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Abstract—Inspired by clustering and energy harvesting tech-
niques, we study multiple-cluster wireless sensor networks with
energy harvesting (EH) sensors serving as relay for cluster heads.
In this paper, we derive the model for realistic energy harvesting
rate. Then we propose distributed matching algorithm for EHs
to serve as relay for CHs. The proposed algorithm could find
optimal/near-optimal CH-EH matching in short time and still
achieve good performance. We evaluate the performance of our
method through theoretical analysis as well as simulation.
Keywords: Wireless sensor network, energy harvesting wireless
sensor, clustering algorithm, network lifetime

I. INTRODUCTION

Nowadays, wireless sensor networks (WSNs) are widely
used in many monitoring applications, such as auto-mobile,
structure health monitoring, military, health-care etc. Numer-
ous research efforts are carried out by researchers worldwide
to improve the performance of WSNs, e.g. [1]–[3].

One of the critical limitations in conventional battery pow-
ered WSNs is finite network lifetime since sensor batteries
may not be conveniently replaced or recharged. Among the
techniques to maximize network lifetime, clustering tech-
niques [4], [5] make use of advanced data aggregation tech-
niques to aggregate data from sensors and forward them
to the data sink. A clustered WSN is typically composed
of many clusters and a base station (BS), the latter which
acts as a data sink. Each cluster comprises a cluster head
(CH) and non cluster heads (NCHs). There are typically three
phases in clustering protocols for WSNs: (i) CH selection, (ii)
cluster formation and (iii) data transmission. In most network
scenarios, CHs usually strongly affect network lifetime since
CHs have to communicate with BS through a longer distance
than the distance between NCHs and CHs. Cluster formation
also affects the lifetime of CHs since inappropriate cluster
formation may force either CH or NCH to be depleted of
energy sooner.

An alternative way to overcome the shortage of limited
battery capacity is to use energy harvesting (EH) technology
[6] to harvest energy from environment. Since the deployments
of large-scale WSNs composed solely of EH sensors remain
impractical in the near future due to high costs and low
achievable duty cycles, deploying EH sensors sparsely in
WSNs is typically a more practical approach [7], [8].

Clustering methods and energy-harvesting techniques can
be combined together to prolong the network lifetime. Due
to fluctuating energy harvesting rates [9], EH sensors may

not be suitable to serve as CH nodes that need to operate
continuously. In this paper, EH sensors are deployed sparsely
and matched with CHs to help them relay data to BS without
sensing from environment. To do this effectively, it is neces-
sary to model the fluctuating energy harvesting rate for optimal
scheme design. As far as we know, we can model the solar
energy harvesting rate as time series values. Autocorrelation
is a property of time series value, it is the cross-correlation of
a signal with itself. Autocorrelation is most suitable for time
series values with high correlated data. Informally, it is the
similarities between observations as a function of the time lag
between them. Solar energy harvesting rate can be modeled
with autocorrelation property due to its high correlation with
itself [6]. Moving average property is another important prop-
erty of solar energy harvesting rate. On the other hand, the
EH-CH matching must be done optimally so that the energy
consumption of CHs is reduced by communicating through
a shorter distance for a certain fraction of time (e.g., when
EH nodes are up and working) to relay instead of direct
communication with BS.

In our previous work [10], we adopt a distributed approach
to solve the above problem, where we considered nodes
powered by ambient energy harvesting as relay nodes for
CHs, and proposed joint clustering and distributed matching
algorithms for network lifetime maximization. In this paper,
we extend the study in previous work to deal with fluctuating
energy harvesting rate profile instead of constant energy har-
vesting rate. Our objective is to model the fluctuating energy
harvesting rate profile and develop distributed clustering and
matching algorithms to optimize the network lifetime.

We organize the rest of papers as follows: In Section II,
a brief survey of some closely related work is provided. In
Section III, we present our network and assumptions. We
also present models to characterize the fluctuating energy
harvesting rate and show the simulation results for various
models. In Section IV, we propose distributed clustering and
CH-EH matching algorithms. Extensive simulation results and
discussions are also provided. Finally, Section V concludes the
paper and provides directions for future research.

II. RELATED WORK

Amongst the works [11]–[13] that maximize network life-
time, Heinzelman et al. proposed LEACH which uses random-
ized rotation of the cluster head to avoid quickly draining the



battery of any sensor in the network [11]. Qing et al. pro-
posed and evaluated the distributed energy-efficient clustering
scheme (DEEC) for heterogeneous WSNs (i.e., CHs and NCHs
have different energy) [12]. A novel energy efficient clustering
scheme (EECS) was proposed in [13], which better suits
periodical data gathering applications. These works consider
battery powered sensor nodes where CHs directly communi-
cate with BS. Our work extends the distributed algorithm by
also utilizing EH sensors as relay for CH nodes.

