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Experiences in Building a Real-World Eating Recogniser ∗

Sougata Sen, Vigneshwaran Subbaraju, Archan Misra, Rajesh Krishna Balan, Youngki Lee
School of Information Systems, Singapore Management University

{sougata.sen.2012,vigneshwaran,archanm,rajesh,youngkilee}@smu.edu.sg

ABSTRACT
In this paper, we describe the progressive design of the ge-
sture recognition module of an automated food journaling
system – Annapurna. Annapurna runs on a smartwatch and
utilises data from the inertial sensors to first identify eating
gestures, and then captures food images which are presented
to the user in the form of a food journal. We detail the les-
sons we learnt from multiple in-the-wild studies, and show
how eating recognizer is refined to tackle challenges such
as (i) high gestural diversity, and (ii) non-eating activities
with similar gestural signatures. Annapurna is finally robust
(identifying eating across a wide diversity in food content,
eating styles and environments) and accurate (false-positive
and false-negative rates of 6.5% and 3.3% respectively).

1. INTRODUCTION
Gesture recognition, based on the inertial sensors embed-

ded in wearable devices, has gained increasing popularity re-
cently. Such gesture recognition techniques have been used
to identify gesture-driven lifestyle activities such as smo-
king [7] and eating [1]. In particular, unobtrusive wearable-
based solutions [11, 12] for eating detection are of strong
interest, as they can help in losing or maintaining target
weight, or capturing irregular habits such as eating too fast
or skipping meals.

Broadly speaking, research in the area of automated ea-
ting gesture detection and diet monitoring has two goals: (a)
Identifying the eating gesture (e.g. [1, 2, 12]), or (b) Identi-
fying the food item consumed (e.g. [3, 9]). We have recently
focused on building an end-to-end wearable-based system
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(called Annapurna), which aims to unobtrusively build a
food journal by automatically capturing images of the food
items consumed by a user throughout the day. Motiva-
ted by the popularity of smartwatches (with models such
as Samsung Gear 1 & Gear 2 containing an embedded ca-
mera), our core idea is (a) to use the inertial sensors on the
smartwatch to identify the eating-related “hand-to-mouth”
gestures; and (b) to additionally use the embedded smartwa-
tch camera to capture images of the food being consumed.

In this paper, we focus on Annapurna’s first challenge:
building a robust eating gesture recognition module, which
can identify real-world eating gestures. We describe our ex-
periences with the iterative design and deployment of An-
napurna to real users. Through both extensive controlled
studies (21 users, 5 nationalities, 135 eating episodes) and
multiple in-the-wild deployments (7 users, 12 days, total of
78 meals), we discover the following key challenges and prin-
ciples (which are likely to apply to a broader class of conti-
nuous gesture-driven lifestyle activity monitoring services):

• Diversity of Eating Gestures: We find and demonstrate
that eating is very diverse activity, with differences related
to: (a) food type (e.g., rice vs. noodles, sandwiches, burgers,
soups, etc.), (b) environment (e.g., type of seating, height of
table , etc.), (c) eating styles and mode of eating (e.g., with
chopsticks, forks, using hands). The resulting differences
in the trajectory of corresponding hand-to-mouth gestures
makes it difficult to build a high-accuracy eating gesture
recognizer.

• Confusion with similar Real-world Lifestyle Activities:
Through our studies, we find that real-world users perform
a variety of other non-eating activities (e.g., smoking, drin-
king, washing one’s face or putting on makeup) which give
rises to gestures that are similar to eating. These gestures
led to a false positive rate that was much higher than that
encountered in our realistic, but controlled studies, and ne-
cessitated significant enhancements to the base classification
model.

• Inability to Track Singleton Gestures: We find that, in
real world, it is impossible to identify each and every ea-
ting gesture. Consequently, we focused on detecting meal
episodes, which consist of multiple, repeated eating gestu-
res. Moreover, we had to abandon our initial goal of gesture
instance-triggered image capture, and instead used a more
bursty image capture approach that clicks images continu-
ously, once a meal episode is detected.

Overall, our experiences show that it is still possible to
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Figure 1: Overview of Annapurna

build a robust gesture recognizer to detect meals. In par-
ticular, we shall describe Annapurna’s implementation of a
low-energy, robust and real-time classifier (on a resource-
limited smartwatch) using a 2-tier classifier that: (a) uses
a low-pass accelerometer stream (2.5 sec frames) to identify
potential eating episodes; and (b) confirms this possibility
by detecting multiple successive eating gestures. This sy-
stem has an overall precision of 93.5% for detecting eating
episodes (meals) in the real-world, and a low false negative
rate of 3.3%.

