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Abstract—Traditional code search engines often do not perform
well with natural language queries since they mostly apply
keyword matching. These engines thus need carefully designed
queries containing information about programming APIs for code
search. Unfortunately, existing studies suggest that preparing
an effective code search query is both challenging and time
consuming for the developers. In this paper, we propose a novel
API recommendation technique–RACK that recommends a list
of relevant APIs for a natural language query for code search
by exploiting keyword-API associations from the crowdsourced
knowledge of Stack Overflow. We first motivate our technique
using an exploratory study with 11 core Java packages and 344K
Java posts from Stack Overflow. Experiments using 150 code
search queries randomly chosen from three Java tutorial sites
show that our technique recommends correct API classes within
the top 10 results for about 79% of the queries which is highly
promising. Comparison with two variants of the state-of-the-art
technique also shows that RACK outperforms both of them not
only in Top-K accuracy but also in mean average precision and
mean recall by a large margin.

Index Terms—Code search, query reformulation, keyword-API
association, crowdsourced knowledge, Stack Overflow

I. INTRODUCTION

Studies show that software developers on average spend

about 19% of their development time in web search where

they mostly look for relevant code snippets for their tasks

[13]. Code search engines such as Open Hub, Koders, GitHub

search and Krugle provide access to thousands of large open

source projects which are potential sources for such snip-

pets [21]. Traditional code search engines generally employ

keyword matching, i.e., return code snippets based on lexical

similarity between search query and source code. They expect

carefully designed queries containing relevant API classes

or methods from the users, and thus, often do not perform

well with unstructured natural language queries. Unfortunately,

preparing an effective search query containing information

about relevant APIs is not only a challenging but also a time-

consuming task for the developers [13, 19]. Previous study also

suggested that on average, developers with varying experience

levels performed poorly in coming up with good search terms

for code search [19]. Thus, an automated technique that

translates a natural language query into a set of relevant

API classes or methods (i.e., search-engine friendly query)

can greatly assist the developers in code search. Our paper

addresses this particular research problem by exploiting the

crowdsourced knowledge from Stack Overflow Q & A site.

Existing studies on API recommendation accept one or

more natural language queries, and return relevant API classes

and methods by analyzing feature request history and API

documentations [29], API invocation graphs [14], library us-

age patterns [28], code surfing behaviour of the developers

and API invocation chains [21]. McMillan et al. [21] first

propose Portfolio that recommends relevant API methods for

a given code search query, and demonstrates their usage from

a large codebase. Chan et al. [14] improve upon Portfolio
by employing further sophisticated graph-mining and textual

similarity techniques. Thung et al. [29] recommend relevant

API methods to assist the implementation of an incoming

feature request. Although all these techniques perform well

in different working contexts, they share a set of limitations

and fall short to address our research problem. First, each

of these techniques [14, 21, 29] exploits lexical similarity

measure (e.g., Dice’s coefficients [14]) for candidate API

selection. This warrants that the search query should be

carefully prepared, and it should contain keywords similar to

the API names. In other words, the developer should possess

a certain level of experience on the target APIs to actually

use those techniques [12]. Second, API names and search

queries are generally provided by different developers who

may use different vocabularies to convey the same concept

[20]. Concept location community has termed it as vocabulary

mismatch problem [17]. Lexical similarity based techniques

often suffer from this problem. Hence, the performance of

these techniques is not only limited but also subject to the iden-

tifier naming practices adopted in the codebase under study.

We thus need a technique that overcomes the above limitations,

and recommends relevant APIs for natural language queries

from a wider vocabulary.

One possible way to tackle the above challenges is to

exploit crowdsourced knowledge on the usage of particular

API classes and methods. Let us consider a natural language

query–“Generating MD5 hash of a Java string.” Now, we

analyze thousands of Q & A posts from Stack Overflow

that suggest relevant APIs for this task, and then recommend

APIs from them. For instance, the Q & A example in Fig. 1

discusses on how to generate an MD5 hash (Fig. 1-(a)), and the

accepted answer (Fig. 1-(b)) suggests that MessageDigest
API should be used for the task. Such usage of the API is

also recommended by at least 305 technical users from Stack

Overflow which validates the appropriateness of the usage. Our

work is thus generic, language independent, project insensitive,

and in the same time, it overcomes the vocabulary mismatch

problem suffered from by the past studies.

In this paper, we propose an API recommendation
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Fig. 1. An example of Stack Overflow (a) question & (b) accepted answer

technique–RACK–that exploits the association of different

APIs with query keywords from Stack Overflow, and translates

a natural language query for code search into a set of relevant

APIs. First, we motivate our idea of using crowdsourced

knowledge for API recommendation with an exploratory study

where we analyze 172,043 questions and their accepted an-

swers from Stack Overflow. Second, we construct a keyword-

API mapping database using those questions and answers

where the keywords (i.e., programming requirements) are

extracted from questions and the APIs (i.e., programming

solutions) are collected from corresponding accepted answers.

Third, we propose an API recommendation technique that

employs two heuristics on keyword-API associations, and

recommends a ranked list of API classes for a given query.

The baseline idea is to capture and learn the responses

from millions of technical users (e.g., developers, researchers,

programming hobbyists) for different programming problems,

and then exploit them for relevant API recommendation. Our

technique (1) does not rely on the lexical similarity between

query and source code of projects for API selection, and

(2) addresses the vocabulary mismatch problem by using a

significantly large vocabulary (i.e., 20K) produced by millions

of users of Stack Overflow. Thus, it has a great potential to

overcome the challenges faced with the past studies.

An exploratory study with 344,086 Java related posts from

Stack Overflow shows that (1) each post uses at least two

different API classes on average, and (2) about 65% of the

classes from each of the 11 core Java API packages are used

in those posts. This suggests the potential of Stack Overflow

for relevant API recommendation. Experiments using 150 code

search queries randomly chosen from three Java tutorial sites

show that our technique can recommend relevant APIs with

a Top-10 accuracy of about 79% which is highly promising.

