଵ௧ ݍߠ) + ݐߙ + 2݇ − ௨ which leads to ,ݐ݀(௦ ≤[ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ (G16). Hence, the optimal perpetual software prices are given by (G13) and (G16).

Case (b) When ߜଶ1)ݍ − (ఋଶݐ > [ఈି(ఘିఏ)]మ଼ఈ ௦ଵݐ , = ఈି(ఘିଵ)ିඥଶఈఋమ(ଵି௧ഃమ)ఈ . If ߜଶ1)ݍ − (ఋଶݐ < [ఈି(ఘିଵ)]మଶఈ ௦ଵݐ , > 0, and the incentive

compatibility condition is to ensure that OG users prefer Upgrade+SaaS other than Old+SaaS. Then we have ௨ ≤ ߩ)] − ݍ(1 +݇] ఈିඥଶఋమ(ଵି௧ഃమ)ఈ − (ఘିଵ)మమଶఈ (G17). Hence, the optimal perpetual software prices are given by (G14) and (G17). If ߜଶ1)ݍ − (ఋଶݐ >[ఈି(ఘିଵ)]మଶఈ ௦ଵݐ , < 0, so the incentive compatibility condition is to ensure that OG users prefer Upgrade+SaaS rather than SaaS. Similarly, we

get ௨ ≤ [ఈିඥଶఈఋమ(ଵି௧ഃమ)][ଶାఈିඥଶఈఋమ(ଵି௧ഃమ)]ଶఈ (G18). Hence, the optimal perpetual software prices are given by (G14) and (G18).

Note that
[ఈି(ఘିఏ)]మ଼ఈ > [ఈି(ఘିଵ)]మଶఈ when ߙ < ߩ) + ߠ − and ,ݍ(2

[ఈି(ఘିఏ)]మ଼ఈ < [ఈି(ఘିଵ)]మଶఈ when ߙ > ߩ) + ߠ − As a result, the optimal .ݍ(2

prices and vendor profits in SP6 can be summarized in the following, depending on both ߜଶ1)ݍ − ݒ Define .ߙ ఋଶ) andݐ =݉݅݊ ቄ[ఈି(ఘିఏ)]మ଼ఈ , [ఈି(ఘିଵ)]మଶఈ ቅ and ݒ = ݔܽ݉ ቄ[ఈି(ఘିఏ)]మ଼ఈ , [ఈି(ఘିଵ)]మଶఈ ቅ. We have three cases:

(i) ߜଶ1)ݍ − (ఋଶݐ < ߙ if :ݒ < ߩ) + ߠ − ௦ௌ ,ݍ(2 = ఈି(ఘିఏ)ଶ ௨ௌ , = ௌల = [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ ௌௌௌߨ , = [ఈି(ఘିఏ)]మଶఈ , and ߨௌ =[ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]ସఈ ; if ߙ > ߩ) + ߠ − ௦ௌ ,ݍ(2 = ఈି(ఘିఏ)ଶ ௌ , = [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ ௨ௌల , = ఈି(ఘିଵ)(ఏିଵ)మା[ఈ(ఘିଵ)ା(ఘିఏ)]ଶఈ ௌௌௌߨ , = [ఈି(ఘିఏ)]మଶఈ , and ߨௌ = ଶ[ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]ି[ఈି(ఘାఏିଶ)]మ଼ఈ .

(ii) ݒ < 1)ݍଶߜ − (ఋଶݐ < ߙ if :ݒ < ߩ) + ߠ − ௦ௌ ,ݍ(2 = ఈି(ఘିఏ)ଶ ௨ௌ , = ௌల = [ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]଼ఈ ௌௌௌߨ , = [ఈି(ఘିఏ)]మଶఈ ௌߨ , =[ఈା(ఘିఏ)][ସାఈା(ఘିఏ)]ସఈ ; if ߙ > ߩ) + ߠ − ௦ௌ ,ݍ(2 = ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ௌ ,(ఋଶݐ = [ఈିඥଶఈఋమ(ଵି௧ഃమ)][ଶାఈିඥଶఈఋమ(ଵି௧ഃమ)]ଶఈ ௨ௌ , = ߩ)] − ݍ(1 + ݇] ఈିඥଶఋమ(ଵି௧ഃమ)ఈ − (ఘିଵ)మమଶఈ ௌௌௌߨ , = ଶඥଶఈఋమ(ଵି௧ഃమ)[ఈି(ఘିఏ)ିඥଶఈఋమ(ଵି௧ഃమ)]మఈ ௌߨ , =ൣఈିඥଶఈఋమ(ଵି௧ഃమ)൧మାଶ[(ఘିଵ)ାଶ](ఈିඥଶఈఋమ(ଵି௧ഃమ)ି[(ఘିଵ)]మଶఈ .

(iii) ߜଶ1)ݍ − (ఋଶݐ > ௌ :ݒ = ௨ௌ = [ఈିඥଶఈఋమ(ଵି௧ഃమ)][ଶାఈିඥଶఈఋమ(ଵି௧ഃమ)]ଶఈ ௦ௌ , = ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ௌௌௌߨ ,(ఋଶݐ =ଶඥଶఈఋమ(ଵି௧ഃమ)[ఈି(ఘିఏ)ିඥଶఈఋమ(ଵି௧ഃమ)]మఈ , and ߨௌ = [ఈିඥଶఈఋమ(ଵି௧ഃమ)][ଶାఈିඥଶఈఋమ(ଵି௧ഃమ)]ఈ .

Finally, we compare the perpetual software vendor’s profits under SP2 and SP6. The comparison should be done in each region of ߜଶ1)ݍ 1)ݍଶߜ ఋଶ). In (i), whenݐ− − ௌߨ ,ఋଶ) is small, the perpetual vendor's profit in SP6ݐ , is the same as in the baseline model. Hence, the ܭଶᇱ ଶܭ= + ఈఈା(ఘିఏ) 1)ݍଶߜ − ఋଶ) curve that divides the market segmentation equilibrium (SP2) and the sequential dominance equilibrium (SP6)ݐ

shifts upward and toward the right, compared to the ܭଶ curve in the baseline model. Similarly, in (ii), we have ܭଶᇱ = ఈ(ఘିଵ)ఈା(ఘିఏ) − ఈା(ఘିఏ)ସ +ఈఈା(ఘିఏ) 1)ݍଶߜ − ߙ ఋଶ) ifݐ < ߩ) + ߠ − ଶᇱܭ and ݍ(2 = ఈ[(ఘିଵ)ାఋమ(ଵି௧ഃమ)]ଶ[ఈିඥଶఈఋమ(ଵି௧ഃమ)] + [(ఘିଵ)]మିൣఈିඥଶఈఋమ(ଵି௧ഃమ)൧మସൣఈିඥଶఈఋమ(ଵି௧ഃమ)൧ − (ఘିଵ)ଶ if ߙ ≥ ߩ) + ߠ − In .ݍ(2

(iii), we have ܭଶᇱ = ఈ[(ఘିଵ)ାఋమ(ଵି௧ഃమ)]ଶ[ఈିඥଶఈఋమ(ଵି௧ഃమ)] − ൣఈିඥଶఈఋమ(ଵି௧ഃమ)൧ଶ . Under the three cases, the upper bound ߙௌଶ()ᇱ ௌଶ()ᇱߙ , and ߙௌଶ()ᇱ are given by

solving ܭଶᇱ = 0. Furthermore, ߙௌଶ()ᇱ > ௌଶ()ᇱߙ > ௌଶ()ᇱߙ , and ߙௌଶ()ᇱ > .ߙ

To conclude, in each case, there are no qualitative changes in the competition outcomes, except that the equilibrium regions are shifted.

Proof of Proposition 6 (Optimal Patching Strategy and Time)

We show the proof based on a special case ݇ = 0. The reasoning for the general case is similar. We omit the proof because the mathematical
expressions are quite lengthy.

Define ߙଵ = ௌଵᇱߙ and ߙଶ = ௌଶ()ᇱߙ where ߙௌଵᇱ and ߙௌଶ()ᇱ are the upper bound in S1 and S2, respectively. When ߙ < ଵ, the equilibrium underߙ
S1 and S2 is the same (either entry deterrence or market segmentation). The perpetual software vendor’s profit functions are also the same.
Since its profit is linearly increasing in the patching value, the optimal patching time is determined by solving the largest patching value: ݐఋ∗ = ௧ഃ∈(,ଵ)∀ݔܽ݉݃ݎܣ ሼ1)ݍߜ − .∗ݐ ఋ)ሽ. It can be either before or afterݐ

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A13

When ߙଵ < ߙ < ଶ, for any patching value, the equilibrium under S1 is sequential dominance and under S2 is market segmentation. Nextߙ

we compare the two equilibrium profits for the perpetual software vendor. Define ݒଵ ≡ [ఈି(ఘାఋభିఏ)]మ଼ఈ + (ఘାఋభିଵ)[ఈି(ఏିଵ)]మଶఈ − ߩ) − ݍ(1 ఋଵ. If ௌܸଶݐݍଵߜ2− > ௌଶߨ ଵ, S2 offers a higher profit than S1. The vendor’s profitݒ under S2 is linearly increasing in its patching value. The
optimal patching time is given by ݐఋଶ∗ = ௧ഃ∈(௧∗,ଵ)∀ݔܽ݉݃ݎܣ ሼ1)ݍߜ − If ௌܸଶ .∗ݐ ఋ)ሽ. So the optimal patching time should be later thanݐ < ଵ, S1 offersݒ

a higher profit than S2, and the optimal patching time should be earlier than ݐ∗. The optimal patching time is determined by solving the profit

maximization problem under ߨௌ ௧ഃ∈(,௧∗)ݔܽܯ : ቄ[ఈା(ఘାఋ௧ഃିఏ)]మ଼ఈ + (ఘାఋ௧ഃିଵ)[ఈି(ఏିଵ)]ଶఈ − .ఋቅݐݍߜ2

When ߙ > ଶ, the equilibrium under S1 is sequential dominance. Consider two possibilities. (1) If ௌܸଶߙ < the equilibrium under S2 is ,ݒ
sequential dominance as in the aforementioned case (i). The perpetual software vendor’s profit ߨௌ under S2 is the same as in the baseline
model. It does not depend on the patching value ௌܸଶ at all. So it is always smaller than the profit ߨௌ under S1. The vendor therefore should

prefer S1, and its optimal patching time should be earlier than ݐ∗ and it maximizes ߨௌ under S1: ݔܽܯ௧ഃ∈(,௧∗) ቄ[ఈା(ఘାఋ௧ഃିఏ)]మ଼ఈ +(ఘାఋ௧ഃିଵ)[ఈି(ఏିଵ)]ଶఈ − ఋቅ. (2) If ௌܸଶݐݍߜ2 > ௌଶ()ᇱߙ ,under S2, we are in cases (ii) and (iii). However ,ݒ > ௌଶ()ᇱߙ > ߩ) + ଶߜ − The .ݍ(ߠ

resulting equilibrium is market segmentation. Hence, we compare ߨௌ under S1 and ߨௌଶ under S2. The analysis and results are the same
as those in ߙଵ < ߙ < ଶ: If ௌܸଶߙ < ∗ݐ otherwise, the optimal patching time should be after ;∗ݐ ଵ, the optimal patching time should be beforeݒ

Define ݒଶ ≡ ,ଵݒ)ݔܽ݉ .and ௌܸଶ, we complete the proof of Proposition 6 ߙ By combining the above analyses in all regions of .(ݒ

Appendix H

Perpetual Software Vendor's Major Quality Improvement (Two-Period Model)

When ߙ ≤ ߩ) − the SaaS quality improvement rate is small such that the perpetual software always has the quality advantage in both ,ݍ(ߠ
periods. In this case, the perpetual software vendor can deter SaaS entry. The corresponding equilibrium strategy pair is SP1′[(Upgrade1,
Upgrade2), (New1, Upgrade2)].

