
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2017

Online/offline provable data possession Online/offline provable data possession

Yujue WANG
Singapore Management University, yjwang@smu.edu.sg

Qianhong WU
Beijing University of Aeronautics and Astronautics (Beihang University)

Bo QIN
Renmin University of China

Shaohua TANG
South China University of Technology

Willy SUSILO
University of Wollongong

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
WANG, Yujue; WU, Qianhong; QIN, Bo; TANG, Shaohua; and SUSILO, Willy. Online/offline provable data
possession. (2017). IEEE Transactions on Information Forensics and Security. 12, (5), 1182-1194.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3714

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1182 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Online/Offline Provable Data Possession
Yujue Wang, Qianhong Wu, Member, IEEE, Bo Qin, Shaohua Tang, Member, IEEE,

and Willy Susilo, Senior Member, IEEE

Abstract— Provable data possession (PDP) allows a user to
outsource data with a guarantee that the integrity can be
efficiently verified. Existing publicly verifiable PDP schemes
require the user to perform expensive computations, such as
modular exponentiations for processing data before outsourcing
to the storage server, which is not desirable for weak users
with limited computation resources. In this paper, we introduce
and formalize an online/offline PDP (OOPDP) model, which
divides the data processing procedure into offline and online
phases. In OOPDP, most of the expensive computations for
processing data are performed in the offline phase, and the
online phase requires only lightweight computations like mod-
ular multiplications. We present a general OOPDP transfor-
mation framework which is applicable to PDP-related schemes
with metadata aggregatability and public metadata expansibility.
Following the framework, we present two efficient OOPDP
instantiations. Technically, we present aggregatable vector
Chemeleon hash functions which map a vector of values to a
group element and play a central role in the OOPDP transfor-
mation. Theoretical and experimental analyses confirm that our
technique is practical to speed-up PDP schemes.

Index Terms— Provable data possession, chameleon hash,
online/offline signature, data outsourcing, cloud storage.

I. INTRODUCTION

PROVABLE Data Possession (PDP) was introduced by
Ateniese et al. [1] to secure data integrity in remote

Manuscript received June 19, 2016; revised November 29, 2016; accepted
December 20, 2016. Date of publication January 20, 2017; date of current ver-
sion February 22, 2017. This work was supported in part by the Natural Sci-
ence Foundation of China under Project 61672083, Project 61370190, Project
61532021, Project 61402029, Project 61472429, and Project 61632013, and
in part by the Beijing Natural Science Foundation under Project 4132056. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Walid Saad.

Y. Wang is with the School of Information Systems, Singapore Management
University, Singapore 188065, and also with the State Key Laboratory of
Cryptology, Beijing 100878, China (e-mail: yjwang@smu.edu.sg).

Q. Wu is with the School of Electronic and Information Engineering,
Beihang University, Beijing 100191, China, and also with the Network and
Data Security Key Laboratory of Sichuan Province, University of Elec-
tronic Science and Technology of China, Chengdu 610054, China (e-mail:
qianhong.wu@buaa.edu.cn).

B. Qin is with the Key Laboratory of Data Engineering and Knowledge
Engineering, Ministry of Education, School of Information, Renmin Univer-
sity of China, Beijing 100872, China, and also with the State Key Laboratory
of Information Security, Institute of Information Engineering, Chinese Acad-
emy of Sciences, Beijing 100093, China (e-mail: bo.qin@ruc.edu.cn).

S. Tang is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, China (e-mail:
shtang@ieee.org).

W. Susilo is with the Centre for Computer and Information Secu-
rity Research, School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW 2522, Australia (e-mail:
wsusilo@uow.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2656461

storage scenario, e.g., cloud storage. With PDP, the user is able
to process her data to generate verifiable metadata, and deposit
with a remote storage server, in such a way that the integrity
can later be verified by challenging the server on a random
set of metadata. That means with PDP, the user can enjoy
data outsourcing services with data integrity guarantee, which
can greatly save the user’s local cost of storage space and
maintenance. In this sense, PDP makes data outsourcing more
attractive in real-world applications. Publicly verifiable PDP
allows any people who holds the system public key to audit
the outsourced data. It is interesting that these PDP schemes
can provide efficient and flexible data sharing services with
integrity guarantee in a multi-user setting, without leaking
the private key of the file owner. However, in most publicly
verifiable PDP-related schemes (e.g., [2]–[9]), the user has
to perform a large number of modular exponentiations for
processing a file. As in other primitives under the public key
setting, exponentiations are relatively expensive computations
for some users with limited computation resource. Thus, the
expensive computations in PDP-related schemes will limit
their wide usage especially for weak users, for example, on
low-power devices such as wireless sensors (collecting data),
smart phones and tablets.

To the best of our knowledge, there exists only one
work [10] that devotes to speeding up PDP schemes. With their
approach, the modular exponentiations are securely delegated
to a powerful computation server. However, the user has
to perform an exponentiation for processing one file block
(in PDP-related schemes, the file is usually split into blocks
and each block is processed separately). Also, the user has to
interact with the computation server for outsourcing exponen-
tiations in real time, which requires the computation server to
be always available and incurs extra communication burden
and delay. Hence, their approach does not allow the user to
process a file by herself without resorting to an external entity.
This motivates us to investigate a more practical way to speed
up publicly verifiable PDP schemes.

A. Our Contributions

In this paper, we introduce the notion of online/offline
PDP (OOPDP) and formalize its framework. In OOPDP, the
file processing procedure is running in two phases, that is, an
offline phase and an online phase. The first phase is carried
out before knowing the file to be outsourced, where most
expensive computations (e.g., modular exponentiations) in
processing the file are performed. This phase can be executed
when the user’s computation device is idle or with the help
from some computation server. Once a file is given, the

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Transactions on Information Forensics and Security, Volume 12, Issue 5, May 2017, Article number 7828127, Pages 1182-1194.
http://doi.org/10.1109/TIFS.2017.2656461

WANG et al.: ONLINE/OFFLINE PROVABLE DATA POSSESSION 1183

user in the online phase only needs to perform lightweight
computations (e.g., modular multiplications) with the offline
pre-computed results. The online phase can be performed very
fast, which means OOPDP schemes are affordable by low-
power devices.

We propose a semi-generic transformation framework from
PDP to OOPDP. We identify two critical properties, metadata
aggregatability and public metadata expansibility, for many
existing publicly verifiable PDP schemes such as [2]–[8]. The
former means that, every metadata contains an aggregatable
component, which allows multiple metadata to be combined.
In our transformation, the aggregatable metadata component
in the underlying PDP is replaced by an aggregatable vector
Chameleon hash function (AVCH), which permits the OOPDP
user to produce intermediate aggregatable metadata for random
values in the offline phase, and replace these random values
by the actual file blocks in the online phase according to the
Chameleon property of AVCH. The public metadata expansi-
bility means that one can publicly and efficiently manipulate
the metadata of a file block with a random element, without
breaking the integrity of this block. Our semi-generic trans-
formation is applicable to any public verifiable PDP-related
schemes with the two properties, and the security of the
transformed OOPDP can be reduced to the underlying scheme
and AVCH.

In Section III, we formally define the notion of AVCH which
extends the Chameleon hash function from [11]. In AVCH,
a vector of values �m and a random auxiliary parameter r
are mapped to a single group element h. With the trapdoor
key, the user can efficiently find a collision (�m′, r ′) such that
(�m′, r ′) have the same hash value h as (�m, r). AVCH satisfies
the aggregatability property, which means that AVCH inputs
and values can be respectively combined and the combined
results still satisfy the mapping relation. We also present two
concrete AVCH functions based on the discrete logarithm
and factorizing assumptions. Note that AVCH has been used
by Freeman [12] to design homomorphic signature schemes,
without providing formal definition and security proof.

Under our transformation framework, we present two
OOPDP instantiations based on the CDH and s-SDH assump-
tions, which are transformed from the Shacham-Waters’ and
Yuan-Yu’s proofs of retrievability (PoR) schemes,1 respec-
tively (which are referred to as SW scheme and YY scheme
in this paper). Theoretical analyses show that, in the OOPDP
instantiations, the online procedure of processing a file only
involves lightweight computations including modular multi-
plications and additions, and the overall computation and
storage costs are comparable to the underlying PDP schemes.
We also conduct thorough experiments, which indicate the
file processing procedures in our OOPDP instantiations take
only dozens of milliseconds when processing a 1MB file.
The analyses further confirm that our OOPDP instantiations
are useful for weak devices and can provide perfect user
experience in practice.

1PoR is a slightly stronger notion than PDP in that PDP allows the user
to check the integrity of outsourced data, while PoR additionally employs
erasure code to tolerate data loss or corruption to some extent. In this paper,
we only consider PDP schemes and PDP components in PoR schemes.