We also compared with two variants of the state-of-the-art

technique by Thung et al. [29], and report that our technique

outperformed both of them not only in Top-K accuracy but

also in mean average precision and mean recall by a large

margin. Thus, the paper makes the following contributions:

TABLE I
API PACKAGES FOR EXPLORATORY STUDY

Package #Class Package #Class
java.lang 255 java.net 84

java.util 470 java.security 148

java.io 105 java.awt 423

java.math 09 java.sql 29

java.nio 189 java.swing 1,195

java.applet 05

• An exploratory study that suggests the potential of Stack

Overflow for relevant API recommendation for code

search using natural language queries.

• A keyword-API mapping database that maps 655K ques-

tion keywords to 551K API classes from Stack Overflow.

• A novel technique that exploits query keyword-API asso-

ciations from crowdsourced knowledge, and translates a

natural language query into a set of relevant API classes.

• Comprehensive evaluation of the proposed technique with

four metrics, and comparison with the state-of-the-art.

II. EXPLORATORY STUDY

Our technique relies on the mapping between natural lan-

guage keywords from the questions of Stack Overflow and API

classes from corresponding accepted answers for translating a

code search query into relevant API classes. Thus, an inves-

tigation is warranted if such answers contain any API related

information and the questions contain any query keywords.

We perform an exploratory study using 344K posts from Stack

Overflow, and analyze the usage and coverage of standard Java

API classes in those posts. We also explore if the question

titles are a potential source for keywords for code search. We

particularly answer three research questions as follows:

• RQ1: To what extent do the accepted answers from Stack

Overflow refer to standard Java API classes?

• RQ2: To what extent are the API classes from each of

the core Java packages covered (i.e., mentioned) in the

accepted answers from Stack Overflow?

• RQ3: Do the titles from Stack Overflow questions contain

potential keywords for code search?

A. Data Collection

We collect 172,043 questions and their accepted answers

from Stack Overflow using StackExchange data explorer [2]

for our investigation. Since we are interested in Java APIs, we

only collect such questions that are tagged as java. Besides,

we apply several other constraints–(1) each of the questions

should have at least three answers (i.e., average answer count)

with one answer being accepted as solution, in order to ensure

that the questions are answered substantially and successfully,

and (2) the accepted answers should contain code like elements

such as code snippets or code tokens so that API information

can be extracted from them. We identify the code elements

with the help of <code> tags in the HTML source of the

answers (details in Section II-B), and use Jsoup [5], a popular

Java library, for HTML parsing and content extraction.

We collect a total of 2,912 Java classes from 11 core API

packages1 of standard Java edition 6, one of the most stable

1https://en.wikipedia.org/wiki/Java package
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Fig. 2. API frequency distribution– (a) API frequency PMF (b) API frequency CDF

versions [9], for our study. The goal is to find out if these

classes are referred to in Stack Overflow posts, and if yes, to

what extent they are referred to. We first use Reflections [8],

a runtime meta data analysis library, to collect the API classes

from JRE 6, and then apply regular expressions on their fully

qualified names for extracting the class name tokens. Table I

shows class statistics of the 11 API packages selected for our

investigation.

We also collect a set of 18,662 real life search queries (of the

first author) from Google for over the last eight years which

are analyzed to answer the third research question. Although

the queries come from a single user, they contain a large

vocabulary of 9,029 distinct natural language keywords, and

the vocabulary is built over a long period of time. Thus, a

study using those queries can produce significant intuitions.

B. API Class Name Extraction

Several existing studies [11, 15, 25] extract code elements

such as API packages, classes and methods from unstructured

natural language texts (e.g., forum posts, mailing lists) us-

ing information retrieval (e.g., TF-IDF) and island parsing

techniques. In the case of island parsing, they apply a set

of regular expressions describing Java language specifications

[16], and isolate the land (i.e., code elements) from water

(i.e., free-form texts). We borrow their parsing technique [25],

and apply it to the extraction of API elements from Stack

Overflow posts. Since we are interested in the API classes

referred to in the posts, we adopt a selective approach for

identifying them. We first isolate the code like sections from

HTML source of each of the answers from Stack Overflow

using <code> tags. Then we split the sections based on

white spaces and punctuation marks, and collect the tokens

having the camel-case notation for Java class (e.g., HashSet).

According to the existing studies [15, 25], such parsing of code

elements sometimes might introduce false positives. Thus, we

restrict our exploratory analysis to a closed set of 2,912 API

classes from 11 core Java packages (Table I) for avoiding false

positives (e.g., camel-case tokens but not valid API classes).

C. Answering RQ1: API use in accepted SO answers

Since our API recommendation technique exploits keyword-

API associations from Stack Overflow, we investigate if the

accepted answers actually use certain APIs of our interest in

the first place. According to our investigation, out of 172,043

accepted answers, 136,796 (79.51%) answers refer to one or

more Java classes (i.e., standard API or user defined), and

Fig. 3. Distinct API frequency distribution– (a) Distinct API frequency PMF (b) Distinct
API frequency CDF

Fig. 4. Coverage of API classes from core packages by Stack Overflow answers

104,983 (61.02%) of them use API classes from the 11 core

Java packages (Table I) as a part of their solution.

Fig. 2 shows (a) probability mass function (PMF) and (b)

cumulative density function (CDF) for the total frequency

of API classes used in each of the Stack Overflow answers

where the classes belong to the core Java packages. Both

density curves suggest that the frequency observations derive

from a heavy-tailed distribution, and majority of the densities

accumulate over a short frequency range. The empirical CDF

curve also closely matches with the theoretical CDF [1] (i.e.,

red curve in Fig. 2-(b)) of a Poisson distribution. Thus, we

believe that the observations are probably taken from a Poisson

distribution. We get a 95% confidence interval over [5.08,

5.58] for mean frequency (λ = 5.32) which suggests that

the API classes from the core packages are referred to at

least five times on average in each of the answers from Stack

Overflow. We also get 10th quantile at frequency=2 and 97.5th

quantile at frequency=10 which suggest that only 10% of the

frequencies are below 3 and only 2.5% of the frequencies are

above 10. Fig. 3 shows similar density curves for the frequency

of distinct API classes in each of the accepted answers. We get

a 95% confidence interval over [2.33, 2.41] for mean frequency

(λ = 2.37) which suggests that at least two distinct classes are

used on average in each answer. 30th quantile at frequency =

1 and 80th quantile at frequency = 4 suggest that 30% of the

Stack Overflow answers refer to at least one API class whereas

20% of the answers refer to at least four distinct API classes

from the core Java packages.

