
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2017

Pivot-based Metric Indexing Pivot-based Metric Indexing

Lu CHEN
Zhejiang University

Yunjun GAO
Zhejiang University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Christian S. JENSEN
Aalborg University

Hanyu YANG
Zhejiang University

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation Citation
CHEN, Lu; GAO, Yunjun; ZHENG, Baihua; JENSEN, Christian S.; YANG, Hanyu; and YANG, Keyu. Pivot-based
Metric Indexing. (2017). Proceedings of the VLDB Endowment: 43rd International conference, Munich
Germany, 2017 August 28 -September 1. 1058-1069.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3739

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Lu CHEN, Yunjun GAO, Baihua ZHENG, Christian S. JENSEN, Hanyu YANG, and Keyu YANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3739

https://ink.library.smu.edu.sg/sis_research/3739

Pivot-based Metric Indexing: Experiments and Analyses
Lu Chen

†,

‡ Yunjun Gao

†,
 * Baihua Zheng

‡ Christian S. Jensen
§ Hanyu Yang

† Keyu Yang
†

†
 College of Computer Science, Zhejiang University, Hangzhou, China

* The Key Lab of Big Data Intelligent Computing of Zhejiang Province, Zhejiang University, Hangzhou, China
‡

 School of Information Systems, Singapore Management University, Singapore
§

 Department of Computer Science, Aalborg University, Denmark
†

 {luchen, gaoyj, hyy_zju, kyyang}@zju.edu.cn ‡ bhzheng@smu.edu.sg § csj@cs.aau.dk

ABSTRACT
The general notion of a metric space encompasses a diverse range of
data types and accompanying similarity measures. Hence, metric
search plays an important role in a wide range of settings, including
multimedia retrieval, data mining, and data integration. With the aim
of accelerating metric search, a collection of pivot-based indexing
techniques for metric data has been proposed, which reduces the
number of potentially expensive similarity comparisons by exploit-
ing the triangle inequality for pruning and validation. However, no
comprehensive empirical study of those techniques exists. Existing
studies each offers only a narrower coverage, and they use different
pivot selection strategies that affect performance substantially and
thus render cross-study comparisons difficult or impossible. We offer
a survey of existing pivot-based indexing techniques, and report a
comprehensive empirical comparison of their construction costs, up-
date efficiency, storage sizes, and similarity search performance. As
part of the study, we provide modifications for two existing indexing
techniques to make them more competitive. The findings and in-
sights obtained from the study reveal different strengths and weak-
nesses of different indexing techniques, and offer guidance on select-
ing an appropriate indexing technique for a given setting.

1. INTRODUCTION
Search is a fundamental functionality in computer science, with

similarity search being a prominent type of queries. Given a query
object, similarity search finds similar objects according to a defini-
tion of similarity. This kind of functionality is useful in many set-
tings. For instance, in pattern recognition, similarity queries can be
used to classify a new object according to the labels of already clas-
sified nearest neighbors; in multimedia retrieval, similarity queries
can be utilized to identify images similar to a specified image; and in
recommender systems, similarity queries can be employed to gener-
ate personalized recommendations based on users’ preferences.

Considering the wealth of data types (e.g., images and strings), a
generic model is desirable that is capable of accommodating a wide
spectrum of data types rather than some specific data types. In addi-
tion, the distance metric used for comparing the similarity of objects
goes beyond the Euclidean distance (i.e., the L2-norm) and includes
metrics such as the Lp-norm and earth mover’s distance for images

and the edit distance for strings. Hence, we consider metric spaces to
accommodate a wide of data types and similarity notations.

A number of indexing techniques exist that aim to accelerate
search in metric spaces. As an example, environment for developing
KDD-applications supported by index-structures, termed as ELKI, is
an open source data mining software that uses indexing (e.g., M-tree
[13]) to improve efficiency [25]. Existing indexes can be classified
into two categories, i.e., compact partitioning techniques [1], [3], [7],
[10], [13], [14], [18], [21], [22], [27] and pivot-based techniques [5],
[8], [11], [12], [17], [19], [20], [23], [24], [26]. The former divides
data space into compact regions and tries to eliminate entire regions
during search. The latter employs search that relies on pre-computed
distances between each object in the database and each object in a set
of pivots. Given two objects q and o, the distance d(q, o) cannot be
smaller than |d(q, p) � d(o, p)| for any pivot p, due to the triangle
inequality. Thus, it may be possible to prune an object o as a result
object for q using the lower bound value |d(q, p) � d(o, p)| rather than
computing d(q, o), which may be costly. This enables pivot-based
techniques to outperform compact partitioning techniques in terms of
the number of distance computations [2], one of the key performance
criteria in metric spaces. For this reason and to be comprehensive
within the chosen scope, we focus on the pivot-based techniques.

We aim to address limitations of existing empirical studies. First,
the use of different pivot selection strategies renders the comparison
of pivot-based indexing techniques challenging. For example, the
OmniR-tree [17] utilizes the hull of foci algorithm (HF) to select out-
liers as pivots, while the spacing filing curve and pivot based B+-tree
(SPB-tree) [12] uses the HF based incremental pivot selection algo-
rithm (HFI) to select pivots that maximize the similarity between the
original metric space and the vector space achieved by using the piv-
ots. Since the performance of similarity query processing depends
highly on the pivots used [9], we compare pivot-based indexes using
the same pivot selection strategy. Second, while studies [11], [30]
survey metric indexing techniques pre-2006, the last dozen years
have seen many proposals for new and better metric indexes (e.g.,
disk-based indexes), such as the OmniR-tree, the M-index [23], and
the SPB-tree. We offer a comprehensive empirical study as of today.

In brief, the key contributions of this paper are as follows:
y We provide a compact survey of existing pivot-based indexing

techniques, focusing on the underlying principles.
y We enhance two existing pivot-based metric indexes to give

them better search performance. Specifically, we provide a bet-
ter pivot selection strategy for the extreme pivot table, and in-
tegrate minimum bounding box information into the M-index.

y We present a comprehensive empirical comparison of existing
pivot-based indexing techniques, considering index construc-
tion cost, update efficiency, index size, and query performance
while ensuring an equal footing where the same pivot selection

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing in-
fo@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

strategy is employed. The findings and insights obtained from
the empirical study offer new insights on the strengths and
weaknesses of exiting techniques and aid in selecting an ap-
propriate indexing technique for a given setting.

The rest of this paper is organized as follows. Section 2 presents
the preliminaries of pivot-based indexes. Sections 3, 4, and 5 describe
three categories of pivot-based metric index structures. Experimental
results and our findings are reported in Section 6. Finally, Section 7
concludes the paper.

2. PRELIMINARIES
We proceed to define the core metric similarity queries. Then, we

provide a brief overview of the pivot-based indexes, and describe the
pivot-based filtering enabled by these indexing techniques.

2.1 Metric Similarity Search
A metric space is a two-tuple (M, d), in which M is an object do-

main and d is a distance function for measuring the “similarity” be-
tween objects in M. In particular, the distance function d has four
properties: (1) symmetry: d(q, o) = d(o, q); (2) non-negativity: d(q, o)
≥ 0; (3) identity: d(q, o) = 0 iff q = o; and (4) triangle inequality: d(q,
o) ≤ d(q, p) + d(p, o). Based on these properties, we define metric
similarity search, including the metric range query and the metric k
nearest neighbor query below.

DEFINITION 1 (METRIC RANGE QUERY). Given an object set O, a
query object q, and a search radius r in a metric space, a metric
range query (MRQ) returns the objects in O that are within distance
r of q, i.e., MRQ(q, r) = {o| o � O � d(q, o) d r}.

DEFINITION 2 (METRIC K NEAREST NEIGHBOR QUERY). Given an
object set O, a query object q, and an integer k in a metric space, a
metric k nearest neighbor query (MkNNQ) finds k objects in O that
are most similar to q, i.e., MkNNQ(q, k) = {S | S � O � |S| = k � �s �
S, �o � O � S, d(q, s) ≤ d(q, o)}.

Consider the English word set O = {“defoliates”, “defoliation”,
“defoliating”, “defoliated”, “citrate”}, where edit distance is used to
measure similarity between words. An example of metric range que-
ry finds the words from O with edit distances to the query word “de-
foliate” no larger than 1, i.e., MRQ(“defoliate”, 1) = {“defoliates”,
“defoliated”}. An example of metric k nearest neighbor query finds 2
words from O with the smallest edit distances to the query word “de-
foliate”, i.e., MkNNQ(“defoliate”, 2) = {“defoliates”, “defoliated”}.

An MkNNQ can be answered by an MRQ, if the distance from q
to its kth nearest neighbor, denoted as NDk, is known. However, NDk
is not known when a query is issued. Two typical methods exist for
computing MkNNQ [6], [15]. One utilizes MRQ with incremental
search radius. Specifically, an MRQ with a small search radius is
performed first, and then the search radius is increased gradually un-
til k nearest neighbors are found. Although this method tries to avoid
visiting objects already verified, it still needs to traverse the metric
index multiple times, resulting in high query cost. The other sets the
search radius to infinity and then verifies the objects in order, where
the search radius is tighten using verification.

2.2 Pivot-based Metric Index Structures
Pivot-based methods store pre-computed distances from every ob-

ject in the database to a set of pivots and then use those distances to
prune objects during search. Pivot-based methods can be clustered
into three categories, namely, pivot-based tables, pivot-based trees,
and pivot-based external indexes, according to the structures they use
for storing the pre-computed distances, as listed in Table 1.