B. Related Work

1) Provable Data Possession: Outsourced data in clouds
confront many security threats [13] such as integrity and
privacy. To tackle the integrity issue, Ateniese et al. [1]
introduced the notion of PDP. When auditing an outsourced
file, neither the client needs to retrieve the whole file, nor the
cloud storage server should touch the entire file. Wang et al.
presented a data outsourcing scheme [8] that allows a third
party auditor (TPA) to carry out integrity verification on behalf
of the file owner, in the mean time TPA learns nothing of data
contents. Wang et al. [6] presented a scheme in multi-user set-
ting, where a security-mediator processes files for all users, but
learns nothing about file contents. Recently, Yu et al. [14] pre-
sented a remote data integrity checking scheme in the identity-
based setting, which offers zero knowledge privacy against
a third party verifier. To support applications in a multiuser
setting, an identity-based PDP scheme is presented from pre-
homomorphic signatures in [15]. To cater for applications in
multi-cloud storage scenario, Wang [16] designed a distributed
PDP scheme to guarantee the integrity of outsourced files.

2) Proofs of Retrievability: Juels and Kaliski [4] introduced
PoR to ensure the retrievability of outsourced files. Their
construction supports finite rounds of integrity checking, since
some special sentinels are inserted into the outsourced files
for detecting the misbehavior of cloud server. Shacham and
Waters [5] considered PoR in strong model and constructed
privately and publicly verifiable PoR schemes. Yuan and Yu [9]
investigated how to save communication costs in auditing the
integrity, and proposed a public verifiable PoR scheme based
on polynomial commitments [17]. Cui et al. [18] presented a
publicly verifiable PoR scheme, which is proved secure against
related-key attacks. Fan et al. [19] investigated data privacy
against the auditor in remote storage schemes. The schemes
proposed in [7] and [20] support updates on the outsourced
data.

Note that privately verifiable PDP related schemes
(e.g., [5, Sec. 3.2]) can be constructed from pseudo-random
functions and MAC functions, which do not require expensive
exponentiations for processing a file. However, privately ver-
ifiable schemes only allow some user who holds the private
key to audit the outsourced file. That means these schemes
cannot be directly deployed in the multi-user setting (e.g., for
company application), where the outsourced data may need to
be shared by a group of users. In fact, data sharing with the
privately verifiable PDP related schemes would require the file
owner to share her private key with all other file users, so as
to audit the data integrity.

3) Online/Offline Cryptosystems: The notion of online/
offline signature scheme (OOS) was introduced by
Even et al. [21], where the signing algorithm is divided
into an offline phase and an online phase. All the heavy
computations of signing algorithm are carried out in the
offline phase without knowing any message. In this way,
the online phase can rapidly output a signature when the
message to be signed is given. Even et al. [21] presented a
general idea of transforming an ordinary signature scheme
to an OOS version, i.e., by combining the ordinary signature

1184 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

scheme with an efficient one-time signature scheme.
Shamir and Tauman [22] developed a hash-sign-
switch paradigm for realizing efficient OOS schemes
with Chameleon hash [11]. Following this paradigm,
several OOS schemes [23]–[28] and threshold OOS
schemes [27], [29], [30] have been proposed. Gao et al. [31]
studied divisible OOS in which the offline signature token
can be exposed before seeing the message. Recently, the
online/offline technique has been extended to the other
crypto primitives, e.g., online/offline encryption [32]–[34],
online/offline attribute-based encryption [35], and
�-protocols [36]. However, to the best of our knowledge,
there exists no result on online/offline PDP-related schemes
in the literature.

C. Paper Organization

The remainder of this paper is organized as follows.
Section II reviews the definition of PDP and covers some
mathematical background. Section III defines aggregatable
vector Chameleon hash function. Section IV introduces the
framework and security model for OOPDP, and presents a
semi-generic OOPDP transformation framework from existing
PDP with some useful properties. Section V presents two
OOPDP instantiations. The instantiations are analyzed and
compared with the underlying PDP in Section VI. Finally,
Section VII concludes the paper.

II. PRELIMINARIES

In this section, we review the framework of PDP and the
related complexity assumptions.

A. Provable Data Possession

A PDP scheme [1], [10] consists of five polynomial-time
computable procedures, that is, KeyGen, ProFile, Chall,
PrfGen and Verify.

• KeyGen(1κ)→ (pk, sk): On input a security parameter
κ ∈ N, the (randomized) key generation procedure, which
is carried out by cloud users, generates a pair of public
and secret keys (pk, sk).

• ProFile(pk, sk,M) → (t,M∗): On input a public key
pk, a secret key sk and a file M ∈ {0, 1}∗, the file
processing procedure, which is carried out by file owners,
generates a file tag t and a processed file M∗. In this
procedure, the given file M would be split into blocks
�mi (which may be further split into sectors mi, j), in such
a way that a metadata σi will be produced for each block
�mi . All of metadata are contained in M∗.

• Chall(pk, t) → Q: On input a public key pk and a file
tag t , the challenge generation procedure, which is carried
out by a verifier, produces a challenge Q.

• PrfGen(pk, t,M∗, Q) → R: On input a public key pk,
a file tag t , a processed file M∗ and a challenge Q, the
proof generation procedure, which is carried out by the
cloud storage server, produces a response R.

• Verify(pk, t, Q, R)→ {0, 1}: On input a public key pk,
a file tag t and a challenge-response pair (Q, R), the

verification procedure outputs “1” if R is a valid response
for Q, i.e., the challenged blocks are keeping intact;
or “0” otherwise.

From now on, a round of integrity verification protocol
refers to a sequential execution of procedures Chall, PrfGen
and Verify on auditing some outsourced file, that is, the verifier
runs Q← Chall(pk, t) and gives Q to the cloud server, who
generates a proof R← PrfGen(pk, t,M∗, Q) for the verifier
to validate in Verify(pk, t, Q, R). A PDP scheme should be
correct in the sense that any outsourced file processed under
any key pair must be successfully verified in any round of
integrity verification protocol.

Correctness: A PDP scheme is correct if for any
(pk, sk) ← KeyGen(1κ) and any file M ∈ {0, 1}∗, let
(t,M∗) ← ProFile(pk, sk,M), Verify(pk, t, Q,PrfGen(pk,
t,M∗, Q)) = 1 holds for any Q ← Chall(pk, t).

The soundness of PDP scheme is modelled by the following
security game, which is played by a probabilistic polynomial-
time (PPT) adversary A with a challenger C.

Setup: The challenger invokes KeyGen(1κ) to generate a
pair of public key and secret key (pk, sk) and gives pk to A.

Queries: The adversary and the challenger jointly and
adaptively carry out the following queries.
• Processing file: For each queried file M , the challenger
C invokes ProFile to generate (t,M∗). The challenger
sends (t,M∗) to A and maintains t .

• Integrity verification: In this type of queries, the chal-
lenger and the adversary play the role as a verifier and a
prover, respectively. For any file M that has been queried
for processing, the challenger can run Chall(pk, t) to
generate a challenge Q and send it to A. The adversary
returns a proof R. Then, the challenger verifies R by
running Verify(pk, t, Q, R) and gives the verification
result to A.

End-Game: Finally, the adversary outputs a description of
a prover P corresponding to a file with tag t , i.e., the file
has been queried for processing. The cheating prover P is
ε-admissible if it can answer an ε fraction of challenges issued
by some verifier.

Definition 1 (Soundness): [5] A PDP scheme is said to
be ε-sound if there is an efficient extractor algorithm Ext(·)
such that for any PPT adversary A who plays the above
security game and outputs an ε-admissible cheating prover P

for some file M , when given a pair of the public and secret
keys (pk, sk), the file tag t and cheating prover P, the
extractor algorithm Ext(·) can recover M with overwhelming
probability, i.e., Ext(pk, sk, t,P) = M .

B. Mathematical Background

Let G = 〈g〉 be a cyclic group with prime order p. The
group G is bilinear if there exists a cyclic group GT and a
bilinear map ê : G × G → GT that satisfy
• Bilinearity: ∀μ, ν ∈ G, and ∀a, b ∈ Z∗p, ê(μa, νb) =

ê(μ, ν)ab;
• Non-degeneracy: ê(g, g) is a generator of GT ;
• Efficiency: the map ê and the group actions in G and GT

can be efficiently calculated.

WANG et al.: ONLINE/OFFLINE PROVABLE DATA POSSESSION 1185

The security of our schemes relies on the following com-
putational assumptions.

1) Discrete Logarithm (DL) Assumption: Let G = 〈g〉 be
a cyclic group with prime order p. Given a random element
h ∈R G, any PPT algorithm E has only negligible probability
in computing x ∈ Z∗p such that h = gx .

2) Computational Diffie–Hellman (CDH) Assumption: Let
G = 〈g〉 be a cyclic groups with prime order p. Given a triple
(g, gα, gβ) ∈ G3 where α, β ∈R Z∗p, any PPT algorithm E
has only negligible probability in computing gαβ .

