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ABSTRACT 
The general notion of a metric space encompasses a diverse range of 
data types and accompanying similarity measures. Hence, metric 
search plays an important role in a wide range of settings, including 
multimedia retrieval, data mining, and data integration. With the aim 
of accelerating metric search, a collection of pivot-based indexing 
techniques for metric data has been proposed, which reduces the 
number of potentially expensive similarity comparisons by exploit-
ing the triangle inequality for pruning and validation. However, no 
comprehensive empirical study of those techniques exists. Existing 
studies each offers only a narrower coverage, and they use different 
pivot selection strategies that affect performance substantially and 
thus render cross-study comparisons difficult or impossible. We offer 
a survey of existing pivot-based indexing techniques, and report a 
comprehensive empirical comparison of their construction costs, up-
date efficiency, storage sizes, and similarity search performance. As 
part of the study, we provide modifications for two existing indexing 
techniques to make them more competitive. The findings and in-
sights obtained from the study reveal different strengths and weak-
nesses of different indexing techniques, and offer guidance on select-
ing an appropriate indexing technique for a given setting.  

1. INTRODUCTION  
Search is a fundamental functionality in computer science, with 

similarity search being a prominent type of queries. Given a query 
object, similarity search finds similar objects according to a defini-
tion of similarity. This kind of functionality is useful in many set-
tings. For instance, in pattern recognition, similarity queries can be 
used to classify a new object according to the labels of already clas-
sified nearest neighbors; in multimedia retrieval, similarity queries 
can be utilized to identify images similar to a specified image; and in 
recommender systems, similarity queries can be employed to gener-
ate personalized recommendations based on users’ preferences. 

Considering the wealth of data types (e.g., images and strings), a 
generic model is desirable that is capable of accommodating a wide 
spectrum of data types rather than some specific data types. In addi-
tion, the distance metric used for comparing the similarity of objects 
goes beyond the Euclidean distance (i.e., the L2-norm) and includes 
metrics such as the Lp-norm and earth mover’s distance for images 

and the edit distance for strings. Hence, we consider metric spaces to 
accommodate a wide of data types and similarity notations.  

A number of indexing techniques exist that aim to accelerate 
search in metric spaces. As an example, environment for developing 
KDD-applications supported by index-structures, termed as ELKI, is 
an open source data mining software that uses indexing (e.g., M-tree 
[13]) to improve efficiency [25]. Existing indexes can be classified 
into two categories, i.e., compact partitioning techniques [1], [3], [7], 
[10], [13], [14], [18], [21], [22], [27] and pivot-based techniques [5], 
[8], [11], [12], [17], [19], [20], [23], [24], [26]. The former divides 
data space into compact regions and tries to eliminate entire regions 
during search. The latter employs search that relies on pre-computed 
distances between each object in the database and each object in a set 
of pivots. Given two objects q and o, the distance d(q, o) cannot be 
smaller than |d(q, p) � d(o, p)| for any pivot p, due to the triangle 
inequality. Thus, it may be possible to prune an object o as a result 
object for q using the lower bound value |d(q, p) � d(o, p)| rather than 
computing d(q, o), which may be costly. This enables pivot-based 
techniques to outperform compact partitioning techniques in terms of 
the number of distance computations [2], one of the key performance 
criteria in metric spaces. For this reason and to be comprehensive 
within the chosen scope, we focus on the pivot-based techniques. 

We aim to address limitations of existing empirical studies. First, 
the use of different pivot selection strategies renders the comparison 
of pivot-based indexing techniques challenging. For example, the 
OmniR-tree [17] utilizes the hull of foci algorithm (HF) to select out-
liers as pivots, while the spacing filing curve and pivot based B+-tree 
(SPB-tree) [12] uses the HF based incremental pivot selection algo-
rithm (HFI) to select pivots that maximize the similarity between the 
original metric space and the vector space achieved by using the piv-
ots. Since the performance of similarity query processing depends 
highly on the pivots used [9], we compare pivot-based indexes using 
the same pivot selection strategy. Second, while studies [11], [30] 
survey metric indexing techniques pre-2006, the last dozen years 
have seen many proposals for new and better metric indexes (e.g., 
disk-based indexes), such as the OmniR-tree, the M-index [23], and 
the SPB-tree. We offer a comprehensive empirical study as of today. 

In brief, the key contributions of this paper are as follows: 
y We provide a compact survey of existing pivot-based indexing 

techniques, focusing on the underlying principles. 
y We enhance two existing pivot-based metric indexes to give 

them better search performance. Specifically, we provide a bet-
ter pivot selection strategy for the extreme pivot table, and in-
tegrate minimum bounding box information into the M-index. 

y We present a comprehensive empirical comparison of existing 
pivot-based indexing techniques, considering index construc-
tion cost, update efficiency, index size, and query performance 
while ensuring an equal footing where the same pivot selection 
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strategy is employed. The findings and insights obtained from 
the empirical study offer new insights on the strengths and 
weaknesses of exiting techniques and aid in selecting an ap-
propriate indexing technique for a given setting. 

The rest of this paper is organized as follows. Section 2 presents 
the preliminaries of pivot-based indexes. Sections 3, 4, and 5 describe 
three categories of pivot-based metric index structures. Experimental 
results and our findings are reported in Section 6. Finally, Section 7 
concludes the paper.  

2. PRELIMINARIES 
We proceed to define the core metric similarity queries. Then, we 

provide a brief overview of the pivot-based indexes, and describe the 
pivot-based filtering enabled by these indexing techniques. 

2.1 Metric Similarity Search 
A metric space is a two-tuple (M, d), in which M is an object do-

main and d is a distance function for measuring the “similarity” be-
tween objects in M. In particular, the distance function d has four 
properties: (1) symmetry: d(q, o) = d(o, q); (2) non-negativity: d(q, o) 
≥ 0; (3) identity: d(q, o) = 0 iff q = o; and (4) triangle inequality: d(q, 
o) ≤ d(q, p) + d(p, o). Based on these properties, we define metric 
similarity search, including the metric range query and the metric k 
nearest neighbor query below.  

DEFINITION 1 (METRIC RANGE QUERY). Given an object set O, a 
query object q, and a search radius r in a metric space, a metric 
range query (MRQ) returns the objects in O that are within distance 
r of q, i.e., MRQ(q, r) = {o| o � O � d(q, o) d r}. 

DEFINITION 2 (METRIC K NEAREST NEIGHBOR QUERY). Given an 
object set O, a query object q, and an integer k in a metric space, a 
metric k nearest neighbor query (MkNNQ) finds k objects in O that 
are most similar to q, i.e., MkNNQ(q, k) = {S | S � O � |S| = k � �s � 
S, �o � O �  S, d(q, s) ≤ d(q, o)}. 

Consider the English word set O = {“defoliates”, “defoliation”, 
“defoliating”, “defoliated”, “citrate”}, where edit distance is used to 
measure similarity between words. An example of metric range que-
ry finds the words from O with edit distances to the query word “de-
foliate” no larger than 1, i.e., MRQ(“defoliate”, 1) = {“defoliates”, 
“defoliated”}. An example of metric k nearest neighbor query finds 2 
words from O with the smallest edit distances to the query word “de-
foliate”, i.e., MkNNQ(“defoliate”, 2) = {“defoliates”, “defoliated”}. 

An MkNNQ can be answered by an MRQ, if the distance from q 
to its kth nearest neighbor, denoted as NDk, is known. However, NDk 
is not known when a query is issued. Two typical methods exist for 
computing MkNNQ [6], [15]. One utilizes MRQ with incremental 
search radius. Specifically, an MRQ with a small search radius is 
performed first, and then the search radius is increased gradually un-
til k nearest neighbors are found. Although this method tries to avoid 
visiting objects already verified, it still needs to traverse the metric 
index multiple times, resulting in high query cost. The other sets the 
search radius to infinity and then verifies the objects in order, where 
the search radius is tighten using verification. 

2.2 Pivot-based Metric Index Structures 
Pivot-based methods store pre-computed distances from every ob-

ject in the database to a set of pivots and then use those distances to 
prune objects during search. Pivot-based methods can be clustered 
into three categories, namely, pivot-based tables, pivot-based trees, 
and pivot-based external indexes, according to the structures they use 
for storing the pre-computed distances, as listed in Table 1. 