Indexes in the first category utilize tables to store pre-computed
distances. Approximating Eliminating Search Algorithm (AESA) [28]

uses a table to preserve the distances from each object to other ob-
jects. However, it incurs a high storage cost O(n2), where n is the
number of objects in the dataset. To save main memory storage for
the table, Linear AESA (LAESA) [19] only keeps the distances from
every object to selected pivots; Extreme Pivot Table (EPT) [24] se-
lects a set of essential pivots covering the entire database; and Clus-
tered Pivot Table (CPT) [20] clusters the pre-computed distances to
further improve query efficiency.

Indexes in the second category use tree structures to store pre-
computed distances. Burkhard-Keller Tree (BKT) [8] is designed for
discrete distance functions. It chooses a pivot p as the root, and in-
serts the objects having distance i to the pivot p in its ith sub-tree.
Different from BKT that uses different pivots at individual levels,
Fixed Queries Tree (FQT) [4] and Fixed Queries Array (FQA) [11]
use the same pivot for all the nodes at the same tree level. Vantage-
Point Tree (VPT) [29] is designed for continuous distance functions,
and its generalization to m-ary trees is called MVPT [5].

Indexes in the third category utilize an existing disk-based index
(e.g., the R-tree or the B+-tree) to store pre-computed distances. The
Omni-family [17] employs existing structures (e.g., the R-tree) to in-
dex pre-computed distances. The PM-tree [26] stores cut-regions de-
fined by pivots in each node of an M-tree to accelerate search. The
M-index [23] generalizes the iDistance [16] technique for general
metric spaces, and uses the B+-tree to store pre-computed distances.
The SPB-tree [12] utilizes a space-filling curve to map pre-computed
distances to integers, which are then indexed by the B+-tree.

The index structures that belong to the first and the second catego-
ries refer to indexes stored in main memory, while index structures
in the third category are disk-based.

2.3 Pivot-based Filtering
Using well-chosen pivots, the objects in a metric space can be

mapped to data points in a vector space. Given a pivot set P = {p1,
p2, …, pl}, a metric space (M, d) can be mapped to a vector space (Rl,
Lf). Specifically, an object q in the metric space is represented as a
point I(q) = ¢d(q, p1), d(q, p2), …, d(q, pl)² in the vector space. Con-
sider the example in Fig. 1, where the L2-norm is used as the distance
function. If P = {o1, o6}, the object set in the original metric space
(as illustrated in Fig. 1(a)) can be mapped to the data points in a two-
dimensional vector space (as depicted in Fig. 1(b)), in which the x-
axis denotes d(oi, o1) and the y-axis represents d(oi, o6) for any object
oi. As an example, object o5 is mapped to point ¢2, 4².

Based on the pivot mapping, the pivot-based filtering [12] can be
used to avoid unnecessary similarity computations.

LEMMA 1 (PIVOT FILTERING). Given a set P of pivots, a query ob-
ject q, and a search radius r, let SR(q) be a search region such that
SR(q) = {¢v1, v2, …, vl² | 1 d i d l � vi t 0 � vi � [d(q, pi) – r, d(q, pi)
+ r]}. If I(o) locates outside SR(q), then o � MRQ(q, r).

PROOF. Assume, to the contrary, that there exists an object o (�
MRQ(q, r)) which satisfies d(q, o) ≤ r, but I(o) � SR(q) (i.e., � pi �

Table 1. Pivot-based metric index structures
Category Index Storage Distance Domain

Pivot-based
tables

AESA[28], LAESA[19] Main-memory Continuous
EPT[24] Main-memory Continuous
CPT[20] Main-memory Continuous

Pivot-based
trees

BKT[8] Main-memory Discrete
FQT[4], FQA[11] Main-memory Discrete
VPT[29], MVPT[5] Main-memory Continuous

Pivot-based
external
indexes

PM-tree[26] Disk Continuous
Omni-family[17] Disk Continuous
M-index[23] Disk Continuous
SPB-tree[12] Disk Continuous

P, d(o, pi) > d(q, pi) + r or d(o, pi) < d(q, pi) – r). According to the
triangle inequality, d(q, o) t |d(q, pi) – d(o, pi)| > r, which contradicts
our assumption. The proof completes. �

Since the pre-computed distances I(o)s are stored together with
object o in a metric index, we can avoid distance computations involv-
ing object o if I(o) �SR(q), based on Lemma 1. Consider the example
in Fig. 1(b) where the dotted rectangle represents the search region
SR(q). Here, object o1 can be pruned as I(o1) �SR(q). Also, Lemma 1
can be utilized to prune an entire region (i.e., a minimum bounding box
that contains multiple I(o)) if it does not intersect SR(q).

To obtain compact regions, two typical metric partitioning tech-
niques are used [30], i.e., ball partitioning and generalized hyperplane
partitioning. We proceed to introduce the partitioning and correspond-
ing pivot filtering techniques that enable pruning of whole regions.

DEFINITION 3 (BALL PARTITIONING). Let Ri.p be the correspond-
ing pivot for a partition region Ri, and let Ri.r be the radius of Ri.
Then the set of objects o (� O) in the partition Ri, obtained via ball
partitioning, is defined as {o | o � O � d(o, pi) ≤ Ri.r}.

Based on the definition of ball partitioning, a range-pivot filtering
technique [30] can be developed as follows.

LEMMA 2 (RANGE-PIVOT FILTERING). Given a ball partitioning
region Ri, a query object q, and a search radius r, if d(q, Ri.p) > Ri.r
+ r, then Ri can be pruned safely.

PROOF. For any object o in Ri, if d(q, Ri.p) > Ri.r + r, then d(q, o)
≥ d(q, Ri.p) – d(o, Ri.p) > Ri.r + r – d(o, Ri.p) due to the triangle ine-
quality. As d(o, Ri.p) ≤ Ri.r according to Definition 3, then d(q, oj) >
r. Hence, any object o in Ri cannot be in the final result set, and Ri
can be pruned safely, which completes the proof. ��

Consider the ball partitioning example depicted in Fig. 2(a), where
the red solid circle denotes the ball region Ri with Ri.p = o7, Ri.r = d(o7,
o6), and Ri = {o6, o7, o8}. As d(q, Ri.p) > Ri.r + r, Ri can be pruned
away according to Lemma 2.

DEFINITION 4 (GENERALIZED HYPERPLANE PARTITIONING). Giv-
en a set P of pivots, let pi be the corresponding pivot for a partition
region Ri. Then the set of objects o (� O) in the partition Ri, obtained
by the generalized hyperplane partitioning, is defined as {o | o � O
� �pj z pi, d(o, pi) ≤ d(o, pj)}.

Based on the definition of generalized hyperplane partitioning, a
double-pivot filtering technique [30] is developed as follows.

LEMMA 3 (DOUBLE-PIVOT FILTERING). Given two pivots pi and pj,
a query object q, and a search radius r, if d(q, pi) – d(q, pj) > 2 u r,
then Ri can be pruned safely, as pi is the corresponding pivot for the
partition region Ri.

PROOF. For every o in Ri, according to the definition of Ri, d(o, pi)
≤ d(o, pj). Based on the triangle inequality, we have d(q, pi) ≤ d(o, pi)
+ d(q, o) and d(q, pj) ≥ d(o, pj) – d(q, o). Thus, we can derive that d(q,
pi) – d(q, pj) ≤ d(o, pi) + d(q, o) – d(o, pj) + d(o, q) ≤ 2 u d(q, o) as

d(o, pi) ≤ d(o, pj). If d(q, pi) – d(q, pj) > 2 u r, then d(q, o) > r.
Therefore, no object o (� Ri) can be a real answer object (i.e., o �
MRQ(q, r)), and Ri can be pruned safely. The proof completes. �

Consider the generalized hyperplane partitioning example shown in
Fig. 2(b). Assume o2 and o6 are two pivots, and Ri = {o6, o7, o8, o9} is
the hyperplane partition region corresponding to pivot o6. Since d(q, o6)
– d(q, o2) > 2 u r, Ri can be discarded safely according to Lemma 3.

Lemmas 1 through 3 are pivot filtering techniques. Nonetheless, a
distance computation is still needed for verifying each object that can-
not be pruned. Hence, a validation technique [12] is proposed to save
unnecessary verifications, as stated in Lemma 4 below.

LEMMA 4 (PIVOT VALIDATION). Given a pivot set P, a query ob-
ject q, and a search radius r, if there exists, for an object o in O, a
pivot pi (� P) satisfying d(o, pi) d r – d(q, pi), then o is validated to
be an actual answer object for MRQ(q, r).

PROOF. Given a query object q, an object o, and a pivot pi, d(q, o)
d d(o, pi) + d(q, pi) because of the triangle inequality. If d(o, pi) d r –
d(q, pi), then d(q, o) d r – d(q, pi) + d(q, pi) = r. Thus, o is guaranteed to
be contained in the final result set, which completes the proof. �

3. PIVOT-BASED TABLES
We proceed to describe the indexes that belong to the category of

pivot-based tables, and present corresponding MRQ and MkNNQ
processing, together with some discussions.

3.1 AESA and LAESA
AESA uses a table to store the distances from every object to other

objects. If |O| is the cardinality of a dataset O, the main-memory
storage cost of AESA is O(|O|2), which is high for large datasets.
That renders AESA a theoretical metric index. In order to reduce the
storage cost of AESA, LAESA is proposed. It only stores the dis-
tances from each object to the pivots in a pivot set P, and thus, its
storage cost is reduced to O(|P| u |O|), in which |P| is the number of
pivots in P. LAESA utilizes three tables to store the pivots, the real
data, and the pre-computed distances to the pivots. Fig. 3 shows the
LAESA on the object set O depicted in Fig. 1, where P = {o1, o6}.