2. INITIAL ANALYSIS & DESIGN GOALS
While our prior work [11] demonstrated the feasibility of

eating detection using a wrist-worn device gestures, a fully
deployable automated food journaling system must address
additional other requirements. In this section, we describe
the Annapurna’s design goals, focusing especially on eating
detection component, along with pertinent insights gained
from observing multiple real-world eating episodes.

2.1 System Overview
Annapurna is an automated food journaling system, that

provides a user wearing a wrist-worn smartwatch with cu-
rated images of the food that she has consumed during at
various meals during the day. Figure 1 shows an overview
of the system, which consists of the following components:
Eating Gesture Recognizer: The eating gesture recogni-
tion component continuously runs on the smartwatch, utili-
sing the inertial sensor data to determine the hand-to-mouth
gestures as well as eating periods. The eating gesture recog-
niser should accommodate the variations in the sensors rea-
dings introduced by the diversity of users and eating styles
(e.g. see Figure 2). It must both have low false negatives
(not miss any of the eating episodes) and low false positives
(i.e. not mistakenly classify other similar gestural activities
as ‘eating’).
Image Capturing & Processing: Once the onset of an
eating episode has been identified (multiple closely spaced
eating gestures), the smartwatch captures images automati-
cally and unobtrusively. Once the images are captured, they
are sent to a backend server, where various image processing
techniques are applied to eliminate irrelevant images. The
entire process is optimised for energy consumption.
Food Journaling: Finally, a small subset of relevant ima-
ges corresponding to an eating episode is stored in the server.

The user can view these these images, as well as other eating
related statistics, via a Web portal.

2.2 Design Goals
Annapurna’s gesture recognizer is designed to accommo-

date the following characteristics:
Focus only on persistent eating episodes that last at least 5
minutes: Most eating episodes are not fleeting (they last
several minutes) and consist of multiple hand-to-mouth ge-
stures. Hence, our eating detector need not detect each in-
dividual eating gesture, but can utilize longer observation
windows for robustness. We do not try to track extremely
transient eating activities (e.g., consuming a single candy).

Tolerate diversity in eating style, and gesture duration:
Our studies show the existence of considerable gestural di-
versity in eating-based on not just individual level behavior,
but also the content of the food. Figure 2a shows the accele-
rometer trace for 2 different eating modes (spoon and chop-
stick), whereas Figure 2b shows the traces for 3 different
individuals eating rice. We see that the gesture traces are
quite different, both across eating modes and food types.
Our design must accommodate such diversity.

Focus only on plate-related eating episodes: Because the
gesture detection is followed by a process of capture of food
images, we can focus on detecting eating episodes that in-
volve some utensil. More specifically, we do not explicitly
target scenarios where the food is consumed on-the-go–e.g.,
a user is walking and eating a sandwich, as the smartwatch
camera is unlikely to obtain an image of such food items.

The gesture recognizer makes the following additional as-
sumptions: (1) We assume that the user wears the smart-
watch on the dominant hand while eating. While watches
are often worn on the non-dominant hand, wearable such as
fitness bands are gaining in popularity. Hence, this might
not be a major limitation. Moreover, for certain eating sty-
les (e.g. knife in the dominant hand and fork on the non-
dominant hand), this might not be a limitation. (2) Since
the overall goal of the Annapurna system is to capture ima-
ges of the food plate, we assume that the food is served on
plates or containers. However, we do not limit the type of
food consumed – e.g., we can capture fast-food items, as long
as the user interacts with a container containing that food.
It must be noted that even though this assumption does not
affect the eating gesture recognition system (eating gesture
identification does not rely on the container), it affects the
overall system goal of capturing images of the food plate.
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(a) Accelerometer’s Z-axis variation during eating with spoon
v chopstick.

(b) Accelerometer’s Z-axis depicting difference in gesture
across individuals.