3) s-Strong Diffie–Hellman (s-SDH) Assumption [37]: Let
G = 〈g〉 be a cyclic groups with prime order p. Given a
(s + 1)-tuple (g, gz, · · · , gzs

) ∈ Gs+1 where z ∈R Z∗p, any
PPT algorithm E has only negligible probability in computing
a pair (x, g

1
z+x), where x ∈ Z∗p \ {−z}.

III. BUILDING BLOCKS

In this section, we extend the Chameleon hash function to
aggregatable vector Chameleon hash (AVCH) function which
plays a central role in our semi-generic OOPDP conversion.
We also provide two efficient AVCH functions which will be
used in our OOPDP instantiations.

A vector Chameleon hash scheme consists of three
polynomial-time computable procedures, i.e., CKGen, CHash
and TColl.
• CKGen(1κ, s)→ (hk, tk): On input a security parameter
κ ∈ N and the size s of vectors, the (randomized)
Chameleon hash key generation algorithm generates a
pair of public hash key and secret trapdoor key (hk, tk).

• CHash(hk, �m, r) → h: On input a public hash key hk,
a vector �m ∈R Ms and a random auxiliary parameter
r ∈R R, the Chameleon hash algorithm generates a hash
value h.

• TColl(tk, �m, r, �m′)→ r ′: On input a secret trapdoor key
tk, a pair of some vector and the corresponding auxil-
iary parameter (�m, r) ∈R Ms × R, and another vector
�m′ ∈R Ms , the trapdoor collision finding algorithm
produces an auxiliary parameter r ′ ∈ R for �m′ such that
CHash(hk, �m, r) = CHash(hk, �m′, r ′).

A vector Chameleon hash function must satisfy the follow-
ing properties:
• Collision resistance: There exists no PPT algorithm E

which on input hk, outputs two distinct pairs (�m, r)
and (�m′, r ′) ∈ Ms × R such that CHash(hk, �m, r) =
CHash(hk, �m′, r ′), with non-negligible probability.

• Indistinguishability: The distribution of r ′ is computation-
ally indistinguishable from that of r .

A vector Chameleon hash function 〈CKGen,CHash,
TColl〉 is aggregatable if ha1

1 · ha2
2 = h holds, where

h1 = CHash(hk, �m1, r1), h2 = CHash(hk, �m2, r2) and
h = CHash(hk, a1 �m1 + a2 �m2, a1r1 + a2r2), for all s ∈ N,
(hk, tk) ← CKGen(1κ , s), �m1, �m2 ∈R Ms , a1, a2 ∈R Z∗p,
and r1, r2 ∈R R.

In a similar way, we can define an aggregatable hash
function HAgg without requiring the Chameleon property, that
is, HAgg does not has the TColl procedure and private trapdoor
key tk.

A. DL-Based Aggregatable Vector Chameleon Hash

In [12], Freeman presented a type of DL-based AVCH with-
out security proofs. We then review the function as follows.
Suppose G = 〈g〉 is a cyclic group with prime order p.
• CKGen(1κ , s): Choose a list of random values

x1, · · · , xs ∈R Z∗p and compute ui = gxi for every
1 ≤ i ≤ s. Set hk = (p, g, u1, · · · , us) and tk =
(x1, · · · , xs).

• CHash(hk, �m, r): Denote �m = (m1, · · · ,ms) ∈ (Z p)
s .

Compute h = gr um1
1 · · · ums

s .
• TColl(tk, �m, r, �m′): Denote �m = (m1, · · · ,ms) ∈ (Z p)

s

and �m′ = (m′1, · · · ,m′s) ∈ (Z p)
s . Compute r ′ = r +∑s

i=1 xi (mi − m′i) mod p.
Lemma 1: The above function AVCHDL is an aggregatable

vector Chameleon hash, under the DL assumption.
Proof: The efficiency, indistinguishability and aggregata-

bility are straightforward, thus, we only prove the collision
resistance property.

Suppose there is a PPT algorithm E which on input hk,
outputs two pairs (�m, r) and (�m′, r ′) such that �m �= �m′ and
CHash(hk, �m, r) = CHash(hk, �m′, r ′), with non-negligible
probability. Without loss of generality, assume that m1 �= m′1
while mi = m′i for all 2 ≤ i ≤ s, which yields

r1 +
s∑

j=1

x j m j = r ′1 +
s∑

j=1

x j m
′
j mod p.

It is easy to get x1 by solving this equation, which contradicts
the DL assumption. �

Remark 1: If choosing a random value z ∈R Z∗p and

computing ui = gzi
for each i ∈ [1, s], then we can obtain a

more efficient variant of AVCHDL. In this case, tk = z which
means the secret size is greatly reduced. It is not difficult to
validate that this variant does not degrade the security of the
hash function.

Remark 2: Note that algorithm TColl is applied to a pair
of vectors. In fact, it can also be applied to a vector and
a message. Specifically, suppose h = gr um1

1 · · · ums
s ←

CHash(hk, �m, r). Given a message m′ ∈R Z p, a colli-
sion can be computed as r ′ = r + ∑s

i=1 xi mi − m′ mod
p ← TColl(tk, �m, r,m′) such that CHash(hk, �m, r) =
CHash(hk,m′, r ′).

B. Factorizing Based Aggregatable Vector Chameleon Hash

• CKGen(1κ , s): Randomly choose two large primes
p, q ∈R {0, 1}κ/2 and compute N = pq . Pick a random
value g ∈R Z∗N with order λ(N) and a list of random
values x1, · · · , xs that do not divide λ(N), and compute
ui = gxi mod N for every 1 ≤ i ≤ s. Set hk =
(N, g, u1, · · · , us) and tk = (x1, · · · , xs).

• CHash(hk, �m, r): Denote �m = (m1, · · · ,ms) ∈ (Z N)
s .

Compute h = gr um1
1 · · · ums

s mod N .
• TColl(tk, �m, r, �m′): Denote �m = (m1, · · · ,ms) ∈ (Z N)

s

and �m′ = (m′1, · · · ,m′s) ∈ (Z N)
s . Compute r ′ = r +∑s

i=1 xi (mi − m′i) mod λ(N).
Lemma 2: The above proposed AVCHF is an aggregatable

vector Chameleon hash, under the factorizing assumption.

1186 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Fig. 1. The system model of OOPDP/PDP.

The proof is similar to Lemma 1 and omitted for avoid-
ing repetition. Similarly, without degrading security, one can
obtain a more efficient variant of AVCHF by choosing a
random value z ∈R Z∗N as tk and computing ui = gzi

mod N
for each i ∈ [1, s]. Also, AVCHF.TColl can be applied to a
vector and a message as in AVCHDL.

IV. SEMI-GENERIC ONLINE/OFFLINE PDP

A. Modelling OOPDP

As shown in Fig. 1, similar to PDP, an OOPDP system
involves three entities: a file owner, a cloud storage server
and a verifier. Both the file owner and verifier are cloud users.
The file owner processes the file with offline tokens (which is
not required in PDP) and sends the processed file to the cloud
storage server. In this remote storage scenario, the server is
not completely trusted by cloud users including file owner and
verifier. The verifier is able to interact with the cloud server
to audit the outsourced file with only public parameters.

Formally, an OOPDP scheme consists of six polynomial-
time computable procedures, that is, KeyGen, ProFileoff,
ProFileon, Chall, PrfGen and Verify.
• KeyGen(1κ)→ (PK,SK): Similar to Section II-A.
• ProFileoff(PK,SK)→
: On input a pair of public key

and secret key (PK,SK), the offline file processing pro-
cedure, which is carried out by the file owner, generates
an offline file token
.

• ProFileon(PK,SK,
,M)→ (t,M∗): On input a public
key PK and a secret key SK, an offline file token
 and
a file M ∈ {0, 1}∗, the online file processing procedure,
which is carried out by the file owner, generates a file tag
t and a processed file M∗. In this procedure, the given file
M would be split into blocks �mi (which may be further
split into sectors mi, j), in such a way that a metadata σi

will be produced for each block �mi . All of metadata are
contained in M∗.

• Chall(PK, t)→ Q: Similar to Section II-A.
• PrfGen(PK, t,M∗, Q)→ R: Similar to Section II-A.
• Verify(PK, t, Q, R)→ {0, 1}: Similar to Section II-A.
An OOPDP scheme should be correct in the sense that any

outsourced file processed by consecutively offline and online
phases under any key pair should be successfully verifiable in
any round of integrity verification protocol.

Correctness: An OOPDP scheme is correct if for any
(PK,SK) ← KeyGen(1κ) and any file M ∈ {0, 1}∗, let

 ← ProFileoff(PK,SK) and (t,M∗) ← ProFileon(PK,
SK,
,M), Verify(PK, t, Q,PrfGen(PK, t,M∗, Q)) = 1
holds for any Q← Chall(PK, t).