When ߙ > ߩ) − ߩ) the SaaS entry cannot be deterred. There are two cases. If ,ݍ(ߠ − ݍ(ߠ < ߙ ≤ ߩ) − the single-period quality ,ݍ(1
improvement of SaaS is smaller than that of the perpetual software. Because the SaaS has relative quality advantage in the first period but
not in the second period, the possible equilibrium strategies are either SP3′[(Upgrade1+SaaS, Upgrade2+SaaS), (New1+SaaS,
Upgrade2+SaaS)] or SP3′′[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)].

If (ߩ − ݍ(1 < ߙ ≤ ߩ2) − ߠ − the single-period quality improvement of SaaS is larger than that of the perpetual software. Because the ,(ݍ(1
SaaS has relative quality advantage in the second period but not in the first period, the possible strategies are either SP3′[(Upgrade1+SaaS,
Upgrade2+SaaS), (New1+SaaS, Upgrade2+SaaS)] or SP3′′′[(Upgrade1, Upgrade2+SaaS), (New1, Upgrade2+SaaS)].

Furthermore, because the perpetual software has quality advantage at the beginning of each period, and it has OG users as the established
customer base, the perpetual software vendor might consider the market segmentation strategy to give up the NG users in both periods or
only in one period. The possible equilibrium strategies are SP2′[(Upgrade1, Upgrade2), (SaaS, SaaS)] for all ߙ, SP2′′[(Upgrade1, Upgrade2),
(SaaS, New2)] if (ߩ − ݍ(ߠ < ߙ ≤ ߩ) − ߩ) Note that if .ݍ(1 − ݍ(1 < ߙ ≤ ߩ2) − ߠ − SP2′′′[(Upgrade1, Upgrade2), (New1, SaaS)] ,(ݍ(1
cannot emerge as equilibrium because after OG users upgrade and NG users adopt the new perpetual software, their actions should be the
same.

Entry Deterrence Strategy

Consider SP1′[(Upgrade1, Upgrade2), (New1, Upgrade2)]. Because the SaaS vendor can reduce price to zero, to prevent users from switching
to SaaS at anytime between [0,2], we need ݍߠ + ߙ ≤ ߙ ,that is ;ݍߩ ≤ ߩ) − .ݍ(ߠ

Given that the NG users adopt the perpetual software in both periods, to ensure that the OG users prefer upgrading in both periods rather than
just in the first period, we have ݍߩ + 2݇ + ߩ2) − ݍ(1 + 2݇ − ௨2 ≥ ݍߩ + 2݇ + ݍߩ + ݇ − ௨ ,௨; that is ≤ ߩ) − ݍ(1 + ݇ (H1). Similarly,
given that the OG users choose to upgrade in both periods, to ensure that the NG users prefer to buy new perpetual software and upgrade in
period 2 rather than not upgrading, their total utility must be ݍߩ + 2݇ + ߩ2) − ݍ(1 + 2݇ − − ௨ ≥ ݍߩ + 2݇ + ݍߩ + ݇ − , which is the
same as (H1).

Guo & Ma/Perpetual Software and Software as a Service

A14 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

To ensure that OG users prefer upgrading in both periods rather than adopting SaaS in any period, even if the SaaS price is reduced to zero,

the entry deterrence condition is (ݍߩ + 2݇) + ߩ2) − ݍ(1 + 2݇ − ௨2 ≥ ଶ]ݔܽ݉ ݍߠ) + ݐߙ + ,ݐ݀(݇ ଵ ݍߠ) + ݐߙ + ݐ݀(݇ + ߩ2) − ݍ(1 +2݇ − ,௨ ଶଵ ݍߠ) + ݐߙ + ݐ݀(݇ + ݍߩ + 2݇ − ,௨]. In addition, to ensure that the NG users prefer (New1, Upgrade2) to the SaaS in any period

even if the SaaS price is zero, their total utility must be ݍߩ + 2݇ + ߩ2) − ݍ(1 + 2݇ − − ௨ ≥ ଶ]ݔܽ݉ ݍߠ) + ݐߙ + ,ݐ݀(݇ ଵ ݍߠ) + ݐߙ ݐ݀(݇+ + ߩ2) − ݍ(1 + 2݇ − , ଶଵ ݍߠ) + ݐߙ + ݐ݀(݇ + ݍߩ + 2݇ − ௨]. Solving these inequalities, we have ≤ ߩ) − ݍ(ߠ + ݇ − ఈଶ (H2) and + ௨ ≤ ߩ3) − ߠ2 − ݍ(1 + 2݇ − .(H3) ߙ2

Comparing (H1) and (H2) we see (H1) is not binding. So by (H2) the perpetual software vendor sets the upgrade price at the upper bound ௨ = ߩ) − ݍ(ߠ + ݇ − ఈଶ, and by (H3) = ߩ2) − ߠ − ݍ(1 + ݇ − ଷఈଶ . We can verify that ௨ < . Consequently, the perpetual software

vendor' s profit is ߨௌଵᇱ = ௨3 + = ߩ5) − ߠ4 − ݍ(1 + 4݇ − .and the SaaS vendor is out of the market ,ߙ3

Market Segmentation Strategy

Case (1) Consider SP2′[(Upgrade1, Upgrade2), (SaaS, SaaS)]. To prevent the OG users from switching to SaaS, the SaaS payoff at the end
of each period should not be higher than payoff from the new perpetual software for OG users. Thus, we have ݍߠ + ߙ + 2݇ − ௦ ≤ ݍߩ + ݇,
and ݍߠ + ߙ2 + 2݇ − ௦ ≤ ߩ2) − ݍ(1 + ݇ . Hence, if ߙ ≤ ߩ) − ௦ ,ݍ(1 ≥ ߙ + ݇ − ߩ) − ߙ and if ;(H4) ݍ(ߠ > ߩ) − ௦ ,ݍ(1 ≥ ߙ2 + ݇ ߩ2)− − ߠ − .(H5) ݍ(1

Given that the NG users adopt SaaS in both periods, to ensure that the OG users prefer to upgrade in both periods rather than opt for SaaS,

their total utility must be ݍߩ + ݇ + ߩ2) − ݍ(1 + ݇ − ௨2 ≥ ଶ ݍߠ) + ݐߙ + 2݇ − ௨ and thus ݐ݀(௦ ≤ ௦ + (ଷఘିଶఏିଵ)ଶ − ݇ − To .(H6) ߙ

ensure the OG users to upgrade in both periods rather than just in one period, we must have ݍߩ + ݇ + ߩ2) − ݍ(1 + ݇ − ௨2 ≥ ݍߩ)2]ݔܽ݉ +݇) − ,௨ ݍ + ݇ + ߩ2) − ݍ(1 + ݇ − ௨ ,௨]; that is ≤ ߩ) − .(H7) ݍ(1

Similarly, given that the OG users upgrade in both periods, to ensure that the NG users prefer (SaaS, SaaS) rather than (SaaS, New2), we

must have ଶ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ ≥ ଵ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ + ߩ2) − ݍ(1 + 2݇ − ; which is ≥ ௦ + ߩ2) − ߠ − ݍ(1 + ݇ − ଷఈଶ

(H8). To ensure that the NG users prefer (SaaS, SaaS) rather than (New1, Upgrade2), we must have ଶ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ ≥ ݍߩ + 2݇ ߩ2)+ − ݍ(1 + 2݇ − − ,௨; that is + ௨ ≥ ௦2 + ߩ3) − ߠ2 − ݍ(1 + 2݇ − .(H9) ߙ2

If ߙ ≤ ߩ) − ௨ to maximize its profit, the perpetual software vendor charges ,ݍ(1 = ߩ) − high enough such that the SaaS and sets ݍ(1

vendor can charge a high enough price ௦, so that the OG users would not opt for SaaS. By binding constraint (H6), we have ௦ = (ଶఏିఘିଵ)ଶ +݇ + ,We can verify that (H4) is satisfied. By (H8) and (H9) .ߙ = ଷ(ఘିଵ)ଶ]ݔܽ݉ + 2݇ − ଷఈଶ , ߩ)2 − ݍ(1 + 4݇]. The perpetual software

vendor’s profit is ߨௌଶᇱ = ߩ)2 − ௦௦ௌଶᇱߨ and the SaaS vendor’s profit is ,ݍ(1 = ߠ2) − ߩ − ݍ(1 + 2݇ + .ߙ2

If (ߩ − ݍ(1 < ߙ ≤ ଷ(ఘିଵ)ଶ , (H5) can be satisfied and the same solution as above holds.

If ߙ > ଷ(ఘିଵ)ଶ , then we obtain the boundary solution ௦ = ߙ2 + ݇ − ߩ2) − ߠ − Now, (H8) becomes .ݍ(1 ≥ 2݇ + ఈଶ, and (H9) becomes + ௨ ≥ 4݇ + ߙ2 − ߩ) − ௨ So .ݍ(1 = ߩ) − and ݍ(1 = 4݇ + ߙ2 − ߩ)2 − ௌଶᇱߨ The perpetual software vendor’s profit is .ݍ(1 ߩ)2= − ௦௦ௌଶᇱߨ and the SaaS vendor’s profit is ,ݍ(1 = ߙ4 + 2݇ − ߩ2)2 − ߠ − .ݍ(1

Comparing ߨௌଶᇱ with ߨௌଵᇱ we see that if ݇ > ଷఈି(ଷఘିସఏାଵ)ସ = ௌଵᇱߨ ଵᇱ, thenܭ > ௌଶᇱߨ , the entry deterrence strategy dominates the market

segmentation strategy. Solving ܭଵᇱ = 0 we get ߙᇱ.

Case (2) If (ߩ − ݍ(ߠ < ߙ ≤ ߩ) − ,consider SP2′′[(Upgrade1, Upgrade2), (SaaS, New2)]. Given that the NG users adopt (SaaS, New2) ,ݍ(1

OG users prefer (Upgrade1, Upgrade2) rather than (SaaS, Upgrade2) if ݍߩ + ݇ − p௨ ≥ ଵ ݍߠ) + ݐߙ + 2݇ − ௨ that is ;ݐ݀(௦ ≤ ௦ + ߩ) ݍ(ߠ− − ݇ − ఈଶ (H10). Given that OG users upgrade in both periods, to ensure NG users prefer (SaaS, New2) rather than (New1, Upgrade2),

we need ଵ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ + ߩ2) − ݍ(1 + 2݇ − ≥ ݍߩ + 2݇ − + ߩ2) − ݍ(1 + 2݇ − ௨ ,௨; that is ≥ ௦ + ߩ) − ݍ(ߠ + ݇ − ఈଶ

(H11). Because (H10) and (H11) contradict with each other, this user strategy does not support an equilibrium.

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A15

Sequential Dominance Strategy

When ߙ ≥ ߩ) − the two competing firms' periodical quality improvement is competitive against each other. There are three possible ,ݍ(ߠ
strategies:

(1) SP3′[(Upgrade1+SaaS, Upgrade2+SaaS), (New1+SaaS, Upgrade2+SaaS)]. This symmetric strategy can occur in both ߙ ≤ ߩ) − ߙ and ݍ(1 > ߩ) − .ranges ݍ(1

(2) SP3′′[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]. This asymmetric strategy can only occur when ߙ ≤ ߩ) − that is, the ;ݍ(1
perpetual software vendor has higher single-period quality improvement than the SaaS vendor.

(3) SP3′′′[(Upgrade1, Upgrade2+SaaS), (New1, Upgrade2+SaaS)]. This asymmetric strategy can only occur when ߙ > ߩ) − that is, the ;ݍ(1
SaaS has higher single-period quality improvement than the perpetual software.