MRQ processing. MRQ(q, r) processing using LAESA is simple.
We compute the distances d(q, pi) between the query object q and the
pivots pi (� P) and then verify the objects in the dataset O one by
one. For every object o in O, if it cannot be pruned by Lemma 1, we
compute d(q, o) and insert o into the result set Sr if d(q, o) ≤ r.

MkNNQ processing. MkNNQ(q, k) processing based on LAESA
follows the second approach introduced in Section 2.1. It initializes
the search radius to infinity, and computes the distances from the
query object q to the pivots in P. Subsequently, objects in the dataset
O are evaluated one by one. For each object o, if it cannot be pruned
by Lemma 1, we compute d(q, o) and update the search radius using
the current kth nearest neighbor distance.

Discussion. Although LAESA significantly reduces the main-
memory storage cost of AESA, it still incurs high storage cost for a

o7

o2 o3

o4

o5o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
o7

o2

o3

o4

o8

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

q
r

q

(a) Oringal metric space (b) Mapped vector space

SR(q)

o7

o2 o3

o4

o5o1 o6

10 2

2

1

3 4 5 6

3

4

5

6
y

o9

o8

q

Ri.r

Ball partition
region Ri

r o7o2 o3

o4

o5o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
q r

Hyperplane
partition region Ri

(a) Range-pivot filtering (b) Double-pivot filtering
x

object d(oi, o1) d(oi, o6)
o1
o2
o3
o4
o5
o6
o7
o8
o9

0 6

06
2 4

5

P
o1
o6

Pivot table Distance table
Object table

Figure 1. Pivot mapping Figure 2. Pivot filtering Figure 3. LEASA

large dataset, which limits its applicability. For similarity search pro-
cessing, although it utilizes Lemma 1 to avoid certain unnecessary
distance computations, it still needs to scan the full dataset to find
the result set. In addition, since the objects in the dataset are verified
according to the order they are stored, MkNNQ processing using
LAESA results in unnecessary distance computations.

3.2 EPT
Unlike LAESA that utilizes the same pivots for each object, EPT

selects different pivots for different objects in order to achieve better
search performance.

Extreme pivots (EP) consist of a set of pivot groups. Each group G
contains m pivots pi (1≤ i ≤ m), according to which the whole dataset
O is partitioned into m parts A(pi), such that = � (i z j)
and = O. An object o belongs to A(pi) iff |d(o, pi) – Ppi| ≥
D, where Ppi is the expected value of d(o, pi). Consider the example
in Fig. 4, A(pi) = {o1, o2, o6, o7, o9}.

However, it is hard to obtain D, and hence, EPT tries to maximize
D. In other words, EPT randomly selects m pivots as a pivot group Gj,
and sets the pivot pi in Gj to an object o having max{|d(o, pi) – Ppi| |
pi � Gj}. The processing is repeated l times, i.e., l groups Gj (1 ≤ j ≤ l)
are selected. Thus, each object has corresponding l pivots.

Given the dataset shown in Fig. 1, and letting m = 2 and l = 2, two
pivot groups are selected at random, i.e., G1 = {o1, o6} and G2 = {o4,
o9}. Fig. 5 depicts an example of EPT. The structure used by EPT is
similar to that used by LAESA. However, since each object in EPT
may have different pivots, EPT needs to store the corresponding piv-
ot (i.e., the id of the pivot) with the pre-computed distance.

Let X = d(pi, o) and Y = d(pi, q), then the query cost in terms of the
number of distance computations can be estimated as:

cost = m u l + |O| u (1� Pr(|X � Y| > r))l
 ≥ m u l + |O| u (1�)l (1)

Using Equation (1), we can approximate the optimal m by fixing l
(to control the main-memory storage size), where , , and r can be
estimated. Nevertheless, EPT utilizes Z = d(o, q) to estimate Y = d(pi,
q), which is inaccurate. In addition, it is difficult to estimate r value
which is specified by the user.

We therefore proceed to introduce a new pivot selection algorithm
(PSA) to improve the efficiency of EPT. Let D(q, o) = max{|d(q, pi)

– d(o, pi)| | pi � P}, which is a lower bound of d(q, o) according to
the triangle inequality. Hence, the query cost can be estimated as:

cost = m u l + |O| u Pr(D(q, u) d r) (2)
To achieve the optimal query cost defined in Equation (2), D(q, u)

should approach d(q, o) as much as possible in order to avoid unnec-
essary distance computations of d(q, o). Thus, PSA tries to maximize
the random variable D(q, o)/d(q, o).

Algorithm 1 presents the pseudo-code of PSA. First, it samples the
object set O as set S, and invokes HF algorithm [17] to obtain outli-
ers as candidate pivots CP (lines 1-2). Here, cp_scale is set to 40 be-
cause this value yields enough outliers in our experiments. Then, for
each object o in O, the algorithm incrementally selects effective piv-
ots from CP (lines 4-7), and updates EPT* (line 8). Finally, EPT* is
returned (line 9).

MRQ and MkNNQ processing. Like LAESA, EPT and EPT* use
tables to store pre-computed distances. The only difference is that
EPT and EPT* utilize different pivots for different objects, while
LAESA uses the same pivots for every object. Hence, MRQ and
MkNNQ processing on EPT or EPT* are the same as those on LAESA.

Discussion. EPT* achieves a better similarity search performance
than EPT, contributed by the higher quality pivots selected by PSA.
Nonetheless, it is costly to maximize .

3.3 CPT
LAESA and EPT store the distance table and the data file in main

memory, and similarity query processing needs to scan the whole ta-
ble. However, when the size of the dataset exceeds the capacity of
the main memory, it is necessary to store the dataset on disk, and it
becomes attractive to cluster the data to improve I/O efficiency.

CPT uses an M-tree to cluster and store the objects on disk. Fig.
6(b) shows an M-tree for the object set O = {o1, o2, …, o9} in Fig. 1.
An intermediate (i.e., a non-leaf) entry e in a root node (e.g., N0) or a
non-leaf node (e.g., N1, N2) records the following: (i) A routing ob-
ject e.RO that is a selected object in the subtree STe of e. (ii) A cover-
ing radius e.r that is the maximum distance between e.RO and the
objects in STe. (iii) A parent distance e.PD that equals the distance
from e to the routing object of its parent entry. Since a root entry e
(e.g., e6) has no parent entry, e.PD = ∞. (iv) An identifier e.ptr that
points to the root node of STe. A leaf entry (i.e., a data object) o in a
leaf node (e.g., N3, N4, N5, N6) records the following: (i) An object oj
that stores the detailed information of o. (ii) An identifier oid that rep-
resents o’s identifier. (iii) A parent distance o.PD that equals the dis-
tance from o to the routing object of o’s parent entry.

An example of CPT is shown in Fig. 6. CPT consists of three parts,
i.e., a pivot table, a distance table, and an M-tree. The distance table
stores the pre-computed distances between objects and pivots in
main memory. The M-tree stores the objects in the tree structure on
disk (i.e., each M-tree entry contains one object). Note that, the dis-
tance table includes pointers to the leaf entries in the M-tree, in order
to enable loading of the corresponding objects for verification.

Algorithm 1 Pivot Selecting Algorithm (PSA)
 Input: a set O of objects, the number l of pivots for each object
 Output: EPT*
 1: obtain a sample set S from O
 2: CP = HF(O, cp_scale) // get a candidate pivot set CP (|CP| = cp_scale)
 3: for each object o in O do
 4: P = �
 5: while |P| < l do
 6: select a different pi from CP with the maximal
 7: P = P ∪ {pi}
 8: update EPT* with ¢(p1, d(o, p1)), (p2, d(o, p2)), …, (pl, d(o, pl))²
 9: return EPT*

d(o, pi)o1
µp

o2 o5 o6o9 o7o8

o4

o3
µp + aµp – a

A(pi) A(pi)

i ii
Figure 4. Illustration of A(pi)

Pivot table Object table Distance table
P object (p1, d(oi, p1)) (p2, d(oi, p2))
o1 o1 (o1, 0) (o9, 5)
o4 o2 (o1,) (o4, 1)
o6 o3 (o1,) (o9,)
o9 o4 (o6,) (o4, 0)
 o5 (o1, 2) (o9,)
 o6 (o6, 0) (o4,)
 o7 (o6,) (o4,)
 o8 (o1,) (o9, 1)
 o9 (o1, 5) (o9, 0)

Figure 5. EPT

MRQ and MkNNQ processing. MRQ and MkNNQ processing
using CPT are similar as the processing using LAESA. The only dif-
ference is that, when an object cannot be pruned by Lemma 1, the
object must be read from disk.

Discussion. Using CPT, we can avoid loading the whole dataset
into main memory to perform query processing. However, CPT incurs
CPU cost to load objects from disk. In addition, the distance table is
stored in main memory, meaning that the applicability of CPT is on-
ly limited to the dataset whose distance table fits in main memory.

4. PIVOT-BASED TREES
We describe the indexes belonging to the category of pivot-based

trees along with the corresponding MRQ and MkNNQ processing.

4.1 BKT
BKT is a tree structure designed for discrete distance functions. It

chooses a pivot as the root, and maintains the objects having the dis-
tance i to the pivot in its ith sub-tree. If a sub-tree contains more than
one object, it selects a pivot at random and partitions the sub-tree re-
cursively. Fig. 7 gives an example BKT, constructed based on the
objects from Fig. 1(a) and the discrete distance function Lf-norm.
The leaf nodes store the actual objects, while the non-leaf nodes
store the corresponding pivots used to partition the sub-trees. To im-
prove the efficiency of the pivot-based trees, we only store the iden-
tifiers in the tree structures, and store the objects in a separate table.