Similar to Definition 1, we can define the soundness for
an OOPDP scheme, except that the challenger consecutively
invokes two procedures ProFileoff and ProFileon to process
a queried file in the security game. To avoid repetition, the
security game and soundness definition are omitted here.

B. Useful Properties for OOPDP

Notice that most existing PDP-related schemes are designed
in an ad hoc way, except a PoR scheme [38]. This sit-
uation makes it challenging to describe a generic OOPDP
construction. Hence, in this paper, we focus on semi-generic
transformation from some PDP to OOPDP. To achieve this
goal, we first identify some useful properties of existing
PDP-related schemes for building their OOPDP variations.

In existing PDP-related schemes, for achieving a tradeoff
between the storage overhead and communication cost, the
outsourced file M is usually split into a sequence of blocks
(�m1, · · · , �mn), where each block comprises s (s ≥ 1) sectors,
i.e., �mi = (mi,1, · · · ,mi,s), and the metadata is generated
individually for each block. The file sectors mi, j are elements
in Z p or Z N while the metadata σi are elements in a cyclic
group G.

We observe that most existing PDP-related schemes (for
example, [2]–[6], [8]) satisfy two properties: metadata aggre-
gatability and public metadata expansibility.
• Metadata Aggregatability. The metadata for each file

block has the following form

σi = (f (H (name‖i))⊗ HAgg(�mi))
k (1)

where H is a collision-resistant hash function, name
is the file name, f : {0, 1}∗ → G is some specific
function, ⊗ is the group operation in G, HAgg(�mi)
denotes an aggregatable hash over a file block �mi and k
is a secret key of the PDP scheme. This property is crit-
ical in presenting a semi-generic OOPDP transformation
from PDP.

• Public Metadata Expansibility. A PDP scheme is publicly
metadata expansible if there is a publicly computable
efficient function Exp such that, for a metadata σi of
any file block �mi and a random value ri ∈R Z∗p, it holds
that

Exp(pk, σi , ri) = σi ⊗ gri
1

= (f (H (name‖i))⊗ HAgg(�mi)⊗ gri)k

(2)

where g, g1 are public parameters included in pk of the
PDP scheme. Note that Exp is reversible, that is,

Exp(pk,Exp(pk, σi , ri),−ri) = σi (3)

This property does not degrade the security of metadata
and is critical to prove the security of the semi-generic
OOPDP construction from PDP.

Remark 3: It is easy to check that most existing
PDP-related schemes have an implicit function f , for exam-
ple, f (H (name‖i)) = H (name‖i) in Shacham and Waters’
scheme [5], while f (H (name‖i)) = u H(name‖i) in Yuan and
Yu’s scheme [9].

WANG et al.: ONLINE/OFFLINE PROVABLE DATA POSSESSION 1187

C. Semi-Generic OOPDP Transformation from PDP

We propose a semi-generic OOPDP transformation which
is applicable to any PDP with metadata aggregatability and
public metadata expansibility. The key idea is that the aggre-
gatable hash in the underlying PDP for composing metadata is
replaced by an AVCH, and the standard signature scheme for
producing file tags is replaced by an online/offline signature
scheme. The Chameleon feature of AVCH allows the user
to prepare offline matadata before knowing the file, and the
online/offline signature scheme enables the user to produce an
offline token for file tag in advance. Since all of expensive
computations are performed in offline, the online computation
complexity of the OOPDP scheme is as small as possible.

Let � = 〈KeyGen, ProFile, Chall, PrfGen, Verify〉 be a
PDP scheme. Let � = 〈CKGen,CHash,TColl〉 and =
〈Keygen, Signoff, Signon, Verify〉 be an AVCH function and
a secure OOS scheme, respectively, where the metadata in �
and hash values in � are in the same cyclic group G. Also,
M = R = Z∗ in �. This way, we can get HAgg(�mi) =
�.CHash(hk, �mi , 0) for every file block �mi by setting appro-
priate parameters. Let B denote the bound of block number
for any file to be outsourced, and let s be the sector number
of a file block.

We describe an OOPDP scheme from � as follows.
KeyGen(1κ): Perform the following steps:
• Run (opk,osk)← .Keygen(1κ) of the OOS scheme.
• Run (pk, sk)← �.KeyGen(1κ) of the underlying PDP.
• Run (hk, tk)← �.CKGen(1κ , s) of the AVCH function.

Thus, PK = (opk,pk,hk) and SK = (osk, sk, tk).
ProFileoff(PK,SK): Compute the offline file tag token as

follows

t ← .Signoff(opk,osk) (4)

Choose a random file name name. For each 1 ≤ i ≤ B,
pick two random values m′i , r ′i ∈R Z∗, and compute an offline
metadata token θi as in �.ProFile. The metadata token θi for
m′i , r ′i has the following form:

θi =
(

f (H (name‖i))⊗�.CHash(hk,m′i , r ′i)
)k

Then, store the offline file token
 = {
t , name} ∪
{m′i , r ′i , θi }1≤i≤B.

ProFileon(PK,SK,
,M): Split the file M into blocks such
that each block has s sectors, that is,

M = { �mi = (mi,1, · · · ,mi,s) : 1 ≤ i ≤ n} (5)

where each sector mi, j is an element of some Z
(e.g., Z p or Z N). Let t0 = name‖n. Compute the file tag
as follows

t ← t0‖.Signon(osk,
t , t0) (6)

For each file block �mi (1 ≤ i ≤ n), compute

ri = �.TColl(tk,m′i , r ′i , �mi)

This way, the metadata for block �mi is σi = (θi , ri) and the
final processed file is M∗ = { �mi , σi }1≤i≤n .

Chall(PK, t): Run .Verify to validate t using opk. If it
is invalid, output “0” and terminate; otherwise, same to the

underlying PDP �, pick a random subset I ⊆ [1, n] and a
random value vi ∈R Z∗ for each i ∈ I . Send Q = {(i, vi) :
i ∈ I } to the cloud storage server.

PrfGen(PK, t,M∗, Q): Run

R� = (�μ, θ)← �.PrfGen(PK, t,M∗, Q)

where �μ is the combination for the challenged file blocks
{ �mi }i∈I and θ is the aggregation for metadata tokens {θi }i∈I .
Moreover, compute the combined auxiliary information r of
{ri }i∈I as r =
i∈I viri ∈ Z . Then send R = (�μ, σ = (θ, r))
to the verifier.

Verify(PK, t, Q, R): Similar to the underlying PDP �.
That is, parse R to obtain �μ and σ . If parsing fails, out-
put “0” and terminate. Otherwise, check whether θ is valid
for

⊗
i∈I f (H (name‖i))vi ⊗ �.CHash(hk, �μ, r) under pk

as in �.Verify. Note that in �.Verify, θ is checked for⊗
i∈I f (H (name‖i))vi⊗HAgg(�μ) under pk. If so, output “1”;

otherwise, output “0”.
Remark 4: Similar to the public metadata expansibility of

the underlying PDP scheme as shown in Equality (2), the
cloud storage server is able to randomize every metadata. For
example, for the i -th file blcok, the cloud storage server can
randomly choose a value ai ∈R Z∗p and compute

θ ′i = Exp(pk, θi , ai) and r ′i = ri · ai ∈ Z

which implies

θ ′i = (f (H (name‖i))⊗ HAgg(�mi)⊗ gr ′i)k

Thus, the metadata in the transformed OOPDP scheme enjoy
malleability. However, it is easy to see that malleability does
not break or degrade the integrity of outsourced files.

Correctness: The integrity of the file tag is ensured
by the OOS scheme . Thus, we only show that
the outsourced files are verifiable. According to the
aggregatability of �, �.CHash(hk, �μ, r) must be equal
to the aggregation of {�.CHash(hk, �mi , ri)} of the
challenged file blocks, where �.CHash(hk, �mi , ri) =
�.CHash(hk,m′i , r ′i) for every i ∈ I . Thus, θ and⊗

i∈I f (H (name‖i))vi ⊗ �.CHash(hk, �μ, r) satisfy the
verification framework of �.Verify.

Theorem 1: Suppose the OOS scheme for producing
file tags is existentially unforgeable. If the underlying PDP
scheme � is sound and the AVCH function � is secure,
then the above transformed OOPDP is sound for any PPT
adversary A.

Proof: We show that the soundness of the proposed
OOPDP can be reduced to the underlying PDP � and the
AVCH function �. The basic idea is that the public metadata
expansibility of � allows the simulator to covert the integrity
proof of the OOPDP attacker into a proof for PDP attacher, for
answering the same integrity challenge. The following proof
does not involve since it is assumed secure and independent
of the integrity of outsourced data.

Assume there is a PPT adversary A who can break the
soundness of OOPDP, that is, it can output an ε-admissible
cheating prover P. The prover P should be able to forge a proof
for some integrity challenge when auditing a file. Then, by

1188 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

interacting with A, we can construct a simulator B to output a
forged proof for the same integrity challenge for the underlying
PDP �. In the following, C� denotes a challenger of �.