Thus, to answer RQ1, at least two API classes from the core

packages are referred to in each of the accepted answers from

Stack Overflow that contain API classes from those packages,

and they are used at least five times on average in each answer.

D. Answering RQ2: API coverage in accepted answers

Since our technique exploits mapping between API classes

in Stack Overflow answers and keywords from corresponding
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Fig. 5. Use of core packages in Stack Overflow answers

questions for API recommendation, we need to investigate if

such answers actually use a significant portion of the API

classes from the core packages. We thus identify the occur-

rence of the classes from core packages in Stack Overflow

answers, and determine API coverage for those packages.

Fig. 4 shows the fraction of the classes that are used in

Stack Overflow answers for each of the 11 core packages

under study. We note that at least 60% of the classes are used

in Stack Overflow for nine out of 11 packages. The remaining

two packages–java.math and javax.swing have 55.56%

and 37.41% class coverage respectively. Among those nine

packages, three large packages– java.lang, java.util
and java.io even have a class coverage over 70%. Fig. 5

shows the fraction of Stack Overflow answers (under study)

that use API classes from each of the core 11 packages.

We note that classes from java.lang package are used in

over 50% of the answers, which is quite expected since the

package contains the frequently used and basic classes such

as String, Integer, Method, Exception and so

on. Two packages– java.util and java.awt that focus

on utility functions (e.g., unzip, pattern matching) and user

interface controls (e.g., radio button, check box) respectively

have a post coverage over 20%. We also note that classes from

java.io and javax.swing packages are used in over 10%

of the Stack Overflow answers, whereas such statistic for the

remaining six packages is less than 10%.

Thus, to answer RQ2, on average, about 65.15% of the

API classes from each of the core Java packages are used in

Stack Overflow answers, and at least 12.22% of the answers

refer to the classes from each single API package as a part

of their solutions. These findings suggest a high potential of

Stack Overflow for API recommendation.

E. Answering RQ3: Search keywords in SO questions

Our technique relies on the mapping between natural lan-

guage tokens from Stack Overflow questions and API classes

from corresponding accepted answers for translating a code

search query into several relevant API names. Thus, we need

to investigate if the texts from such questions actually contain

keywords used for code search or not. We are particularly

interested in the title of a Stack Overflow question since it

summarizes the technical requirement of the question using

a few words, and also quite resembles a search query. We

analyze the titles of 172,043 Stack Overflow questions and

18,662 real life queries used for Google search. Since we are

Fig. 6. Coverage of keywords from the collected queries in Stack Overflow questions

Fig. 7. Collected search query keywords in Stack Overflow– (a) Keyword frequency
PMF (b) Keyword frequency CDF

interested in code search queries, we only select those queries

that contain any of these keywords–java, code, example and

programmatically for our analysis. A search using such key-

words in the query is generally intended for code example

search. We get 1,703 such queries containing 1,461 distinct

natural language tokens from our query collection.

According to our analysis, the question titles contain 20,391

unique tokens after performing natural language processing

(i.e., stop word removal, splitting and stemming), and the

tokens match 66.94% of the keywords collected from our

code search queries. Fig. 6 shows the fraction of the search

keywords that match with the tokens from Stack Overflow

questions for the past eight years starting from 2008. We note

that on average, 73.03% of the code search keywords from

each year match with Stack Overflow tokens. Such statistic

reaches up to 80% for the year 2009 to year 2011. One

possible explanation for this is that the user (i.e., first author)

was a professional developer then, and most of the queries

were programming or code example related. Fig. 7 shows (a)

probability mass function, and (b) cumulative density function

for keyword frequency in the question titles. We note that

the density curve shows central tendency like a normal curve

(i.e., bell shaped curve), and the empirical CDF also closely

matches with the theoretical CDF (i.e., red curve) of a normal

distribution with μ = 2.85 and σ = 1.54. Thus, we believe that

the frequency observations come from a normal distribution.

We get a mean frequency, μ = 2.85 with 95% confidence

interval over [2.84, 2.86], which suggests that each of the

question titles from Stack Overflow contains approximately

three code search keywords on average.

Thus, to answer RQ3, titles from Stack Overflow questions

contain a significant amount of the keywords that were used

for real life code search. Each title contains approximately

three query keywords on average, and their tokens match

with about 73% of our collected code search keywords when

considered on a yearly basis.

352



Fig. 8. Proposed technique for API recommendation–(a) Construction of token-API mapping database, (b) Translation of a code search query into relevant API classes

III. RACK: AUTOMATIC API RECOMMENDATION USING

CROWDSOURCED KNOWLEDGE

According to the exploratory study (Section II), at least

two API classes are used in each of the accepted answers of

Stack Overflow, and about 65% of the API classes from the

core packages are used in those answers. Besides, the titles

from Stack Overflow questions are a major source for code

search keywords. Such findings suggest that Stack Overflow

might be a potential source for code search keywords and API

classes relevant to them. Since we are interested in exploiting

this keyword-API association from Stack Overflow questions

and answers for API recommendation, we need a technique

that stores such associations, mines them automatically, and

then recommends the most relevant APIs. Thus, our proposed

technique has two major steps – (a) Construction of token-API

mapping database, and (b) Recommendation of relevant APIs

for a code search query. Fig. 8 shows the schematic diagram

of our proposed technique–RACK– for API recommendation.