Indexes in the first category utilize tables to store pre-computed 
distances. Approximating Eliminating Search Algorithm (AESA) [28] 

uses a table to preserve the distances from each object to other ob-
jects. However, it incurs a high storage cost O(n2), where n is the 
number of objects in the dataset. To save main memory storage for 
the table, Linear AESA (LAESA) [19] only keeps the distances from 
every object to selected pivots; Extreme Pivot Table (EPT) [24] se-
lects a set of essential pivots covering the entire database; and Clus-
tered Pivot Table (CPT) [20] clusters the pre-computed distances to 
further improve query efficiency.  

Indexes in the second category use tree structures to store pre-
computed distances. Burkhard-Keller Tree (BKT) [8] is designed for 
discrete distance functions. It chooses a pivot p as the root, and in-
serts the objects having distance i to the pivot p in its ith sub-tree. 
Different from BKT that uses different pivots at individual levels, 
Fixed Queries Tree (FQT) [4] and Fixed Queries Array (FQA) [11] 
use the same pivot for all the nodes at the same tree level. Vantage-
Point Tree (VPT) [29] is designed for continuous distance functions, 
and its generalization to m-ary trees is called MVPT [5].  

Indexes in the third category utilize an existing disk-based index 
(e.g., the R-tree or the B+-tree) to store pre-computed distances. The 
Omni-family [17] employs existing structures (e.g., the R-tree) to in-
dex pre-computed distances. The PM-tree [26] stores cut-regions de-
fined by pivots in each node of an M-tree to accelerate search. The 
M-index [23] generalizes the iDistance [16] technique for general 
metric spaces, and uses the B+-tree to store pre-computed distances. 
The SPB-tree [12] utilizes a space-filling curve to map pre-computed 
distances to integers, which are then indexed by the B+-tree. 

The index structures that belong to the first and the second catego-
ries refer to indexes stored in main memory, while index structures 
in the third category are disk-based. 

2.3 Pivot-based Filtering 
Using well-chosen pivots, the objects in a metric space can be 

mapped to data points in a vector space. Given a pivot set P = {p1, 
p2, …, pl}, a metric space (M, d) can be mapped to a vector space (Rl, 
Lf). Specifically, an object q in the metric space is represented as a 
point I(q) = ¢d(q, p1), d(q, p2), …, d(q, pl)² in the vector space. Con-
sider the example in Fig. 1, where the L2-norm is used as the distance 
function. If P = {o1, o6}, the object set in the original metric space 
(as illustrated in Fig. 1(a)) can be mapped to the data points in a two-
dimensional vector space (as depicted in Fig. 1(b)), in which the x-
axis denotes d(oi, o1) and the y-axis represents d(oi, o6) for any object 
oi. As an example, object o5 is mapped to point ¢2, 4². 

Based on the pivot mapping, the pivot-based filtering [12] can be 
used to avoid unnecessary similarity computations. 

LEMMA 1 (PIVOT FILTERING). Given a set P of pivots, a query ob-
ject q, and a search radius r, let SR(q) be a search region such that 
SR(q) = {¢v1, v2, …, vl² | 1 d i d l � vi t 0 � vi � [d(q, pi) – r, d(q, pi) 
+ r]}. If I(o) locates outside SR(q), then o � MRQ(q, r).  

PROOF. Assume, to the contrary, that there exists an object o (� 
MRQ(q, r)) which satisfies d(q, o) ≤ r, but I(o) � SR(q) (i.e., � pi � 

Table 1. Pivot-based metric index structures 
Category Index Storage Distance Domain

Pivot-based  
tables 

AESA[28], LAESA[19] Main-memory Continuous 
EPT[24] Main-memory Continuous 
CPT[20] Main-memory Continuous 

Pivot-based  
trees 

BKT[8] Main-memory Discrete 
FQT[4], FQA[11] Main-memory Discrete 
VPT[29], MVPT[5] Main-memory Continuous 

Pivot-based  
external 
indexes 

PM-tree[26] Disk Continuous 
Omni-family[17] Disk Continuous 
M-index[23] Disk Continuous 
SPB-tree[12] Disk Continuous 



P, d(o, pi) > d(q, pi) + r or d(o, pi) < d(q, pi) – r). According to the 
triangle inequality, d(q, o) t |d(q, pi) – d(o, pi)| > r, which contradicts 
our assumption. The proof completes.                                              � 

Since the pre-computed distances I(o)s are stored together with 
object o in a metric index, we can avoid distance computations involv-
ing object o if I(o) �SR(q), based on Lemma 1. Consider the example 
in Fig. 1(b) where the dotted rectangle represents the search region 
SR(q). Here, object o1 can be pruned as I(o1) �SR(q). Also, Lemma 1 
can be utilized to prune an entire region (i.e., a minimum bounding box 
that contains multiple I(o)) if it does not intersect SR(q).  

To obtain compact regions, two typical metric partitioning tech-
niques are used [30], i.e., ball partitioning and generalized hyperplane 
partitioning. We proceed to introduce the partitioning and correspond-
ing pivot filtering techniques that enable pruning of whole regions. 

DEFINITION 3 (BALL PARTITIONING). Let Ri.p be the correspond-
ing pivot for a partition region Ri, and let Ri.r be the radius of Ri. 
Then the set of objects o (� O) in the partition Ri, obtained via ball 
partitioning, is defined as {o | o � O � d(o, pi) ≤ Ri.r}. 

Based on the definition of ball partitioning, a range-pivot filtering 
technique [30] can be developed as follows. 

LEMMA 2 (RANGE-PIVOT FILTERING). Given a ball partitioning 
region Ri, a query object q, and a search radius r, if d(q, Ri.p) > Ri.r 
+ r, then Ri can be pruned safely.  

PROOF. For any object o in Ri, if d(q, Ri.p) > Ri.r + r, then d(q, o) 
≥ d(q, Ri.p) – d(o, Ri.p) >  Ri.r + r – d(o, Ri.p) due to the triangle ine-
quality. As d(o, Ri.p) ≤ Ri.r according to Definition 3, then d(q, oj) > 
r. Hence, any object o in Ri cannot be in the final result set, and Ri 
can be pruned safely, which completes the proof.                            ��

Consider the ball partitioning example depicted in Fig. 2(a), where 
the red solid circle denotes the ball region Ri with Ri.p = o7, Ri.r = d(o7, 
o6), and Ri = {o6, o7, o8}. As d(q, Ri.p) > Ri.r + r, Ri can be pruned 
away according to Lemma 2. 

DEFINITION 4 (GENERALIZED HYPERPLANE PARTITIONING). Giv-
en a set P of pivots, let pi be the corresponding pivot for a partition 
region Ri. Then the set of objects o (� O) in the partition Ri, obtained 
by the generalized hyperplane partitioning, is defined as {o | o � O 
� �pj z pi, d(o, pi) ≤ d(o, pj)}. 

Based on the definition of generalized hyperplane partitioning, a 
double-pivot filtering technique [30] is developed as follows. 

LEMMA 3 (DOUBLE-PIVOT FILTERING). Given two pivots pi and pj, 
a query object q, and a search radius r, if d(q, pi) – d(q, pj) > 2 u r, 
then Ri can be pruned safely, as pi is the corresponding pivot for the 
partition region Ri. 

PROOF. For every o in Ri, according to the definition of Ri, d(o, pi) 
≤  d(o, pj). Based on the triangle inequality, we have d(q, pi) ≤ d(o, pi) 
+ d(q, o) and d(q, pj) ≥ d(o, pj) – d(q, o). Thus, we can derive that d(q, 
pi) – d(q, pj) ≤ d(o, pi) + d(q, o) – d(o, pj) + d(o, q) ≤ 2 u d(q, o) as 

d(o, pi) ≤  d(o, pj). If d(q, pi) – d(q, pj) > 2 u r, then d(q, o) > r. 
Therefore, no object o (� Ri) can be a real answer object (i.e., o � 
MRQ(q, r)), and Ri can be pruned safely. The proof completes.       � 

Consider the generalized hyperplane partitioning example shown in 
Fig. 2(b). Assume o2 and o6  are two pivots, and Ri = {o6, o7, o8, o9} is 
the hyperplane partition region corresponding to pivot o6. Since d(q, o6) 
– d(q, o2) > 2 u r, Ri can be discarded safely according to Lemma 3. 

Lemmas 1 through 3 are pivot filtering techniques. Nonetheless, a 
distance computation is still needed for verifying each object that can-
not be pruned. Hence, a validation technique [12] is proposed to save 
unnecessary verifications, as stated in Lemma 4 below. 