Setup: For a security parameter κ , the simulator B requests
(pk, sk) from C� and runs �.CKGen(1κ , s) to get (hk, tk)
for some positive integer s. Then B sends pk and hk to
adversary A.

Queries: The adversary A can adaptively interact with B in
performing the following queries. The simulator B initiates
an empty list to record all of intermediate information in
processing file queries, i.e., all the queried files and responses.

• Processing file: For each queried file M from A, the
simulator B picks a random file name name, sends
(M, name) to C�, and gets the corresponding metadata
{θ ′i : 1 ≤ i ≤ n} as shown in Equation (1). Then,
for each 1 ≤ i ≤ n, the simulator B picks a random
value ri ∈R Z and computes the metadata for OOPDP
scheme as σi = (θi , ri) where θi = Exp(pk, θ ′i , ri) as in
Equality (2). The simulator gives the produced metadata
{σi }1≤i≤n to A.

• Integrity verification: In this type of queries, the simulator
B and the adversary A play the roles as a verifier and a
prover, respectively. For any file M that has been queried
for processing, the simulator B can send a challenge Q =
{(i, vi) : i ∈ I } to A. The adversary returns a proof
R̂ = (μ̂1, · · · , μ̂s , σ̂ = (θ̂ , r̂)). The simulator verifies the
proof R̂ and gives the verification result to A.

End-Game: At the end of the security game, the adversary
A outputs a prover description P for a file M . The simulator B
interacts with P to perform integrity verification protocol for
file M . If A succeeds in attacking the soundness of OOPDP,
then the prover P can forge a proof with probability at least
ε at each round of integrity verification protocol. That means
the proof R̂ = (μ̂1, · · · , μ̂s, σ̂ = (θ̂, r̂)) outputted by P is
valid for the challenge Q, but differs from the proof R =
(μ1, · · · , μs, σ = (θ, r)) generated by the simulator from the
maintained information for the same challenge. There are two
cases to consider:

Case 1: θ̂ = θ .
In this case, R̂ �= R implies (μ̂1, · · · , μ̂s , r̂) �=

(μ1, · · · , μs, r). On the other hand, θ̂ = θ implies
�.CHash(hk, (μ̂1, · · · , μ̂s), r̂) = �.CHash(hk, (μ1, · · · ,
μs), r). Thus, the simulator breaks the AVCH function �.

Case 2: θ̂ �= θ .
In this case, at least one pair of {(μ̂ j , μ j)}1≤ j≤s or (r̂ , r)

should be different, otherwise θ̂ = θ must hold. The sim-
ulator B computes θ̂ ′ = Exp(pk, θ̂ ,−r̂) = θ̂ ⊗ g−r̂

1 and
θ ′ = Exp(pk, θ,−r) = θ ⊗ g−r

1 . We further distinguish two
subcases.

Subcase 2.1: θ̂ ′ �= θ ′. In this case, both (μ̂1, · · · , μ̂s , θ̂
′)

and (μ1, · · · , μs, θ
′) are valid proofs for the same challenge

Q in �. Thus, the simulator B obtains a forged proof
(μ̂1, · · · , μ̂s, θ̂

′), which breaks the soundness of the under-
lying PDP scheme �.

Subcase 2.2: θ̂ ′ = θ ′. It implies that the adversary has re-
randomized the outsourced metadata according to the mal-
leability, but did not touch the outsourced file sectors. As stated

in Remark 4, the integrity of outsourced file in OOPDP is not
broken. Thus, the prover P fails to output a forged proof in
attacking the soundness of OOPDP. �

D. Extension and Discussion

In our semi-generic OOPDP transformation framework, the
file name is determined in the offline phase before the user
knows the file. This is due to that our OOPDP transformation
is designed as generic as possible and most expensive com-
putations are performed in the offline phase. In fact, as we
discussed in Section IV-B that in many existing PDP related
schemes (e.g., [5]–[7]), f (H (name‖i)) = H (name‖i). That
means the metadata produced by these schemes have a
component of exponentiation (H (name‖i))k, which is not
replaceable in the online phase when it is contained in the
offline metadata token.

The above discussed problem can be easily solved when
transforming these PDP schemes into OOPDP ones. Specifi-
cally, during the transformation, the function is changed into
f (H (name‖i)) = u H(name‖i) where u is a fixed value in cyclic
group G = 〈g〉. (Notice that this type of function f has been
used in [9].) In the corresponding OOPDP scheme, the user
can randomly pick x ∈R Z∗ and compute u = gx ∈ G. Here,
Z∗ would be Z∗p or Z∗N when this approach is used to construct
OOPDP instantiations as shown in Section V. In fact, x and
u can be seen as elements in tk and hk of an AVCH function,
respectively. In this way, our OOPDP transformation can allow
the user to choose a file name in the online phase.

The above discussed scenario is similar to ID-based
online/offline encryption schemes [32], [34], [39], [40], where
a specific identity is required in producing a ciphertext.
But in the offline phase of encryption, the user may not
know the identity. Lai et al. [39] observed that for some
existing ID-based encryption schemes, a ciphertext has the
form CT = (Hdr,C), where Hdr is an ID header and C is
another component in ciphertext excluding Hdr. In Hdr =
(g1gH(I D))s , ID is a parameter in the exponent, where g, g1
are public parameters, H is a hash function and s ∈ Z∗p is a
random element chosen by encryptor. This formation of Hdr
allows the user to generate offline components C1 = (g1gα)s

and C2 = gsβ for some random α, β ∈R Z∗p , and then
in the online phase, the user only needs to compute C3 =
β−1(H (I D)− α) mod p for some specific identity ID. Based
on this observation, Lai et al. [39] presented a semi-generic
transformation of ID-based online/offline encryption scheme,
which is applicable to any ID-based encryption scheme such
that the ciphertext has an ID header component.

V. EFFICIENT OOPDP INSTANTIATIONS

We now present two OOPDP instantiations in our semi-
generic framework (see Section IV-C).

A. CDH-Based OOPDP Instantiation

The following instantiation is built from the CDH-based SW
scheme [5]. Let H : {0, 1}∗ → G be a collision-resistant BLS
hash function. Let � be a function of AVCHDL.

WANG et al.: ONLINE/OFFLINE PROVABLE DATA POSSESSION 1189

KeyGen(1κ): Carry out the following steps:
• Run (opk,osk)← .Keygen(1κ) of the OOS scheme.
• Pick a bilinear group G = 〈g〉 with prime order p and a

bilinear map ê : G × G → GT . Choose a random value
sk = α ∈R Z∗p and compute υ = gα.

• Run �.CKGen(1κ, s) to get a public hash key hk =
(p, g, u1, · · · , us) and a secret trapdoor key tk =
(x1, · · · , xs) of the AVCH function.

Thus, PK = (opk,G,GT , g, p, ê, υ, u1, · · · , us) and SK =
(osk, α, x1, · · · , xs).

ProFileoff(PK,SK): Similar to Section IV-C, except that
the file name name is randomly chosen from Z∗p , and for
every 1 ≤ i ≤ B, two random values m′i , r ′i ∈R Z∗p are picked
and the offline metadata token θi is generated as follows:

θi = (H (name‖i) · gx1m′i+r ′i)α = (H (name‖i) · um′i
1 · gr ′i)α

ProFileon(PK,SK,
,M): Similar to Section IV-C, except
that the file M is split such that each sector mi, j ∈ Z p, and
for every file block �mi (1 ≤ i ≤ n), ri is computed as follows:

ri = m′i x1 + r ′i −
s∑

j=1

x j mi, j mod p

Chall(PK, t): Same to Section IV-C, except vi ∈R Z∗p for
every i ∈ I .

PrfGen(PK, t,M∗, Q): For each 1 ≤ j ≤ s, compute

μ j =
∑

i∈I

vi mi, j ∈ Z p

Compute

r =
∑

i∈I

vi ri ∈ Z p, and θ =
∏

i∈I

θ
vi
i ∈ G

Send R = (μ1, · · · , μs , σ = (θ, r)) to the verifier.
Verify(PK, t, Q, R): If R cannot be parsed, output “0” and

terminate. Otherwise, check whether

ê(θ, g)
?= ê(

∏

i∈I

H (name‖i)vi ·
s∏

j=1

u
μ j
j · gr , υ)

If the condition holds, output “1”; otherwise, output “0”.
Correctness: Since

∏

i∈I

H (name‖i)vi ·
s∏

j=1

u
μ j
j · gr

=
∏

i∈I

(H (name‖i) ·
s∏

j=1

u
mi, j
j · gri)vi

=
∏

i∈I

(H (name‖i) ·
s∏

j=1

u
mi, j
j · um′i

1 · gr ′i ·
s∏

j=1

u
(−mi, j)

j)vi

=
∏

i∈I

(H (name‖i) · um′i
1 · gr ′i)vi (7)

we have

ê(θ, g) = ê(
∏

i∈I

(H (name‖i) · um′i
1 · gr ′i)vi , gα)

= ê(
∏

i∈I

H (name‖i)vi ·
s∏

j=1

u
μ j
j · gr , υ)

According to Theorem 1, we have the following corollary.
Corollary 1: Suppose the OOS scheme for producing file

tags is existentially unforgeable. If the CDH-based SW scheme
[5, Sec. 3.3] is sound, then the above transformed CDH-based
OOPDP scheme is also sound for any PPT adversary A.