Case (1) Consider SP3′. The sequential dominance strategy involves user switching. If users switch from the new/updated perpetual software

to SaaS in the first period, the switching time is determined by ݍߠ + ఙଵݐߙ + 2݇ − ௦ = ݍߩ + 2݇; that is, ݐఙଵ = ೞା(ఘିఏ)ఈ . If users switch

from the updated perpetual software to SaaS in the second period, the switching time is determined by ݍߠ + ఙଶݐߙ + 2݇ − ௦ = ߩ2) − ݍ(1 +2݇; that is, ݐఙଶ = ೞା(ଶఘିఏିଵ)ఈ . If users switch from the old version software to SaaS, the switching time is determined by ݍߠ + ఙଷݐߙ + ݇ ௦− = ݍ + ݇, so that ݐఙଷ = ೞି(ఏିଵ)ఈ .

If the SaaS vendor would like to serve in both periods, we need 0 < ఙଵݐ < 1 and 1 < ఙଶݐ < 2. That is, if ߙ ≤ ߩ) − ߙ ,ݍ(1 − ߩ2) − ߠ ݍ(1− < ௦ ≤ ߙ2 − ߩ2) − ߠ − ߙ if ;(H12) ݍ(1 > ߩ) − ߙ ,ݍ(1 − ߩ2) − ߠ − ݍ(1 < ௦ ≤ ߙ − ߩ) − ௦(1The SaaS vendor’s profit is 2 .(H13) ݍ(ߠ − (ఙଵݐ + ௦(22 − ∗௦ ఙଶ). Solving this optimization problem we have interior solutionݐ = ଷఈି(ଷఘିଶఏିଵ)ସ . Checking (H12) and (H13)

we can verify that this interior solution holds if
(ହఘିଶఏିଷ)ହ < ߙ < ߩ5) − ߠ2 − .ݍ(3

At this interior solution, given that the OG users choose (Upgrade1+SaaS, Upgrade2+SaaS), in order for NG users to prefer (New1+SaaS,

Upgrade2+SaaS) rather than (SaaS, New2+SaaS), we need (ݍߩ + ఙଵݐ(2݇ − ௨ ≥ ௧భ ݍߠ) + ݐߙ + ݇ − ௨ which is ,ݐ݀(௦ ≤[ೞା(ఘିఏ)ାଶ][ೞା(ఘିఏ)]ଶఈ (H14). In order for NG users to prefer (New1+SaaS, Upgrade2+SaaS) rather than (SaaS, SaaS), we have (ݍߩ ఙଵݐ(2݇+ − + ߩ2)] − ݍ(1 + ఙଶݐ)[2݇ − 1) − ௨ ≥ ௧భ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ + ௧మଵ ݍߠ) + ݐߙ + ݇ − ,that is ;ݐ݀(௦ + ௨ ≤[ೞା(ఘିఏ)ାଶ][ೞା(ఘିఏ)]ା[ೞା(ଶఘିఏିଵ)ିఈାଶ][ೞା(ଶఘିఏିଵ)ିఈ]ଶఈ (H15). Given the NG users choose (New1+SaaS, Upgrade2+SaaS), in order

for the OG users to prefer (Upgrade1+SaaS, Upgrade2+SaaS) rather than (Old+SaaS, Upgrade2+SaaS), we need (ݍߩ + ఙଵݐ(2݇ − ௨ ≥ ݍ) ఙଷݐ(݇+ + ௧భ௧య ݍߠ) + ݐߙ + ݇ − ௨ Solving this inequality we have .ݐ݀(௦ ≤ ଶ[(ఘିଵ)ା]ೞାଶ(ఘିఏ)ା(ఘିଵ)(ఘିଶఏାଵ)మଶఈ (H16).

If ߙ ≤ (ଷఘାଶఏିହ)ଷ ఙଷݐ , ≤ 0. In order for the OG users to prefer (Upgrade1+SaaS, Upgrade2+SaaS) rather than (SaaS, Upgrade2+SaaS), we

need (ݍߩ + ఙଵݐ(2݇ − ௨ ≥ ௧భ ݍߠ) + ݐߙ + ݇ − ߙ which is the same as (H14). If ,ݐ݀(௦ > (ଷఘାଶఏିହ)ଷ ఙଷݐ , ≥ 0. Comparing (H14) and

(H16) we can verify that (H16) binds. Therefore, for the SP3′ interior solution, we have the following:

If
(ହఘିଶఏିଷ)ହ < ߙ ≤ ߩ) − ௨ binds. So (H14) ,ݍ(1 = [(ఘିଶఏାଵ)ାଷఈା଼][(ఘିଶఏାଵ)ାଷఈ]ଷଶఈ and = [(ହఘିଶఏିଷ)ିఈା଼][(ହఘିଶఏିଷ)ିఈ]ଷଶఈ .

Furthermore, ௨ < .

If (ߩ − ݍ(1 < ߙ ≤ (ଷఘାଶఏିହ)ଷ , (H14) binds. So we have ௨ = = ହఈమା଼ఈା(ଶସఘିଵఏିଶఈఘିସఈఏାఈି଼)ା(ଵଷఘమିଵଶఘఏାସఏమିଵସఘାସఏାହ)మଷଶఈ .

If
(ଷఘାଶఏିହ)ଷ < ߙ < ߩ2) − ߠ − ݇ ௨. If imposes an upper bound for (H16) ,ݍ(1 > ݇ଵ =ଶଵఘమమାସఘఏమାସఏమమିଶఈఘିସఈఏିସఘమିଵଶఏమାହఈమାଷఈାଶଽమଵ[ఈି(ఘିଵ)] , we still have ௨ = =ହఈమା଼ఈା(ଶସఘିଵఏିଶఈఘିସఈఏାఈି଼)ା(ଵଷఘమିଵଶఘఏାସఏమିଵସఘାସఏାହ)మଷଶఈ . We can verify that the condition ݇ > ݇ଵ always holds in this ߙ range.

Now consider the boundary solution. If (ߩ − ݍ(ߠ ≤ ߙ ≤ (ହఘିଶఏିଷ)ହ , then the SaaS vendor prices at boundary solution ௦∗ = ߙ2 − ߩ2) − ߠ ఙଶݐ ,Correspondingly .ݍ(1− = 2. SP3′ degenerates to equilibrium SP3′′[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]. Substituting ௦∗ into (H14) we have ௨ = [ଶఈି(ఘିଵ)ାଶ][ଶఈି(ఘିଵ)]ଶఈ . By (H15) we have ௨ = ݇ + ఈଶ.

Guo & Ma/Perpetual Software and Software as a Service

A16 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

If ߙ > ߩ5) − ߠ2 − ∗௦ then the SaaS vendor prices at boundary price ,ݍ(3 = ߙ − ߩ) − ఙଵݐ ,Correspondingly .ݍ(ߠ = 1. SP3′ degenerates to
equilibrium SP3′′′[(Upgrade1, Upgrade2+SaaS), (New1, Upgrade2+SaaS)]. However, note that (5ߩ − ߠ2 − ݍ(3 > ߩ2) − ߠ − So the .ݍ(1
degenerated SP3′′′ does not occur in the ߙ range we consider.

Case (2) Consider SP3′′. Knowing it only serves in one period, the SaaS vendor’s optimization problem becomes 2௦(1 − ఙଵ). The optimalݐ

interior solution is ௦∗ = ఈି(ఘିఏ)ଶ . The conditions for 0 < ఙଵݐ < 1 and ݐఙଶ ≥ 2 are 2ߙ − ߩ2) − ߠ − ݍ(1 ≤ ௦ < ߙ − ߩ) − Checking .ݍ(ߠ

this condition we see the interior solution holds if ߙ ≤ (ଷఘିఏିଶ)ଷ < ߩ) − .ݍ(1

Given that OG users choose (Upgrade1+SaaS, Upgrade2), in order for NG users to prefer (New1+SaaS, Upgrade2) rather than (SaaS, New2),

we need (ݍߩ + ఙଵݐ(2݇ − ௨ ≥ ௧భ ݍߠ) + ݐߙ + ݇ − which is the same condition as (H14). In order for NG users to prefer ,ݐ݀(௦

(New1+SaaS, Upgrade2) rather than (SaaS, SaaS), we need (ݍߩ + ఙଵݐ(2݇ − + ߩ2) − ݍ(1 + 2݇ − ௨ ≥ ௧భ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦ ଶଵ+ ݍߠ) + ݐߙ + ݇ − ௨ ,that is ;ݐ݀(௦ + ≤ ߩ2) − ߠ − ݍ(1 + ݇ + ௦ − ଷఈଶ + [ೞା(ఘିఏ)ାଶ][ೞା(ఘିఏ)]ଶఈ (H17). Given that NG users choose

(New1+SaaS, Upgrade2), in order for the OG users to prefer (Upgrade1+SaaS, Upgrade2) rather than (Old+SaaS, Upgrade2), we need (ݍߩ ఙଵݐ(2݇+ − ௨ ≥ ݍ) + ఙଷݐ(݇ + ௧భ௧య ݍߠ) + ݐߙ + ݇ − .which is the same condition as (H16) ,ݐ௦)d

When ߙ ≤ (ଷఘିఏିଶ)ଷ < ߩ) − ௨ binds and we have (H14) ,ݍ(1 = [(ఘିఏ)ାఈାସ][(ఘିఏ)ାఈ]଼ఈ and = (ଷఘିఏିଶ)ଶ − ߙ + ݇. Furthermore, ௨ .>

Now consider the boundary solution. If
(ଷఘିఏିଶ)ଷ < ߙ ≤ ߩ) − ∗௦ substituting ,ݍ(1 = ߙ2 − ߩ2) − ߠ − ௨ into (H14) we have ݍ(1 =[ଶఈି(ఘିଵ)ାଶ][ଶఈି(ఘିଵ)]ଶఈ , and by (H17), = ݇ + ఈଶ.

Case (3) Consider SP3′′′. Knowing it only serves in one period, the SaaS vendor’s optimization problem becomes 2௦(2 − ఙଶ). The optimalݐ

interior solution is ௦∗ = ଶఈି(ଶఘିఏିଵ)ଶ . The conditions for ݐఙଵ ≥ 1 and 1 < ఙଶݐ < 2 are ߙ − ߩ) − ݍ(ߠ ≤ ௦ < ߙ2 − ߩ2) − ߠ − .(H18) ݍ(1

Checking this condition we can verify that the interior solution does not hold. So the SaaS vendor prices at boundary price ௦∗ = ߙ − ߩ) ௨ ௦∗ into (H14) we have Substituting .ݍ(ߠ− = [ଶఈି(ఘିଵ)ାଶ][ଶఈି(ఘିଵ)]ଶఈ . By (H15) we have = ݇ + ఈଶ.

We see that in the range (ߩ − ݍ(ߠ ≤ ߙ < ߩ2) − ߠ − there are two equilibrium strategies: one symmetric (SP3′) and one asymmetric ,ݍ(1
(SP3′′ or SP3′′′). It is worth noting that if an equilibrium pricing strategy consists of boundary price, then the equilibrium is unstable because
the vendor can easily deviate from the boundary pricing strategy by lowering its price a little bit, and then end up with entering the feasible
pricing region of the other equilibrium. If an equilibrium pricing strategy consists of interior solution, it emerges as the final stable equilibrium
at which both vendors have no incentive to deviate given the other vendor's strategy. Comparing the equilibrium profits under the different
regions, we can establish the equilibrium outcome in the two-period model. We summarize and present the results in Proposition 7, where ܭଶᇱ and ܭଷᇱ are determined by solving ߨௌଷᇲᇲ = ௌଶᇲߨ and ߨௌଷᇲ = ௌଶᇲߨ in their respective segments. We omit their lengthy mathematical
expressions here. In summary, we obtain the following equilibrium outcome.