LEMMA 4 (PIVOT VALIDATION). Given a pivot set P, a query ob-
ject q, and a search radius r, if there exists, for an object o in O, a 
pivot pi (� P) satisfying d(o, pi) d r – d(q, pi), then o is validated to 
be an actual answer object for MRQ(q, r). 

PROOF. Given a query object q, an object o, and a pivot pi, d(q, o) 
d d(o, pi) + d(q, pi) because of the triangle inequality. If d(o, pi) d r – 
d(q, pi), then d(q, o) d r – d(q, pi) + d(q, pi) = r. Thus, o is guaranteed to 
be contained in the final result set, which completes the proof.            � 

3. PIVOT-BASED TABLES 
We proceed to describe the indexes that belong to the category of 

pivot-based tables, and present corresponding MRQ and MkNNQ 
processing, together with some discussions. 

3.1 AESA and LAESA 
AESA uses a table to store the distances from every object to other 

objects. If |O| is the cardinality of a dataset O, the main-memory 
storage cost of AESA is O(|O|2), which is high for large datasets. 
That renders AESA a theoretical metric index. In order to reduce the 
storage cost of AESA, LAESA is proposed. It only stores the dis-
tances from each object to the pivots in a pivot set P, and thus, its 
storage cost is reduced to O(|P| u |O|), in which |P| is the number of 
pivots in P. LAESA utilizes three tables to store the pivots, the real 
data, and the pre-computed distances to the pivots. Fig. 3 shows the 
LAESA on the object set O depicted in Fig. 1, where P = {o1, o6}. 

MRQ processing. MRQ(q, r) processing using LAESA is simple. 
We compute the distances d(q, pi) between the query object q and the 
pivots pi (� P) and then verify the objects in the dataset O one by 
one. For every object o in O, if it cannot be pruned by Lemma 1, we 
compute d(q, o) and insert o into the result set Sr if d(q, o) ≤ r.  

MkNNQ processing. MkNNQ(q, k) processing based on LAESA 
follows the second approach introduced in Section 2.1. It initializes 
the search radius to infinity, and computes the distances from the 
query object q to the pivots in P. Subsequently, objects in the dataset 
O are evaluated one by one. For each object o, if it cannot be pruned 
by Lemma 1, we compute d(q, o) and update the search radius using 
the current kth nearest neighbor distance.  

Discussion. Although LAESA significantly reduces the main-
memory storage cost of AESA, it still incurs high storage cost for a 
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large dataset, which limits its applicability. For similarity search pro-
cessing, although it utilizes Lemma 1 to avoid certain unnecessary 
distance computations, it still needs to scan the full dataset to find 
the result set. In addition, since the objects in the dataset are verified 
according to the order they are stored, MkNNQ processing using 
LAESA results in unnecessary distance computations. 

3.2 EPT 
Unlike LAESA that utilizes the same pivots for each object, EPT 

selects different pivots for different objects in order to achieve better 
search performance. 

Extreme pivots (EP) consist of a set of pivot groups. Each group G 
contains m pivots pi (1≤ i ≤ m), according to which the whole dataset 
O is partitioned into m parts A(pi), such that  = � (i z j) 
and  = O. An object o belongs to A(pi) iff |d(o, pi) – Ppi| ≥ 
D, where Ppi is the expected value of d(o, pi). Consider the example 
in Fig. 4, A(pi) = {o1, o2, o6, o7, o9}. 

However, it is hard to obtain D, and hence, EPT tries to maximize 
D. In other words, EPT randomly selects m pivots as a pivot group Gj, 
and sets the pivot pi in Gj to an object o having max{|d(o, pi) – Ppi| | 
pi � Gj}. The processing is repeated l times, i.e., l groups Gj (1 ≤ j ≤ l) 
are selected. Thus, each object has corresponding l pivots. 

Given the dataset shown in Fig. 1, and letting m = 2 and l = 2, two 
pivot groups are selected at random, i.e., G1 = {o1, o6} and G2 = {o4, 
o9}. Fig. 5 depicts an example of EPT. The structure used by EPT is 
similar to that used by LAESA. However, since each object in EPT 
may have different pivots, EPT needs to store the corresponding piv-
ot (i.e., the id of the pivot) with the pre-computed distance. 

Let X = d(pi, o) and Y = d(pi, q), then the query cost in terms of the 
number of distance computations can be estimated as: 

cost = m u l + |O| u (1� Pr(|X � Y| > r))l  
       ≥ m u l + |O| u (1� )l                                                    (1) 

Using Equation (1), we can approximate the optimal m by fixing l 
(to control the main-memory storage size), where , , and r can be 
estimated. Nevertheless, EPT utilizes Z = d(o, q) to estimate Y = d(pi, 
q), which is inaccurate. In addition, it is difficult to estimate r value 
which is specified by the user.  

We therefore proceed to introduce a new pivot selection algorithm 
(PSA) to improve the efficiency of EPT. Let D(q, o) = max{|d(q, pi) 

– d(o, pi)| | pi � P}, which is a lower bound of d(q, o) according to 
the triangle inequality. Hence, the query cost can be estimated as: 

cost = m u l + |O| u Pr(D(q, u) d r)                                              (2) 
To achieve the optimal query cost defined in Equation (2), D(q, u) 

should approach d(q, o) as much as possible in order to avoid unnec-
essary distance computations of d(q, o). Thus, PSA tries to maximize 
the random variable D(q, o)/d(q, o).  

Algorithm 1 presents the pseudo-code of PSA. First, it samples the 
object set O as set S, and invokes HF algorithm [17] to obtain outli-
ers as candidate pivots CP (lines 1-2). Here, cp_scale is set to 40 be-
cause this value yields enough outliers in our experiments. Then, for 
each object o in O, the algorithm incrementally selects effective piv-
ots from CP (lines 4-7), and updates EPT* (line 8). Finally, EPT* is 
returned (line 9).  

MRQ and MkNNQ processing. Like LAESA, EPT and EPT* use 
tables to store pre-computed distances. The only difference is that 
EPT and EPT* utilize different pivots for different objects, while 
LAESA uses the same pivots for every object. Hence, MRQ and 
MkNNQ processing on EPT or EPT* are the same as those on LAESA. 

Discussion. EPT* achieves a better similarity search performance 
than EPT, contributed by the higher quality pivots selected by PSA. 
Nonetheless, it is costly to maximize . 

3.3 CPT 
LAESA and EPT store the distance table and the data file in main 

memory, and similarity query processing needs to scan the whole ta-
ble. However, when the size of the dataset exceeds the capacity of 
the main memory, it is necessary to store the dataset on disk, and it 
becomes attractive to cluster the data to improve I/O efficiency.  

CPT uses an M-tree to cluster and store the objects on disk. Fig. 
6(b) shows an M-tree for the object set O = {o1, o2, …, o9} in Fig. 1. 
An intermediate (i.e., a non-leaf) entry e in a root node (e.g., N0) or a 
non-leaf node (e.g., N1, N2) records the following: (i) A routing ob-
ject e.RO that is a selected object in the subtree STe of e. (ii) A cover-
ing radius e.r that is the maximum distance between e.RO and the 
objects in STe. (iii) A parent distance e.PD that equals the distance 
from e to the routing object of its parent entry. Since a root entry e 
(e.g., e6) has no parent entry, e.PD = ∞. (iv) An identifier e.ptr that 
points to the root node of STe. A leaf entry (i.e., a data object) o in a 
leaf node (e.g., N3, N4, N5, N6) records the following: (i) An object oj 
that stores the detailed information of o. (ii) An identifier oid that rep-
resents o’s identifier. (iii) A parent distance o.PD that equals the dis-
tance from o to the routing object of o’s parent entry. 

An example of CPT is shown in Fig. 6. CPT consists of three parts, 
i.e., a pivot table, a distance table, and an M-tree. The distance table 
stores the pre-computed distances between objects and pivots in 
main memory. The M-tree stores the objects in the tree structure on 
disk (i.e., each M-tree entry contains one object). Note that, the dis-
tance table includes pointers to the leaf entries in the M-tree, in order 
to enable loading of the corresponding objects for verification.  