MRQ processing. In order to answer MRQ(q, r), the nodes in the
BKT are traversed in depth-first fashion. When a non-leaf node is
accessed, we identify its qualifying child entries using Lemma 1; and
when a leaf node is accessed, we insert the corresponding object into
the result set if it is not pruned by Lemma 1.

MkNNQ processing. In order to answer MkNNQ(q, k), the nodes
in the BKT are traversed in best-first manner, i.e., in ascending order
of their minimum distances to the query object q, where Lemma 1 is
used to filter out unqualified nodes. Here, we first set the search ra-
dius to infinity and then update it using the visited objects.

Discussion. BKT is an unbalanced tree. To avoid empty sub-trees
for large distance domains, every sub-tree covers the same range of dis-
tance values, which are stored together with each sub-tree. BKT ran-
domly selects the pivots for sub-trees. If BKT uses the same pivots as
other pivot-based metric indexes, it produces FQT as discussed below.

4.2 FQT
Unlike BKT, FQT utilizes the same pivot at the same level. Fig. 8

shows an example of FQT, where o1 and o6 are selected as the pivots
for the first level and the second level, respectively.

MRQ and MkNNQ processing. MRQ and MkNNQ processing
using FQT are the same as that for BKT.

Discussion. FQT is also an unbalanced tree. In order to utilize the
same set P of pivots as other pivot-based metric indexes, the tree-
level is set to the number of pivots, and pi � P is set as the pivot for
the ith level. With well-chosen pivots, the performance of FQT is ex-
pected to be better than that of BKT.

4.3 MVPT
Unlike BKT and FQT that only support discrete distance functions,

VPT and its variant MVPT are able to support continuous distance
functions. VPT chooses a pivot p as the root, and selects a medium
value v so that the objects o with d(o, p) ≤ v are put in the left sub-
tree, while the remaining objects are put in the right sub-tree. If the
number of objects in a sub-tree exceeds a threshold, the sub-tree is
further partitioned. Fig. 9(a) depicts an example of VPT, where Lf-
norm is used. Note that, the pivots for the nodes at the same level can
be different. In order to be able to compare the efficiency of different
indexes using the same set of pivots, nodes of VPT at the same level
share the same pivot.

VPT can be generalized to m-ary trees, yielding MVPT. Specifi-
cally, each time, MVPT selects m � 1 medium values v1, v2, …, vm-1
instead of one, such that the objects o with d(o, p) ≤ v1 are put in the
first sub-tree, the objects o with v1 < d(o, p) ≤ v2 are put in the second
sub-tree, etc. Fig. 9(b) gives an example of MVPT, where Lf-norm is
used and m is set to 3.

MRQ and MkNNQ processing. MRQ and MkNNQ processing
using VPT are similar to the processing using BKT.

Discussion. Unlike BKT and FQT, MVPT is a balanced tree. As m
grows, the pruning ability first increases and then drops. This occurs
because, with larger m values, more compact sub-trees are obtained
at every tree level. Nevertheless, larger m values also result in lower
MVPT tree levels, indicating that fewer pivots are available for prun-
ing. In this paper, we set m as 5 to achieve high query performance.
In addition, it only needs to store medium values to partition the sub-
trees, which incurs lower storage cost than BKT and FQT.

5. PIVOT-BASED EXTERNAL INDEXES
We proceed to detail the indexes belonging to the category of piv-

ot-based external indexes, present corresponding MRQ and MkNNQ
processing, and give some discussions.

5.1 PM-Tree
The PM-tree combines the pivot mapping and the M-tree, where

the M-tree is used to cluster the objects, and the pivot mapping is uti-
lized to avoid unnecessary distance computations. Hence, different
from the M-tree introduced in Section 3.3, each leaf entry of the PM-

Pivot table Distance table

e1 e2

o6 o7 o8 o9

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

o1 o2 o4 o3 o5

e2.RO e2.PDe2.ptre2.r
r2 N2 o6

e6.RO e6.PDe6.ptre6.r
r6 N6 o8 d(o8,o6)

o9.PDoidoj
9o9 r6

8

(b) The M-tree

o7o2 o3

o4

o5
o1 o6

o9

o8

e3

e4

e6

e5

e1 e2

r6

r2

P ptr d(oi, o1) d(oi, o6)
o1 o1 0 6
o6 o2
 o4
 o3
 o5 2 4
 o6 6 0
 o7
 o8
 o9 5

(a) Pivot and distance tables (c) Data distribution
Figure 6. CPT

o1 o8

o1

o7o4o2

1 2 3 4 50 6
o6o3

o4 o5 o8 o9

0 02 1

o1 o6

o1

o7o6o2

1 2 3 4 50 6
o6o3

o5 o4

4 5
o8 o9

2 3

 Figure 7. BKT Figure 8. FQT

o6, 1

o1, 3

o6, 4

{o2, o4, o1}{o3, o5} {o6, o7}{o8, o9}

o6

{o6, o7, o8}{o3, o5, o9}{o1, o2, o4}

2 4

(a) VPT (b) MVPT
Figure 9. VPT and MVPT

tree stores the mapped vector (i.e., the pre-computed distances to the
pivots) with the real data object. In each intermediate entry, the PM-
tree stores a minimum bounding box (MBB) that bounds all the
mapped vectors in its child leaf entries. Specifically, given a pivot
set P = {pi| 1 ≤ i ≤ n}, MBB(e) = {[ai, bi] | 1 ≤ i ≤ n}, where ai =
min{d(o, pi) | o � e}, and bi = max{d(o, pi) | o � e}. Fig. 10 depicts
an example of PM-tree, with the data distribution shown in Fig. 6(c).

MRQ processing. In order to answer MRQ(q, r), the entries in the
PM-tree are traversed in depth-first fashion. When an intermediate
entry is accessed, we verify its qualifying child entries using Lem-
mas 1 and 2; and when a leaf entry is accessed, we insert the corre-
sponding object into the result set if it is not discarded by Lemma 1.

MkNNQ processing. In order to answer MkNNQ(q, k), the entries
in the PM-tree are traversed in best-first manner, i.e., in ascending
order of their minimum distances to the query object q, where Lem-
mas 1 and 2 are employed to eliminate unqualified entries. We first
set the search radius to infinity, and then, we update the search radius
during the search using the visited objects.

Discussion. The PM-tree stores the data objects in its entries in-
stead of in a separate file, which limits its usability. In particular, for
complex objects (e.g., the 282 dimensional vectors used in our exper-
iments), the PM-tree needs a large page/node size.

5.2 Omni-Family
Unlike the PM-tree, Omni-family uses a separate random access

file (RAF) to store the objects, in order to avoid the impact of the ob-
ject size. The Omni-family utilizes an existing external index, e.g.,
the sequential file, the B+-tree, or the R-tree, to index the vectors af-
ter the pivot mapping. A sequential file stores the pre-computed dis-
tances of objects in order of their identifiers; a B+-tree is used to in-
dex the pre-computed distances for each pivot; and an R-tree is used
to index the pre-computed distances for all the pivots together. An
existing study [17] shows that the OmniR-tree performs the best in
most cases. Fig. 11 depicts an example of OmniR-tree, including a
pivot table that stores the pivots, an R-tree that indexes the pre-
computed distances, and an RAF that stores the objects. The MBB of
each R-tree node is shown in Fig. 10(b).

MRQ processing. To answer MRQ(q, r), the entries in the R-tree
are traversed in depth-first fashion. When an intermediate entry is
visited, we verify its qualifying child entries using Lemma 1; and
when a leaf entry is accessed, we compute the actual distance and in-
sert the corresponding object into the result set if it is in the answer.

MkNNQ processing. To answer MkNNQ(q, k), the entries in the
R-tree are traversed in best-first manner, i.e., in ascending order of
their minimum distances to the query object q, where Lemma 1 is
used to eliminate unqualified entries. Here, we set the search radius
to infinity and then update it using the visited objects.

Discussion. The Omni-family contains the Omni-sequential-file,
the OmniB+-tree, and the OmniR-tree. Omni-sequential-file can be
regarded as LAESA stored on disk, which incurs substantial I/O dur-
ing search as the data is not clustered. The OmniB+-tree needs one
B+-tree for every pivot, resulting in redundant storage and I/O during
search. The OmniR-tree utilizes MBBs to cluster the data, and uses
the pivot filtering to achieve high query efficiency.

5.3 M-Index
Unlike the PM-tree that utilizes the ball partitioning technique, the

M-index uses hyperplane partitioning (as discussed in Section 2.3) to
cluster the data. Given a set P of pivots, each object o is mapped to
the real number key(o) = d(pi, o) + (i – 1) u d+, where pi (� P) is the
pivot nearest to o and d+ is the maximum distance in a certain metric
space. Considering the example in Fig. 12, if P = {o1, o6}, we obtain
two clusters C1 and C2. M-index consists of (i) a pivot table, (ii) a
cluster tree that maintains the information of the clusters (i.e., the
minimum and maximum mapped digits minkey and maxkey in each
cluster), (iii) a B+-tree that indexes the mapped real numbers, and (iv)
an RAF that stores the data objects with all the pre-computed dis-
tances. If more pivots are used, the cluster-tree can be extended to a
dynamic tree. Specifically, if the number of the objects in a certain
cluster exceeds a threshold maxnum (set to 1,600 in this paper), it
can be further partitioned using the left pivots, as shown in Fig. 12(d).