A. Construction of Token-API Mapping Database

Since our technique relies on keyword-API associations

from Stack Overflow, we need to extract and store such

associations for quick access. In Stack Overflow, each question

describes a technical requirement such as “how to send an
email in Java?” The corresponding answer offers a solution

containing code example(s) that refer(s) to one or more API

classes (e.g., MimeMessage, Transport). We capture such

requirement and API classes carefully, and exploit their se-

mantic association for the development of token-API mapping

database. Since the title summarizes a question using a few

words, we only use the titles from the questions. Besides,

acceptance of an answer by the person who posted the question

indicates that the answer actually meets the requirement in the

question. Thus, we consider only the accepted answers from

the answer collection for our analysis. The construction of the

mapping database has several steps as follows:

Token Extraction from Titles: We collect title(s) from

each of the questions, and apply standard natural language

pre-processing steps such as stop word removal, splitting and

stemming on them (Step 1, Fig. 8-(a)). Stop words are the

frequently used words (e.g., the, and, some) that carry very

little semantic for a sentence. We use a stop word list [10]

hosted by Google for the stop word removal step. The splitting

step splits each word containing any punctuation mark (e.g.,

?,!,;), and transforms it into a list of words. Finally, the

stemming step extracts the root of each of the words (e.g.,

“send” from “sending”) from the list, where Snowball stemmer

[23, 30] is used. Thus, we extract a set of unique and stemmed

words that collectively convey the semantic of the question

title, and we consider them as the tokens from the title.

API Class Extraction: We collect the accepted answer

for each of the questions, and parse their HTML content

using Jsoup parser [5] for code segments (Step 2, 3, Fig. 8-

(a)). We extract all <code> tags from the content as they

generally contain code segments [24]. It should be noted that

code segments may sometimes be demarcated by other tags or

no tag at all. However, identification of such code segments

is challenging and often prone to false-positives. Thus, we

restrict our analysis to contents inside <code> tags for code

segment collection from Stack Overflow. We split each of the

segments based on punctuation marks and white spaces, and

discard the programming keywords. Existing studies [11, 25]

apply island parsing for API method or class extraction where

they use a set of regular expressions. Similarly, we use a

regular expression for Java class [16], and extract the API

class tokens having camel case notation. Thus, we collect a

set of unique API classes from each of the accepted answers.

Token-API Linking: Natural language tokens from a ques-

tion title hint about the technical requirement described in the

question, and API names from the accepted answer represent

the relevant APIs that can meet such requirement. Thus, the

programming Q & A site–Stack Overflow– inherently provides

an important semantic association between a list of tokens and

a list of APIs. For instance, our technique generates a list of

natural language tokens–{generat, md5, hash}– and an API

token– MessageDigest– from the showcase example on

MD5 hash (Fig. 1). We capture such associations from 136,796

Stack Overflow question and accepted answer pairs, and store

them in a relational database (Step 4, 5, Fig. 8-(a)) for relevant

API recommendation for any code search query.

B. API Relevance Ranking & Recommendation

In the token-API mapping database, each token associates

with different APIs, and each API associates with a number

of tokens. Thus, we need a technique that carefully analyzes

such associations, identifies the candidate APIs, and then

recommends the most relevant ones from them for a given

query. It should be noted that we do not apply the traditional

association rule mining since our investigations suggest that

many token and API sets extracted from our constructed

database (Section III-A) have low support. Thus, the mined

rules might not be sufficient for API recommendation. The API
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ranking and recommendation involve several steps as follows:

1) Identification of Keyword Context: In natural language

processing, the context of a word refers to the list of other

words that co-occur with that word in the same phrase,

sentence or even the same paragraph [18]. Co-occurring words

complement the semantics of one another [22]. Yuan et al.

[34] analyze programming posts and tags from Stack Overflow

Q & A site, and use word context for determining semantic

similarity between any two software-specific words. In this

research, we identify words that co-occur with each keyword

in the thousands of question titles from Stack Overflow. For

each keyword, we refer to these co-occurring words as its

context. We then opportunistically use these context words for

estimating semantic relevance between any two keywords.

2) Candidate API Selection: In order to collect candidate

APIs for a query, we employ two heuristics. These heuristics

consider not only the association between keywords and APIs

but also the coherence among the keywords. Thus, the key idea

is to identify such APIs as candidates that are both likely for

the query keywords and functionally consistent to one another.

Keyword-API Co-occurrence (KAC): Stack Overflow dis-

cusses thousands of programming problems, and the discus-

sions contain various natural language keywords and reference

to a number of APIs. According to our observation, several

keywords might co-occur with a particular API or a particular

keyword might co-occur with several APIs across different

programming solutions. This co-occurrence generally takes

place either by chance or due to semantic relevance. Thus, if

carefully analyzed, such co-occurrences could be a potential

source for semantic association between keywords and APIs.

We capture these co-occurrences (i.e., associations) between

keywords and APIs, discard the random associations using a

heuristic threshold (δ), and then collect the top APIs (L[Ki])
for each keyword (Ki) that co-occurred most frequently with

the keyword at Stack Overflow.

L[Ki] = {Aj | AjεA ∧ rankfreq(Ki → Aj) ≤ δ}
Here, Ki → Aj denotes the association between a keyword

Ki and an API Aj , rankfreq returns rank of the association

from the ranked list based on association frequency, and δ is a

heuristic rank threshold. In our research, we consider top five

(i.e., δ = 5) APIs for each keyword which is chosen based on

iterative experiments on our dataset.

Keyword-Keyword Coherence (KKC): Since a code

search query might contain multiple keywords (i.e., describing

a single task), the candidate APIs should be not only relevant

to multiple keywords but also consistent with one another.

Yuan et al. [34] determine semantic similarity between any

two software specific words by using their contexts from Stack

Overflow questions and answers. We adapt their technique

for identifying coherent keyword pairs which are then used

for collecting candidate APIs functionally relevant to those

pairs. We (1) develop a context (Ci) for each of the n query

keywords by collecting its co-occurred words from thousands

of question titles from Stack Overflow, (2) determine semantic

similarity for each of the nC2 keyword pairs based on their

context derived from Stack Overflow, and (3) use those mea-

sures to identify the coherent pairs and then to collect the

functionally relevant APIs for them. At the end of this step,

we have a set of APIs for each pair of coherent keywords.