Proposition 7 (Equilibrium Outcome in the Two-Period Model)

(a) (Entry Deterrence Equilibrium) If ߙ ≤ ߩ) − ݇ and ݍ(ߠ > ଵᇱ, the perpetual software vendor deters the SaaS vendor’s entry in bothܭ
periods. The equilibrium user strategy is [(Upgrade1, Upgrade2), (New1, Upgrade2)]. The perpetual software vendor’s equilibrium prices

are ௨∗ = ߩ) − ݍ(ߠ + ݇ − ఈଶ and ∗ = ߩ2) − ߠ − ݍ(1 + ݇ − ଷఈଶ .

(b) (Market Segmentation Equilibrium) If i)ߙ ≤ ߩ) − ݇ and ݍ(ߠ ≤ ߩ) (ଵᇱ, or iiܭ − ݍ(ߠ < ߙ ≤ (ଷఘିఏିଶ)ଷ and ݇ ≤ (ଶᇱ, or iiiܭ
(ଷఘିఏିଶ)ଷ ߙ> < ߩ2) − ߠ − ݇ and ,ݍ(1 ≤ ଷᇱ, the perpetual software vendor and the SaaS vendor segment the market. The equilibrium user strategy isܭ

[(Upgrade1, Upgrade2), (SaaS, SaaS)], and the equilibrium prices are as follows:

If ߙ ≤ ଷ(ఘିଵ)ଶ , then ௨∗ = ߩ) − ∗ ,ݍ(1 = ଷ(ఘିଵ)ଶ]ݔܽ݉ + 2݇ − ଷఈଶ , ߩ)2 − ݍ(1 + 4݇], and ௦∗ = (ଶఏିఘିଵ)ଶ + ݇ + .ߙ

If ߙ > ଷ(ఘିଵ)ଶ , then ௨∗ = ߩ) − ∗ ,ݍ(1 = 4݇ + ߙ2 − ߩ)2 − ∗௦ and ,ݍ(1 = ߙ2 + ݇ − ߩ2) − ߠ − .ݍ(1

(c) (Sequential Dominance Equilibrium) i) If (ߩ − ݍ(ߠ < ߙ ≤ (ଷఘିఏିଶ)ଷ and ݇ > ଶᇱ, the perpetual software vendor and the SaaS vendorܭ

sequentially serve the market. The equilibrium user strategy is [(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]. The equilibrium

prices are: ௨∗ = [(ఘିఏ)ାఈାସ][(ఘିఏ)ାఈ]଼ఈ ∗ , = (ଷఘିఏିଶ)ଶ − ߙ + ݇, and ௦∗ = ఈି(ఘିఏ)ଶ .

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A17

ii) If
(ଷఘିఏିଶ)ଷ < ߙ < ߩ2) − ߠ − ݇ and ݍ(1 > ଷᇱ, the perpetual software vendor and the SaaS vendor sequentially serve the market. Theܭ

equilibrium user strategy is [(Upgrade1+SaaS, Upgrade2+SaaS), (New1+SaaS, Upgrade2+SaaS)]. The equilibrium prices are as follows:

If ߙ ≤ ߩ) − ∗௨ then ,ݍ(1 = [(ఘିଶఏାଵ)ାଷఈା଼][(ఘିଶఏାଵ)ାଷఈ]ଷଶఈ ∗ , = [(ହఘିଶఏିଷ)ିఈା଼][(ହఘିଶఏିଷ)ିఈ]ଷଶఈ , and ௦∗ = ଷఈି(ଷఘିଶఏିଵ)ସ .

If ߙ > ߩ) − ∗௨ then ,ݍ(1 = ∗ = ହఈమା଼ఈା(ଶସఘିଵఏିଶఈఘିସఈఏାఈି଼)ା(ଵଷఘమିଵଶఘఏାସఏమିଵସఘାସఏାହ)మଷଶఈ , and ௦∗ = ଷఈି(ଷఘିଶఏିଵ)ସ .

Appendix I

SaaS Vendor's Quality Improvement Cost

Proposition 8 (Entry Deterrence Equilibrium with ܿ ఈ) The perpetual software vendor deters the SaaS vendor’s entry when the network effect
is strong enough or when the SaaS quality improvement cost is high enough. The equilibrium user strategy is SP1 (Upgrade, New), where
the OG users upgrade and the NG users adopt the new perpetual software. The equilibrium prices are as follows:

(a) If ܿఈ ≤ ఈଶ + ߠ) − ݇ and ݍ(1 ≥ ଵᇱܭ = ఈି(ఘିଶఏାଵ)ିଶഀଶ , then ௨ഀ = ഀ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ.

(b) If ܿఈ > ఈଶ + ߠ) − ௨ഀ then ,ݍ(1 = ߩ) − ݍ(1 + ݇ and ഀ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ.

Proof. Consider SP1 (Upgrade, New). Similar to the Proof of Proposition 2, we must ensure that the OG users prefer upgrading to the new
version rather than continuing to use the old version, which requires ݍߩ + 2݇ − ௨ ≥ ݍ + ݇; that is, ௨ ≤ ߩ) − ݍ(1 + ݇ (I1). Meanwhile,
the perpetual software vendor needs to make sure that OG users prefer upgrading rather than adopting SaaS, even if the SaaS price is reduced

to the lowest level ௦ = ܿఈ. That is, the entry deterrence condition is ݍߩ + 2݇ − ௨ ≥ ଵ ݍߠ) + ݐߙ + ݇ − ܿఈ)݀ݐ, so that ௨ ≤ ߩ) − ݍ(ߠ +݇ − ఈଶ + ܿఈ (I2). Similarly, to ensure that NG users prefer the new perpetual software to the SaaS at ௦ = ܿఈ, the condition is ݍߩ + 2݇ − ≥ ଵ ݍߠ) + ݐߙ + ݇ − ܿఈ)݀ݐ; that is, ≤ ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ (I3).

If ܿఈ ≤ ఈଶ + ߠ) − ௨ is binding. Because (I2) ,ݍ(1 ≤ , by (I2) and (I3) the perpetual software vendor sets the prices at respective upper

bounds: ௌଵ = ௨ௌଵ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ. Consequently, we get the perpetual software vendor’s profit ߨௌଵ = ߩ)2 − ݍ(ߠ + 2݇ ߙ− + 2ܿఈ.

If ܿఈ > ఈଶ + (θ − ௨ௌଵ is binding. By (I2) and (I3) we have (I1) ,ݍ(1 = ߩ) − ݍ(1 + ݇ and ௌଵ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ. Consequently, we

get the perpetual software vendor’s profit ߨௌଵ = ߩ2) − ߠ − ݍ(1 + 2݇ − ఈଶ + ܿఈ.

Consider SP2 (Upgrade, SaaS). Similar to the Proof of Proposition 3, we have ௨ ≤ ߩ) − ௨ ;(I4) ݍ(1 ≤ ௦ + ߩ) − ݍ(ߠ − ݇ − ఈଶ (I5); and ≥ ௦ + ߩ) − ݍ(ߠ + ݇ − ఈଶ (I6).

To maximize its profit, the perpetual software vendor sets as high as possible so that the SaaS vendor can also charge a high enough price ௦, which in turn allows the perpetual software vendor to charge a high upgrade price ௨. As a result, the perpetual software vendor charges ௨ = ߩ) − ߙ to make the OG users’ IC constraint (I4) binding. If ݍ(1 ≤ ߩ)2 − ௦ௌଶ the SaaS vendor charges as much as ,ݍ(1 = ߠ) − ݍ(1 +݇ + ఈଶ by (I5), and by (I6) ௌଶ = ߩ) − ݍ(1 + 2݇. If ߙ > ߩ)2 − ௦ௌଶ then the boundary solution ,ݍ(1 = ߙ + ݇ − ߩ) − as specified in ݍ(ߠ

Table C1 holds. By (I4) and (I5) ௨ௌଶ = ߩ) − ௌଶ and by (I6) ݍ(1 = ఈଶ + ݇. So ߨௌଶ = ߩ) − .ݍ(1

Finally, we compare the perpetual software vendor’s profits under SP1 and SP2. We can show that, if ܿఈ ≤ ఈଶ + ߠ) − ௌଵߨ then ,ݍ(1 ௌଶߨ< if ݇ > ఈି(ఘିଶఏାଵ)ିଶഀଶ . If ܿఈ > ఈଶ + ߠ) − ௌଵߨ then ,ݍ(1 > ௌଶߨ .

Guo & Ma/Perpetual Software and Software as a Service

A18 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

Appendix J

OG User's Switching Cost

Proposition 9 (Equilibria with OG User Switching Cost) Both the SaaS quality improvement rate ߙ and users’ switching cost ܿ affect the
equilibrium outcome as follows:

(a) (Entry Deterrence Equilibrium) If ߙ ≤ ଵ, the perpetual software vendor deters the SaaS vendor’s entry. The equilibrium user strategyܣ
is SP1 (Upgrade, New). The perpetual software vendor’s equilibrium prices are ௨∗ = ∗ = ߩ) − ݍ(ߠ − ఈଶ.

(b) (Market Segmentation Equilibrium) The perpetual software vendor and the SaaS vendor segment the market. The equilibrium user
strategy is SP2 (Upgrade, SaaS).

If i) ܣଵ < ߙ ≤ ߙ (ଶ, or iiܣ > ଶܥ ଶ andܣ < ܿ ≤ ∗௨ ଵ, then equilibrium prices areܥ = ∗ = ߩ) − ∗௦ and ݍ(1 = ߠ) − ݍ(1 + ఈଶ.

If ߙ ≤ ܿ ଷ andܣ ≤ ∗௨ ଶ, then equilibrium prices areܥ = ߩ) − ∗ ,ݍ(1 = ఈଶ − ∗௦ and ,ܿߙ2√ = ߙ − ߩ) − ݍ(ߠ − .ܿߙ2√

(c) (Competitive Lock-in Equilibrium) If ߙ > ܿ ଶ andܣ > ,ଵ, the perpetual software vendor serves the OG users over the whole time interval [0,1] and NG users in the time interval [0ܥ ఈା(ఘିఏ)ଶఈ]. The SaaS vendor serves the NG users in the time interval [ఈା(ఘିఏ)ଶఈ , 1]. The equilibrium

user strategy is SP7 (Upgrade, New+SaaS). The equilibrium prices are ௨∗ = ∗ = [ఈା(ఘିఏ)]మ଼ఈ and ௦∗ = ఈି(ఘିఏ)ଶ .

(d) (Sequential Dominance Equilibrium) If ߙ > ܿ ଷ andܣ ≤ ଶ, the perpetual software vendor serves both OG and NG users in the timeܥ

interval [0, ఈା(ఘିఏ)ଶఈ], and the SaaS vendor serves both OG and NG users in the time interval [ఈା(ఘିఏ)ଶఈ , 1]. The equilibrium user strategy is

SP6 (Upgrade+SaaS, New+SaaS). The equilibrium prices are ௨∗ = (ఘିଵ)[ఈି(ఏିଵ)]ଶఈ ∗ , = [ఈା(ఘିఏ)]మ଼ఈ , and ௦∗ = ఈି(ఘିఏ)ଶ .

Our proof involves several steps. First, given user strategies, we analyze four sub-game perfect equilibria and the corresponding vendor prices
and profits. Then we derive the final equilibrium outcome under different market conditions.

Entry Deterrence Strategy

Note that SP1 (Upgrade, New) can only occur when ߙ ≤ ߩ) − That is, the quality of SaaS does not exceed the quality of the new .ݍ(ߠ
perpetual software at the end of the product life cycle.