MRQ processing. To answer MRQ(q, r), the entries in the cluster
tree are traversed in depth-first fashion. When an intermediate entry
is visited, we evaluate its qualifying child entries using Lemma 3;
and when a leaf entry is accessed, we obtain the objects that belong
to this cluster from B+-tree, and filter out the unqualified objects ac-
cording to Lemma 1.

MkNNQ processing. To answer MkNNQ(q, k), a range query
with a small search radius is performed first, and then, the search ra-
dius is increased gradually until k closest objects are found.

We add the MBB information for each cluster to the M-index, ob-
taining an M-index*. Based on the MBBs, the pivot filtering tech-

e1 e2

o6 o7 o8 o9

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

o1 o2 o4 o3 o5

e2.RO e2.PDe2.ptre2.r
r2 N2 o6 8

e6.RO e6.PDe6.ptre6.r
r6 N6 o8 d(o8,o6)

o9.PDoidoj
9o9 r6

d(o9, o1)
5
d(o9, o6)

MBB(e6)
M6

M2

MBB(e2)Pivot table
P
o1
o6

o7

o2

o3

o4

o8

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

q
M6

M5

M2

M1

M3

M4

(a) PM-tree structure (b) MBB
Figure 10. PM-tree

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr
N6

5(o9)

e6.MBB
M6

e16.ptr
o9

o1 o92 8RAF o4 o3

id len obj
o2 o5 o6 o7 o8 o9

e16

Pivot table
P
o1
o6 e16.MBB

R-tree

Figure 11. OmniR-tree

o7o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

x

y

o9

o8

0 102 10+
d(oi, o1) d++d(oi, o6)

6

C1 C2

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr

e16.ptr
o9

RAFo2 o3 o6 o7 o8 o9

e16

o1 o5 o4

e6.key
N6

e16.key

C1 C2

minkeyMBB
10

maxkey
M2 10+Cluster-tree

B+-tree

10+

10+

Pivot table
P
o1
o6

 (a) Hyperplane partitioning (b) M-index structure

o7

o2

o3

o4

o8

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

M2

M1

C1 C2

C1,2 C1,3

Cn...

C1,n... C2,1 C2,3 C2,n...

C1,3,2 C1,3,4 C1,n,n-1...

Level =1

Level = 2

Level = 3C2,3,1 C2,3,4 C2,3,n...

Cluster-tree

(c) MBB (d) Dynamic cluster-tree
Figure 12. M-index

nique (i.e., Lemma 1) can be applied when traversing the cluster-tree
in order to filter unqualified clusters in advance, and MkNNQ can
traverse the cluster-tree in best-first manner. Specifically, clusters are
visited in ascending order of their distances to the query object q. In
addition, the data validation technique (i.e., Lemma 4) can also be
integrated to avoid unnecessary verifications.

Discussion. By integrating the data validation and the MBB in-
formation in the cluster tree, the efficiency of MRQ and MkNNQ is
improved. Since the M-index* can use Lemma 3 based on the hyper-
plane partitioning technique for pruning while others cannot, it can
achieve a better performance in terms of distance computations.

5.4 SPB-Tree
To reduce the storage cost, the SPB-tree utilizes a space-filling

curve (SFC) to map the pre-computed distances into SFC values (i.e.,
integers) while (to some extent) maintaining spatial proximity. SPB-
tree consists of (i) a pivot table, (ii) a B+-tree storing SFC values, and
(iii) an RAF that stores data objects. Each non-leaf B+-tree entry e
stores SFC values min and max for ¢a1, a2,…, an² and ¢b1, b2,…, bn²
that represent MBB(e) = {[ai, bi] | 1 ≤ i ≤ n}. Fig. 13 depicts an ex-
ample of SPB-tree, where Fig. 13(b) illustrates the Hilbert mapping.

MRQ processing. To answer MRQ(q, r), the entries in the B+-tree
are traversed in depth-first fashion. When an intermediate entry is
visited, we identify its qualifying child entries using Lemma 1; and
when a leaf entry is accessed, we utilize Lemma 4 or compute the ac-
tual distance to validate the object.

MkNNQ processing. To answer MkNNQ(q, k), the entries in the
B+-tree are traversed in best-first manner, i.e., in ascending order of
their minimum distances to the query object q, where Lemma 1 is
used to filter unqualified entries. Here, we set the search radius to in-
finity and then update it using the visited objects.

Discussion. We employ the SFC mapping to reduce the storage
cost and meanwhile maintain spatial proximity, resulting in improved
I/O and index storage costs. However, for continuous distance func-
tions, the continuous distances are approximated as the discrete ones
to perform the SFC mapping, which decreases the pruning power.

6. EXPERIMENTAL STUDY
We proceed to report an empirical study on the performance of the

pivot-based metric indexes via experiments. To be more specific, we
consider the index construction cost, study the efficiency of EPT*
and the M-index*, and evaluate the performance of all the pivot-
based metric indexes when varying pertinent parameters.

6.1 Experimental Setup
We implemented all the indexes and associated similarity search

algorithms in C++. Further, all pivot-based metric indexes utilize the
same set of pivots selected by the state-of-the-art algorithm [12].
This does, however, not apply to EPT, EPT*, and BKT. As discussed
in Sections 3.1 and 4.1, EPT and EPT* utilize different pivots for
different objects, while BKT needs to randomly select pivots in its

sub-trees. All experiments were conducted on an Intel Xeon E5-2620
v3 2.4GHz PC with 8GB memory.

We employ three real datasets, namely, LA, Words, and Color. LA1
consists of geographical locations in Los Angeles. Words2 contains
proper nouns, acronyms, and compound words taken from the Moby
project. Color3 consists of standard MPEG-7 image features extract-
ed from Flickr. A synthetic dataset is also created, where five dimen-
sion values are generated randomly, and the remaining dimension
values are linear combinations of the previous ones. Each dimension
of LA and Synthetic is mapped to [0, 10000], while each dimension
of Color is mapped to [-255, 255]. To study the performance of BKT
and FQT that are designed for discrete distance functions, the values
in Synthetic are generated as integers. Table 2 summarizes the statis-
tics of the datasets, including the cardinality, the dimensionality
(Dim.), the intrinsic dimensionality (Int. Dim.), the maximum dis-
tance (MaxD) between data objects, and the distance measure (Dis.
Measure). To capture the distance distribution of the dataset, the Int.
Dim. is calculated as P2/2V2, where P and V2 are the mean and vari-
ance of the pairwise distances in the dataset.

We investigate the similarity query performance of the indexes
when varying the parameters listed in Table 3. The value of the radi-
us r denotes the percentage of objects in the dataset that are result
objects of a metric range query. In each experiment, one parameter is
varied, and the others are fixed at their default values. The main per-
formance metrics contain the number of page accesses (PA), the
number of distance computations (compdists), and the CPU time.
Each measurement we report is an average over 100 random queries.

To maintain consistency with the operating system, the indexes
use a fixed page size of 4KB as default. However, the data size for
high-dimensional datasets is relatively large. CPT and PM-tree store
directly the data in the index structures, and hence, a larger page size
is needed to ensure a proper tree height; while other indexes separate
the data from the index structures, meaning that the tree height is in-
dependent of the data size. Thus, a larger page size 40KB is used for
CPT and PM-tree on Color and Synthetic datasets. As stated in Sec-
tion 5, MkNNQ using M-index traverses the index multiple times for
every query, while MkNNQ using SPB-tree, M-index*, or OmniR-
tree has duplicate RAF page accesses since it does not visit the data
stored in a separate RAF in sequence. Therefore, a 128KB LRU
cache is used in our experiments to improve MkNNQ efficiency.

6.2 Construction Cost
Table 4 details the construction costs and storage sizes for the in-

dexes using real datasets, where I denotes a main-memory storage
cost, and D indicates a disk storage cost. There are no values for
BKT and FQT on LA and Color, as BKT and FQT assume discrete

1 LA is available at http://www.dbs.informatik.uni-muenchen.de/~seidl.
2 Words is available at http://icon.shef.ac.uk/Moby/.
3 Color is available at http://cophir.isti.cnr.it/.

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr e6.min

e16.ptr
o6

RAFo2 o5 o9 o8 o7 o6

e16

000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111
o1

o2

o4

o3 o9

o5

o6

o7

o8

o3 o1 o4

60

58

M2
M1

(M3)

M4

M5

M6

e6.key
N6

e16.key

56
e6.max
61

Pivot table
P
o1
o6

B+-tree

(a) SPB-tree structure (b) Hilbert mapping
Figure 13. SPB-tree

Table 2. Datasets used in the experiments
Dataset Cardinality Dim. Int. Dim. MaxD Dis. Measure
LA 1,073,727 2 5.4 14000 L2-norm
Words 611,756 1~34 1.2 34 Edit distance
Color 1,000,000 282 6.5 100000 L1-norm
Synthetic 1,000,000 20 6.6 10000 Lf-norm

Table 3. Parameter settings

Parameter Value Default
the number |P| of pivots 1, 3, 5, 7, 9 5
r 4%, 8%, 16%, 32%, 64% 16%
k 5, 10, 20, 50, 100 20

distance functions; and there are also no PA values for LAESA, EPT,
EPT*, BKT, FQT, and MVPT, since they are in-memory indexes. To
summarize our findings, Table 5 provides the ranking for all pivot-
based metric indexes. Here, the M-index and the M-index* are listed
together as M-index(*) because they have similar construction costs.

I/O cost. The SPB-tree performs the best in terms of I/O cost, fol-
lowed by the M-index(*), while the PM-tree and CPT perform the
worst. The SPB-tree and the M-index achieve high I/O efficiency via
the B+-tree, while the SPB-tree uses SFC to further reduce I/O cost.