Algorithm 1 Pivot Selecting Algorithm (PSA) 
  Input: a set O of objects, the number l of pivots for each object 
  Output: EPT* 
  1: obtain a sample set S from O 
  2: CP = HF(O, cp_scale)   // get a candidate pivot set CP (|CP| = cp_scale)  
  3: for each object o in O do 
  4:    P = �  
  5:    while |P| < l do 
  6:       select a different pi from CP with the maximal 
  7:       P = P ∪ {pi} 
  8:    update EPT* with ¢(p1, d(o, p1)), (p2, d(o, p2)), …, (pl, d(o, pl))² 
  9: return EPT* 

d(o, pi)o1
µp

o2 o5 o6o9 o7o8

o4

o3
µp + aµp – a

A(pi) A(pi)

i ii  
Figure 4. Illustration of A(pi)  
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Figure 5. EPT  



MRQ and MkNNQ processing. MRQ and MkNNQ processing 
using CPT are similar as the processing using LAESA. The only dif-
ference is that, when an object cannot be pruned by Lemma 1, the 
object must be read from disk. 

Discussion. Using CPT, we can avoid loading the whole dataset 
into main memory to perform query processing. However, CPT incurs 
CPU cost to load objects from disk. In addition, the distance table is 
stored in main memory, meaning that the applicability of CPT is on-
ly limited to the dataset whose distance table fits in main memory. 

4. PIVOT-BASED TREES 
We describe the indexes belonging to the category of pivot-based 

trees along with the corresponding MRQ and MkNNQ processing.  

4.1 BKT 
BKT is a tree structure designed for discrete distance functions. It 

chooses a pivot as the root, and maintains the objects having the dis-
tance i to the pivot in its ith sub-tree. If a sub-tree contains more than 
one object, it selects a pivot at random and partitions the sub-tree re-
cursively. Fig. 7 gives an example BKT, constructed based on the 
objects from Fig. 1(a) and the discrete distance function Lf-norm. 
The leaf nodes store the actual objects, while the non-leaf nodes 
store the corresponding pivots used to partition the sub-trees. To im-
prove the efficiency of the pivot-based trees, we only store the iden-
tifiers in the tree structures, and store the objects in a separate table. 

MRQ processing. In order to answer MRQ(q, r), the nodes in the 
BKT are traversed in depth-first fashion. When a non-leaf node is 
accessed, we identify its qualifying child entries using Lemma 1; and 
when a leaf node is accessed, we insert the corresponding object into 
the result set if it is not pruned by Lemma 1. 

MkNNQ processing. In order to answer MkNNQ(q, k), the nodes 
in the BKT are traversed in best-first manner, i.e., in ascending order 
of their minimum distances to the query object q, where Lemma 1 is 
used to filter out unqualified nodes. Here, we first set the search ra-
dius to infinity and then update it using the visited objects. 

Discussion. BKT is an unbalanced tree. To avoid empty sub-trees 
for large distance domains, every sub-tree covers the same range of dis-
tance values, which are stored together with each sub-tree. BKT ran-
domly selects the pivots for sub-trees. If BKT uses the same pivots as 
other pivot-based metric indexes, it produces FQT as discussed below. 

4.2 FQT 
Unlike BKT, FQT utilizes the same pivot at the same level. Fig. 8 

shows an example of FQT, where o1 and o6 are selected as the pivots 
for the first level and the second level, respectively. 

MRQ and MkNNQ processing. MRQ and MkNNQ processing 
using FQT are the same as that for BKT.  

Discussion. FQT is also an unbalanced tree. In order to utilize the 
same set P of pivots as other pivot-based metric indexes, the tree-
level is set to the number of pivots, and pi � P is set as the pivot for 
the ith level. With well-chosen pivots, the performance of FQT is ex-
pected to be better than that of BKT.  

4.3 MVPT 
Unlike BKT and FQT that only support discrete distance functions, 

VPT and its variant MVPT are able to support continuous distance 
functions. VPT chooses a pivot p as the root, and selects a medium 
value v so that the objects o with d(o, p) ≤ v are put in the left sub-
tree, while the remaining objects are put in the right sub-tree. If the 
number of objects in a sub-tree exceeds a threshold, the sub-tree is 
further partitioned. Fig. 9(a) depicts an example of VPT, where Lf-
norm is used. Note that, the pivots for the nodes at the same level can 
be different. In order to be able to compare the efficiency of different 
indexes using the same set of pivots, nodes of VPT at the same level 
share the same pivot. 

VPT can be generalized to m-ary trees, yielding MVPT. Specifi-
cally, each time, MVPT selects m � 1 medium values v1, v2, …, vm-1 
instead of one, such that the objects o with d(o, p) ≤ v1 are put in the 
first sub-tree, the objects o with v1 < d(o, p) ≤ v2 are put in the second 
sub-tree, etc. Fig. 9(b) gives an example of MVPT, where Lf-norm is 
used and m is set to 3. 

MRQ and MkNNQ processing. MRQ and MkNNQ processing 
using VPT are similar to the processing using BKT. 

Discussion. Unlike BKT and FQT, MVPT is a balanced tree. As m 
grows, the pruning ability first increases and then drops. This occurs 
because, with larger m values, more compact sub-trees are obtained 
at every tree level. Nevertheless, larger m values also result in lower 
MVPT tree levels, indicating that fewer pivots are available for prun-
ing. In this paper, we set m as 5 to achieve high query performance. 
In addition, it only needs to store medium values to partition the sub-
trees, which incurs lower storage cost than BKT and FQT. 

5. PIVOT-BASED EXTERNAL INDEXES 
We proceed to detail the indexes belonging to the category of piv-

ot-based external indexes, present corresponding MRQ and MkNNQ 
processing, and give some discussions. 

5.1 PM-Tree 
The PM-tree combines the pivot mapping and the M-tree, where 

the M-tree is used to cluster the objects, and the pivot mapping is uti-
lized to avoid unnecessary distance computations. Hence, different 
from the M-tree introduced in Section 3.3, each leaf entry of the PM-
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tree stores the mapped vector (i.e., the pre-computed distances to the 
pivots) with the real data object. In each intermediate entry, the PM-
tree stores a minimum bounding box (MBB) that bounds all the 
mapped vectors in its child leaf entries. Specifically, given a pivot 
set P = {pi| 1 ≤ i ≤ n}, MBB(e) = {[ai, bi] | 1 ≤ i ≤ n}, where ai = 
min{d(o, pi) | o � e}, and bi = max{d(o, pi) | o � e}. Fig. 10 depicts 
an example of PM-tree, with the data distribution shown in Fig. 6(c). 

MRQ processing. In order to answer MRQ(q, r), the entries in the 
PM-tree are traversed in depth-first fashion. When an intermediate 
entry is accessed, we verify its qualifying child entries using Lem-
mas 1 and 2; and when a leaf entry is accessed, we insert the corre-
sponding object into the result set if it is not discarded by Lemma 1. 

MkNNQ processing. In order to answer MkNNQ(q, k), the entries 
in the PM-tree are traversed in best-first manner, i.e., in ascending 
order of their minimum distances to the query object q, where Lem-
mas 1 and 2 are employed to eliminate unqualified entries. We first 
set the search radius to infinity, and then, we update the search radius 
during the search using the visited objects. 

Discussion. The PM-tree stores the data objects in its entries in-
stead of in a separate file, which limits its usability. In particular, for 
complex objects (e.g., the 282 dimensional vectors used in our exper-
iments), the PM-tree needs a large page/node size. 

5.2 Omni-Family 
Unlike the PM-tree, Omni-family uses a separate random access 

file (RAF) to store the objects, in order to avoid the impact of the ob-
ject size. The Omni-family utilizes an existing external index, e.g., 
the sequential file, the B+-tree, or the R-tree, to index the vectors af-
ter the pivot mapping. A sequential file stores the pre-computed dis-
tances of objects in order of their identifiers; a B+-tree is used to in-
dex the pre-computed distances for each pivot; and an R-tree is used 
to index the pre-computed distances for all the pivots together. An 
existing study [17] shows that the OmniR-tree performs the best in 
most cases. Fig. 11 depicts an example of OmniR-tree, including a 
pivot table that stores the pivots, an R-tree that indexes the pre-
computed distances, and an RAF that stores the objects. The MBB of 
each R-tree node is shown in Fig. 10(b). 

MRQ processing. To answer MRQ(q, r), the entries in the R-tree 
are traversed in depth-first fashion. When an intermediate entry is 
visited, we verify its qualifying child entries using Lemma 1; and 
when a leaf entry is accessed, we compute the actual distance and in-
sert the corresponding object into the result set if it is in the answer. 

MkNNQ processing. To answer MkNNQ(q, k), the entries in the 
R-tree are traversed in best-first manner, i.e., in ascending order of 
their minimum distances to the query object q, where Lemma 1 is 
used to eliminate unqualified entries. Here, we set the search radius 
to infinity and then update it using the visited objects. 