Figure 2: Diversity across Eating Styles & Users

User (Users, ) Eating TP FP FN
Study Duration Detector (only inertial)

1 7 users, Light-weight 31 60.3% 0%
5 days Classifier

2 6 users, Cost-based 11 0% (31.3%) 35.3%
2 days Classifier

3 4 users, 2-stage 29 6.5% (23.7%) 3.3%
5 days Classifier

TP=true positive, FP=false positive, FN=false negative

Table 1: Details of In-the-Wild Studies

2.3 Micro-Study Details
To realise the design goals and to gain detailed under-

standing of eating gestures, initial controlled studies were
conducted with 21 participants (8 females, 13 males), who
were employed in our research lab. The age range of the
participants was between 24 to 35 years, and they belonged
to 5 different nationalities. The participants contributed to
a total of 135 eating episodes, where an episode is defined as
the period between starting of a meal (after the purchase)
and consuming the last spoonful. During the meal, the par-
ticipant wore the watch on their dominant hand. A cus-
tom application running on the watch collected accelerome-
ter, gyroscope and image frames, while an external observer
video-recorded the meal (for ground truth labeling). The
food items consumed by the participants included: rice (66
episodes), sandwich (20 episodes), pasta/noodles (29 episo-
des) and fruit pieces (15 episodes).

Initial Observations: We observed that there is wide vari-
ation in eating gestures for different food types considered.
Eating episodes lasted anywhere between 51 seconds (fruits)
to 19 minutes (rice), involving 6 (sandwich) to 54 (rice) sepa-
rate hand-to-mouth gestures. Among these food items, we
also observed from the videos that: (a) sandwiches/fruits
presented the least number of distinct hand-to-mouth ge-
stures (as users often held the items close to their mouth
between successive bites), (b) “noodle/pasta” had high va-
riability in the number of hand-to-mouth gestures mainly
due to the use of forks vs. chopsticks, while the variation
for “rice” is generally due to the individual eating speed and
quantity consumed in each mouthful.

2.4 Real-World Studies & System Evolution
Several system-level choices in Annapurna occurred in an

evolutionary fashion: an initial implementation was develo-
ped based on initial-studies (Section 2.3) and then deployed
for an initial in-the-wild study. Lessons learnt from the
study were then used to iteratively refine various system
choices and parameters, via two additional in-the-wild stu-
dies. To better understand the evolution of each component,

we provide details of the three user studies upfront, with a
summary in Table 1. In each of these studies, participants
manually recorded the ground truth. The eating activities
recorded spanned a wide variety of environments and in-
volved various types of food, eating modality and sitting
position.

Study 1: 7 participants (4 females, 3 males; belonging
to 3 nationalities ) from our lab registered with Annapurna.
They were provided with the watch (which they were in-
structed to wear in their dominant hand) and the phone.
They were also asked to appropriately recharge the battery
whenever it drained out. There was no requirement laid re-
garding meals to eat and places to eat. Other than this, the
users were also asked to validate the accuracy of the system
at the end of the day by logging into the journal.

By day 3 of the study we found that our gesture re-
cognition system had high false positives, leading to rapid
drainage of the smartwatch battery. Nonetheless, the par-
ticipants used this version for 5 days, capturing a total of
31 eating episodes. This problem was traced to our use of a
very lightweight classifier (chosen to ensure it could run on
the watch) and the lack of robust real world data of a variety
of non-eating activities. We then tried to deploy more com-
plex classifiers (e.g., SVM, HMM), but found that they were
too computationally demanding for the smartwatch. Conse-
quently, we eventually switched to a cost-based classification
approach (details in Section 3.4), where false-positives were
more heavily penalized.

Study 2: We then redeployed an improvised cost-based
classifier on 6 users (one of the original users dropped out)
and evaluated it for 2 days. The new system significantly
lowered the false positives in gesture recognition (eating ge-
sture recogniser identified 5 false positive eating episodes; all
of these were eventually filtered out (by the image filtering
step). However, this classifier now exhibited higher false ne-
gative rate. We missed out 6 eating episodes over those 2
days. To subsequently tackle this issue, we then developed
a two-stage eating detection classifier (details in Section 3),
where a longer frame was used to identify potential eating
gestures and a shorter frame confirmed if the gesture was
indeed an eating gesture.

Study 3: The final refined version of the Annapurna
client was tested on 4 (out of the original 7) users over anot-
her 5 day period. Using this study, we were finally able
to demonstrate our target goal of achieving both low false
positives and false negatives in real world conditions.
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Figure 3: Recognising Eating Period. Level 1 frame width
is 2500ms and outputs every 500ms. Level 2 frame width is
500ms and outputs every 100ms

3. DETECTING EATING GESTURES
Our overall design of the classifier for detecting eating ge-

stures and episodes is shown in Figure 3. The entire system
can be divided into four parts. We first describe the initial
implementation of this classifier, and then describe the refi-
nements that we made based on experiences gathered from
real-world studies.