Compdists. As observed, LAESA, BKT, FQT, MVPT, the Om-
niR-tree, the M-index, and the SPB-tree achieve the same perfor-
mance in terms of compdists. This is because compdists for these in-
dexes depend on the number of pivots and the number of data objects.
However, the PM-tree and CPT incur additional distance computa-
tions for constructing the M-tree to store actual data, while EPT and
EPT* need more compdists to select pivots for every data.

CPU time. The first observation is that LAESA, BKT, FQT, and
MVPT perform the best in terms of CPU time, since they operate in
main memory. Although EPT and EPT* are also in-memory indexes,
EPT ranks 3rd and EPT* performs the worst in terms of CPU time.
This is because they need to select different pivots for different ob-
jects while selecting pivots for EPT* is costly as analyzed in Section
3.2. Second, the SPB-tree and the M-index(*) can achieve high CPU
efficiency (i.e., ranking 2nd) because of the B+-tree used, while the
OmniR-tree, CPT, and the PM-tree need more CPU time (i.e., rank-
ing 4th) as they use an R-tree or an M-tree instead of a B+-tree.

Storage. The storage cost for a pivot-based metric index includes
two parts, i.e., the storage for the pre-computed distances and the
storage needed for the objects themselves. First, the SPB-tree per-
forms the best, since it utilizes an SFC to reduce the storage cost of
the pre-computed distances. However, on the Color dataset, the stor-
age cost of the SPB-tree is relatively larger. The reason is that, each
object in Color needs 1,136 bytes, and that the size of the pages used
to store the real objects is 4KB, thus incurring a waste of storage in
every page. Second, the storage costs of the pivot-based trees are rel-
atively smaller, because they only store the distance values used to
partition the sub-tree instead of all the pre-computed distances. Third,
the storage costs of LAESA and EPT(*) are smaller than those of the
OmniR-tree and the M-index, since the latter two require additional

storage to index the pre-computed distances. In addition, the storage
cost of EPT(*) exceeds that of LAESA, as EPT(*) selects different
pivots for every object and hence needs additional storage to indicate
the corresponding pivot for each object. Finally, the storage costs of
CPT and the PM-tree are the largest. This is because they store the
real objects directly in the tree structures, while the other indexes use
separate files to store the real objects.

In conclusion, the pivot-based trees (including BKT, FQT, MVPT),
LAESA, and the SPB-tree achieve the highest construction and stor-
age efficiency, followed by the M-index, EPT, and the OmniR-tree,
while EPT*, CPT, and the PM-tree perform the worst.

Discussion. Index construction can be accelerated using parallel-
ization in several ways: (i) as the pivots are independent of each oth-
er, the pre-computed distances to each pivot can be computed in par-
allel; (ii) since objects are independent of each other, the pre-
computed distances for each object can be computed in parallel; and
(iii) as the data can be partitioned into disjoint parts, multiple index
structures (e.g., multiple B+-trees, M-trees, R-trees, BKTs, FQTs,
MVPTs) instead of one can be constructed in parallel.

6.3 Update Cost
Table 6 details the update costs when using real datasets, while

Table 7 provides the ranking. Here, an update operation first deletes
a specific data object and then inserts it back. First, we observe that
BKT, FQT, and MVPT can achieve high update efficiency. This is

Table 6. Update Costs
 LA Words Color
 PA Comp. Time(s) PA Comp. Time(s) PA Comp. Time(s)
LAESA � 5 0.15 � 5 0.14 � 5 2.29
EPT � 1.5E7 2.5 � 3.3E6 2.1777 � 7.5E6 11.7
EPT* � 5448 0.3999 � 3138 0.2612 � 5080 2.94
CPT 15.2 78.3 0.6559 1052 93 0.1772 16.4 80.9 0.5698
BKT � � � � 9.56 0.0001 � � �
FQT � � � � 10 0.0004 � � �
MVPT � 10 0.0001 � 10 0.0001 � 10 0.0001
PM-tree 32 48 0.0023 2004 4167 0.035 119 227 0.1033
OmniR-tree 16.1 10 0.0042 52.9 10 0.0029 15.9 10 0.0045
M-index(*) 13 10 0.0014 20.5 10 0.0016 11.8 10 0.0027
SPB-tree 12.9 10 0.0003 12.6 10 0.0014 12.5 10 0.0009

Table 4. Construction costs and storage sizes
 LA Words Color
 PA Compdists Time (s) Storage (KB) PA Compdists Time (s) Storage (KB) PA Compdists Time(s) Storage (KB)
LAESA � 5,368,635 2 50,331 (I) � 3,058,780 3 44,209 (I) � 5,000,000 80 1,140,625 (I)
EPT � 539,394,597 87 71,302 (I) � 124,892,823 82 56,157 (I) � 240,990,000 426 1,160,156 (I)
EPT* � 5,806,935,663 6,375 71,302 (I) � 1,895,345,425 2,545 56,157 (I) � 5,040,204,959 11,742 1,160,156 (I)

CPT 12,057,791 92,141,339 263 54,525 (I)
73,836 (D) 1,708,696 65,742,690 113 31,066 (I)

96,880 (D) 12,651,989 75,938,556 390 50,782 (I)
2,035,599 (D)

BKT � � � � � 3,036,382 1.6 22,896 (I) � � � �
FQT � � � � � 3,058,780 1.3 22,770 (I) � � � �
MVPT � 5,368,635 2.7 21,054 (I) � 3,058,780 1.8 22,729 (I) � 5,000,000 117 1,105,552 (D)
PM-tree 4,342,461 32,828,371 167 240,424 (D) 4,643,434 60,087,931 230 213,552 (D) 4,803,502 93,930,402 609 2,605,440 (D)
OmniR-tree 171,648 5,368,635 291 90,956 (D) 1,441,537 3,058,780 68 57,104 (D) 3,690,582 5,000,000 495 1,400,752 (D)
M-index(*) 93,904 5,368,635 15 76,775 (D) 53,866 3,058,780 10 45,140 (D) 416,897 5,000,000 101 1,389,174 (D)
SPB-tree 33,867 5,368,635 8 33,844 (D) 15,397 3,058,780 7 18,228 (D) 360,952 5,000,000 95 1,349,168 (D)

Table 5. Ranking according to construction and storage costs
 1st 2nd 3rd 4th 5th
PA SPB-tree M-index(*) OmniR-tree PM-tree CPT

Compdists {LAESA, BKT, FQT, MVPT,
OmniR-tree, M-index(*), SPB-tree} PM-tree CPT-tree EPT EPT*

Time {LAESA, BKT, FQT, MVPT } {SPB-tree, M-index(*)} EPT {CPT, PM-tree, OmniR-tree} EPT*
Storage {BKT, FQT, MVPT, SPB-tree} LAESA EPT(*) {M-index(*), OmniR-tree} {CPT-tree, PM-tree}

because they are stored in main memory and the positions for insert-
ing/deleting can be found quickly using the tree structures. Second,
the update costs of the PM-tree and CPT are relatively larger since
they store the data objects directly in the trees. Third, the CPU time
of LEASA, EPT*, and CPT is relatively high (i.e., ranking 4th) as
they employ sequential scans to perform deletions. Fourth, the up-
date costs of EPT and EPT* are high, because they need additional
cost when selecting pivots for each data to be inserted. Note that,
EPT* has better update efficiency than EPT, because EPT incurs
high estimation costs when selecting pivots.

6.4 Efficiency of EPT* and M-Index*
We proceed to consider the efficiency of EPT*, as compared

against EPT. In doing so, we only employ MkNNQs to observe the
effect of parameters on the indexes, due to the space limitation and
because MRQs yield similar findings. Fig. 14 depicts the results,
where PA is omitted, since EPT and EPT* are in-memory indexes.
As observed, EPT* performs better than EPT. This is because the
quality of the pivots selected by EPT* is higher. Nonetheless, as
shown in Table 4, the construction cost of EPT* is much higher in
order to select pivots with higher quality. Since EPT* can be built in
advance and has better update efficiency, it represents a useful im-

provement over EPT. Also, the construction efficiency of EPT* can
be further improved, which is left as a direction of future work.

Next, we consider the efficiency of M-index*, as compared with
M-index. Fig. 15 plots the results. As observed, the M-index* per-
forms better than the M-index, while the compdists of the M-index*
and the M-index are similar on Color and Synthetic. The reason is
that MkNNQs using M-index visit the index multiple times, resulting
in redundant PA and CPU cost, while MkNNQs based on M-index*
traverse the index only once by using MBB information. However,
the number of unnecessary distance computations depends on the in-
creased radius value and the distance distribution of the dataset,
which makes it possible that the compdists of M-index* and M-index
are similar on Color and Synthetic. The second observation is that,
on LA, the CPU time and PA of the M-index* are slightly larger than
those of the M-index for smaller k values. This is because, for small-
er k values on LA, the M-index based MkNNQ processing algorithm
needs fewer MRQs to find the results, incurring little redundant cost.

6.5 Similarity Search Performance
We compare the efficiency of the pivot-based metric indexes un-

der various parameters, including (i) the search radius for MRQ, (ii)
the desired number k for MkNNQ, and (iii) the number |P| of pivots.