Suppose, two query keywords Ki and Kj have context word

list Ci and Cj respectively. Now, the candidate APIs (Lcoh)

that are relevant to both keywords and functionally consistent

with one another can be selected as follows:

Lcoh[Ki,Kj ] = {L[Ki] ∩ L[Kj ] | cos(Ci, Cj) > γ}
Here, cos(Ci, Cj) denotes the cosine similarity [24] between

two context lists, and γ is the similarity threshold. We consider

γ = 0 in this work based on iterative experiments on our

dataset. L[Ki] and L[Kj ] are top frequent APIs for the two

keywords– Ki and Kj . Thus, L[Ki,Kj ] contains such APIs

that are relevant to both keywords (i.e., co-occurred with

them at Stack Overflow answers), and functionally consistent

with one another given that the target keywords are coherent

themselves (i.e., semantically similar).

Algorithm 1 API Relevance Ranking Algorithm

1: procedure RACK(Q) � Q: code search query

2: R← {} � list of relevant APIs

3: � collecting keywords from the search query

4: K ← collectKeywords(Q)

5: � collecting candidate APIs

6: L← getKACList(K)

7: Lcoh ← getKKCList(K)

8: � estimating relevance of the candidate APIs

9: for Keyword Ki ∈ K do
10: sortedAPIs← sortByFreq(L[Ki])
11: for APIClass Aj ∈ sortedAPIs do
12: � likelihood score of an API

13: SKAC ← getKACScore(Aj , sortedAPIs)

14: R[Aj ].score← R[Aj ].score+ SKAC

15: end for
16: end for
17: for Keyword Ki,Kj ∈ K do
18: Ci ← getContextList(Ki)

19: Cj ← getContextList(Kj)

20: � relevance of an API with multiple keywords

21: SKKC ← getKKCScore(Ci, Cj)

22: for APIClass Aj ∈ Lcoh[Ki,Kj ] do
23: R[Aj ].score← R[Aj ].score+ SKKC

24: end for
25: end for
26: � ranking of the APIs

27: rankedAPIs← sortByScore(R)

28: return rankedAPIs
29: end procedure

3) API Relevance Ranking Algorithm: Fig. 8-(b) shows

the schematic diagram, and Algorithm 1 shows the pseudo

code of our API relevance ranking algorithm. Once a search

query is submitted, we (1) perform Parts-of-Speech (POS)

tagging on the query for extracting the meaningful terms

such as nouns and verbs [32], and (2) apply standard natural
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TABLE II
AN EXAMPLE OF API RECOMMENDATION USING RACK

java Scores parser Scores html Scores Recommended Total
SKAC SKKC SKAC SKKC SKAC SKKC APIs Score

List 1.00 0.20 Document 1.00 0.42 Document 1.00 Document 2.42

ArrayList 0.80 List 0.80 Jsoup 0.80 File 2.10

File 0.60 0.20 Element 0.60 0.42 Element 0.60 List 2.00

Map 0.40 File 0.40 0.42 Elements 0.40 Element 1.62

Runnable 0.20 Node 0.20 File 0.20 0.28 Jsoup 0.80

language processing (i.e., stop word removal, splitting, and

stemming) on them to extract the stemmed words (Line 4,

Algorithm 1). For example, the query–“html parser in Java”
turns into three keywords–‘html’, ‘parser’ and ‘java’ at the

end of the above step. We then apply the two heuristics–KAC
and KKC– on those stemmed keywords, and collect candidate

APIs from the token-API linking database (Step 2, Line 5–Line

7). The candidate APIs are selected based on not only their

co-occurrence with the query keywords but also the coherence

among the keywords. We then use the following two metrics

(derived from the above heuristics) to estimate the relevance

of the candidate APIs for the query.

API Likelihood estimates the probability of co-occurrence

of a candidate API (Aj) with an associated keyword (Ki)

from the search query. It considers the rank of the API in the

ranked list based on keyword-API co-occurrence frequency

(i.e., KAC), and then provides a normalized score as follows.

SKAC(Aj ,Ki) = 1− rank(Aj , sortByFreq(L[Ki]))

|L[Ki]|
Here, SKAC denotes the API Likelihood estimate, and it

ranges from 0 (i.e., not likely at all for the keyword) to 1

(i.e., very much likely for the keyword).

API Coherence estimates the relevance of a candidate API

(Aj) to multiple keywords from the query simultaneously.

Since the search query targets a particular programming task,

each of the recommended APIs should be relevant to multiple

keywords from the query. One way to heuristically determine

such relevance is to exploit the semantic similarity between the

corresponding keywords that co-occurred with that API. We

thus determine semantic similarity between any two keywords

(Ki,Kj) using their context lists (Ci, Cj) [34], and then

propagate that measure to each of the candidate APIs (Aj)

that co-occurred with both keywords (i.e., KKC) as a proxy

to relevance between the candidate and the two keywords.

SKKC(Aj ,Ki,Kj) = cos(Ci, Cj) | (Ki → Aj)∧(Kj → Aj)

Here, SKKC denotes the API Coherence estimate, and it

ranges from 0 (i.e., not relevant at all with multiple keywords)

to 1 (i.e., very much relevant). It should be noted that each

candidate, Aj , comes from L[Ki] or L[Kj ], i.e., the API is

already relevant (i.e., frequently co-occurred) to each of Ki

and Kj in their corresponding contexts. SKKC investigates

how similar those contexts are, and thus heuristically estimates

the relevance of the API, Aj , to both keywords.