There have also been some studies on modeling of solar
energy harvesting rate [14], [15] and clustering in WSNs with
EH nodes [7], [16], [17], typically assuming that the network
is solely composed of EH sensors which have infinite lifetime.
In the area of energy harvesting rate modeling, Kansal et. al
used moving average (MA) filter to simulate the future energy
profile [14]. Piorno et. al used Weather Conditioned Moving
Average (WCMA) algorithm as the solar energy simulation
algorithm [15]. Except moving average property, we enhance
the previous work by also considering the autocorrelation
property of solar harvesting rate. In our work we consider the
auto-regressive model including Arima [18] and Garch model
[19], which are widely used time series simulation models and
consider the autocorrelation property. We compare our model
with MA model [14]. In the area of clustering algorithms in
energy harvesting WSNs, Islam et al. considered a hybrid
WSN which comprises both battery-powered and EH nodes
[7]. However, they let EH nodes serve as CHs with a higher
probability than battery-powered nodes. To the best of our
knowledge, only our previous works [10], [20] has studied on
schemes maximizing network lifetime where EH nodes serve
as relay nodes for CHs.

Numerous matching algorithms have been proposed in
optical networks. The representative algorithms include PIM
(Parallel Iterative Matching) [21] and iSlip [22] that use
random and round-robin approaches respectively for matching
between input and output ports. Both algorithms are iterative
and proven to converge in O(logN) iterations on average.
We propose an EH-CH matching algorithms and benchmark
it against the PIM approach [21].

III. SOLAR ENERGY HARVESTING PROFILING AND
CHARACTERIZATION

In this section, we first propose our network model (shown
in Figure 1) and assumptions. Then we present the exper-
iment setup (shown in Figure 2) to measure the energy
harvesting rate from solar panel. Then we present Arima
model; followed by the Garch model. We validate our results
through simulations in R and Matlab for a 2-D network with
data transmission rate of 25 kbps per node. Specifically, we
compare the accuracy of different models in Section III-B.

A. Proposed Model

In this paper, we assume a large scale network with Ns

sensors all with the same amount of energy initially and Ne

EH nodes are randomly deployed in fixed locations. The sensor
nodes are partitioned into Nc clusters, each comprising one

TABLE I
NOTATIONS USED THROUGHOUT THIS PAPER

Notation Description
Ns Number of sensors in the network
Nc Number of clusters in the network
Ne Number of EH nodes in the network
p The order of the autoregressive in Arima
d The order of integrated in Arima
q The order of moving average in Arima
L The lag operator
ϕi The parameter of autoregressive in Arima
θi The parameter of moving average part in

Arima
εarima
t Error term in Arima
s The order of Garch term σ2 in Garch
t The order of ARCH term ϵ2 in Garch

εgarcht The error term in Garch
σt Time-dependent standard deviation in Garch
zt White noise random variable
αi The parameter of ARCH term
βi The parameter of GARCH term

ECHi
residual energy in CHi at the beginning of
each round

Eon
CHi,EHj

residual energy in CHi after each round
with EHj as relay

PCHi,EHj
transmission power between CHi and EHj

T Duration of each round
EEH energy stored at EH node
Es energy stored in battery for each sensor

CH. Each EH serves as relay for one CH, which can be
different at different times. Our network scenario is depicted
in Figure 1. Table I shows the notations used throughout the
paper.

Fig. 1. Abstract model of multiple EH nodes serve as relay for CHs

We assume TDMA and CSMA based communication, as in
[11]. The network lifetime is measured in number of TDMA
rounds the network can operate until the first node dies. Within
each round, each NCH transmits a packet of 2000 bits to its
respective CH in a TDMA time slot. Then CHs forward data



to BS using CSMA approach, either directly, or via EH node.

Fig. 2. Experimental setup

We connect the solar panel to Seeeduino board [23] to
measure energy harvesting rate from solar panel. The energy
harvesting rate is sampled every one second. We use X̂t to
denote the energy harvesting rate measured from Seeduino
board.

The Arima model [18] is defined as follows:

(1−
p∑

i=1

ϕiL
i)(1− L)dXarima

t = (1 +

q∑
i=1

θiL
i)εarima

t

where (1 −
p∑

i=1

ϕiL
i)Xarima

t represents the autoregressive

part and (1 +
q∑

i=1

θiL
i)εarima

t represents the moving average

part. Xarima
t is the simulated energy harvesting rate in time

slot t. The other parameters are shown in Table I. We take the
energy harvesting rate X̂t measured from Seeduino board as
input. Then we find the optimal parameters for Arima model
including (p, d, q) and ϕi, θi such that the simulated series
Xarima

t is close to X̂t.
The procedure to adopt Arima model is as below:
• Step 1: Take the measured time series value X̂t as input.
• Step 2: Find the optimal parameters for (p, d, q) and ϕi, θi

using auto.arima function in R.
• Step 3: Run the model to generate the simulated series

Xarima
t .