Table 7. Ranking according to update costs
 1st 2nd 3rd 4th 5th
PA SPB-tree M-index(*) OmniR-tree CPT PM-tree
Compdists LAESA {BKT, FQT, MVPT, OmniR-tree, M-index(*), SPB-tree} PM-tree, CPT-tree EPT* EPT
Time {BKT, FQT, MVPT } { SPB-tree, M-index(*), OmniR-tree} PM-tree {LAESA, EPT*, CPT} EPT

5 10 20 50 100
0.00

0.02

0.04

0.06

k

C
PU

 ti
m

e
(s

ec
)

0.0

0.5

1.0

1.5

2.0

com
pdists (x10

3)

5 10 20 50 100
0.10

0.15

0.20

0.25

0.30

k

C
PU

 ti
m

e
(s

ec
)

1.0

1.5

2.0

2.5

3.0

com
pdists (x10

5)

5 10 20 50 100
0.4

0.6

0.8

1.0

1.2

k

C
PU

 ti
m

e
(s

ec
)

2

3

4

5

com
pdists (x10

5)

5 10 20 50 100
0.00

0.03

0.06

0.09

k

C
PU

 ti
m

e
(s

ec
)

0.0

0.5

1.0

1.5

com
pdists (x10

4)

 (a) LA (b) Words (c) Color (d) Synthetic

Figure 14. Comparison between EPT and EPT*

5 10 20 50 100
0.0

0.1

0.2

0.3

k

C
PU

 ti
m

e
(s

ec
)

0

100

200

300

com
pdists

5 10 20 50 100
0.0

0.5

1.0

1.5

k

C
PU

 ti
m

e
(s

ec
)

0

1

2

3

4

com
pdists (x10

5)

5 10 20 50 100
0

5

10

15

k

C
PU

 ti
m

e
(s

ec
)

2.0

2.5

3.0

3.5

4.0

com
pdists (x10

5)

5 10 20 50 100
0.0

0.5

1.0

1.5

k

C
PU

 ti
m

e
(s

ec
)

0

1

2

3

4

com
pdists (x10

3)

(a) LA (b) Words (c) Color (d) Synthetic

5 10 20 50 100
0.0

0.4

0.8

1.2

1.6

PA
 (x

10
4)

k
5 10 20 50 100

0.0

1.5

3.0

4.5

PA
 (x

10
4)

k
5 10 20 50 100

0.0

0.5

1.0

1.5

2.0

PA
 (x

10
6)

k
5 10 20 50 100

0.0

0.5

1.0

1.5

PA
 (x

10
5)

k
(e) LA (f) Words (g) Color (h) Synthetic

Figure 15. Comparison between M-index and M-index*

6.5.1 Effect of R
We first compare the performance of the pivot-based metric in-

dexes by using MRQ. Fig. 16 illustrates the corresponding query
costs including compdists, PA, and CPU time for varying R values.
As expected, the query cost increases with the growth of R due to a
larger search space. However, on LA, the query costs of the SPB-tree
and the M-index* drop at the value of 64% due to the use of pivots
with stronger validation capabilities as achieved by larger R values.

Compdists. We observe that (i) the M-index* and the SPB-tree
achieve high search performance in terms of compdists on LA and
Words, because they utilize the pivot validation technique to avoid
unnecessary distance computations; (ii) the PM-tree achieves high
computational efficiency on Synthetic due to its range-pivot filtering,
i.e., the routing objects of the PM-tree can be regarded as an addi-
tional pivot used for pruning; and (iii) EPT* has the smallest comp-
dists on Color, as it selects different pivots for each object to achieve
high pruning power. In addition, the compdists of the pivot-based
trees (i.e., BKT, FQT, and MVPT) are slightly higher. This is be-
cause only some of the pre-computed distances used for the pivot fil-
tering are stored. In addition, MVPT is slightly better than BKT and
FQT in most cases, since BKT and FQT are unbalanced trees. Final-
ly, the remaining indexes share similar compdists, as their pruning
power relies on the pivot filtering based on the same set of pivots.

I/O cost. As can be seen, the SPB-tree has the lowest I/O cost, fol-
lowed by the OmniR-tree and the M-index*, while CPT and the PM-
tree perform the worst. The reasons are that, (i) the SPB-tree uses an
SFC to compact the pre-computed distances while preserve the simi-
larity proximity, thus incurring lower I/O cost; (ii) the OmniR-tree
and the M-index* store all the pre-computed distances, resulting in
larger I/O costs; and (iii) CPT and the PM-tree store the real objects

directly in the tree structure instead of in a separate file, leading to
low I/O efficiency. The I/O cost of the M-index* is high on LA, be-
cause MBBs do not cluster well on LA with the i-Distance technique.

CPU time. The first observation is that, the CPU costs of the in-
memory indexes (viz., BKT, FQT, MVPT, LAESA, and EPT*) are
relatively lower than those of the disk-based indexes (viz. CPT, the
SPB-tree, the M-index*, the OmniR-tree, and the PM-tree). The rea-
son is that the disk-based indexes need additional work to transform
data read from disk into the formats required for further processing.
In addition, the CPU cost of CPT on low dimensional datasets (e.g.,
LA and Words) is better than that on high dimensional datasets (e.g.,
Color and Synthetic) due to the additional CPU time needed to read
objects from disk. It is observed that, the in-memory pivot-based
trees (i.e., BKT, FQT, and MVPT) have lower CPU costs than the in-
memory pivot-based tables (i.e., LAESA and EPT*), especially on
LA and Words. This is because LAESA and EPT* need to scan the
whole pivot table of the dataset, while the pivot-based trees can
prune sub-trees via the pivot-based filtering.

6.5.2 Effect of k
Then, we compare the performance of indexes by using MkNNQs.

Fig. 17 shows the query costs for different k values. As expected,
query costs increase with the growth of k due to larger search space.

Compdists. It can be seen that, (i) the PM-tree and EPT* achieve
the highest computational efficiency on Color and Words, and that (ii)
the compdists of the pivot-based trees (viz., BKT, FQT, and MVPT)
are the largest. The reasons are already discussed in Section 6.4.1.
The second observation is that the compdists of the SPB-tree is high-
er than that of the M-index* and the OmniR-tree on LA and Color.
This is because, for continuous distance functions, the SPB-tree uses
approximated discrete distances in order to perform its SFC mapping,

 EPT* CPT BKT FQT MVPT SPB-tree M-index* PM-tree OmniR-tree

4% 8% 16% 32% 64%
0

2

4

6

8

co
m

pd
ist

s (
x1

05)

r
4% 8% 16% 32% 64%
2

3

4

5

6

7

co
m

pd
ist

s (
x1

05)

r
4% 8% 16% 32% 64%

0.6

0.7

0.8

0.9

1.0

1.1

co
m

pd
is

ts
 (x

10
6)

r
4% 8% 16% 32% 64%

0.0

0.3

0.6

0.9

1.2

co
m

pd
is

ts
 (x

10
6)

r

(a) LA (b) Words (c) Color (d) Synthetic

4% 8% 16% 32% 64%
102

103

104

105

PA

r
4% 8% 16% 32% 64%
0

2

4

6

PA
 (x

10
4)

r
4% 8% 16% 32% 64%
2

4

6

8

PA
 (x

10
5)

r
4% 8% 16% 32% 64%
0

3

6

9

PA
 (x

10
4)

r

(e) LA (f) Words (g) Color (h) Synthetic

4% 8% 16% 32% 64%
0.0

0.2

0.4

0.6

C
PU

 ti
m

e
(s

ec
)

r
4% 8% 16% 32% 64%

0.00

0.25

0.50

0.75

1.00

C
PU

 ti
m

e
(s

ec
)

r
4% 8% 16% 32% 64%
0

1

2

3

7

8

C
PU

 ti
m

e
(s

ec
)

r
4% 8% 16% 32% 64%

0.0

0.4

0.8

1.2

C
PU

 ti
m

e
(s

ec
)

r

(i) LA (j) Words (k) Color (l) Synthetic

Figure 16. MRQ performance vs. radius r

resulting in less effective pivot-based filtering. In addition, the
compdists of LAESA and CPT are relatively larger, because their
MkNNQ algorithms traverse the objects in the dataset in the same
order as they appear, which is suboptimal in terms of compdists.

I/O cost. First, we see that the SPB-tree achieves the highest I/O
efficiency, as covered in Section 6.4.1. Second, the PA of the M-
index* is the largest on LA and Synthetic, due to the unbalanced par-
titions caused by the data distribution. Finally, the PA of the PM-tree
is the largest on Color and Words datasets. As the PM-tree stores ob-
jects directly in its tree structure instead of in a separate file, the high
dimensional and variable sized data incurs low page utilization.

CPU time. As expected, the in-memory indexes have lower CPU
costs than the disk-based indexes. Further, the CPU costs of EPT*
and LAESA generally exceed those of the pivot-based trees in most
cases. Because the MkNNQ algorithm that uses EPT* and LAESA
verifies the objects in the order as they appear, resulting in many un-
necessary verifications. In addition, although the computational cost
of the SPB-tree is slightly higher than that of the M-index* on da-
tasets using continuous distance functions, the CPU time of the M-
index* is larger, due to the additional CPU cost caused by larger PA.

6.5.3 Effect of |P|
Next, we explore the influence of |P| on the performance of the in-

dexes. Here, MkNNQs are used due to the space limitation and simi-
lar findings for MRQs. Fig. 18 depicts the query costs using LA and
Synthetic. Values for the M-index* are absent, as more than one piv-
ot is needed for the generalized hyperplane partitioning. Next, the
compdists drops as |P| grows. This is because having more pivots
yields better pivot filtering. The second observation is that, the PA
and CPU time first drop and then stay stable or increase with |P|. The
reason is that, (i) the number of verified objects drops as compdists

decreases, incurring smaller I/O and CPU costs; and that (ii) the stor-
age size increases due to more pre-computed distances being stored,
resulting in more I/O and higher CPU costs. We can see that an ap-
propriate number of the selected pivots is related to the intrinsic di-
mensionality, which is consistent with the observation made in [11].