We first compute API Likelihood for each of the candidate

APIs that suggests the likeliness of the API for each keyword

from the query (Line 9–Line 16). Then we determine API
Coherence for each candidate API that suggests relevance

of the API to multiple keywords from the query (Line 17–

Line 25). Once both metrics are calculated for each of the

entries from L and Lcoh (Step 3, Fig. 8-(b)), the scores are

accumulated for each individual candidate API (Line 14 and

Line 23, Algorithm 1). The candidates are then ranked based

on their accumulated scores, and top K APIs from the list are

returned for recommendation (Line 26–Line 28, Algorithm 1,

Step 4, 5, Fig. 8-(b)).

Example: Table II shows a working example on how our

API recommendation technique–RACK– works. We first col-

lect the top 5 (i.e., δ) candidate APIs for each of the keywords–

‘java’,‘parser’ and ‘html’– based on their co-occurrence fre-

quencies with the keywords. Then we calculate the likelihood

(i.e., SKAC) of each candidate. For example, Document has

a maximum likelihood of 1.00 among the candidates for both

’parser’ and ’html’. We then collect coherence (i.e., SKKC)

of each candidate API based on semantic relevance among the

keywords. For example, ‘parser’ and ‘html’ have a semantic

relevance of 0.42 on the scale from 0 to 1, and that score is

added to the overlapping candidates–Document, Element
and File– between these two keywords. We then accumulate

both scores for each candidate, discard the duplicate candidate

APIs (i.e., superclass or subclass), and finally get a ranked list.

From the list, we see that Document, Element and Jsoup
are highly relevant APIs for the query–“java parser html”.

IV. EXPERIMENT

One of the most effective ways to evaluate a technique for

API recommendation is to analyze the relevance of the rec-

ommended APIs for a target query. We evaluate our technique

using 150 code search queries, determine its performance

using four metrics, and then compare with two variants of

the state-of-the-art technique. We particularly answer four

research questions through our experiments as follows:

• RQ4: How does the proposed technique perform in

recommending relevant APIs for a code search query?

• RQ5: How effective are the proposed heuristics–KAC

and KKC–in capturing the relevant APIs for a query?

• RQ6: Is our selection of keywords from a given query

effective in retrieving the relevant APIs?

• RQ7: Can RACK outperform the state-of-the-art tech-

nique in recommending APIs for any given set of queries?

A. Experimental Dataset

Data Collection: We collect 150 code search queries for

our experiment from three Java tutorial sites– KodeJava [6],

JavaDB [4] and Java2s [3]. These sites discuss hundreds of

programming tasks that involve the usage of different APIs

from the standard Java libraries. Each of these task descrip-

tions generally has three parts–(1) a title (i.e., question) for the
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task, (2) one or more code snippets, and (3) an associated prose

explaining the code. The title (e.g., “How do I decompress

a GZip file in Java?”) summarizes the programming task in

natural language using a few keywords, and it quite resembles

a query for code search as well. We thus use such titles as the

code search queries for our experiment in this research.

Gold Set Development: The prose explaining the code

often refers to one or more APIs (e.g., GZipOutputStream,

FileOutputStream) from the code snippet(s) that are

found essential for the task. In other words, such APIs can be

considered as the most relevant ones for the target task. We

collect such APIs from the prose against each of the task titles

from our dataset, and develop a gold set–API-goldset–for the

experiment. Since relevance of the APIs is determined based

on working code examples and their associated prose from

the publicly available popular tutorial sites, the subjectivity

associated with the relevance is minimized [14].

B. Performance Metrics

We choose four performance metrics for evaluation and val-

idation that are widely used by relevant literature [14, 21, 29].

Two of them are related to recommendation systems whereas

the rest two come from information retrieval domain.

Top-K Accuracy: It refers to the percentage of the search

queries for which at least one API is correctly recommended

within the Top-K results by a recommendation technique. Top-

K Accuracy can be defined as follows:

Top–KAccuracy(Q) =

∑
q∈Q isCorrect(q, Top–K)

|Q| %

Here, isCorrect(q, Top–K) returns a value 1 if there exists at

least one API from the API-gold set in the Top-K results, and

returns 0 otherwise. Q denotes the set of all search queries.

Mean Reciprocal Rank@K (MRR@K): Reciprocal

rank@K refers to the multiplicative inverse of the rank of

the first relevant API in the Top-K results returned by a

technique. Mean Reciprocal Rank@K (MRR@K) averages

such measures for all search queries in the dataset.

Mean Average Precision@K (MAP@K): Precision@K
calculates the precision at the occurrence of every single

relevant API in the ranked list. Average Precision@K (AP@K)
averages the precision@K for all relevant APIs in the list for

a code search query. Mean Average Precision@K is the mean

of average precision@K for all queries from the dataset.

Mean Recall@K (MR@K): Recall@K refers to the per-

centage of gold set APIs that are correctly recommended for a

code search query in the Top-K results by a technique. Mean

Recall@K (MR@K) averages such measures for all queries.

C. Evaluation of RACK

Each of the queries summarizes a programming task that

demands the use of one or more APIs from standard Java

libraries. Our technique recommends the top 10 relevant APIs

for each query which are then compared with the API-goldset
for evaluation and validation using the above four metrics.