The Garch model is defined as below:

σ2
t = α0 +

r∑
i=1

αiε
garch
t−i

2
+

s∑
i=1

βiσ
2
t−i (1)

εgarcht = σtzt

Xgarch
t = Egarch

x + εgarcht

Similarly as Arima model, Garch model is also composed

of two parts.
r∑

i=1

αiε
garch
t−i

2
represents the ARCH part and

s∑
i=1

βiσ
2
t−i represents the Garch part. εgarcht−i is the simulated

error term from Garch model. Xgarch
t is the simulated time

series values from Garch model. Egarch
x is the mean value

derived from the best fitted Garch model. α0 is a constant
given by the best fitted Garch model. Similarly as Arima
model, the procedure to adopt Garch model is as below:

• Step 1: Take the measured time series value X̂t as input.
• Step 2: Find the optimal parameters for (t, s) and αi, βi

using garchF it function in R.
• Step 3: Run the model to generate the simulated series

Xgarch
t .

B. Experiment data

We have the experiment data shown in Figure 3. There are
five data sets measured at different time. Each data set lasts
for a duration of around twenty minutes. Due to the page
constraint, we use our simulation algorithms to model data
set 4 and 5. Note that the models are also applicable for the
remaining data sets.

Fig. 3. Experimental data

Fig. 4. Comparison of simulation between Arima, MA and Garch in data set
4

We compare Arima(1,1,1) (ϕ1 = 0.1180, θ1 = −0.6089)
and Garch(1,1)(α1 = 0.051, β1 = 0.0494) with moving
average model (MA(1)) [14] for data set 4. The simulation



Fig. 5. Comparison of autocorrelation between Arima, MA and Garch in data
set 4

curves by different models are shown in Figure 4. We also
plot the autocorrelation curves by different models in Figure
5. The optimality of a model is indicated by its autocorrelation
function compared with original data set. The autocorrelation
curve from Arima(1,1,1) is most closest to the autocorrelation
curve from original data. Garch(1,1) and MA(1) produce non-
correlative data, which can be seen in Figure 4. This is because
Arima has auto-regressive term in its formulation. Garch can
produce data with less deviation compared with MA.

Fig. 6. Comparison of simulation between Arima, MA and Garch in data set
5

Fig. 7. Comparison of autocorrelation between Arima, MA and Garch in data
set 5

The results for data set 5 are shown in Figure 6 and Figure

7, We compare Arima(0,2,1) (θ1 = −0.8844), Garch (1,1)
(α1 = 0.593, β1 = 0.41) and MA(1). Similarly as data set
4, Arima returns better auto-correlative data compared with
Garch and MA.

IV. IMPACT ON CLUSTERING ALGORITHM

In this section, we extend the work in [10] by considering
fluctuating energy harvesting rate. We adopt the same cluster
head selection and cluster formation algorithms. We extend the
CH-EH matching algorithm for fluctuating energy harvesting
rate in Section IV-A. Then we show the effect of fluctuating
harvesting rates on the performance of distributed algorithm
in Section IV-B.

A. Distributed CH& EH Matching

We assume EH node can serve as relay for CHs only if its
residual energy can sustain transmission of at least one round
with duration T . We have:

ECHi − Eon
CHi,EHj

= TPCHi,EHj

⇒
Eon

CHi,EHj
= ECHi − TPCHi,EHj (2)

We enhanced Algorithm 1( [10]) by considering the fluctu-
ating energy harvesting rate derived from the models proposed
in section III.

B. Performance of Distributed Matching Algorithm

We show the performance of our distributed matching
algorithm in Section IV-B. We evaluate the optimality of our
approach using Algorithm 1 compared with CC (Centralized
clustering [20]) and PIM approach (shown in Section II). In
PIM approach, EH node re-selects CH randomly in the setup
phase. In CC, CH selection and cluster formation are done in
centralized manner. We assume that Es = 0.5J for all nodes
including EH node. Similar to [11], we consider the Friss free
space propagation model.

We consider two square regions of network deployment,
where the coordinates of the vertices are as follows: Area (I)
(100, 100), (100, 200), (200, 100) and (200, 200); Area (II)
(0, 0), (0, 200), (200, 0) and (200, 200). CHs and EHs are
randomly deployed in these two regions. We assume number
of sensors in the region is from {100, 125, 150, 175, 200}.