Remark 5: The same idea can be applied to
Wang et al.’s [7] scheme, where s = 1, which yields
an online/offline dynamic PDP scheme.

In a similar way, we can get RSA-based OOPDP schemes
by applying AVCHF to the RSA-based SW Scheme [5] and
Ateniese et al.’s schemes [1], [41]. Note that in the security
proof (i.e., reducing the soundness of RSA-based OOPDP
to the underlying PoR), the simulator B cannot directly
incorporate a random component as in the function Exp for
producing an OOPDP metadata from a PDP metadata. This is
due to that the Euler’s totient function λ(N) is a secret key
of the RSA-based scheme. In the proof, we can circumvent
this problem by choosing a random value and multiplying it
by the public key e, and invoking Exp with this product.

In detail, in processing file queries, for each query file
M from A, B picks a random file name name ∈R Z∗N ,
sends (M, name) to C�, and gets the corresponding metadata
{θ ′i : 1 ≤ i ≤ n}, where

θ ′i = (H (name‖i) ·
s∏

j=1

u
mi, j
j)d mod N.

Here, d is the private key in RSA-based OOPDP scheme.
Then, for each 1 ≤ i ≤ n, the simulator B randomly picks a
value ςi ∈R Z∗N , and computes the metadata for the OOPDP
scheme as σi = (θi , ri) where

θi = θ ′i · gςi = (H (name‖i) ·
s∏

j=1

u
mi, j
j)d · gςi mod N

and ri = e · ςi . The simulator gives the produced metadata
{σi }1≤i≤n to A.

B. Optimized OOPDP Instantiation

In this section, we optimize the OOPDP instantiation pro-
posed in Section V-A. Following the idea of Section IV-D,
the resulting OOPDP instantiation allows the user to choose
a file name in the online phase. Technically, we employ
the polynomial commitment [17] and a variant of AVCHDL
(see Remark 1) so that the communication costs for integrity
auditing can be reduced to constant. In fact, the optimized
OOPDP instantiation can also be seen as an online/offline
version of YY scheme [9].

Let H : {0, 1}∗ → Z∗p be a collision-resistant hash function.
For a given vector �c = (c0, · · · , cs) ∈ Zs+1

p , let f�c(x) =∑s
i=0 ci x i denote the polynomial over Z p with coefficient

vector �c.
KeyGen(1κ): Carry out the following steps:
• Run (opk,osk)← .Keygen(1κ) of the OOS scheme.
• Pick a bilinear group G = 〈g〉 with prime order p and a

bilinear map ê : G × G → GT . Choose a random value
sk = α ∈R Z∗p and compute υ = gα.

• Run �.CKGen(1κ , s + 1) to get a public hash key hk =
(p, g, u1, · · · , us+1) and a secret trapdoor key tk = z of

1190 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

TABLE I

PERFORMANCE COMPARISON OF CDH-BASED OOPDP WITH THE UNDERLYING SCHEME

a variant of AVCHDL function discussed in Remark 1,
that is, ui = gzi

for each i ∈ [1, s].
• Pick a random value β ∈R Z∗p . Compute γ = gβ and
λ = gαz .

Thus, PK = (opk,G,GT , g, ê, υ, u0 =
g, u1, · · · , us+1, γ , λ) and SK = (osk, α, z, β).

ProFileoff(PK,SK)): Compute an offline file tag token
t

as in Equality (4). For each 1 ≤ i ≤ B, pick two random
values m′i , r ′i ∈R Z∗p , and compute an offline metadata token θi

as follows:

θi = (gxm′i+r ′i)α = (um′i
1 · gr ′i)α

Then, store the offline file token
 = {
t }∪{m′i , r ′i , θi }1≤i≤B.
ProFileon(PK,SK,
,M): Same to Section V-A, except

that for every file block �mi (1 ≤ i ≤ n), ri is computed
as follows:

ri = m′i z + r ′i − βH (name‖i)−
s∑

j=1

mi, j z j+1 mod p

Chall(PK, t): Run .Verify to validate t with opk. If it is
invalid, output “0” and terminate; otherwise, pick a random
subset I ⊆ [1, n], choose two random values τ, ρ ∈R Z∗p and
send Q = {τ, ρ, I } to the cloud storage server.

PrfGen(PK, t,M∗, Q): For each i ∈ I , calculate
vi = ρi mod p. Compute �μ = (μ1, · · · , μs), r and θ in the
same way as Section V-A. Define a polynomial

f �μ(x) =
s∑

j=1

μ j x j+1 mod p

and calculate y = f �μ(τ). Then compute the polynomial

f �ω(x) = f �μ(x)− f �μ(τ)
x − τ

using polynomial long division. Denote the coefficient vector
of f �ω(x) as �ω = (ω0, · · · , ωs). Compute

ψ = g f �ω(z) =
s∏

j=0

(gz j
)ω j

and send R = (ψ, y, σ = (θ, r)) to the verifier.
Verify(PK, t, Q, R): If R cannot be parsed, output “0” and

terminate. Otherwise, check whether

ê(θ, g)
?= ê(γ

∑
i∈I H(name‖i)ρi · gy+r · ψ−τ , υ) · ê(ψ, λ)

If the condition holds, output “1”; otherwise, output “0”.

Correctness: Since

ê(θ, g) = ê(
∏

i∈I

(gzm′i+r ′i)viα, g)

= ê(
∏

i∈I

(gβH(name‖i)+∑s
j=1 mi, j z j+1+ri)viα, g)

= ê(γ
∑

i∈I vi hi , υ)ê(g
∑s

j=1(
∑

i∈I vi mi, j)z j+1
, υ)ê(gr , υ)

= ê(γ
∑

i∈I vi hi , υ)ê(g f �μ(z), υ)ê(gr , υ)

and

ê(gy+r · ψ−τ , υ) · ê(ψ, λ)
= ê(g f �μ(τ), gα)ê(gr , υ)ê(g−τ f �ω(z), gα)ê(g f �ω(z), gαz)

= ê(gr , υ)ê(g f �μ(τ)+(z−τ) f �ω(z), gα)

= ê(gr , υ)ê(g f �μ(z), υ)

the verification equation is satisfied.
For the security, we have the following corollary.
Corollary 2: Suppose the OOS scheme for producing

file tags is existentially unforgeable. If the YY scheme [9] is
sound, then the above proposed OOPDP instantiation is also
sound for any PPT adversary A.

VI. PERFORMANCE

A. Theoretical Analysis

We summarize the comparisons between our OOPDP
instantiations with the underlying schemes in terms of compu-
tation costs and offline storage costs in Tables I and II. In the
tables, H, A, M, P and E denote a hash evaluation, an addition,
a multiplication, a bilinear pairing and an exponentiation,
respectively. Here, we do not differentiate the computations A,
M and E on different groups or fields. Ctag represents the com-
putation costs of the signature scheme for generating file tag in
the underlying PDP schemes, while Con and Cof f respectively
represent the online and offline computation costs of OOS for
computing a file tag in OOPDP. We also respectively denote
by Cv f and Cov f the computation costs of running Verify of
the regular signature scheme and OOS scheme for verifying a
file tag. Eoss and EG denote the sizes of an OOS signature and
an element in bilinear group G, respectively. The computation
cost of polynomial long division is denoted by CD . |I | denotes
the number of the challenged file blocks in Q.

Consider the OOPDP instantiation proposed in Section V-A
and its underlying SW scheme [5, Sec. 3.3]. For generating a

WANG et al.: ONLINE/OFFLINE PROVABLE DATA POSSESSION 1191

TABLE II

PERFORMANCE COMPARISON OF s-SDH BASED OOPDP WITH THE UNDERLYING SCHEME

metadata for a block with s sectors, PDP requires (s+1) expo-
nentiations, while the offline phase in OOPDP only needs to
perform two exponentiations, which is independent of s. Thus,
the offline computations of OOPDP are much more efficient
than the file processing procedure in the SW scheme. In the
online file processing phase of OOPDP, the user only needs to
carry out efficient additions and multiplications. When audit-
ing a file, an aggregated r of ri associated with the challenged
file blocks should be returned to the verifier, which means the
procedure Verify in OOPDP would take one more exponenti-
ation than that in the underlying SW scheme. Note that this
OOPDP instantiation outperforms the offloaded file processing
procedure for SW PDP scheme [10, Table 4], specifically,
with the approach in [10], the user still has to perform n
hash evaluations, 4n inversions and (6ns + 1.5nlogχ + 12n)
multiplications, where χ is a security parameter.