3.1 Feature Extraction and Classification
We extracted the raw accelerometer and gyroscope data

from the eating episodes and manually labeled the hand-to-
mouth gesture periods. From this data we found that an
eating episode, on an average, has about 18 to 19 eating ge-
stures. Our initial approach was to use features defined over
short frames of 500 milliseconds for both accelerometer and
gyroscope data. The small frame size is needed to trigger
the camera reasonably in advance to get appropriate ima-
ges. This approach is shown in the bottom part (Level 2)
of Fig 3. The raw sensor data is partitioned into frames of
length 500 msec (with 80% overlap between frames); a set
of widely-used time and frequency domain features for the
three axes of both accelerometer and gyroscope (mean, va-
riance, covariance, correlation,entropy,energy – identical to
features extracted in [15]) are then derived for each frame.
From the features we built a person-independent classifica-
tion models. Table 2 shows the accuracy, precision and recall
of 10 fold cross validation for three commonly used classi-
fiers. From the table we observer that both Decision Tree
and Random Forest classifiers offer high classification accu-
racies. However, for our studies, we selected the Decision
Tree classifier due to its lower computational complexity.

For a 500 msec window of sensor traces, we found that
even during an eating gesture, two consecutive frames were
not always classified as eating. Similarly, non-eating gestures
(adjusting one’s hair, raising the hand to wave at a friend,
etc.) were classified as eating in several 500 ms windows. On
average, our classifier’s prediction indicated 337 transitions
from non-eating to eating. This is much higher than the

Classifier Accuracy Precision Recall
Decision Tree 96.63% 96.1% 96.5%
Random Forest 98.19% 97.1% 99%
SVM 85.66% 83.6% 87.1%

Table 2: Accuracy in identifying eating gestures

w t (count)
(sec) 10 20 30 40 50
2 -152.1
5 -4.2 -22.2 -3.4
10 48.3 35.7 34.3 35.9 33.9

Table 3: Gesture Prediction Error (%) for different window
size(w), threshold (t).

ground-truth (average of only 18-19 gestures), indicating the
need of a second window to smoothen the noise.

3.2 Determining Length of an Eating Gesture
From the ground truth data we found that on average an

eating gesture lasted for 3.1 seconds (Rice - 2.8 sec, Noodles
- 3.7 sec, Sandwich 3.1 sec) where a gesture starts from the
point the hand starts moving upwards and ends when the
hand comes back to rest. To determine if a gesture deter-
mined by the 500 millisecond window was actually eating,
we take a window(w) of past raw classifier outputs (obtai-
ned every 100ms) and compare the number of eating ge-
stures identified by the classifier during this window with a
threshold(t) value. If the total number of classifications in w
is more than t, then we declare the window to be an eating
gesture window. Table 3 shows the average error in deter-
mining the number of gestures (transitions from notEating
to eating) in an episode, as a function of w and t. We com-
puted PredictionAccuracy = ((ΣGT − ΣP )/ΣGT ) ∗ 100,
where GT is the total number of eating gestures (ground
truth) and P is the system-predicted gesture count. (A +ve
value indicates that our system is under estimating, while
a negative value indicates over-estimation.) From this ta-
ble, we see the lowest values of error in gesture estimation
are obtained for w = 5. A smaller value (w = 2sec) over-
estimates the number of eating gestures, whereas an overly
large window (w = 10sec) undercounts the number of eating
gestures as it stays in the eating state for too long.

When we compared the estimation errors for different set-
tings of w and t for individual food items (rice and noodles),
we found that they are indeed different, due to the different
eating styles. (In case of noodles, the user usually holds the
hand near the mouth till she has consumed the entire strand
of noodle.) However, even though t and w varied across dif-
ferent food items, the variation was modest enough to allow
us to use t = 10 and w = 5 across food-types (i.e., for our
gesture recognizer to be food independent).

3.3 Determining Eating Period
From the study, we observed that on average during a

rice eating episode, an eating gesture occurred every ≈17
seconds. From the ground truth observation, we also saw
that these gestures were not evenly distributed, but were
rather bursty. On average, the first minute of the rice eating
episode had ≈ 3 eating gestures. Hence, we decided to detect
an eating episode only if our system detected at least 2 eating
gestures within a minute.