Discussion. The Omni-family contains the Omni-sequential-file, 
the OmniB+-tree, and the OmniR-tree. Omni-sequential-file can be 
regarded as LAESA stored on disk, which incurs substantial I/O dur-
ing search as the data is not clustered. The OmniB+-tree needs one 
B+-tree for every pivot, resulting in redundant storage and I/O during 
search. The OmniR-tree utilizes MBBs to cluster the data, and uses 
the pivot filtering to achieve high query efficiency. 

5.3 M-Index 
Unlike the PM-tree that utilizes the ball partitioning technique, the 

M-index uses hyperplane partitioning (as discussed in Section 2.3) to 
cluster the data. Given a set P of pivots, each object o is mapped to 
the real number key(o) = d(pi, o) + (i – 1) u d+, where pi (� P) is the 
pivot nearest to o and d+ is the maximum distance in a certain metric 
space. Considering the example in Fig. 12, if P = {o1, o6}, we obtain 
two clusters C1 and C2. M-index consists of (i) a pivot table, (ii) a 
cluster tree that maintains the information of the clusters (i.e., the 
minimum and maximum mapped digits minkey and maxkey in each 
cluster), (iii) a B+-tree that indexes the mapped real numbers, and (iv) 
an RAF that stores the data objects with all the pre-computed dis-
tances. If more pivots are used, the cluster-tree can be extended to a 
dynamic tree. Specifically, if the number of the objects in a certain 
cluster exceeds a threshold maxnum (set to 1,600 in this paper), it 
can be further partitioned using the left pivots, as shown in Fig. 12(d). 

MRQ processing. To answer MRQ(q, r), the entries in the cluster 
tree are traversed in depth-first fashion. When an intermediate entry 
is visited, we evaluate its qualifying child entries using Lemma 3; 
and when a leaf entry is accessed, we obtain the objects that belong 
to this cluster from B+-tree, and filter out the unqualified objects ac-
cording to Lemma 1. 

MkNNQ processing. To answer MkNNQ(q, k), a range query 
with a small search radius is performed first, and then, the search ra-
dius is increased gradually until k closest objects are found. 

We add the MBB information for each cluster to the M-index, ob-
taining an M-index*. Based on the MBBs, the pivot filtering tech-
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nique (i.e., Lemma 1) can be applied when traversing the cluster-tree 
in order to filter unqualified clusters in advance, and MkNNQ can 
traverse the cluster-tree in best-first manner. Specifically, clusters are 
visited in ascending order of their distances to the query object q. In 
addition, the data validation technique (i.e., Lemma 4) can also be 
integrated to avoid unnecessary verifications. 

Discussion. By integrating the data validation and the MBB in-
formation in the cluster tree, the efficiency of MRQ and MkNNQ is 
improved. Since the M-index* can use Lemma 3 based on the hyper-
plane partitioning technique for pruning while others cannot, it can 
achieve a better performance in terms of distance computations. 

5.4 SPB-Tree 
To reduce the storage cost, the SPB-tree utilizes a space-filling 

curve (SFC) to map the pre-computed distances into SFC values (i.e., 
integers) while (to some extent) maintaining spatial proximity. SPB-
tree consists of (i) a pivot table, (ii) a B+-tree storing SFC values, and 
(iii) an RAF that stores data objects. Each non-leaf B+-tree entry e 
stores SFC values min and max for ¢a1, a2,…, an² and ¢b1, b2,…, bn² 
that represent MBB(e) = {[ai, bi] | 1 ≤ i ≤ n}. Fig. 13 depicts an ex-
ample of SPB-tree, where Fig. 13(b) illustrates the Hilbert mapping.  

MRQ processing. To answer MRQ(q, r), the entries in the B+-tree 
are traversed in depth-first fashion. When an intermediate entry is 
visited, we identify its qualifying child entries using Lemma 1; and 
when a leaf entry is accessed, we utilize Lemma 4 or compute the ac-
tual distance to validate the object. 

MkNNQ processing. To answer MkNNQ(q, k), the entries in the 
B+-tree are traversed in best-first manner, i.e., in ascending order of 
their minimum distances to the query object q, where Lemma 1 is 
used to filter unqualified entries. Here, we set the search radius to in-
finity and then update it using the visited objects. 

Discussion. We employ the SFC mapping to reduce the storage 
cost and meanwhile maintain spatial proximity, resulting in improved 
I/O and index storage costs. However, for continuous distance func-
tions, the continuous distances are approximated as the discrete ones 
to perform the SFC mapping, which decreases the pruning power. 

6. EXPERIMENTAL STUDY  
We proceed to report an empirical study on the performance of the 

pivot-based metric indexes via experiments. To be more specific, we 
consider the index construction cost, study the efficiency of EPT* 
and the M-index*, and evaluate the performance of all the pivot-
based metric indexes when varying pertinent parameters.  

6.1 Experimental Setup 
We implemented all the indexes and associated similarity search 

algorithms in C++. Further, all pivot-based metric indexes utilize the 
same set of pivots selected by the state-of-the-art algorithm [12]. 
This does, however, not apply to EPT, EPT*, and BKT. As discussed 
in Sections 3.1 and 4.1, EPT and EPT* utilize different pivots for 
different objects, while BKT needs to randomly select pivots in its 

sub-trees. All experiments were conducted on an Intel Xeon E5-2620 
v3 2.4GHz PC with 8GB memory. 

We employ three real datasets, namely, LA, Words, and Color. LA1 
consists of geographical locations in Los Angeles. Words2 contains 
proper nouns, acronyms, and compound words taken from the Moby 
project. Color3 consists of standard MPEG-7 image features extract-
ed from Flickr. A synthetic dataset is also created, where five dimen-
sion values are generated randomly, and the remaining dimension 
values are linear combinations of the previous ones. Each dimension 
of LA and Synthetic is mapped to [0, 10000], while each dimension 
of Color is mapped to [-255, 255]. To study the performance of BKT 
and FQT that are designed for discrete distance functions, the values 
in Synthetic are generated as integers. Table 2 summarizes the statis-
tics of the datasets, including the cardinality, the dimensionality 
(Dim.), the intrinsic dimensionality (Int. Dim.), the maximum dis-
tance (MaxD) between data objects, and the distance measure (Dis. 
Measure). To capture the distance distribution of the dataset, the Int. 
Dim. is calculated as P2/2V2, where P and V2 are the mean and vari-
ance of the pairwise distances in the dataset. 

We investigate the similarity query performance of the indexes 
when varying the parameters listed in Table 3. The value of the radi-
us r denotes the percentage of objects in the dataset that are result 
objects of a metric range query. In each experiment, one parameter is 
varied, and the others are fixed at their default values. The main per-
formance metrics contain the number of page accesses (PA), the 
number of distance computations (compdists), and the CPU time. 
Each measurement we report is an average over 100 random queries.  

To maintain consistency with the operating system, the indexes 
use a fixed page size of 4KB as default. However, the data size for 
high-dimensional datasets is relatively large. CPT and PM-tree store 
directly the data in the index structures, and hence, a larger page size 
is needed to ensure a proper tree height; while other indexes separate 
the data from the index structures, meaning that the tree height is in-
dependent of the data size. Thus, a larger page size 40KB is used for 
CPT and PM-tree on Color and Synthetic datasets. As stated in Sec-
tion 5, MkNNQ using M-index traverses the index multiple times for 
every query, while MkNNQ using SPB-tree, M-index*, or OmniR-
tree has duplicate RAF page accesses since it does not visit the data 
stored in a separate RAF in sequence. Therefore, a 128KB LRU 
cache is used in our experiments to improve MkNNQ efficiency.  

6.2 Construction Cost 
Table 4 details the construction costs and storage sizes for the in-

dexes using real datasets, where I denotes a main-memory storage 
cost, and D indicates a disk storage cost. There are no values for 
BKT and FQT on LA and Color, as BKT and FQT assume discrete 
                                                                 
1 LA is available at http://www.dbs.informatik.uni-muenchen.de/~seidl.  
2 Words is available at http://icon.shef.ac.uk/Moby/.  
3  Color is available at http://cophir.isti.cnr.it/.  
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Table 2. Datasets used in the experiments  
Dataset Cardinality Dim. Int. Dim. MaxD Dis. Measure 
LA 1,073,727 2 5.4 14000 L2-norm 
Words 611,756 1~34 1.2 34 Edit distance 
Color 1,000,000 282 6.5 100000 L1-norm 
Synthetic 1,000,000 20 6.6 10000 Lf-norm 

 
Table 3. Parameter settings 

Parameter Value Default 
the number |P| of pivots  1, 3, 5, 7, 9 5 
r 4%, 8%, 16%, 32%, 64% 16% 
k 5, 10, 20, 50, 100 20 



distance functions; and there are also no PA values for LAESA, EPT, 
EPT*, BKT, FQT, and MVPT, since they are in-memory indexes. To 
summarize our findings, Table 5 provides the ranking for all pivot-
based metric indexes. Here, the M-index and the M-index* are listed 
together as M-index(*) because they have similar construction costs. 