Given that NG users purchase the new perpetual software, OG users prefer to upgrade rather than continue to use the old version. So we have ௨ ≤ ߩ) − ௨ Also, OG users prefer to upgrade rather than opt for SaaS. Note that moving to SaaS incurs additional switching costs ܿ. So we get .(J1) ݍ(1 ≤ ߩ) − ݍ(ߠ − ఈଶ + ܿ (J2).

Given that OG users upgrade, NG users prefer to buy the new perpetual software rather than SaaS. This situation gives us ≤ ߩ) − ݍ(ߠ − ఈଶ

(J3). In addition, we have the constraint ≥ .௨

Putting all these constraints together, we get the perpetual software vendir’s prices ௨ௌଵ = ௌଵ = ߩ) − ݍ(ߠ − ఈଶ and profit ߨௌଵ = ߩ)2 ݍ(ߠ− − .ߙ

Market Segmentation Strategy

Consider SP2 (Upgrade, SaaS), where the perpetual software vendor allows the SaaS vendor to enter the market. It can happen under both ߙ ≤ ߩ) − ߙ and ݍ(ߠ > ߩ) − .ݍ(ߠ

Case (1) ߙ ≤ ߩ) − Given that NG users choose SaaS, we need to ensure that, for OG users, upgrading is better than using the old version .ݍ(ߠ
and also better than SaaS. Thus, (J1) and ௦ ≥ ௨ − ߩ) − ݍ(ߠ + ఈଶ − ܿ (J4) must hold. Similarly, NG users prefer SaaS to the new perpetual

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A19

software, and so ௦ ≤ − ߩ) − ݍ(ߠ + ఈଶ (J5). In addition, ≥ ௨ௌଶ ௨. So we get = ௌଶ = ߩ) − ௦ௌଶ ,ݍ(1 = ߠ) − ݍ(1 + ఈଶ. Vendor

profits are ߨௌଶ = ߩ) − ௌௌௌଶߨ and ݍ(1 = ߠ) − ݍ(1 + ఈଶ.

Case (2) ߙ > ߩ) − is large, the SaaS becomes competitive, and switching becomes possible. We first derive the non-switching ߙ When .ݍ(ߠ
(NS) condition for OG users. Conditional on the fact that OG users switch, the switching time is when the net payoff from SaaS exceeds the

the net payoff from the new version of perpetual software. Similar to the baseline case, ݐ௦ଵ = ೞି(ఏିଵ)ఈ . Taking into account the switching

cost, the condition for switching is ଵ௧ೞభ ݍߠ) + ݐߙ − ݐ݀(௦ − 1)ݍߩ − (௦ଵݐ ≥ ܿ. Substituting into ݐ௦ଵ and solving this inequality, we get ௦ ߙ≤ − ߩ) − ݍ(ߠ − .(NS) ܿߙ2√

We can verify that the SaaS price derived in Case (1) satisfies this (NS) condition when √2ܿߙ ≥ ఈଶ − ߩ) − ܿ ,that is ;ݍ(1 ≥ [ఈିଶ(ఘିଵ)]మ଼ఈ .ଶ. Therefore the same optimal solutions applyܥ≐

When ܿ < ௦ ଶ, however, the (NS) condition is binding, soܥ = ߙ − ߩ) − ݍ(ߠ − Reexamining the incentive compatibility conditions .ܿߙ2√
(J1), (J4), and (J5), we get ௨ௌଶ = ߩ) − ௌଶ ,ݍ(1 = ఈଶ − ௨ௌଶ by (J3), and ܿߙ2√ < ௌଶߨ ௌଶ. The vendor’s profits are = ߩ) − ௌௌௌଶߨ and ݍ(1 = ߙ − ߩ) − ݍ(ߠ − .ܿߙ2√

Competitive Lock-In Strategy

Consider a new strategy pair (Upgrade, New+SaaS). We denote it as SP7. It occurs under the condition ߙ > ߩ) − where the SaaS quality ,ݍ(ߠ
outperforms the perpetual software quality at some time ݐ ∈ [0,1]. To ensure that OG users do not switch, the (NS) condition must hold. And
to ensure that NG users switch, the net payoff from SaaS must be higher than the net payoff from the new perpetual software by time ݐ = 1;

that is, ݍߠ + ߙ − ௦ ≥ ௦ So .ݍߩ ≤ ߙ − ߩ) − ௦ଷݐ In addition, NG users switch at .(J6) ݍ(ߠ = (ఘିఏ)ାೞఈ . The SaaS vendor’s profit thus is

expressed as ௦(1 − ∗௦ ௦ଷ), and the optimal SaaS price isݐ = ఈି(ఘିఏ)ଶ . Accordingly, the optimal switching time is ݐ௦ଷ∗ = ఈା(ఘିఏ)ଶఈ . There are

two cases:

Case (1) When ܿ ≥ [ఈି(ఘିఏ)]మ଼ఈ , the interior solution ௦ௌ = ఈି(ఘିఏ)ଶ satisfies both (NS) and (J6). We now check the incentive compatibility

conditions for both groups of users. Given that OG users upgrade, NG users prefer New+SaaS over SaaS if ݐݍߩ௦ଵ∗ − + ݍߠ) + ݐߙ − ∗ଵ௧ೞభݐ݀(∗௦ ≥ ݍߠ) + ݐߙ − ଵݐ݀(∗௦ (J7). Substituting into ௦ௌ and ݐ௦ଷ∗ and simplifying the condition, we get ≤ [ఈା(ఘିఏ)]మ଼ఈ ݍߩ ଵ. Similarly, given that NG users choose New+SaaS, OG users prefer Upgrade over Old+SaaS if≐ − ௨ ≥ ∗௦ଵݐݍ + ݍߠ) + ݐߙ − ∗ଵ௧ೞభݐ݀(∗௦ −ܿ (J8), where ݐ௦ଵ∗ is the switching time if OG users switch from the old version of perpetual software to SaaS, and ݐ௦ଵ∗ is given by ݍߠ + ∗௦ଵݐߙ ∗௦− = ∗௦ଵݐ ௦ௌ, we have Using .ݍ = ఈି(ఘାఏିଶ)ଶఈ . If ߙ < ߩ) + ߠ − is satisfied. So (J8) ,ݍ(2 = ௨ = [ఈା(ఘିఏ)]మ଼ఈ . If ߙ ≥ ߩ) + ߠ − ∗௦ଵݐ ,ݍ(2 > 0. Substituting ݐ௦ଵ∗ into (J8) we get ௨ ≤ ߩ) − 1) − [ఈା(ఘାఏିଶ)]మ଼ఈ + ܿ ≐ ܿ ଶ. When = [ఈି(ఘିఏ)]మ଼ఈ ଶ , < ଶ linearly ଵ. Because

increases in ܿ, there is a threshold value ܿ∗ = [ఈା(ఘିఏ)]మା[ఈା(ఘାఏିଶ)]మ଼ఈ − ߩ) − such that, for ݍ(1
[ఈି(ఘିఏ)]మ଼ఈ ≤ ܿ < ଵ ,∗ܿ > ௌ ,ଶ; thus = [ఈା(ఘିఏ)]మ଼ఈ and ௨ௌ = ߩ) − ݍ(1 − [ఈା(ఘାఏିଶ)]మ଼ఈ + ܿ; and for ܿ ≥ ଵ ,∗ܿ < ௌ ,ଶ; thus = ௨ௌ = [ఈା(ఘିఏ)]మ଼ఈ .

Case (2) When ܿ < [ఈି(ఘିఏ)]మ଼ఈ , we have a boundary solution ௦ௌ = ߙ − ߩ) − ݍ(ߠ − ∗௦ଷݐ accordingly, the switching time becomes ;ܿߙ2√ =ఈି√ଶఈఈ . We next check users’ incentive compatibility conditions. Condition (J7) becomes ≤ ఈଶ − ܿߙ2√ + ܿ ≐ ∗௦ଵݐ ,ଵ. For condition (J8) =ೞ∗ି(ఏିଵ)ఈ = ఈି(ఘିଵ)ି√ଶఈఈ . If ߙ < ߩ) − ߙ or if ,ݍ(1 ≥ ߩ) − ܿ and ݍ(1 > [ఈି(ఘିଵ)]మଶఈ , (J8) is satisfied. In these cases, ௌ = ௨ௌ = ఈଶ ܿߙ2√− + ܿ. If ߙ ≥ ߩ) − ܿ and ݍ(1 < [ఈି(ఘିଵ)]మଶఈ ∗௦ଵݐ , > 0, substituting ݐ௦ଵ∗ into (J8), we get ௨ ≤ ߩ) − 1) − [(ఘିଵ)ା√ଶఈ]మଶఈ + ܿ ≐ ଶ. We can

verify that ଵ > ௌ ,ଶ. Hence = ఈଶ − ܿߙ2√ + c, ௨ௌ = ߩ) − 1) − [(ఘିଵ)ା√ଶఈ]మଶఈ + ܿ, and ௌ > .௨ௌ

Sequential Dominance Strategy

This strategy pair is SP6 (Upgrade+SaaS, New+SaaS). It occurs under the condition ߙ > ߩ) − ,To ensure that OG users switch to SaaS .ݍ(ߠ
the switching condition is ௦ < ߙ − ߩ) − ݍ(ߠ − and note that when this condition holds, NG users also switch. Similar to the ,(J9) ܿߙ2√

Guo & Ma/Perpetual Software and Software as a Service

A20 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

baseline model, the switching time is ݐ௦ଷ = (ఘିఏ)ାೞఈ . The SaaS vendor’s profit thus is expressed as 2௦(1 − ௦ଷ), and the optimal SaaS priceݐ

is ௦∗ = ఈି(ఘିఏ)ଶ . Accordingly, the optimal switching time is ݐ௦ଷ∗ = ఈା(ఘିఏ)ଶఈ . We get three cases:

Case (1) When ܿ < [ఈି(ఘିఏ)]మ଼ఈ , the internal optimal solution ௦ௌ = ఈି(ఘିఏ)ଶ satisfies (J9). The solution is the same as the baseline model,

as in Proposition 4.

Case (2) When
[ఈି(ఘିఏ)]మ଼ఈ ≤ ܿ < [ఈି(ఘିఏ)]మଶఈ , we derive the boundary solution ௦ௌ = ߙ − ߩ) − ݍ(ߠ − accordingly, the switching ;ܿߙ2√

time becomes ݐ௦ଷ∗ = ఈି√ଶఈఈ . We reexamine the incentive compatibility conditions. Given that OG users choose Upgrade+SaaS, NG users

prefer New+SaaS over SaaS if ݐݍߩ௦ଷ∗ − + ݍߠ) + ݐߙ − ∗ଵ௧ೞయݐ݀(∗௦ ≥ ݍߠ) + ݐߙ − ଵݐ݀(∗௦ . So we get ≤ [ఈି√ଶఈ]మଶఈ ≐ ଵ. Given that NG

users choose New+SaaS, OG users prefer Upgrade+SaaS over Old+SaaS if ݐݍߩ௦ଶ∗ − ௨ + ݍߠ) + ݐߙ − ∗ଵ௧ೞమݐ݀(∗௦ − ܿ ≥ ∗௦ଵݐݍ + ݍߠ) + ݐߙ − ∗ଵ௧ೞభݐ݀(∗௦ − ܿ (J10), where ݐ௦ଵ∗ = ೞೄುలି(ఏିଵ)ఈ = ఈି(ఘିଵ)ି√ଶఈఈ . We note that ݐ௦ଵ∗ < 0 when ߙ < ߩ) + ߠ − ߙ or ,ݍ(2 > ߩ) + ߠ and ݍ(2−
[ఈି(ఘିଵ)]మଶఈ ≤ ܿ < [ఈି(ఘିఏ)]మଶఈ . So (J10) is satisfied and ௌ = ௨ௌ = [ఈି√ଶఈ]మଶఈ . When ߙ ≥ ߩ) + ߠ − and ݍ(2

[ఈି(ఘିఏ)]మ଼ఈ ≤ ܿ <[ఈି(ఘିଵ)]మଶఈ ∗௦ଵݐ , > 0. Substituting ݐ௦ଵ∗ into (J10), we get ௨ ≤ (ఘିଵ)(ఈି√ଶఈ)ఈ − [(ఘିଵ)]మଶఈ ≐ ଵ ଶ. Because − ଶ = [ఈି(ఘିଵ)ି√ଶఈ]మଶఈ > 0, we

have ௌ = [ఈି√ଶఈ]మଶఈ ௨ௌ , = (ఘିଵ)(ఈି√ଶఈ)ఈ − [(ఘିଵ)]మଶఈ , and ௌ > .௨ௌ

Case (3) When ܿ ≥ [ఈି(ఘିఏ)]మଶఈ , the condition (J9) does not hold. Thus, SP6 does not appear.