10



0 20 35 50 100
False Positives 36.6 18.9 12.6 8.6 6.7
False Negatives 3.5 8.9 17.4 37.1 55.3

Table 4: Error Rates for Different Cost Parameters

3.4 Refining the Classifier
Step 1—Building a Cost-Sensitive Classifier: When

the base classifier (described above) was applied in User
Study 1, it resulted in a high positive rate (see Table 1).
This triggered detection of many false eating episodes and
drained the battery rapidly by turning on the camera need-
lessly. To tackle this problem, we then increased the cost
of false-positive misclassification in the training phase, the-
reby building a cost-sensitive classifier. However, from in-
the-wild study 2 (Table 1), we found that we now suffered
from unacceptably high false-negatives (missing several real
eating episodes).
Step 2–Cost-Sensitive, Two-stage Classifier: The fol-
lowing improvements were needed for version 3: (a) We nee-
ded to determine the optimum cost for the classifier that pro-
vides the best trade-off between false positives and false ne-
gatives, and (b) We also needed an additional pre-classifier,
that works on large frame size, to reduce the false-positives.

To get the optimum cost parameter, we first built five
J48 classification models for 5 different cost settings – (0,
20, 35, 50, 100). Additionally, we acquired day-long regular
life-style sensor traces of non-eating activities from 3 parti-
cipants (The participants were asked to remove their wat-
ches when they are eating and wear them at other times.).
For the models with different cost parameter settings, the
false negative rate (FN/(FN + TP )), was determined from
cross-validation on the micro-study training dataset itself.
To evaluate the false-positive rate (FP/(FP + TN)), we
used the day long traces of non-eating data (from these 3
participants). Table 4 provides the false-positive and false-
negative rates for different values of cost parameter. When
there is no cost, the FN rate is low, meaning we will not
miss many eating gestures. However, the FP rate on real-
life trace is very high (36.8%). For a cost of 100, the FP rate
on the real-life trace is very low (6.7%), but the FN rate for
eating is also very high (55.25%), implying we will miss most
of the eating gestures. From this table, we observed that a
cost parameter of 35 provides a low value for both FP rate
(12.6%) on the real-life trace and the FN rate (17.4%) for
detecting eating gestures.

In addition, we observed that several false-positives were
generated by “jerky movements” of the hand during regular
activities such as gesticulating during interactions or repe-
ated lifting of objects etc. While a small frame-duration of
500ms is needed for efficient, low-latency triggering of the
camera, an additional larger-frame duration of 2.5sec was
also needed to eliminate these other transient, short-lived
gestures. Accordingly, we developed an additional classifier
( Level 1, as shown in Figure 3) that uses a longer 2.5 sec
second frame of accelerometer data alone, to first identify
the likely eating episodes. As each eating episode is long-
lived, this initial classifier can be used as a trigger for the
fine-grained classifier (Level 2 in Figure 3) which works on
the shorter 500 ms frames, additionally using the gyroscope
readings also. Once the eating gesture is consistently de-
tected in level 1 (for more than 10 frames within a minute),

this triggers the cost-based classifier (described earlier) that
operates on 500ms frames.

4. SYSTEM PERFORMANCE
The performance of the system for each study is presen-

ted in Table 1. In the table, numbers indicated in bracket
in FP column indicates the false positives of the eating ge-
sture recogniser, i.e. when a person was not eating, but the
system determines otherwise, while the other number indi-
cates the overall system’s false positives. From the table,
we can see that the false positive rates of study 1, 2 and
3 are 60%, 31% and 23% respectively. This indicates that
choosing a cost sensitive classifier (study 2 and 3) indeed
lowered the false positives of the system. Moreover, adding
a two-stage classifier (study 3) not only improved the false-
positive, but also filtered the “jerky” hand movements, thus
improving false-negative rates of Annapurna. Since image
was captured whenever eating period was determined, it
was straight forward to remove the false positive episodes
(no food image was present in these episodes). Thus, af-
ter filtering, for study 3, we could reduce the false positives
from 23% to 6.5%, indicating that the system had reasonable
performance in real-world settings.