I/O cost. The SPB-tree performs the best in terms of I/O cost, fol-
lowed by the M-index(*), while the PM-tree and CPT perform the 
worst. The SPB-tree and the M-index achieve high I/O efficiency via 
the B+-tree, while the SPB-tree uses SFC to further reduce I/O cost. 

Compdists. As observed, LAESA, BKT, FQT, MVPT, the Om-
niR-tree, the M-index, and the SPB-tree achieve the same perfor-
mance in terms of compdists. This is because compdists for these in-
dexes depend on the number of pivots and the number of data objects. 
However, the PM-tree and CPT incur additional distance computa-
tions for constructing the M-tree to store actual data, while EPT and 
EPT* need more compdists to select pivots for every data. 

CPU time. The first observation is that LAESA, BKT, FQT, and 
MVPT perform the best in terms of CPU time, since they operate in 
main memory. Although EPT and EPT* are also in-memory indexes, 
EPT ranks 3rd and EPT* performs the worst in terms of CPU time. 
This is because they need to select different pivots for different ob-
jects while selecting pivots for EPT* is costly as analyzed in Section 
3.2. Second, the SPB-tree and the M-index(*) can achieve high CPU 
efficiency (i.e., ranking 2nd) because of the B+-tree used, while the 
OmniR-tree, CPT, and the PM-tree need more CPU time (i.e., rank-
ing 4th) as they use an R-tree or an M-tree instead of a B+-tree. 

Storage. The storage cost for a pivot-based metric index includes 
two parts, i.e., the storage for the pre-computed distances and the 
storage needed for the objects themselves. First, the SPB-tree per-
forms the best, since it utilizes an SFC to reduce the storage cost of 
the pre-computed distances. However, on the Color dataset, the stor-
age cost of the SPB-tree is relatively larger. The reason is that, each 
object in Color needs 1,136 bytes, and that the size of the pages used 
to store the real objects is 4KB, thus incurring a waste of storage in 
every page. Second, the storage costs of the pivot-based trees are rel-
atively smaller, because they only store the distance values used to 
partition the sub-tree instead of all the pre-computed distances. Third, 
the storage costs of LAESA and EPT(*) are smaller than those of the 
OmniR-tree and the M-index, since the latter two require additional 

storage to index the pre-computed distances. In addition, the storage 
cost of EPT(*) exceeds that of LAESA, as EPT(*) selects different 
pivots for every object and hence needs additional storage to indicate 
the corresponding pivot for each object. Finally, the storage costs of 
CPT and the PM-tree are the largest. This is because they store the 
real objects directly in the tree structures, while the other indexes use 
separate files to store the real objects. 

In conclusion, the pivot-based trees (including BKT, FQT, MVPT), 
LAESA, and the SPB-tree achieve the highest construction and stor-
age efficiency, followed by the M-index, EPT, and the OmniR-tree, 
while EPT*, CPT, and the PM-tree perform the worst.  

Discussion. Index construction can be accelerated using parallel-
ization in several ways: (i) as the pivots are independent of each oth-
er, the pre-computed distances to each pivot can be computed in par-
allel; (ii) since objects are independent of each other, the pre-
computed distances for each object can be computed in parallel; and 
(iii) as the data can be partitioned into disjoint parts, multiple index 
structures (e.g., multiple B+-trees, M-trees, R-trees, BKTs, FQTs, 
MVPTs) instead of one can be constructed in parallel.  

6.3 Update Cost 
Table 6 details the update costs when using real datasets, while 

Table 7 provides the ranking. Here, an update operation first deletes 
a specific data object and then inserts it back. First, we observe that 
BKT, FQT, and MVPT can achieve high update efficiency. This is 

Table 6. Update Costs 
 LA Words  Color 
 PA Comp. Time(s) PA Comp. Time(s) PA Comp. Time(s)
LAESA � 5 0.15 � 5 0.14 � 5 2.29
EPT � 1.5E7 2.5 � 3.3E6 2.1777 � 7.5E6 11.7
EPT* � 5448 0.3999 � 3138 0.2612 � 5080 2.94
CPT 15.2 78.3 0.6559 1052 93 0.1772 16.4 80.9 0.5698
BKT � � � � 9.56 0.0001 � � �
FQT � � � � 10 0.0004 � � �
MVPT � 10 0.0001 � 10 0.0001 � 10 0.0001
PM-tree 32 48 0.0023 2004 4167 0.035 119 227 0.1033
OmniR-tree 16.1 10 0.0042 52.9 10 0.0029 15.9 10 0.0045
M-index(*) 13 10 0.0014 20.5 10 0.0016 11.8 10 0.0027
SPB-tree 12.9 10 0.0003 12.6 10 0.0014 12.5 10 0.0009

Table 4. Construction costs and storage sizes 
 LA Words  Color  
 PA Compdists Time (s) Storage (KB) PA Compdists Time (s) Storage (KB) PA Compdists Time(s) Storage (KB)
LAESA � 5,368,635 2 50,331 (I) � 3,058,780 3 44,209 (I) � 5,000,000 80 1,140,625 (I)
EPT � 539,394,597 87 71,302 (I) � 124,892,823 82 56,157 (I) � 240,990,000 426 1,160,156 (I)
EPT* � 5,806,935,663 6,375 71,302 (I) � 1,895,345,425 2,545 56,157 (I) � 5,040,204,959 11,742 1,160,156 (I)

CPT 12,057,791 92,141,339 263 54,525 (I) 
73,836 (D) 1,708,696 65,742,690 113 31,066 (I)

96,880 (D) 12,651,989 75,938,556 390 50,782 (I) 
2,035,599 (D)

BKT � � � � � 3,036,382 1.6 22,896 (I) � � � �
FQT � � � � � 3,058,780 1.3 22,770 (I) � � � �
MVPT � 5,368,635 2.7 21,054 (I) � 3,058,780 1.8 22,729 (I) � 5,000,000 117 1,105,552 (D)
PM-tree 4,342,461 32,828,371 167 240,424 (D) 4,643,434 60,087,931 230 213,552 (D) 4,803,502 93,930,402 609 2,605,440 (D)
OmniR-tree 171,648 5,368,635 291 90,956 (D) 1,441,537 3,058,780 68 57,104 (D) 3,690,582 5,000,000 495 1,400,752 (D)
M-index(*) 93,904 5,368,635 15 76,775 (D) 53,866 3,058,780 10 45,140 (D) 416,897 5,000,000 101 1,389,174 (D)
SPB-tree 33,867 5,368,635 8 33,844 (D) 15,397 3,058,780 7 18,228 (D) 360,952 5,000,000 95 1,349,168 (D)

Table 5. Ranking according to construction and storage costs 
 1st 2nd 3rd 4th 5th 
PA SPB-tree M-index(*) OmniR-tree PM-tree CPT 

Compdists {LAESA, BKT, FQT, MVPT,  
OmniR-tree, M-index(*), SPB-tree} PM-tree CPT-tree EPT EPT* 

Time {LAESA, BKT, FQT, MVPT } {SPB-tree, M-index(*)} EPT {CPT, PM-tree, OmniR-tree} EPT* 
Storage {BKT, FQT, MVPT, SPB-tree} LAESA EPT(*) {M-index(*), OmniR-tree} {CPT-tree, PM-tree} 

 



because they are stored in main memory and the positions for insert-
ing/deleting can be found quickly using the tree structures. Second, 
the update costs of the PM-tree and CPT are relatively larger since 
they store the data objects directly in the trees. Third, the CPU time 
of LEASA, EPT*, and CPT is relatively high (i.e., ranking 4th) as 
they employ sequential scans to perform deletions. Fourth, the up-
date costs of EPT and EPT* are high, because they need additional 
cost when selecting pivots for each data to be inserted. Note that, 
EPT* has better update efficiency than EPT, because EPT incurs 
high estimation costs when selecting pivots. 