7. CONCLUSIONS
We classify existing pivot-based metric indexes into three catego-

ries, i.e., pivot-based tables, pivot-based trees, and pivot-based ex-
ternal indexes, and we study their performance empirically on an
equal footing. The resulting findings and insights, summarized below,
enable users to select the indexes that best support the intended uses:
y Although the storage sizes of the indexes in our experiments

are under 3 GB, which can be loaded into main-memory, the
pivot-based external indexes can achieve better scalability than
the pivot-based tables and trees for the cases when the availa-
ble main memory is small or the dataset is extremely large.

y For the pivot-based tables, (i) CPT tries to improve LAESA by
utilizing an M-tree to store the data, in order to handle the case
when the dataset does not fit into main memory, resulting in
high construction, update, and query costs; and (ii) EPT* tries
to improve EPT by trading index construction efficiency for
query efficiency. Although the construction cost of EPT* is
high, it can be built in advance and has fewer distance compu-
tations for a query. As the computational cost is the dominant
cost in the case of complex distance functions, EPT* is a good
candidate for small datasets with complex distance functions.

y The pivot-based trees can achieve high construction and update
efficiency. Although they incur more distance computations
during search, they have smaller CPU time due to the tree

 EPT* CPT BKT FQT MVPT SPB-tree M-index* PM-tree OmniR-tree

5 10 20 50 100
101

102

103

104

co
m

pd
is

ts

k
5 10 20 50 100

1.0

1.5

2.0

2.5

3.0

3.5

co
m

pd
is

ts
 (x

10
5)

k
5 10 20 50 100

2

3

4

5

co
m

pd
is

ts
 (x

10
5)

k
5 10 20 50 100

0

1

2

3

4

5

co
m

pd
ist

s (
x1

04)

k

(a) LA (b) Words (c) Color (d) Synthetic

5 10 20 50 100
100

101

102

103

104

PA

k
5 10 20 50 100

103

104

105

PA

k
5 10 20 50 100

2.0

2.5

3.0

3.5

4.0

PA
 (x

10
5)

k
5 10 20 50 100

101

102

103

104

105

PA

k

(e) LA (f) Words (g) Color (h) Synthetic

5 10 20 50 100
10-4

10-3

10-2

10-1

100

C
PU

 ti
m

e
(s

ec
)

k
5 10 20 50 100

0.0

0.2

0.4

0.6

0.8

C
PU

 ti
m

e
(s

ec
)

k
5 10 20 50 100

0

2

4

6

C
PU

 ti
m

e
(s

ec
)

k
5 10 20 50 100

10-3

10-2

10-1

100

C
PU

 ti
m

e
(s

ec
)

k

(i) LA (j) Words (k) Color (l) Synthetic
Figure 17. MkNNQ performance vs. k

structures and the absence of I/O costs. In addition, MVPT per-
forms the best among the indexes of this category, because it
uses a balanced tree. Thus, for small datasets with simple dis-
tance computation functions, MVPT is a good candidate.

y For pivot-based external indexes, (i) the PM-tree stores the da-
ta with pre-computed distances in the index structure, which
incurs relatively large construction, update, and query costs; (ii)
the SPB-tree and the M-index* achieve high construction, up-
date, and query efficiency by using a B+-tree with MBB infor-
mation; and (iii) the SPB-tree outperforms the OmniR-tree,
since it utilizes an SFC to reduce the storage cost and while to
some extent preserving similarity locality. Hence, for large da-
tasets, the SPB-tree and the M-index* are good candidates.

The study suggests that extension of EPT(*) to a disk-based metric
index with a low construction cost is a promising direction. Also,
comparisons between pivot-based metric indexes and compact parti-
tioning metric indexes are an interesting research direction.

8. ACKNOWLEDGMENTS
This work was supported in part by the 973 Program of China Grant No.
2015CB352502, NSFC Grant No. 61522208 and 61379033, the NSFC-
Zhejiang Joint Fund Grant No. U1609217, and a grant from the Obel
Family Foundation. Yunjun Gao is a corresponding author of this work.

9. REFERENCES
[1] J. Almeida, R. D. S. Torres, and N. J. Leite. BP-tree: An efficient index

for similarity search in high-dimensional metric space. In CIKM, pages
1365–1368, 2010.

[2] L. G. Ares, N. R. Brisaboa, M. F. Esteller, O. Pedreira, and A. S. Places.
Optimal pivots to minimize the index size for metric access methods. In
SISAP, pages 74–80, 2009.

[3] L. Aronovich and I. Spiegler. CM-tree: A dynamic clustered index for
similarity search in metric databases. Data Knowl. Eng., 63(3):919–946,
2007.

[4] R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity match-
ing using fixed-queries trees. In CPM, pages 198–212, 1994.

[5] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In SIGMOD, pages 357–368, 1997.

[6] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similar-
ity search queries. ACM Trans. Datab. Syst., 24(3):361–404, 1999.

[7] S. Brin. Near neighbor search in large metric spaces. In VLDB, pages
574–584, 1995.

[8] W. Burkhard and R. Keller. Some approaches to best-match file search-
ing. Commun. ACM, 16(4):230–236, 1973.

[9] B. Bustos, G. Navarro, and E. Chavez. Pivot selection techniques for
proximity searching in metric spaces. Pattern Recognition Letters,
24(14):2357–2366, 2003.

[10] E. Chavez and G. Navarro. A compact space decomposition for effective
metric indexing. Pattern Recognition Letters, 26(9):1363–1376, 2005.

[11] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquin. Searching
in metric spaces. ACM Comput. Surv., 33(3):273–321, 2001.

[12] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen. Efficient metric indexing
for similarity search. In ICDE, pages 591–602, 2015.

[13] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In VLDB, pages 426–435, 1997.

[14] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance
searching index for metric data sets. Multimedia Tools Appl., 21(1):9–33,
2003.

[15] G. Hjaltason and H. Samet. Index-driven similarity search in metric
spaces. ACM Trans. Database Syst., 28(4):517–580, 2003.

[16] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance:
An adaptive B+-tree based indexing method for nearest neighbor search.
ACM Trans. Database Syst., 30(2):364–397, 2005.

[17] C. T. Jr, R. F. S. Filho, A. J. M. Traina, M. R. Vieira, and C. Faloutsos. The
omni-family of all-purpose access methods: A simple and effective way
to make similarity search more efficient. VLDB J., 16(4):483–505, 2007.

[18] C. T. Jr, A. J. M. Traina, B. Seeger, and C. Faloutsos. Slim-trees: High
performance metric trees minimizing overlap between nodes. In ICDE,
pages 51–65, 2000.

[19] L. Mico, J. Oncina, and R. C. Carrasco. A fast branch & bound nearest
neighbour classifier in metric spaces. Pattern Recognition Letters,
17(7):731–739, 1996.

[20] J. Mosko, J. Lokoc, and T. Skopal. Clustered pivot tables for I/O-
optimized similarity search. In SISAP, pages 17–24, 2011.

[21] G. Navarro. Searching in metric spaces by spatial approximation. VLDB
J., 11(1):28–46, 2002.

[22] H. Noltemeier, K. Verbarg, and C. Zirkelbach. Monotonous bisector*
Trees —A tool for efficient partitioning of complex scenes of geometric
objects. In Data Struc. and Efficient Algo., pages 186–203, 1992.

[23] D. Novak, M. Batko, and P. Zezula. Metric Index: An efficient and scal-
able solution for precise and approximate similarity search. Inf. Syst.,
36(4):721–733, 2011.

[24] G. Ruiz, F. Santoyo, E. Chavez, K. Figueroa, and E.S. Tellez. Extreme
pivots for faster metric indexes. In SISAP, pages 115–126, 2013.

[25] E. Schubert, A. Koos, T. Emrich, A. Zufle, K. A. Schmid, and A. Zimek.
A framework for clustering uncertain data. PVLDB, 8(12):1976–1979,
2015.

[26] T. Skopal, J. Pokorny, and V. Snasel. PM-tree: Pivoting metric tree for
similarity search in multimedia databases. In ADBIS, pages 803–815,
2004.

[27] J. K. Uhlmann. Satisfying general proximity/similarity queries with met-
ric trees. Inf. Process. Lett., 40(4):175–179, 1991.

[28] E. Vidal. An algorithm for finding nearest neighbors in (approximately)
constant average time. Pattern Recognition Letters, 4(3):145–157, 1986.

[29] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA, pages 311–321, 1993.

[30] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity search: The
metric space approach. Springer US, 2006.

 EPT* CPT BKT FQT MVPT
 SPB-tree M-index* PM-tree OmniR-tree

1 3 5 7 9
100

102

104

106

co
m

pd
is

ts

the number |P| of pivots
1 3 5 7 9

102

103

104

105

106

co
m

pd
ist

s

the number |P| of pivots
(a) LA (b) Synthetic

1 3 5 7 9
100

101

102

103

104

PA

the number |P| of pivots
1 3 5 7 9

101

102

103

104

105
PA

the number |P| of pivots
(c) LA (d) Synthetic

1 3 5 7 9
10-5

10-4

10-3

10-2

10-1

C
PU

 ti
m

e
(s

ec
)

the number |P| of pivots
1 3 5 7 9

10-3

10-2

10-1

100

C
PU

 ti
m

e
(s

ec
)

the number |P| of pivots
(e) LA (f) Synthetic
Figure 18. MkNNQ performance vs. |P|

	Pivot-based Metric Indexing
	Citation
	Author

	tmp.1505279707.pdf.NQvX7