Table III shows the performance details of our technique

for Top-3, Top-5 and Top-10 API recommendation. We see

TABLE III
EXPERIMENTAL RESULTS

Performance Metric Top-3 Top-5 Top-10
Top-K Accuracy 49.33% 62.67% 78.67%

Mean Reciprocal Rank@K (MRR@K) 0.17 0.17 0.17

Mean Average Precision@K 30.39% 33.36% 34.92%

Mean Recall@K (MR@K) 23.71% 33.48% 45.02%

Fig. 9. Top-K Accuracy, Mean Average Precision@K, and Mean Recall@K

TABLE IV
ROLE OF DIFFERENT HEURISTICS

Heuristics Metric Top-3 Top-5 Top-10
Accuracy 50.00% 66.00% 78.00%

{Keyword-API MRR@K 0.18 0.18 0.18

Co-occurrence (KAC)} MAP@K 31.44% 34.99% 35.41%

MR@K 23.99% 34.20% 44.80%

Accuracy 34.00% 39.33% 39.33%

{Keyword-Keyword MRR@K 0.15 0.15 0.15

Coherence (KKC)} MAP@K 22.78% 24.08% 24.11%

MR@K 15.24% 19.02% 19.52%

{Keyword-API Accuracy 49.33% 62.67% 78.67%

Co-occurrence (KAC) & MRR@K 0.17 0.17 0.17

Keyword-Keyword MAP@K 30.39% 33.36% 34.92%

Coherence (KKC)} MR@K 23.71% 33.48% 45.02%

that the technique recommends correctly for about 79% of the

queries with a mean average precision of 34.92% and a mean

recall of 45.02% which are highly promising, especially the

Top-K accuracy and the recall, according to relevant literature

[14, 21]. While the technique provides a recommendation

accuracy of 63.00% for Top-5 results, precision and recall

remain close to 33.50%. However, for Top-10 recommenda-

tion, the accuracy and recall measures increase significantly,

and the precision remains comparable. We do not notice any

change in mean reciprocal rank (MRR) for different Top-

K recommendations by our technique. Fig. 9 shows how

different performance metrics–accuracy, precision and recall

change over different values of K. We also see that each of

these metrics becomes stationary at K = 10, which actually

supports our choice of K values for top result collection.

Thus, to answer RQ4, our API recommendation technique–

RACK recommends correct APIs for about 79% of the queries

with a precision of 34.92% and a recall of 45.02% on average.

We investigate effectiveness of the two applied heuristics–

KAC and KKC, and justify their combination in the API

ranking algorithm (Algorithm 1). Table IV demonstrates how

effective each of the heuristics is in capturing relevant APIs

for a given code search query. We see that our technique

recommends correctly for 78.00% of the queries with 35.41%

precision and 44.88% recall when KAC is considered in isola-

tion. On the other hand, the technique provides at most 40.00%

accuracy for Top-10 recommendation with KKC heuristic

considered in isolation. However, our technique performs the
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TABLE V
EFFECT OF DIFFERENT QUERY TERM SELECTION

Query Terms Metric Top-3 Top-5 Top-10
Accuracy 48.00% 57.33% 78.00%

All terms MRR@K 0.17 0.17 0.17

from query MAP@K 29.67% 31.40% 33.67%

MR@K 22.71% 30.29% 43.67%

Noun terms only

Accuracy 50.00% 65.33% 72.67%

MRR@K 0.22 0.22 0.22

MAP@K 33.17% 36.56% 36.79%

MR@K 24.71% 34.33% 41.60%

Verb terms only

Accuracy 18.67% 23.33% 26.67%

MRR@K 0.07 0.07 0.07

MAP@K 11.44% 12.71% 13.23%

MR@K 7.94% 11.11% 12.61%

Accuracy 49.33% 62.67% 78.67%

Noun and Verb MRR@K 0.17 0.17 0.17

terms combined MAP@K 30.39% 33.36% 34.92%

MR@K 23.71% 33.48% 45.02%

TABLE VI
COMPARISON WITH EXISTING TECHNIQUES

Technique Metric Top-3 Top-5 Top-10

Thung et al. [29]-I

Accuracy 30.00% 38.67% 42.00%

MRR@K 0.19 0.19 0.19

MAP@K 23.33% 24.62% 23.53%

MR@K 13.50% 18.94% 25.89%

Thung et al. [29]-II

Accuracy 30.67% 37.33% 48.67%

MRR@K 0.17 0.17 0.17

MAP@K 23.00% 23.77% 23.47%

MR@K 14.78% 21.06% 33.44%

Accuracy 49.33% 62.67% 78.67%

RACK MRR@K 0.17 0.17 0.17

(Proposed technique) MAP@K 30.39% 33.36% 34.92%

MR@K 23.71% 33.48% 45.02%

best when both heuristics are used in combination. It provides

a maximum of about 79.00% recommendation accuracy with

34.92% precision and 45.02% recall for Top-10 results.

Thus, to answer RQ5, KAC is found more effective than

KKC in capturing relevant APIs. However, combination of

both heuristics provides the maximum performance. Thus,

their combination for API ranking might be justified.

Since our technique identifies relevant APIs based on their

co-occurrence with query keywords, the keywords from each

query should be chosen carefully. We extract noun and verb

terms from the query (Section III-B), and use them for our

experiment. In this section, we investigate if the selection

of such terms from the query is effective or not. Table V

summarizes our comparative analyses using different set of

queries. We see that our technique does not perform well

especially for Top-3 and Top-5 results when all terms from

a search query are used. The performance improves when

only noun terms are considered from the query. However,

the accuracy and the recall for Top-10 results do not reach

the maximum. The performance is also not much interesting

when only verb terms are considered. However, our technique

performs the best especially in terms of accuracy and recall

when both the noun and the verb terms are used together.

Thus, to answer RQ6, important keywords from a query

mainly consist of its noun and verb terms, and our query term

selection is found quite effective in retrieving relevant APIs.

D. Comparison with Existing Techniques

Thung et al. [29] take in a feature request and return a list of

Fig. 10. Top-K Accuracy comparison with existing techniques

relevant API methods both by mining of feature request history

and by analysis of textual similarity between the request and

the API documentations of those methods. To the best of our

knowledge, this is the latest closest study to our work, and

thus, we select it for comparison. Since feature request history

is not available in our experimental settings, we implement

Description-Based Recommender module from the technique.

We collect API documentations of 3,300 classes from the Java

standard libraries (i.e., JDK 6), and develop Vector Space

Model (VSM) for each of the classes. In fact, we develop two

models for each API class using (1) class header comments

only, and (2) both class header and method header comments,

and implement two variants– Thung et al.-I and Thung et al.-

II for our experiment. We use Apache Lucene [7] for VSM

development and for textual similarity matching between the

API classes and each of the queries from our dataset.