6.4 Efficiency of EPT* and M-Index* 
We proceed to consider the efficiency of EPT*, as compared 

against EPT. In doing so, we only employ MkNNQs to observe the 
effect of parameters on the indexes, due to the space limitation and 
because MRQs yield similar findings. Fig. 14 depicts the results, 
where PA is omitted, since EPT and EPT* are in-memory indexes. 
As observed, EPT* performs better than EPT. This is because the 
quality of the pivots selected by EPT* is higher. Nonetheless, as 
shown in Table 4, the construction cost of EPT* is much higher in 
order to select pivots with higher quality. Since EPT* can be built in 
advance and has better update efficiency, it represents a useful im-

provement over EPT. Also, the construction efficiency of EPT* can 
be further improved, which is left as a direction of future work. 

Next, we consider the efficiency of M-index*, as compared with 
M-index. Fig. 15 plots the results. As observed, the M-index* per-
forms better than the M-index, while the compdists of the M-index* 
and the M-index are similar on Color and Synthetic. The reason is 
that MkNNQs using M-index visit the index multiple times, resulting 
in redundant PA and CPU cost, while MkNNQs based on M-index* 
traverse the index only once by using MBB information. However, 
the number of unnecessary distance computations depends on the in-
creased radius value and the distance distribution of the dataset, 
which makes it possible that the compdists of M-index* and M-index 
are similar on Color and Synthetic. The second observation is that, 
on LA, the CPU time and PA of the M-index* are slightly larger than 
those of the M-index for smaller k values. This is because, for small-
er k values on LA, the M-index based MkNNQ processing algorithm 
needs fewer MRQs to find the results, incurring little redundant cost.  

6.5 Similarity Search Performance 
We compare the efficiency of the pivot-based metric indexes un-

der various parameters, including (i) the search radius for MRQ, (ii) 
the desired number k for MkNNQ, and (iii) the number |P| of pivots. 

Table 7. Ranking according to update costs 
 1st 2nd 3rd 4th 5th 
PA SPB-tree M-index(*) OmniR-tree CPT PM-tree 
Compdists LAESA {BKT, FQT, MVPT, OmniR-tree, M-index(*), SPB-tree} PM-tree, CPT-tree EPT* EPT 
Time {BKT, FQT, MVPT } { SPB-tree, M-index(*), OmniR-tree} PM-tree {LAESA, EPT*, CPT} EPT 
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Figure 14. Comparison between EPT and EPT* 
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Figure 15. Comparison between M-index and M-index* 



6.5.1 Effect of R 
We first compare the performance of the pivot-based metric in-

dexes by using MRQ. Fig. 16 illustrates the corresponding query 
costs including compdists, PA, and CPU time for varying R values. 
As expected, the query cost increases with the growth of R due to a 
larger search space. However, on LA, the query costs of the SPB-tree 
and the M-index* drop at the value of 64% due to the use of pivots 
with stronger validation capabilities as achieved by larger R values. 

Compdists. We observe that (i) the M-index* and the SPB-tree 
achieve high search performance in terms of compdists on LA and 
Words, because they utilize the pivot validation technique to avoid 
unnecessary distance computations; (ii) the PM-tree achieves high 
computational efficiency on Synthetic due to its range-pivot filtering, 
i.e., the routing objects of the PM-tree can be regarded as an addi-
tional pivot used for pruning; and (iii) EPT* has the smallest comp-
dists on Color, as it selects different pivots for each object to achieve 
high pruning power. In addition, the compdists of the pivot-based 
trees (i.e., BKT, FQT, and MVPT) are slightly higher. This is be-
cause only some of the pre-computed distances used for the pivot fil-
tering are stored. In addition, MVPT is slightly better than BKT and 
FQT in most cases, since BKT and FQT are unbalanced trees. Final-
ly, the remaining indexes share similar compdists, as their pruning 
power relies on the pivot filtering based on the same set of pivots. 

I/O cost. As can be seen, the SPB-tree has the lowest I/O cost, fol-
lowed by the OmniR-tree and the M-index*, while CPT and the PM-
tree perform the worst. The reasons are that, (i) the SPB-tree uses an 
SFC to compact the pre-computed distances while preserve the simi-
larity proximity, thus incurring lower I/O cost; (ii) the OmniR-tree 
and the M-index* store all the pre-computed distances, resulting in 
larger I/O costs; and (iii) CPT and the PM-tree store the real objects 

directly in the tree structure instead of in a separate file, leading to 
low I/O efficiency. The I/O cost of the M-index* is high on LA, be-
cause MBBs do not cluster well on LA with the i-Distance technique. 

CPU time. The first observation is that, the CPU costs of the in-
memory indexes (viz., BKT, FQT, MVPT, LAESA, and EPT*) are 
relatively lower than those of the disk-based indexes (viz. CPT, the 
SPB-tree, the M-index*, the OmniR-tree, and the PM-tree). The rea-
son is that the disk-based indexes need additional work to transform 
data read from disk into the formats required for further processing. 
In addition, the CPU cost of CPT on low dimensional datasets (e.g., 
LA and Words) is better than that on high dimensional datasets (e.g., 
Color and Synthetic) due to the additional CPU time needed to read 
objects from disk. It is observed that, the in-memory pivot-based 
trees (i.e., BKT, FQT, and MVPT) have lower CPU costs than the in-
memory pivot-based tables (i.e., LAESA and EPT*), especially on 
LA and Words. This is because LAESA and EPT* need to scan the 
whole pivot table of the dataset, while the pivot-based trees can 
prune sub-trees via the pivot-based filtering.  

6.5.2 Effect of k 
Then, we compare the performance of indexes by using MkNNQs. 

Fig. 17 shows the query costs for different k values. As expected, 
query costs increase with the growth of k due to larger search space. 

Compdists. It can be seen that, (i) the PM-tree and EPT* achieve 
the highest computational efficiency on Color and Words, and that (ii) 
the compdists of the pivot-based trees (viz., BKT, FQT, and MVPT) 
are the largest. The reasons are already discussed in Section 6.4.1. 
The second observation is that the compdists of the SPB-tree is high-
er than that of the M-index* and the OmniR-tree on LA and Color. 
This is because, for continuous distance functions, the SPB-tree uses 
approximated discrete distances in order to perform its SFC mapping, 
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Figure 16. MRQ performance vs. radius r  



resulting in less effective pivot-based filtering. In addition, the 
compdists of LAESA and CPT are relatively larger, because their 
MkNNQ algorithms traverse the objects in the dataset in the same 
order as they appear, which is suboptimal in terms of compdists. 

I/O cost. First, we see that the SPB-tree achieves the highest I/O 
efficiency, as covered in Section 6.4.1. Second, the PA of the M-
index* is the largest on LA and Synthetic, due to the unbalanced par-
titions caused by the data distribution. Finally, the PA of the PM-tree 
is the largest on Color and Words datasets. As the PM-tree stores ob-
jects directly in its tree structure instead of in a separate file, the high 
dimensional and variable sized data incurs low page utilization. 

CPU time. As expected, the in-memory indexes have lower CPU 
costs than the disk-based indexes. Further, the CPU costs of EPT* 
and LAESA generally exceed those of the pivot-based trees in most 
cases. Because the MkNNQ algorithm that uses EPT* and LAESA 
verifies the objects in the order as they appear, resulting in many un-
necessary verifications. In addition, although the computational cost 
of the SPB-tree is slightly higher than that of the M-index* on da-
tasets using continuous distance functions, the CPU time of the M-
index* is larger, due to the additional CPU cost caused by larger PA. 

6.5.3 Effect of |P| 
Next, we explore the influence of |P| on the performance of the in-

dexes. Here, MkNNQs are used due to the space limitation and simi-
lar findings for MRQs. Fig. 18 depicts the query costs using LA and 
Synthetic. Values for the M-index* are absent, as more than one piv-
ot is needed for the generalized hyperplane partitioning. Next, the 
compdists drops as |P| grows. This is because having more pivots 
yields better pivot filtering. The second observation is that, the PA 
and CPU time first drop and then stay stable or increase with |P|. The 
reason is that, (i) the number of verified objects drops as compdists 

decreases, incurring smaller I/O and CPU costs; and that (ii) the stor-
age size increases due to more pre-computed distances being stored, 
resulting in more I/O and higher CPU costs. We can see that an ap-
propriate number of the selected pivots is related to the intrinsic di-
mensionality, which is consistent with the observation made in [11]. 