Profit Comparison in All Parameter Regions

To see which strategy pair is the equilibrium, we need to compare the vendor’s profits. When ߙ ≤ ߩ) − ;both SP1 and SP2 are possible ,ݍ(ߠ
when ߙ > ߩ) − SP2, SP6, and SP7 are possible. Using Table 3, we have in total 10 parameter regions to study. In the following, we ,ݍ(ߠ
examine one region to show how we obtain the equilibrium; for all the rest of the comparisons, the analysis is similar.

Consider the parameter region ߙ ≥ ߩ) − max ,ݍ(ߠ ቄ[ఈି(ఘିଵ)]మଶఈ , [ఈି(ఘିఏ)]మ଼ఈ ቅ < ܿ < [ఈି(ఘିఏ)]మଶఈ . In this region, SP2, SP6, and SP7 are all

feasible strategies. Vendor profits are ߨௌଶ = ߩ) − ௌௌௌଶߨ ,ݍ(1 = ߠ) − ݍ(1 + ఈଶ in SP2, ߨௌ = [ఈି√ଶఈ]మఈ ௌௌௌߨ , = ଶ[ఈି(ఘିఏ)ି√ଶఈ]√ଶఈఈ

in SP6, and ߨௌ = [ఈା(ఘିఏ)]మସఈ ௌௌௌߨ , = [ఈି(ఘିఏ)]మସఈ in SP7, respectively.

We first compare SP6 and SP7. Because ߨ߂ௌି = [ଷఈା(ఘିఏ)ିଶ√ଶఈ][ିఈା(ఘିఏ)ାଶ√ଶఈ]ସఈ > 0, the perpetual software vendor prefers SP7 to

SP6. For the SaaS vendor, we find that ∂ߨ߂ௌௌௌି/ ∂ܿ = ଶ[(ఘିఏ)ାଶ√ଶఈିఈ]√ଶఈ > 0. If (ߩ − ݍ(ߠ < ߙ < ߩ) + ߠ − ܿ ,ݍ(2 = [ఈି(ఘିఏ)]మ଼ఈ and ܿ =[ఈି(ఘିఏ)]మଶఈ . If ߙ ≥ ߩ) + ߠ − ܿ ,ݍ(2 = [ఈି(ఘିଵ)]మଶఈ and ܿ = [ఈି(ఘିఏ)]మଶఈ . We can show that ߨ߂ௌௌௌି < 0 at ܿ and ߨ߂ௌௌௌି > 0 at ܿ. So a

value ܥଵ must exist in this parameter region such that ߨ߂ௌௌௌି = 0 at ܥଵ. Solving the equation, we get ܥଵ = (√ଶାଵ)మ[ఈି(ఘିఏ)]మଵఈ . For ܿ < ௌௌௌିߨ߂ ,ଵܥ < 0, meaning that the SaaS vendor prefers SP6 to SP7 and so reduces its price to deviate to SP6. Meanwhile, for ܿ > ௌௌௌିߨ߂ ,ଵܥ >0 meaning that the SaaS vendor prefers SP7 to SP6.

We next compare SP2 with SP6 when ܿ < ܿ ଵ, and we compare SP2 with SP7 whenܥ > .ଵܥ

Case (1) ܿ < /ௌௌௌିଶߨ߂∂ ,ଵ. For the SaaS vendorܥ ∂ܿ = ିଶ[(ఘିఏ)ାଶ√ଶఈିఈ]√ଶఈ < 0; and ߨ߂ௌௌௌିଶ < 0 at ܿ = [ఈି(ఘିఏ)]మ଼ఈ . Because in this region

all ܿ ≥ [ఈି(ఘିఏ)]మ଼ఈ , we conclude that ߨ߂ௌௌௌିଶ < 0 in the whole region. Thus, the SaaS vendor always prefers SP2. For the perpetual software

vendor, ߨ߂ௌିଶ = ߙ + 2ܿ − ܿߙ2√2 − ߩ) − ௌିଶߨ߂ We solve .ݍ(1 = 0 and get two solutions: ܿ ଵ = [√ఈିඥ(ఘିଵ)]మଶ and ܿ ଶ = [√ఈାඥ(ఘିଵ)]మଶ .

We can further prove that ܿଵ < [ఈି(ఘିଵ)]మଶఈ and ܿଶ > ௌିଶߨ߂ ,ଵ, and so both roots are outside this region. Henceܥ < 0, meaning that the

perpetual software vendor prefers SP2. We conclude that when ܿ < .ଵ, the final equilibrium is SP2ܥ

Case (2) ܿ > /ௌௌௌିଶߨ߂∂ ,ଵ. For the SaaS vendorܥ ߙ∂ = ିସ[ఈమା(ఘିఏ)మమ]ଵఈమ < 0; and ߨ߂ௌௌௌିଶ < 0 at ߙ = ߩ) − ߙ Because in this region all .ݍ(ߠ ≥ ߩ) − ௌௌௌିଶߨ߂ we conclude that ,ݍ(ߠ < 0 in the whole region. Thus, the SaaS vendor always prefers SP2. For the perpetual software

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A21

vendor, ߨ߂ௌିଶ = [ఈା(ఘିఏ)]మସఈ − ߩ) − ௌିଶߨ߂ We can show that .ݍ(1 = (1 − ݍ(ߠ < 0 at ߙ = ߩ) − in this ߙ which is the smallest ,ݍ(ߠ

region, and that ∂ߨ߂ௌିଶ/ ߙ∂ = ସ[ఈା(ఘିఏ)][ఈି(ఘିఏ)]ଵఈమ > 0. Solving ߨ߂ௌିଶ = 0 for ߙ, we get two solutions: ܣଵ = ߩ) + ߠ − ݍ(2 −2ඥ(ߩ − ߠ)(1 − ଶܣ and ݍ(1 = ߩ) + ߠ − ݍ(2 + 2ඥ(ߩ − ߠ)(1 − ଵܣ Note that .ݍ(1 < ߩ) − ߩ) so it falls outside of the region, and ,ݍ(ߠ + θ ݍ(2− < ଶܣ < ߩ)2 − ߙ so it falls within the region. Therefore, when ,ݍ(1 < ௌିଶߨ߂ ,ଶܣ < 0, meaning that the perpetual software vendor
prefers SP2 and that, in this sub-region, SP2 is the equilibrium outcome. When ߙ		ܣଶ, ߨ߂ௌିଶ > 0, meaning that the perpetual software
vendor prefers SP7. The perpetual software vendor thus reduces prices to deviate from SP2 to SP7. We conclude that in this sub-region, SP7
is the equilibrium outcome.

Finally, after combining all the conditions and equilibrium results, we obtain the four equilibria shown in Proposition 9 and Table J1.

Table J1. Parameter Conditions, Prices, and Profits Under Switching Cost Model
(a) Parameter Conditions with Switching Costs
Strategy

Pairs

Regions

Parameter Conditions
SP1 1 ߙ < ߩ) − ݍ(ߠ
SP2 2 (1) ߙ < ߩ) − ;ݍ(ߠ

ߙ (2) ≥ ߩ) − ܿ ,ݍ(ߠ ≥ ଶܥ = [ఈିଶ(ఘିଵ)]మ଼ఈ

ߙ 3 ≥ ߩ) − ܿ ,ݍ(ߠ < ଶܥ = [ఈିଶ(ఘିଵ)]మ଼ఈ

SP6 4 (ߩ − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିఏ)]మ଼ఈ

ߙ 5 ≥ ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିఏ)]మ଼ఈ

ߩ) (1) 6 − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ;ݍ(2

ߙ (2) ≥ ߩ) + ߠ − ,ݍ(2
[ఈି(ఘିఏ)]మ଼ఈ ≤ c < [ఈି(ఘିఏ)]మଶఈ

ߙ 7 > ߩ) + ߠ − ,ݍ(2
[ఈି(ఘିఏ)]మ଼ఈ < ܿ < [ఈି(ఘିଵ)]మଶఈ

SP7 8 (1)(ߩ − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ܿ ,ݍ(2 ≥ [ఈି(ఘିఏ)]మ଼ఈ ;

ߙ (2) ≥ ߩ) + ߠ − ܿ ,ݍ(2 ≥ ܿ∗
ߙ 9 > ߩ) + ߠ − ,ݍ(2

[ఈି(ఘିఏ)]మ଼ఈ ≤ ܿ < ܿ∗ = [ఈା(ఘିఏ)]మା[ఈା(ఘାఏିଶ)]మ଼ఈ − ߩ) − ݍ(1

ߩ) (1) 10 − ݍ(ߠ ≤ ߙ < ߩ) − ;ݍ(1

ߩ) (2) − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ,ݍ(2
[ఈି(ఘିଵ)]మଶఈ ≤ ܿ < [ఈି(ఘିఏ)]మ଼ఈ

ߩ)	(1) 11 − ݍ(1 ≤ ߙ < ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିଵ)]మଶఈ ;

ߙ (2) ≥ ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିఏ)]మ଼ఈ

(b) Optimal Prices with Switching Costs
Strategy

Pairs

Regions
 ࢙ ࢛

SP1 1 (ߩ − ݍ(ߠ − ఈଶ (ߩ − ݍ(ߠ − ఈଶ —

SP2 2 (ߩ − ߩ) ݍ(1 − ߠ) ݍ(1 − ݍ(1 + 2ߙ

ߩ) 3 − ఈଶ ݍ(1 − ߙ ܿߙ2√ − ߩ) − ݍ(ߠ − ܿߙ2√

SP6 4 [ఈା(ఘିఏ)]మ଼ఈ
[ఈା(ఘିఏ)]మ଼ఈ

ఈି(ఘିఏ)ଶ

 5 (ఘିଵ)[ఈି(ఏିଵ)]ଶఈ [ఈା(ఘିఏ)]మ଼ఈ
ఈି(ఘିఏ)ଶ

 6 [ఈି√ଶఈ]మଶఈ
[ఈି√ଶఈ]మଶఈ ߙ − ߩ) − ݍ(ߠ − ܿߙ2√

 7 (ఘିଵ)(ఈି√ଶఈ)ఈ − [(ఘିଵ)]మଶఈ
[ఈି√ଶఈ]మଶఈ ߙ − ߩ) − ݍ(ߠ − ܿߙ2√

SP7 8 [ఈା(ఘିఏ)]మ଼ఈ
[ఈା(ఘିఏ)]మ଼ఈ

ఈି(ఘିఏ)ଶ

ߩ) 9 − ݍ(1 − [ఈା(ఘାఏିଶ)]మ଼ఈ + ܿ
[ఈା(ఘିఏ)]మ଼ఈ

ఈି(ఘିఏ)ଶ

 10 ఈଶ − ܿߙ2√ + ܿ
ఈଶ − ܿߙ2√ + ߙ ܿ − ߩ) − ݍ(ߠ − ܿߙ2√

ߩ) 11 − ݍ(1 − [(ఘିଵ)ା√ଶఈ]మଶఈ + ܿ
ఈଶ − ܿߙ2√ + ߙ ܿ − ߩ) − ݍ(ߠ − ܿߙ2√

Guo & Ma/Perpetual Software and Software as a Service

A22 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

(c) Optimal Profits with Switching Costs
Strategy

Pairs

Regions
 ࢘ࢋ࣊

 ࡿࢇࢇࡿ࣊
SP1 1 2(ߩ − ݍ(ߠ − — ߙ
SP2 2 (ߩ − ߠ) ݍ(1 − ݍ(1 + ఈଶ

ߩ) 3 − ߙ ݍ(1 − ߩ) − ݍ(ߠ − ܿߙ2√
SP6 4 [ఈା(ఘିఏ)]మସఈ

[ఈି(ఘିఏ)]మଶఈ

 5 [ఈା(ఘିఏ)]మାସ(ఘିଵ)[ఈି(ఏିଵ)]଼ఈ
[ఈି(ఘିఏ)]మଶఈ

 6 [ఈି√ଶఈ]మఈ ߙ]2 − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

 7 [(ఈି√ଶఈ)ାଶ(ఘିଵ)](ఈି√ଶఈ)ି[(ఘିଵ)]మଶఈ ߙ]2 − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