As we noted before that the privately verifiable SW PDP
scheme [5, Sec. 3.2] is also efficient for the user to process
file. Specifically, to process a file with n blocks, their privately
verifiable scheme needs to perform n evaluations on some
pseudo-random function, ns multiplications and ns additions,
where all of them are lightweight computations. Comparably,
our OOPDP instantiation of the publicly verifiable SW scheme
requires the user to carry out one online computation for the
OSS scheme, n(s + 1) multiplications and n(s + 1) additions,
in the online file processing phase. Both of them enjoy the
same computation complexity in processing a file, which also
implies our online/offline transformation technique greatly
reduces the computation costs for the publicly verifiable
SW scheme.

We continue to compare the s-SDH based OOPDP
instantiation proposed in Section V-B with the underlying
YY scheme [9]. We assume the secret values zi (2 ≤ i ≤ s+1)
can be pre-computed by the user. For producing a metadata
for a block with s sectors, the underlying PDP takes three
exponentiations, while the offline file processing procedure in
OOPDP only requires one exponentiation. The offline compu-
tations of OOPDP are more efficient than the file processing
procedure in the YY scheme. In both cases, the number of
exponentiations does not depend on the sector number s. When
processing a file in the online phase in OOPDP, the user only
needs to carry out efficient hash evaluation, additions and
multiplications. In auditing an outsourced file, the aggregated
challenged file blocks are not directly returned to the verifier.
In fact, a polynomial evaluation and a commitment witness are

sent to the verifier. Thus, in the s-SDH based PDP/OOPDP,
the integrity auditing process only has constant communication
complexity, while it requires the storage server to perform
more computations than that in the CDH-based PDP/OOPDP.
Here, the OOPDP instantiation also outperforms the offloaded
file processing procedure for YY PDP scheme [10, Table 4],
specifically, with the approach in [10], the user has to perform
n hash evaluations, 4n inversions and (ns + 1.5nlogχ + 17n)
multiplications, where χ is a security parameter.

In OOPDP, all tokens generated in the offline phase
should be stored by the user, which size is linear to the
(bound) number of file blocks. In either OOPDP instantiation,
each metadata contains two elements θi and ri . As shown
in Sections IV and V, ri is an auxiliary element introduced
to speed up the online file processing procedure, which is not
required in the underlying PDP scheme. Let l denote the sector
size. For a file M of � bytes, the processed file by the OOPDP
schemes contain 2� �s×l � elements in G and Z p , while the
processed file by the underlying SW and YY schemes contain
� �s×l � elements in G.

B. Experimental Analysis

We evaluate the performance of OOPDP instantiations
and their underlying PDP schemes by conducting exper-
iments with Pairing Based Cryptography library (PBC,
http://crypto.stanford.edu/pbc/) in C programming language.
The experiments are carried out on a system with Inter(R)
Core(TM) i5-5200U CPU @ 2.20GHz and 2.20GHz proces-
sors, and 8.00GB RAM. The elliptic curve is of type y2 =
x3+ x with |p| = 160bits and EG = 256bits. Thus, the sector
size is l = 20bytes.

In the publicly verifiable SW scheme, processing a file M
of � bytes requires in total Nsw

exp exponentiations, where

Nsw
exp = n(s + 1) ≈

⌈ �

s × l

⌉
× (s + 1) (8)

Similarly, for processing the same file, the original YY scheme
needs to perform Nyy

exp exponentiations

Nyy
exp = 2n = 2

⌈ �

s × l

⌉
(9)

Thus, the YY scheme is more efficient than the SW scheme
when the file is split such that each block has more than
one sector, i.e., s > 1. In our experiment, for comparing the
efficiency, especially for showing the efficiency of OOPDP

1192 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Fig. 2. Processing a 1 MB file by (online/offline) SW scheme. (a) Underlying
SW scheme. (b) Online/offline scheme.

Fig. 3. Processing a 1 MB file by (online/offline) YY scheme. (a) Underlying
YY scheme. (b) Online/offline scheme.

schemes, we let all (original and online/offline) schemes to
process the same file with � = 1MB. For each scheme, we
consider several cases of splitting the given file, that is, the
number of sectors is set as s = 100, · · · , 500. The number
of required exponentiations can be calculated for each case
according to Equations (8) and (9), which imply that the
more sectors in a block, the more efficient for processing a
file. Since the file tag generation depends on some specific
digital signature scheme or OOS scheme, it is independent of
file processing. Thus, the file tag generation and verification
parts are omitted in the experiments. The simulation results of
processing file are shown in Fig. 2 and Fig. 3, respectively,
which demonstrate that our OOPDP instantiations only take
about 70ms processing time. Moreover, we set B = 1000 in
the experiments of both OOPDP instantiations. For preparing
B offline metadata tokens, online/offline SW and YY schemes
take roughly 5.7s and 2.08s, respectively.

We continue to simulate the integrity auditing procedures.
Notice that the OOPDP instantiations have the same proba-
bility P of detecting file corruption as the underlying PDP
schemes, since the file is split in the same way in all
schemes. As proved by Ateniese et al. [1], the probability P
is determined by |I |. For an outsourced file with c percent
randomly corruption, we have P ≈ 1 − (1 − c)|Q|. In our
experiment, suppose a file has been split such that each block
has s = 100 sectors and has 1% corruption. The simulation
results of (online/offline) SW and YY schemes at the cloud
server and auditor are shown in Fig. 4 and Fig. 5. We see
that the integrity proof requires constant verification time in
both s-SDH-based OOPDP and the underlying YY scheme, for
all cases with different detecting probability. Here, different

Fig. 4. Auditing a 1% corrupted file by (online/offline) SW scheme.
(a) Generate proof. (b) Verification.

Fig. 5. Auditing a 1% corrupted file by (online/offline) YY scheme.
(a) Generate proof. (b) Verification.

detecting probability implies different number of file blocks
are challenged, e.g., P = 0.99 requires |I | ≈ 460 and P = 0.9
requires |I | ≈ 230, etc. The experiments also indicate that the
OOPDP instantiations do not incur any significant computation
costs to the cloud server and auditor.

VII. CONCLUSION

In this paper, we presented an OOPDP framework which
splits the file processing procedure into two phases. The offline
phase performs almost all the heavy computations (e.g., mod-
ular exponentiations), which is run before knowing the file to
be outsourced, and the online phase requires only lightweight
computations (e.g., modular multiplications). We provided a
generic transformation framework of converting PDP schemes
with certain properties into OOPDP ones. In this framework,
we presented two CDH-/s-SDH-based OOPDP instantiations
from the existing PoR schemes. Theoretical analysis showed
that in our OOPDP instantiations, not only the online file
processing procedure can be performed very fast, but also the
offline phase is much more efficient than the file processing
procedure in the underlying schemes. The experimental analy-
sis further confirms that our OOPDP instantiations provide
perfect user experience for outsourcing data and are affordable
by weak users, e.g., mobile devices with power supplies.

REFERENCES

[1] G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proc. 14th ACM Conf. Comput. Commun. Secur., New York, NY, USA,
2007, pp. 598–609.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proc. 4th Int. Conf. Secur. Privacy
Commun. Netw., Sep. 2008, Art. no. 9.

WANG et al.: ONLINE/OFFLINE PROVABLE DATA POSSESSION 1193

[3] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. 16th ACM Conf. Comput. Commun.
Secur., New York, NY, USA, 2009, pp. 213–222.

[4] A. Juels and B. S. Kaliski, Jr., “PoRs: Proofs of retrievability for large
files,” in Proc. 14th ACM Conf. Comput. Commun. Secur., New York,
NY, USA, 2007, pp. 584–597.

[5] H. Shacham and B. Waters, “Compact proofs of retrievability,”
J. Cryptol., vol. 26, no. 3, pp. 442–483, 2013.

[6] B. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing shared data on
the cloud via security-mediator,” in Proc. IEEE 33rd Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2013, pp. 124–133.

[7] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud comput-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859,
May 2011.

[8] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Trans.
Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013.

[9] J. Yuan and S. Yu, “PCPOR: Public and constant-cost proofs
of retrievability in cloud,” J. Comput. Security, vol. 23, no. 3,
pp. 403–425, 2015.

[10] Y. Wang et al., “Securely outsourcing exponentiations with single
untrusted program for cloud storage,” in Computer Security—ESORICS,
Germany: Springer-Verlag, vol. 8712, 2014, pp. 326–343.

[11] H. Krawczyk and T. Rabin, “Chameleon signatures,” in Proc. Symp.
Netw. Distrib. Syst. Secur. (NDSS) 2000, pp. 143–154.

[12] D. M. Freeman, “Improved security for linearly homomorphic sig-
natures: A generic framework,” in Public Key Cryptography—PKC,
vol. 7293, M. Fischlin, J. Buchmann, and M. Manulis, Eds. Germany:
Springer-Verlag, 2012, pp. 697–714.