In terms of false negatives, study 1 had the best perfor-
mance since the system determined almost every hand mo-
vement as eating. In subsequent studies, we missed out on
some eating episodes because of the cost associated with
the classification and the system was careful in determining
eating periods. However, overall the number of episodes
missed in study 3 was just one.

Since an application can have its specific goal (e.g. not to
miss any eating episode), the system parameters have to be
tuned appropriately to meet the required goals in terms of
acceptable FP and FN.

5. DISCUSSION
The studies demonstrated the possibility of deploying an

eating gesture recognition system. However, for robustness,
additional factors have to be considered.

Dominant Hand: In this paper we have assumed that the
watch is worn on the dominant hand. This assumption is
in-line with several recent works [7, 12]. To determine the
validity of this assumption, we conducted a survey through
Amazon MTurk, where we asked participants if they would
wear the watch on their dominant hand. From the small set
of responses (30 respondents), we found that 50% of 20 re-
spondents who wear a smartwatch, wear it on the dominant
hand. Furthermore, 70% of the watch wearers indicated that
they would be willing to wear the watch in a dominant hand
if it could create an automated food journal. Even though
the number of respondents is small, the response towards
wearing the watch on the dominant hand appears to be po-
sitive. Alternately, Annapurna could utilise data from other
wearable devices (e.g. fitness bands) if they are worn on the
dominant hand.

For our current studies we had identified that the ’hand-
to-mouth’ gesture provides a window of opportunity for cap-
turing food plate images. In future, we plan to study the
role of the non-dominant hand during an eating episode and
determine if we can identify moments when images can be
opportunistically captured.
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Demographic Diversity: Our current studies have been
validated on a small group of similar participants (age group,
job profile). Since eating detection technique might be useful
for other demographic groups (e.g. elderly, children), stu-
dying the characteristics of eating for these demographics
will open a new set of challenges. Additionally, currently
we have considered sit-and-eat meals. It will be interesting
to study the challenges in identifying on-the-go eating de-
tection (e.g. in child’s diet monitoring).

Battery Life: Currently we have applied energy saving
techniques in both gesture identification (cheaper sensor (acce-
lerometer) turns on the more expensive sensors(gyro and
camera)) as well as in the image capturing module. With
these techniques, the watch has a battery life of ≈ 12 hours.
Even though the improvement in battery life is significantly
higher than continuous video capture (battery life is ≈ 80
mins), more innovative approaches (e.g. duty cycling) have
to be considered to further improve the battery life to atleast
one day.

6. RELATED WORK
Wearable based Gesture Recognition: Numerous rese-
archers have focused on using the smartwatch to determine
hand based gestures. Work such as [5] uses a smartwa-
tch to determine driving behavior, while the authors in [7]
have demonstrated the possibility of determining smoking
gestures. Similarly, authors in [10] and [13] have used the
smartwatch to identify various key-press patterns. All these
studies have demonstrated the possibility of utilising the in-
ertial sensor data from a smartwatch to recognise hand ge-
stures. Alternately, work such as [14] uses subtle movement
in the smartwatch to determine finger gestures. Our work is
similar to these works as we also use sensor data from the
smartwatch to identify a specific gesture – eating.

Eating Detection using Inertial Sensors: While the
authors in [1] demonstrated the possibility of determining
the eating gesture using a custom hardware with inertial
sensors, the authors in [2] determined the amount of food
consumed by an individual based on the spoon count. More
recently, studies such as [11] and [12] have demonstrated the
possibility of utilising an off the shelf device to determine ea-
ting gestures. Alternately, the authors in [6] demonstrated
the possibility of multimodal sensing to identify eating ge-
stures as well as the food consumed.

Eating detection through Non-Inertial Sensors: Re-
searcher have used sound to determine eating – e.g. in [8],
the authors utilized a neck-attached microphone attached to
identify various body sounds, including eating-related ones.
The authors in [9] used the camera to continuously captu-
red images to identify food items consumed, while in [4], the
authors utilised special hardware to opportunistically cap-
ture the images. Our work relies on inertial sensing, and
employs only commodity devices.

7. CONCLUSION
In this paper, we described our experiences in implementing

Annapurna’s eating gesture recogniser. We described vari-
ous design choices to ensure acceptable real world perfor-

mance (FP and FN rates of 6.5% and 3.3% respectively).
Key innovations that we reported in this paper included:
(a) a cost-weighted classifier to filter real-world similar non-
gestures and (b) a 2-tier classifier to capture the diversity of
eating styles and gestures.
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