SP7 8 [ఈା(ఘିఏ)]మସఈ
[ఈି(ఘିఏ)]మସఈ

ߩ) 9 − ݍ(1 + ܿ + ఈା(ఘାఏିଶ)ସఈ [ఈି(ఘିఏ)]మସఈ

ߙ 10 − ܿߙ2√2 + ߙ] 2ܿ − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

ߠ) 11 − ݍ(1 + ߙ − [(ఘିଵ)ା√ଶఈ]మଶఈ − ܿߙ2√ + ߙ] ܿ − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

Appendix K

Continuous NG User Arrival Model

We extend our model to account for NG users’ continuous arrival time. We still focus on the vendors' price competition on the planning
horizon [0,1]. The model setup is the same as the baseline model, except that we assume the NG users with mass 1 uniformly and continuously
enter the market on the time interval [0,1]. Upon arrival, each NG user makes the software adoption decision for a limited use period, which
is normalized to 1. Thus, users who arrive at ݐ < 1 make a decision based on their expected utility from the software use in the period [ݐ, 1 .We use this model setup for several reasons. First, a decision period of the same length provides a fair comparison among all users .[ݐ+
Second, the rapid technological obsolescence makes the software value in the far distant future negligible. To cope with the late arrival users’
decision making in the extended time period beyond ݐ = 1, we assume that the SaaS software quality continues to increase at rate ߙ after
time 1. And at ݐ = 1, the perpetual software vendor releases another “newer” software version with a higher quality. We assume the quality
improvement between two major software releases remains the same (i.e., (ߩ − Therefore, the “newer” perpetual software’s quality .(ݍ(1
can be calculated as ݍߩ + ߩ) − ݍ(1 = ߩ2) − .The continuous user arrival model is depicted in Figure K1 .ݍ(1

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A23

Figure K1. Software Quality Improvement Over Time

In such a dynamic market environment, the installed user base for a software product continues to change. Users who arrive at different times
face different expected network values based on both the current number of users and the anticipated future number of users. Even if the
current network size is observable, forming the expectation of future network growth is cognitively challenging because it depends on future
users’ adoption decisions. We therefore omit the network effect in this continuous arrival model (i.e., ݇ = 0).

All OG users’ strategies are the same as in the baseline model in the “User Utility Definition and Strategy Analysis” section of the paper. For
each NG user with arrival time ݐ < 1, we note five possible strategies.

New: The user purchases the new perpetual software at price at time ݐ and uses it over the entire period [ݐ, 1 + ݍߩ The utility is .[ݐ − .

New+Newer: The user purchases the new perpetual software at price at time ݐ, uses it in [ݐ, 1], and then pays an upgrade price ௨ to get
the newer version at time 1 and uses it for the remaining period [1,1 + 1)ݍߩ The utility is .[ݐ − (ݐ − + ߩ2) − ݐݍ(1 − .௨

New + SaaS: The user purchases the new perpetual software at price at time ݐ and uses it in [ݐ, ,௦ଷݐ] ௦ଷ]. It switches to SaaS in the periodݐ 1 + ௦ଷݐ)ݍߩ The utility is .[ݐ − (ݐ − + ݍߠ) + ݐߙ − ଵା௧௧ೞయݐ݀(௦ .

SaaS: The user uses the SaaS software over the entire period [ݐ, 1 + The utility is .[ݐ ݍߠ) + ݐߙ − ଵା௧௧ݐ݀(௦ .

SaaS+Newer: The user uses the SaaS software in the period [ݐ, 1], buys the newer version perpetual software at price at time 1, and uses

this software for the remaining period [1,1 + The utility is .[ݐ ݍߠ) + ݐߙ − ଵ௧ݐ݀(௦ + ߩ2) − ݐݍ(1 − .

Following a similar notion as in the baseline model, we solve this continuous user arrival model for equilibrium outcomes. The complete
result derivation and proof is attached at the end of this appendix. We summarize our findings as follows.

Proposition 10 (Equilibria with NG User Continuous Arrival) If NG users continuously arrive in the market, the SaaS quality improvement
rate ߙ affects the equilibrium outcome as follows.

(a) (Entry Deterrence Equilibrium) If ߙ ≤ ߩ) − ߠ2 + :the perpetual software vendor deters the SaaS vendor’s entry into the market ,ݍ(1
The equilibrium user strategy is SP1 (Upgrade, New), where the OG users upgrade and all NG users adopt the new perpetual software. The
perpetual software vendor’s equilibrium prices are ௨∗ = ∗ = ߩ) − ݍ(ߠ − ఈଶ.

(b) (Market Segmentation Equilibrium) If (ߩ − ߠ2 + ݍ(1 < ߙ ≤ 2)]ݔܽ݉ + ߩ)(2√ − ,ݍ(ߠ ො], the perpetual software vendor and the SaaSߙ
vendor segment the market: The equilibrium user strategy is SP2 (Upgrade, SaaS), where the OG users upgrade to the new perpetual software
and all NG users adopt SaaS. The equilibrium prices are:

Software
quality

Time0

q
θq

θq +2α

1

θq +α

t 1+t

Consumers continuously arrive in [0,1]
and the firm’s planning horizon is [0,1]

Guo & Ma/Perpetual Software and Software as a Service

A24 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

If (ߩ − ߠ2 + ݍ(1 < ߙ ≤ ߩ)2 − ∗௨ then ,ݍ(1 = ߩ) − ∗ ,ݍ(1 = ߩ) − ∗௦ and ݍ(1 = ߠ) − ݍ(1 + ఈଶ;

If 2(ߩ − ݍ(1 < ߙ ≤ 2)]ݔܽ݉ + ߩ)(2√ − ,ݍ(ߠ ∗௨ ො], thenߙ = ߩ) − ∗ ,ݍ(1 = ఈଶ and ௦∗ = ߙ − ߩ) − .ݍ(ߠ

(c) (Sequential Dominance Equilibrium) If ߙ > 2)]ݔܽ݉ + ߩ)(2√ − ,ݍ(ߠ :ො], the two vendors serve the market sequentially as followsߙ
During [0, ∗ௌݐ], the perpetual software vendor serves all OG users and NG users who arrive during this interval. At ݐௌ∗ , these users switch
to the SaaS, and in addition, NG users who enter the market in the interval [ݐௌ∗ , 1] all choose SaaS during this period. The equilibrium prices
are:
∗௨ = (ఘିଵ)[ିସఈା(ఘିଵఏାଷ)ାଶඥ[ఈା(ఘିఏ)]మାଵଶఈమ]ఈ ∗ , = [ିଶఈାହ(ఘିఏ)ାඥ[ఈା(ఘିఏ)]మାଵଶఈమ]మଵ଼ఈ , and ௦∗ = ିଶ[ఈି(ఘିఏ)]ାඥ[ఈା(ఘିఏ)]మାଵଶఈమଷ .

Overall, we find that all major insights under the discrete model still hold. When SaaS quality improvement is relatively small, the entry
deterrence equilibrium emerges; when the SaaS quality improvement is high enough, the sequential dominance equilibrium emerges; and
when the SaaS quality improvement is in the intermediate range, the market segmentation equilibrium emerges.

Moreover, we see that both vendors’ optimal prices are the same as in the baseline model under the entry deterrence and market segmentation
equilibria. The user groups they serve are also the same. However, the sequential dominance equilibrium is different. In the baseline model,
the perpetual software vendor might charge an upgrade price that is the same as the new price, while in the continuous arrival setting, it
always gives a price discount to OG users to induce them to upgrade. In addition, we also find that the perpetual vendor’s new price is higher,
the SaaS vendor’s price is lower, and the switching time is later than the prices and switching time in the baseline model. As a result, the
SaaS vendor earns a lower profit.

In summary, when the SaaS quality improvement rate is relatively high, so that sequential dominance equilibrium emerges, the perpetual
software vendor is better off under the continuous arrival model. This outcome occurs mainly because NG users arrive to the market
sequentially. The late arrivals are aware of the perpetual software vendor’s ability to release a newer version software in the future, so they
tend to choose the perpetual software upon arrival to enjoy the lower upgrade price for the future newer version.

Proofs for the Continuous User Arrival Model

Case (1) Entry Deterrence Strategy

Consider the strategy that the perpetual software vendor offers a low enough price to attract all OG users to upgrade to the new software, that
NG users who arrive in the market early prefer New, and that NG users who arrive in the market late also prefer New and then upgrade to
Newer at ݐ = 1. Under this strategy, the SaaS vendor is out of the market, even if it offers ௦ = 0.

First, to ensure that the OG users prefer Upgrade rather than Old, we need ݍߩ − ௨ ≥ ௨ ,that is ;ݍ ≤ ߩ) − To ensure that the OG .(K1) ݍ(1

users prefer Upgrade rather than SaaS even if the SaaS price is 0, we need ݍߩ − ௨ ≥ ଵ ݍߠ) + ௨ ,that is ;ݐ݀(ݐߙ ≤ ߩ) − ݍ(ߠ − ఈଶ (K2). To

ensure that NG users who arrive at ݐ = 0 prefer New rather than SaaS, we need ݍߩ − ≥ ଵ ݍߠ) + ,that is ;ݐ݀(ݐߙ ≤ ߩ) − ݍ(ߠ − ఈଶ

(K3). In addition, we also need NG users who arrive at ݐ = 1 to prefer Newer rather than SaaS, so (2ߩ − ݍ(1 − ≥ ݍߠ + ଷଶ ,that is ;ߙ ߩ2)≥ − ߠ − ݍ(1 − ଷఈଶ (K4). We can verify that both (K2) and (K3) are binding.