The effect of psi (this is the probability of sensors to serve
as CH in [10]) on lifetime for Case I is shown in Figure 8. We
use data set 5 as the fluctuating energy harvesting rate in the
simulation. From this figure, we find the optimal psi is 0.04,
which is adopted in our following simulations.

The comparison between our algorithm (DA) with CC and
PIM is shown in Figure 9 for Case I and Figure 10 for Case
II. We use data set 5 in Figure 3 as our energy harvesting
rate. The result shows that our algorithm outperforms PIM.
Specifically, when Ns = 100 in Case I, lifetime is 458.35 for
DA and 378.6 for PIM. This is because our algorithm selects
the EH node to serve the best CH it could find; while PIM
considers using EH nodes to randomly serve each CH. Thus,
our algorithm maximizes the lifetime until the first node dies



Algorithm 1 Distributed matching algorithm at setup phase

Require: Nc CHs, Ne EHs, X̂t, Xarima
t and Xgarch

t

Ensure: Matching between CHs and EHs
Assume that the simulated harvesting rate is P̂EH,h, which
is from X̂t, Xarima

t and Xgarch
t . At beginning, EH node

broadcasts awake to CHs in their broadcast range if EEH+
P̂EH,hT > Es. Each CH estimates PCHi,EHj according to
the signal strength and calculates Eon

CHi,EHj
according to

(2). It also records the smallest Ei = minEon
CHi,EHj

.
while there is unmatched CH do

For each unmatched CH:
if there are unmatched EH nodes then

It selects the closest unmatched EH node and send
request message including Ei to this EH node.

else[CH node does not receive any awake message]
It directly communicates with BS.

end if
For each unmatched EH:
EH node receives several request messages from CH

nodes in its range. Denote the number of requests as Nr,
Nr may be equal to 0

if Nr > 0 then
EH node sends grant to the CH node with smallest

Ei.
else[Nr = 0]

EH node waits for the next iteration
end if
For each unmatched CH:
CH node may or may not receive grant messages from

EH nodes in its range, let Ng be the number of grant
messages it receives.

if Ng = 1 then
It selects the closest EH node and sends accept

message to it.
elseNg = 0

Return to while loop.
end if

end while

Fig. 8. Effect of psi on network lifetime in Case I (Ne = 4, psi = 0.04)

while PIM is trying to find a matching within few iterations.

Fig. 9. Comparison between our algorithm with CC and PIM in Case I
(Ne = 4, psi = 0.04)

Fig. 10. Comparison between our algorithm with CC and PIM in Case II
(Ne = 4, Ns = 100)

Fig. 11. Comparison between various modeling methods in Case I

DA achieves shorter lifetime compared with CC. Specifically,
when Ns = 100 in Case I, lifetime is 601.6 for CC. This
is because DA uses local information for decision while CC
uses global information for optimality. In addition, network
lifetime is increasing when Ns is increasing. The reason is
that when number of sensors increases, more sensors will be
able to serve as CHs, which reduces the chances CHs become
bottleneck nodes. The conclusion also holds for Case II.

Similar result is shown in Figure 10 for Case II. When
Ns = 100, network lifetime of DA is 296.1 rounds compared
with 222.5 rounds for PIM and 325.05 rounds for CC. The



network lifetime for Case II is smaller than Case I because
sensors are more sparsely deployed, resulting in higher power
consumption of NCHs.

We then compare the performance of Arima, Garch and MA
model as shown in Figure 11. Firstly, Arima and Garch models
can achieve quite close results compared with original data
while MA has the worst performance. Secondly, we may use
the difference to measure the accuracy of the models, such as
square errors etc. The less the error is, the better the accuracy
is. We find the Arima can achieve the lowest MSE, with 40.73
which is smaller compared with Garch and MA, with the MSE
of 50.87 and 90.50.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered clustered wireless sensor net-
works (WSN) where CHs either aggregate and forward data
directly to BS, or via relay nodes with energy harvesting (EH)
capabilities. We first characterize the performance of energy
harvesting rate using sensor boards and use Arima and Garch
models to fit the harvesting rate profile. Then we proposed
efficient distributed matching algorithm between CHs and EHs
to maximize network lifetime, where the network lifetime is
the duration until the first node runs out of energy. Through
theoretical analysis and extensive simulations, we validated the
performance of the proposed algorithms.

For future work, we plan to (i) study other configurations
of introducing the EH nodes to the network; and (ii) extend
our simulations to more realistic models, and implement and
evaluate our algorithms in an actual WSN testbed.
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