Table VI summarizes the comparative analysis between our

technique–RACK– and the two variants of Thung et al.. We

see that the variants can provide a maximum of about 49%

accuracy with 23.47% precision and 33.44% recall for Top-

10 results. On the other hand, RACK provides a maximum

accuracy of 79% with 34.92% precision and 45.02% recall

which are significantly higher. We investigate how the Top-K

accuracy changes over different K values for each of these

three techniques. From Fig. 10, we see that accuracy for

RACK increases gradually up to 79% whereas such perfor-

mance measures for the textual similarity based techniques

stop at 49%. From Fig. 11, we see that RACK performs

significantly better than both variants in terms of all three

metrics– accuracy, precision and recall. Our median accuracy

is above 70% whereas such measure for those variants is below

40%. The same goes for precision and recall measures. Thus,

all the findings above suggest that textual similarity between

query and API signature or documentations might not be

always effective for API recommendation. Our technique over-

comes that issue through applying two co-occurrence based

heuristics–KAC and KKC– which analyzes the crowdsourced

knowledge from Stack Overflow. Performance reported for

Thung et al. is project-specific, and the technique is restricted

to feature requests [29]. On the contrary, our technique is

generic and adaptable for any type of code search. It is

also independent of any subject systems. More importantly,

it exploits the expertise of a large crowd of technical users for

API recommendation which was not considered by the past

studies. Thus, our technique possibly has a greater potential.
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Fig. 11. Comparison with existing techniques

Thus, in order to answer RQ7, our proposed technique–

RACK– outperforms two variants of the state-of-the-art tech-

nique for API recommendation in terms of Top-K accuracy,

precision and recall by a large margin.

V. THREATS TO VALIDITY

Threats to internal validity relate to experimental errors

and biases [34]. We develop API gold set for each query by

analyzing the code examples and the discussions from tutorial

sites which might involve some subjectivity. However, each

of the examples is a working solution to the corresponding

task (i.e., query), and they are frequently consulted. Thus, the

gold set development from sample code is probably a more

objective evaluation approach than human judgements of API

relevance that introduces more subjective bias [14]. According

to the exploratory findings (Section II-D), our technique might

be effective only for the recommendation of popular and

frequently used APIs. Since fully qualified names are mostly

missing in Stack Overflow texts, third-party APIs similar to

Java API classes could also have been mistakenly considered.

Threats to external validity relate to the generalizablity of a

technique. So far, we experimented using API classes from

only standard Java libraries. However, since our technique

mainly exploits co-occurrence between keywords and APIs,

the technique can be easily adapted for API recommendation

in other programming domains.

Threats to construct validity relate to suitability of evalu-

ation metrics. We use Top-K Accuracy and Reciprocal Rank

which are widely used for evaluating recommendation systems

[26, 29]. The remaining two metrics are well known in

information retrieval, and are also frequently used by studies

[14, 21, 29] relevant to our work. This confirms no or little

threats to construct validity.

VI. RELATED WORK

API Recommendation: Existing studies on API recom-

mendation accept one or more natural language queries, and

recommend relevant API classes and methods by analyzing

code surfing behaviour of the developers and API invocation

chains [21], API dependency graphs [14], feature request

history or API documentations [29], and library usage pat-

terns [28]. McMillan et al. [21] first propose Portfolio that

recommends relevant API methods for a code search query by

employing natural language processing, indexing and graph-

based algorithms (e.g., PageRank). Chan et al. [14] improve

upon Portfolio, and return a connected subgraph containing

the most relevant APIs by employing further sophisticated

graph-mining and textual similarity techniques. Thung et al.

[29] recommend relevant API methods to assist the im-

plementation of an incoming feature request by analyzing

request history and textual similarity between API details and

the request text. In short, each of these relevant techniques

above considers lexical similarity between a query and the

signature or documentation of the API for collecting candidate

APIs, which might not be always effective given that query

formulation could be highly subjective. On the other hand,

we exploit two co-occurrence heuristics that are derived from

crowdsourced knowledge for collecting the candidate APIs,

which are found to be relatively more effective. Co-occurrence

heuristics overcome the vocabulary mismatch problem [17],

and provide a generic, both language and project independent

solution. Besides, we exploit the expertise of a large crowd of

technical users from Stack Overflow for API recommendation

which none of the past studies did. We compare with two

two variants of the state-of-the-art technique–Thung et al., and

readers are referred to Section IV-D for detailed comparison.

Since Thung et al. outperform Chan et al. as reported [29],

we compared only with Thung et al. for our validation.

API Usage Pattern Recommendation: Thummalapenta

and Xie [27] propose ParseWeb that takes in a source object
type and a destination object type, and returns a sequence of

method invocations that serve as a solution which yields the

destination object from the source object. Xie and Pei [33]

take a query that describes the method or class of an API,

and recommends a frequent sequence of method invocations

for the API by analyzing hundreds of open source projects.

Warr and Robillard [31] recommend a set of API methods

that are relevant to a target method by analyzing the structural

dependencies between the two sets. Each of these techniques

is relevant to our work since they recommend API methods.

However, they operate on structured queries rather than natural

language queries, and thus comparing ours with them is not

feasible. Of course, we introduced two heuristics and exploited

crowd knowledge for API recommendation which were not

considered by any of the existing techniques. This makes our

contribution significantly different from all of them.

VII. CONCLUSION & FUTURE WORK

To summarize, we propose a novel technique–RACK– that

translates a natural language code search query into a ranked

list of relevant APIs. It exploits two novel heuristics derived

from crowdsourced knowledge for collecting the relevant

APIs. Experiments using 150 code search queries from three

Java tutorial sites show that RACK recommends APIs with

about 79% Top-10 accuracy which is highly promising. Com-

parison with two variants of the state-of-the-art technique

shows that our technique outperforms both of them in ac-

curacy, precision and recall by a large margin. While that

technique is project-sensitive, ours is generic, project inde-

pendent, and it exploits invaluable crowdsourced knowledge.

In future, we plan to apply the co-occurrence heuristics in

recommending for other software maintenance tasks such as

concept location and traceability link recovery.
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