For NG users who arrive at ݐ > 0, they might prefer New+Newer rather than New. The indifference user’s entry time is determined by ݍߩ − = 1)ݍߩ − (ݐ − + ߩ2) − ݐݍ(1 − ݐ ,௨; that is = ೠ(ఘିଵ). The perpetual software vendor's profit over [0,1] is ௨ + p. The first term

is the profit from OG users, and the second term is the profit from NG users. Note that the perpetual software vendor generates the Upgrade
profit from New+Newer users at ݐ = 1. This profit is not counted toward the profit calculation in this software life cycle. Because the profit

function increases in ௨, and note that (ߩ − ݍ(1 > ߩ) − ݍ(ߠ − ఈଶ, we have ௨∗ = ∗ = ߩ) − ݍ(ߠ − ఈଶ, ݐ∗ = (ఘିఏ)ିమഀ(ఘିଵ) , and ߨா = ߩ)2 ݍ(ߠ− − ߙ Note that the condition for entry deterrence equilibrium is .ߙ ≤ ߩ)2 − .ݍ(ߠ

Case (2) Market Segmentation Strategy

Consider the strategy in which the perpetual software vendor allows an SaaS vendor to enter into the market. Because OG users are more
sticky than NG users, the perpetual software vendor, in giving up the NG users, charges ௨∗ = ߩ) − to fully extract the surplus from OG ݍ(1

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A25

users. So the perpetual software vendor serves the OG users on the interval [0,1], and the SaaS vendor serves all NG users on the interval [0,1]. Comparing this strategy with the entry deterrence strategy, the SaaS vendor charges a positive ௦.

To ensure that the OG users choose Upgrade rather than SaaS, we need ݍߩ − ௨ ≥ ଵ ݍߠ) + ݐߙ − ௦ So .ݐ݀(௦ ≥ ௨ − ߩ) − ݍ(ߠ + ఈଶ (K5).

Substituting ௨ெௌ into (K5), we have ௦∗ ≥ ߠ) − ݍ(1 + ఈଶ. To prevent the OG users from switching to SaaS during their lifetime use, we need ݍߠ + ݐߙ − ௦ ≤ ௦ ,that is ;ݍߩ ≥ ߙ − ߩ) − ݐ To ensure that the NG users who arrive at .(K6) ݍ(ߠ = 0 prefer SaaS rather than New, we need ଵ ݍߠ) + ݐߙ − ݐ݀(௦ ≥ ݍߩ − ,; that is ≥ ߩ) − ݍ(ߠ + ௦ − ఈଶ (K7). The perpetual software vendor can price the new software at a

relatively high price, such that the SaaS vendor attracts the NG users starting from time 0. Because the SaaS vendor's profit is ௦ ଵ ,ݐ݀ݐ
which linearly increases in ௦, we know that (K7) is binding.

To determine , we need SaaS+Newer to be preferred to SaaS; that is, ଵ ݍߠ) + ݐߙ − ݐ݀(௦ + ߩ2) − ݐݍ(1 − ଵା୲௧ ݍߠ) + ݐߙ − .ݐ݀(௦
So ≤ ߩ2)] − 1 − ݍ(ߠ − ߙ + ݐ[ୱ − ఈଶ ݐ we have ݐ ௦ and solving for ଶ. Since (K7) is binding, substituting intoݐ =[(ఘିଵ)ିమഀା]ିට[(ఘିଵ)ିమഀା]మିଶఈఈ . The perpetual software vendor earns profit on the interval [ݐ, 1]. It charges as low as possible. So

we have two cases: If ߙ > ߩ)2 − ∗௦ then ,ݍ(1 = ߙ − ߩ) − ∗ and ݍ(ߠ = ఈଶ. The SaaS vendor’s profit is ߨௌௌெௌ = ∗௦ ଵ ݐ݀ݐ = (ఏିଵ)ଶ + ఈସ. If ߙ ≤ ߩ)2 − ∗௦ then ,ݍ(1 = ߠ) − ݍ(1 + ఈଶ and ∗ = ߩ) − ௌௌெௌߨ The SaaS vendor’s profit is .ݍ(1 = ∗௦ ଵ ݐ݀ݐ = ఈି(ఘିఏ)ଶ . Under both cases, ௨∗ = ߩ) − ெௌߨ and ݍ(1 = ߩ) − .ݍ(1

Case (3) Sequential Dominance Strategy

We focus on the two firms’ competitive equilibrium. Assume that OG users choose Upgrade+SaaS and NG users choose New+SaaS. Again,

the switching time is determined by ݍߠ + ௦ଷݐߙ − ௦ = ௦ଷݐ ,that is ;ݍߩ = ೞା(ఘିఏ)ఈ . At ݐ = 0, the OG users prefer Upgrade+SaaS rather than

Upgrade if ݐݍߩ௦ଷ − ௨ + ଵ௧ೞయ ݍߠ) + ݐߙ − ݐ݀(௦ ≥ ݍߩ − ௦ ௨, which holds when ≤ ߙ − ߩ) − Similarly, any NG user who arrives at .ݍ(ߠ

time ݐ < ௦ଷݐ)ݍߩ ௦ଷ prefers New+SaaS rather than New ifݐ − (ݐ − + ଵା୲௧ೞయ ݍߠ) + ݐߙ − ݐ݀(௦ ≥ ݍߩ − ݐ ; at = 0, this condition gives ௦ ≤ ߙ − ߩ) − .ݍ(ߠ

The SaaS vendor’s profit is expressed as ௦(1 − (௦ଷݐ + ௦ଷ(1ݐ௦ − (௦ଷݐ + ௦ ଵ௧ೞయ (1 − ݐ݀(ݐ = ೞ(ଵି௧ೞయ)(ଷା௧ೞయ)ଶ . Note that the computation of

profit is different for the two groups of users. The first term is the profit from OG users who switch to SaaS at ݐ௦ଷ; the second term is the
profit from the early arrival NG users (i.e., arrivals before ݐ௦ଷ) who switch to SaaS at ݐ௦ଷ; the third term is the integral of all NG users who

arrive after ݐ௦ଷ so they choose SaaS directly. Solving this optimization problem we have ௦∗ = ିଶ[ఈି(ఘିఏ)]ାඥ[ఈା(ఘିఏ)]మାଵଶఈమଷ . We can verify

that ௦∗ is an interior solution if ߙ > (2 + ߩ)(2√ − ௦ଷ, we get the switching time in the sequentialݐ ௦∗ into the expression of Substituting .ݍ(ߠ

dominance equilibrium ݐௌ∗ = ିଶఈାହ(ఘିఏ)ାඥ[ఈା(ఘିఏ)]మାଵଶఈమଷఈ < 1. We can verify that ݐௌ∗ > 0 under the condition ߙ ≥ ߩ) − At the .ݍ(ߠ

boundary solution ௦ = ߙ − ߩ) − ∗ௌݐ ,ݍ(ߠ = 1, so (Upgrade+SaaS, New+SaaS) does not sustain as an equilibrium SP.

To ensure that OG users prefer Upgrade+SaaS rather than Old+SaaS, we need ݐݍߩ௦ଶ − ௨ + ଵ௧ೞమ ݍߠ) + ݐߙ − ݐ݀(௦ ≥ ௦ଵݐݍ + ଵ௧ೞభ ݍߠ) ݐߙ+ − ௦ଶݐ where ,ݐ݀(௦ = ௦ଵݐ ௦ଷ andݐ = ೞି(ఏିଵ)ఈ is the switching time for OG users when they choose Old+SaaS; that is, ௨ ≤(ఘିଵ)[ଶೞା(ఘିଶఏାଵ)]ଶఈ (K8). Because the OG users are more sticky than the NG users, if the OG users prefer Upgrade+SaaS, then the NG

users who arrive at ݐ = 0 also prefer New+SaaS. Any NG user arriving before ݐ௦ଷ prefers New+SaaS rather than SaaS if ݐ)ݍߩ௦ଷ − (ݐ − ଵା୲௧ೞయ+ ݍߠ) + ݐߙ − ݐ݀(௦ ≥ ଵା୲௧ ݍߠ) + ݐߙ − Simplifying the conditions, we have .ݐ݀(௦ ≤ [(ఘିఏ)ାೞ]మଶఈ (K9). When ݐ > ’௦ଷ, NG usersݐ

two strategies, SaaS+Newer and SaaS, are equivalent in the analysis because in the current planning period [0,1], the perpetual software
vendor’s profit for the newer version is not counted and the SaaS vendor's profit is the same.

Substituting ௦∗ into (K9) we have ∗ = [ିଶఈାହ(ఘିఏ)ାඥ[ఈା(ఘିఏ)]మାଵଶఈమ]మଵ଼ఈ . By (K8), ௨∗ = (ఘିଵ)[ିସఈା(ఘିଵఏାଷ)ାଶඥ[ఈା(ఘିఏ)]మାଵଶఈమ]ఈ . Note

that the perpetual software vendor prices satisfy ௨∗ < ∗ . The perpetual software vendor's profit is ߨௌ = ∗௨ + ∗ௌݐ∗ , and the SaaS

vendor's profit is ߨௌௌௌ = ೞ∗(ଵି௧ೄವ∗)(ଷା௧ೄವ∗)ଶ .

In summary, the three equilibria occur in different ranges defined by ߙ. Comparing the vendors’ equilibrium profits under different ߙ regions,
we can derive the final equilibrium outcome presented in Table K1. For example, in the most complicated case, when ߙ > (2 + ߩ)(2√ −

Guo & Ma/Perpetual Software and Software as a Service

A26 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

ௌߨ both market segmentation and sequential dominance are possible equilibria. Note that ,ݍ(ߠ increases in ߙ, but ߨெௌ is independent of ߙ. A threshold ߙො must exist such that ߨௌ > ெௌߨ . Therefore, if ߙ ≥ max[(2 + ߩ)(2√ − ,ݍ(ߠ ො], sequential dominance emerges as theߙ
final market equilibrium outcome.

Table K1. Equilibrium Prices and Profits Under User Continuous Arrival Model
(a) Equilibrium Prices with User Continuous Arrival

Region ࢛∗ ∗ ∗࢙
i (ߩ − ݍ(ߠ − ఈଶ (ߩ − ݍ(ߠ − ఈଶ 0

ii (ߩ − ߩ) ݍ(1 − ߠ) ݍ(1 − ݍ(1 + ఈଶ

iii (ߩ − ݍ(1
ఈଶ ߙ − ߩ) − ݍ(ߠ

iv (ఘିଵ)[ିସఈା(ఘିଵఏାଷ)ାଶඥ[ఈା(ఘିఏ)]మାଵଶఈమ]ఈ
[ିଶఈାହ(ఘିఏ)ାඥ[ఈା(ఘିఏ)]మାଵଶఈమ]మଵ଼ఈ ߙ]2− − ߩ) − [ݍ(ߠ + ඥ[ߙ + ߩ) − ଶ[ݍ(ߠ + ଶ3ߙ12

(b) Equilibrium Prices with User Continuous Arrival Model
Region Condition Equilibrium ࢘ࢋ࣊∗ ∗ࡿࢇࢇࡿ࣊

i ߙ ≤ ߩ) − ߠ2 + ߩ)Entry Deterrence 2 ݍ(1 − ݍ(ߠ − 0 ߙ
ii (ߩ − ߠ2 + ݍ(1 < ߙ ≤ ߩ)2 − ߩ) Market Segmentation ݍ(1 − ݍ(1

(ఏିଵ)ଶ + ఈସ

iii 2(ߩ − ݍ(1 < ߙ ≤ max[(2 ߩ)(2√+ − ,ݍ(ߠ ො] Market Segmentation [ఈାଶ(ఘିఏ)]మ[ହఈାସ(ఘିఏ)]ହସఈమߙ ߙ]2 − ߩ) − ߙଶ[4[ݍ(ߠ − ߩ) − ଶߙ27[ݍ(ߠ

iv ߙ > max[(2 + ߩ)(2√ − ,ݍ(ߠ ො] Sequentialߙ
Dominance

∗௨ + ∗ௌݐ∗
ೞ∗(ଵି௧ೄವ∗)(ଷି௧ೄವ∗)ଶ

	A model of competition between perpetual software and software as a service
	Citation

	C:\Users\degro003\Documents\MISQ\MISQ\MISQ\2017\13640_RA_GuoMa\13640_RA_GuoMa.wpd