7. CONCLUSIONS 
We classify existing pivot-based metric indexes into three catego-

ries, i.e., pivot-based tables, pivot-based trees, and pivot-based ex-
ternal indexes, and we study their performance empirically on an 
equal footing. The resulting findings and insights, summarized below, 
enable users to select the indexes that best support the intended uses: 
y Although the storage sizes of the indexes in our experiments 

are under 3 GB, which can be loaded into main-memory, the 
pivot-based external indexes can achieve better scalability than 
the pivot-based tables and trees for the cases when the availa-
ble main memory is small or the dataset is extremely large.  

y For the pivot-based tables, (i) CPT tries to improve LAESA by 
utilizing an M-tree to store the data, in order to handle the case 
when the dataset does not fit into main memory, resulting in 
high construction, update, and query costs; and (ii) EPT* tries 
to improve EPT by trading index construction efficiency for 
query efficiency. Although the construction cost of EPT* is 
high, it can be built in advance and has fewer distance compu-
tations for a query. As the computational cost is the dominant 
cost in the case of complex distance functions, EPT* is a good 
candidate for small datasets with complex distance functions. 

y The pivot-based trees can achieve high construction and update 
efficiency. Although they incur more distance computations 
during search, they have smaller CPU time due to the tree 
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structures and the absence of I/O costs. In addition, MVPT per-
forms the best among the indexes of this category, because it 
uses a balanced tree. Thus, for small datasets with simple dis-
tance computation functions, MVPT is a good candidate. 

y For pivot-based external indexes, (i) the PM-tree stores the da-
ta with pre-computed distances in the index structure, which 
incurs relatively large construction, update, and query costs; (ii) 
the SPB-tree and the M-index* achieve high construction, up-
date, and query efficiency by using a B+-tree with MBB infor-
mation; and (iii) the SPB-tree outperforms the OmniR-tree, 
since it utilizes an SFC to reduce the storage cost and while to 
some extent preserving similarity locality. Hence, for large da-
tasets, the SPB-tree and the M-index* are good candidates. 

The study suggests that extension of EPT(*) to a disk-based metric 
index with a low construction cost is a promising direction. Also, 
comparisons between pivot-based metric indexes and compact parti-
tioning metric indexes are an interesting research direction.  

8. ACKNOWLEDGMENTS 
This work was supported in part by the 973 Program of China Grant No. 
2015CB352502, NSFC Grant No. 61522208 and 61379033, the NSFC-
Zhejiang Joint Fund Grant No. U1609217, and a grant from the Obel 
Family Foundation. Yunjun Gao is a corresponding author of this work.  

9. REFERENCES 
[1] J. Almeida, R. D. S. Torres, and N. J. Leite. BP-tree: An efficient index 

for similarity search in high-dimensional metric space. In CIKM, pages 
1365–1368, 2010.  

[2] L. G. Ares, N. R. Brisaboa, M. F. Esteller, O. Pedreira, and A. S. Places. 
Optimal pivots to minimize the index size for metric access methods. In 
SISAP, pages 74–80, 2009. 

[3] L. Aronovich and I. Spiegler. CM-tree: A dynamic clustered index for 
similarity search in metric databases. Data Knowl. Eng., 63(3):919–946, 
2007. 

[4] R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity match-
ing using fixed-queries trees. In CPM, pages 198–212, 1994.  

[5] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In SIGMOD, pages 357–368, 1997.  

[6] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similar-
ity search queries. ACM Trans. Datab. Syst., 24(3):361–404, 1999. 

[7] S. Brin. Near neighbor search in large metric spaces. In VLDB, pages 
574–584, 1995.  

[8] W. Burkhard and R. Keller. Some approaches to best-match file search-
ing. Commun. ACM, 16(4):230–236, 1973.  

[9] B. Bustos, G. Navarro, and E. Chavez. Pivot selection techniques for 
proximity searching in metric spaces. Pattern Recognition Letters, 
24(14):2357–2366, 2003.  

[10] E. Chavez and G. Navarro. A compact space decomposition for effective 
metric indexing. Pattern Recognition Letters, 26(9):1363–1376, 2005.  

[11] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquin. Searching 
in metric spaces. ACM Comput. Surv., 33(3):273–321, 2001.  

[12] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen. Efficient metric indexing 
for similarity search. In ICDE, pages 591–602, 2015. 

[13] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method 
for similarity search in metric spaces. In VLDB, pages 426–435, 1997.  

[14] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance 
searching index for metric data sets. Multimedia Tools Appl., 21(1):9–33, 
2003.  

[15] G. Hjaltason and H. Samet. Index-driven similarity search in metric 
spaces. ACM Trans. Database Syst., 28(4):517–580, 2003. 

[16] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: 
An adaptive B+-tree based indexing method for nearest neighbor search. 
ACM Trans. Database Syst., 30(2):364–397, 2005.  

[17] C. T. Jr, R. F. S. Filho, A. J. M. Traina, M. R. Vieira, and C. Faloutsos. The 
omni-family of all-purpose access methods: A simple and effective way 
to make similarity search more efficient. VLDB J., 16(4):483–505, 2007.  

[18] C. T. Jr, A. J. M. Traina, B. Seeger, and C. Faloutsos. Slim-trees: High 
performance metric trees minimizing overlap between nodes. In ICDE, 
pages 51–65, 2000.  

[19] L. Mico, J. Oncina, and R. C. Carrasco. A fast branch & bound nearest 
neighbour classifier in metric spaces. Pattern Recognition Letters, 
17(7):731–739, 1996.  

[20] J. Mosko, J. Lokoc, and T. Skopal. Clustered pivot tables for I/O-
optimized similarity search. In SISAP, pages 17–24, 2011. 

[21] G. Navarro. Searching in metric spaces by spatial approximation. VLDB 
J., 11(1):28–46, 2002.  

[22] H. Noltemeier, K. Verbarg, and C. Zirkelbach. Monotonous bisector* 
Trees —A tool for efficient partitioning of complex scenes of geometric 
objects. In Data Struc. and Efficient Algo., pages 186–203, 1992.  

[23] D. Novak, M. Batko, and P. Zezula. Metric Index: An efficient and scal-
able solution for precise and approximate similarity search. Inf. Syst., 
36(4):721–733, 2011.  

[24] G. Ruiz, F. Santoyo, E. Chavez, K. Figueroa, and E.S. Tellez. Extreme 
pivots for faster metric indexes. In SISAP, pages 115–126, 2013.  

[25] E. Schubert, A. Koos, T. Emrich, A. Zufle, K. A. Schmid, and A. Zimek. 
A framework for clustering uncertain data. PVLDB, 8(12):1976–1979, 
2015. 

[26] T. Skopal, J. Pokorny, and V. Snasel. PM-tree: Pivoting metric tree for 
similarity search in multimedia databases. In ADBIS, pages 803–815, 
2004.  

[27] J. K. Uhlmann. Satisfying general proximity/similarity queries with met-
ric trees. Inf. Process. Lett., 40(4):175–179, 1991.  

[28] E. Vidal. An algorithm for finding nearest neighbors in (approximately) 
constant average time. Pattern Recognition Letters, 4(3):145–157, 1986.  

[29] P. N. Yianilos. Data structures and algorithms for nearest neighbor 
search in general metric spaces. In SODA, pages 311–321, 1993. 

[30] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity search: The 
metric space approach. Springer US, 2006. 

  EPT*  CPT   BKT   FQT  MVPT   
 SPB-tree   M-index*   PM-tree  OmniR-tree  

1 3 5 7 9
100

102

104

106

co
m

pd
is

ts

the number |P| of pivots   
1 3 5 7 9

102

103

104

105

106

co
m

pd
ist

s

the number |P| of pivots  
(a) LA                                                 (b) Synthetic                     

1 3 5 7 9
100

101

102

103

104

PA

the number |P| of pivots   
1 3 5 7 9

101

102

103

104

105
PA

the number |P| of pivots  
(c) LA                                                 (d) Synthetic                     

1 3 5 7 9
10-5

10-4

10-3

10-2

10-1

C
PU

 ti
m

e 
(s

ec
)

the number |P| of pivots
1 3 5 7 9

10-3

10-2

10-1

100

C
PU

 ti
m

e 
(s

ec
)

the number |P| of pivots  
(e) LA                                                 (f) Synthetic                      
Figure 18. MkNNQ performance vs. |P|                     
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