[13] K. Liang and W. Susilo, “Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 9, pp. 1981–1992, Sep. 2015.

[14] Y. Yu et al., “Identity-based remote data integrity checking with perfect
data privacy preserving for cloud storage,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 4, pp. 767–778, Apr. 2016.

[15] Y. Wang, Q. Wu, B. Qin, X. Chen, X. Huang, and J. Lou, “Ownership-
hidden group-oriented proofs of storage from pre-homomorphic signa-
tures,” Peer-to-Peer Netw. Appl., pp. 1–17, 2016. [Online]. Available:
http://link.springer.com/article/10.1007%2Fs12083-016-0530-8

[16] H. Wang, “Identity-based distributed provable data possession in mul-
ticloud storage,” IEEE Trans. Services Computing, vol. 8, no. 2,
pp. 328–340, Mar. 2015.

[17] A. Kate, G. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in ASIACRYPT, vol. 6477,
M. Abe, Ed. Germany: Springer-Verlag, 2010, pp. 177–194.

[18] H. Cui, Y. Mu, and M. H. Au, “Proof of retrievability with public
verifiability resilient against related-key attacks,” IET Inf. Security,
vol. 9, no. 1, pp. 43–49, 2015.

[19] X. Fan, G. Yang, Y. Mu, and Y. Yu, “On indistinguishability in remote
data integrity checking,” Comput. J., vol. 58, no. 4, pp. 823–830, 2015.

[20] J. Yuan and S. Yu, “Public integrity auditing for dynamic data shar-
ing with multiuser modification,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 8, pp. 1717–1726, Aug. 2015.

[21] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signa-
tures,” in Advances in Cryptology—CRYPTO, vol. 435, G. Brassard,
Ed. Germany: Springer-Verlag, 1990, pp. 263–275.

[22] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Advances in Cryptology—CRYPTO, vol. 2139, J. Kilian, Ed. 2001,
pp. 355–367.

[23] K. Kurosawa and K. Schmidt-Samoa, “New online/offline signature
schemes without random oracles,” in Public Key Cryptography—PKC,
vol. 3958, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds. 2006,
pp. 330–346.

[24] X. Chen, F. Zhang, W. Susilo, and Y. Mu, “Efficient generic on-
line/off-line signatures without key exposure,” in Applied Cryptography
and Network Security, vol. 4521, J. Katz and M. Yung, Eds. 2007,
pp. 18–30.

[25] D. Catalano, M. Raimondo, D. Fiore, and R. Gennaro, “Off-line/on-line
signatures: Theoretical aspects and experimental results,” in Public Key
Cryptography—PKC, vol. 4939, R. Cramer, Ed. 2008, pp. 101–120.

[26] P. Yu and S. R. Tate, “Online/offline signature schemes for devices
with limited computing capabilities,” in Topics Cryptology—CT-RSA,
vol. 4964, T. Malkin, Ed. 2008, pp. 301–317.

[27] X. Chen et al., “Efficient generic on-line/off-line (threshold) signatures
without key exposure,” Inf. Sci., vol. 178, no. 21, pp. 4192–4203, 2008.

[28] X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, and K. Kim, “Identity-
based chameleon hashing and signatures without key exposure,” Inf. Sci.,
vol. 265, pp. 198–210, May 2014.

[29] C. Crutchfield, D. Molnar, D. Turner, and D. Wagner, “Generic on-
line/off-line threshold signatures,” in Public Key Cryptography–PKC,
vol. 3958, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds. 2006,
pp. 58–74.

[30] E. Bresson, D. Catalano, and R. Gennaro, “Improved on-line/off-line
threshold signatures,” in Public Key Cryptography–PKC, vol. 4450,
T. Okamoto and X. Wang, Eds. 2007, pp. 217–232.

[31] C.-Z. Gao, B. Wei, D. Xie, and C. Tang, “Divisible on-line/off-line
signatures,” in Topics Cryptology—CT-RSA, vol. 5473, M. Fischlin, Ed.
Germany: Springer-Verlag, 2009, pp. 148–163.

[32] F. Guo, Y. Mu, and Z. Chen, “Identity-based online/offline encryption,”
in Financial Cryptography and Data Security—FC (Lecture Notes in
Computer Science), vol. 5143, G. Tsudik, Ed. Heidelberg, Germany:
Springer-Verlag, 2008, pp. 247–261.

[33] J. K. Liu and J. Zhou, “An efficient identity-based online/offline
encryption scheme,” in Applied Cryptography and Network Security,
vol. 5536, M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud,
Eds. Germany: Springer-Verlag, 2009, pp. 156–167.

[34] S. S. M. Chow, J. K. Liu, and J. Zhou, “Identity-based online/offline key
encapsulation and encryption,” in Proc. 6th ACM Symp. Inf., Comput.
Commun. Secur., New York, NY, USA, Mar. 2011, pp. 52–60.

[35] S. Hohenberger and B. Waters, “Online/offline attribute-based encryp-
tion,” in Public-Key Cryptography—PKC (Lecture Notes in Com-
puter Science), vol. 8383, H. Krawczyk, Ed. Heidelberg, Germany:
Springer-Verlag, 2014, pp. 293–310.

[36] A. C. C. Yao and Y. Zhao, “Online/offline signatures for low-
power devices,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 2,
pp. 283–294, Feb. 2013.

[37] D. Boneh and X. Boyen, “Short signatures without random oracles and
the SDH assumption in bilinear groups,” J. Cryptol., vol. 21, no. 2,
pp. 149–177, Apr. 2008.

[38] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from
homomorphic identification protocols,” in Advances in Cryptology—
“ASIACRYPT, M. Matsui, Ed. Berlin, Germany: Springer 2009,
pp. 319–333.

[39] J. Lai, Y. Mu, F. Guo, and W. Susilo, “Improved identity-based
online/offline encryption,” in Proc. 20th Austral. Conf. Inf. Secur.
Privacy (ACISP), 2015, pp. 160–173.

[40] J. Lai, Y. Mu, and F. Guo, “Efficient identity-based
online/offline encryption and signcryption with short ciphertext,”
Int. J. Inf. Secur., pp. 1–13, 2016. [Online]. Available:
http://link.springer.com/article/10.1007/s10207-016-0320-6

[41] G. Ateniese et al., “Remote data checking using provable data posses-
sion,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, May 2011, Art. no. 12.

Yujue Wang received the Ph.D. degrees from
Wuhan University, Wuhan, China, and the City
University of Hong Kong, Hong Kong, under the
joint Ph.D. program, in 2015. He is currently
a Research Fellow with the School of Informa-
tion Systems, Singapore Management University.
His research interests include applied cryptography,
database security, and cloud computing security.

Qianhong Wu (M’15) received the Ph.D. degree
in cryptography from Xidian University in 2004.
Since then, he has been with Wollongong University,
Australia, as an Associate Research Fellow, with
Wuhan University, China, as an Associate Professor,
and with Universitat Rovira i Virgili, Spain, as a
Research Director. He is currently a Professor
with Beihang University, China. He has been
a holder/co-holder of nine China/Australia/Spain
funded projects. He has authored over 28 patents
and over 148 publications in leading journals and

conferences. His research interests include cryptography, information security
and privacy, VANET security, and cloud computing security. He is a member
of IACR. He has served in the program committee of several international
conferences in information security and privacy.

1194 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Bo Qin received the Ph.D. degree in cryptography
from Xidian University, China, in 2008. Since then,
she has been with the Xi’an University of Tech-
nology, China, as a Lecturer, and with Universi-
tat Rovira i Virgili, Catalonia, as a Post-Doctoral
Researcher. She is currently a Lecturer with Renmin
University, China. Her research interests include
pairing-based cryptography, data security and pri-
vacy, and VANET security. She has been a holder/
co-holder of five China/Spain funded projects. She
has authored over 80 publications in well-recognized

journals and conferences and served in the program committee of a number
of international conferences in information security.

Shaohua Tang (M’99) received the B.Sc. and
M.Sc. degrees in applied mathematics, and the Ph.D.
degree in communication and information system
from the South China University of Technology, in
1991, 1994, and 1998, respectively. He has been a
Full Professor with the School of Computer Science
and Engineering, South China University of Tech-
nology, since 2004. His current research interests
include information security, networking, and infor-
mation processing.

Willy Susilo received the Ph.D. degree in computer
science from the University of Wollongong, Aus-
tralia. He is a Professor and the Head of the School
of Computing and Information Technology with the
University of Wollongong, Australia. He is also the
Director of the Centre for Computer and Information
Security Research with the University of Wollon-
gong. He received the prestigious ARC Future Fel-
low by the Australian Research Council. His main
research interests include cloud security, cryptog-
raphy, and information security. He has served as

a Program Committee Member in major international conferences and an
Associate Editor of the number of prestigious international journals, including
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.

	Online/offline provable data possession
	Citation

	untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

