Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2003

Apparatus for discovering computing services architecture and
developing patterns of computing services and method therefor
[SG 107499]

Emarson VICTORIA
Hui TSENG

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Tau Chen CHAM

Siew Choo TAY

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons

Citation

VICTORIA, Emarson; TSENG, Hui; PANG, Hwee Hwa; CHAM, Tau Chen; and TAY, Siew Choo. Apparatus for
discovering computing services architecture and developing patterns of computing services and method
therefor [SG 107499]. (2003). 1-52.

Available at: https://ink.library.smu.edu.sg/sis_research/3709

This Patent is brought to you for free and open access by the School of Computing and Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3709&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3709&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

03/098451 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 November 2003 (27.11.2003)

PCT

(10) International Publication Number

WO 03/098451 Al

(51) International Patent Classification’: GO6F 13/10

(21) International Application Number: PCT/SG03/00113

(22) International Filing Date: 16 May 2003 (16.05.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
SG/02/00095
sg/02/00110

16 May 2002 (16.05.2002)
3 June 2002 (03.06.2002)

SG
SG

(71) Applicant (for all designated States except US): AGENCY
FOR SCIENCE, TECHNOLOGY AND RESEARCH
[SG/SG]; 10 Science Park Road, #01/01-03, 117684 Sin-
gapore (SG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VICTORIA,
Emarson [LK/SG]; Block 367, Woodlands Avenue 5,
#10-456, Singapore 730367 (SG). TSENG, Hui, Ming

74

@8n

34

Jason [SG/SG]; Block 39 Telok Blangah Rise, #19-343,
Singapore 090039 (SG). PANG, Hwee Hwa [SG/SG];
201 Tanjong Rhu Road, #15-11, Singapore 436917 (SG).
CHAM, Tau Chen [SG/SG]; Block 750, 73 Jurong West
Street, #05-157, Singapore 640750 (SG). TAY, Siew
Choo [SG/SG]; Block 205 A, Compassvale Lane, #10-47,
Singapore 541205 (SG).

Agent: AXIS INTELLECTUAL CAPITAL PTE LTD,;
21A Duxton Road, Singapore 089487 (SG).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: APPARATUS FOR DISCOVERING COMPUTING SERVICES ARCHITECTURE AN DEVELOPING PATTERNS

OF COMPUTING SERVICES AND METHOD THEREFOR

Discovery Visualizer

Pattern Tools

Oracle 8i
Oracle 9i

Any Oracle DB
| Any RDBMS

i~ 602

v

Automatic Mode

Learn Mode

Minimum Threshold
Acceptable Threshold

50

\ 4

85

(57) Abstract: An apparatus for discovering computing services architecture and developing patterns of computing services and
method therefor are disclosed. The apparatus, according to an embodiment of the invention, provides a graphical user interface
for displaying a deployment plan of deployed computing services. Components in the deployment plan are interconnected by links
indicating dependency relationships between the components. Each component and link is assigned a confidence value, which is
based on a calculated weight of the properties of each component. The apparatus further provides editing tools for manipulating the
components in the deployment plan as well as for creating and managing patterns.

WO 03/098451 A1 | 1M WYV 0RO

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, For two-letter codes and other abbreviations, refer to the "Guid-
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, ance Notes on Codes and Abbreviations" appearing at the begin-
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, ning of each regular issue of the PCT Gazette.

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

WO 03/098451

5

10

15

20

25

30

35

1
Apparatus for Discovering Computing Services Architecture and Developing

Patterns of Computing Services and Method Therefor

Field of the Invention
This invention relates to a computing system deployment system. In particular, it
relates to an apparatus for discovering computing services architecture and developing

patterns of computing services and method therefor.

Background

Conventional computing systems, for example enterprise applications, typically
possess multi-tier and distributed architectures. Unlike standalone applications in the
past, these enterprise applications provide specialized solutions catering to different
business needs within organizations or across geographically distant installations.
The elaborate structure of these enterprise applications gives rise to a vast quantity of

heterogeneous enterprise back-end computing.

Management of the enterprise applications to maintain architectural integrity and
performance of the enterprise applications is critical for creating new applications and

for providing availability of business services to users.

The aspects of the computing systems typically requiring management includes the
deployment and configuration of computing system services, system functionality
diagnosis, maintaining the integrity of the component dependencies within a
computing system, and monitoring and balancing of computing system component

loading for improving computing system performance.

In the course of managing the computing systems, a situation requiring components of
an application to be moved between two systems at different locations may arise.
Alternatively, new resources may be made available to the system that the enterprise
applications reside within. In both these situations, there is a need to reconfigure a

previously configured system. In most cases, the depioyment of an application or its

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

2
components requires complicated procedures that requires specialized training in the

application being installed as system integrity has to be preserved at all times.

A computing system typically undergoes several configuration changes and a few
revisions of its associated components in the course of its life. Once an application is
deployed within a system and becomes operational, it will undergo further component
replacements, enhancements and expansion in scale. Thus, keeping the dependencies
and the integrity of large-scale systems becomes problematic as possibly different
vendors provide different applications. Typically, maintaining the computing systems
needs to be performed by an administrator who is deploying the computing systems or
applications. In such a situation, the dependencies and inter-connection requirements
between computing systems are provided to the administrator in the form of
instructional manuals. Further knowledge of the requirements and limitations of each
system, application or its components is dependant on the experience and tacit

capability of the administrator.

Therefore, it is desirable to have a common framework and method for capturing or
specifying all these information in a structured manner, so that the dependency

calculations can be automated.

A computing system deployment method addresses the foregoing issues by
introducing layers and clusters for segregating computing system, system and
resource components based on their functionality and services provided thereby.
Associations between components are registered in profiles to facilitate dependency
tracking. The comI.)uting system deployment method allows for structured
deployment of the computing system onto a first host system. The profiles further
facilitate migration of the computing system and its associated components onto a

second host system without compromising system integrity.

Existing infrastructures can benefit from the computing system deployment method
once information relating to the deployed computing services is known. A computing

services architecture discovery method based on the computing system deployment

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

3
method provides steps for discovering deployed computing services to facilitate

infrastructure re-architecting, re-alignment processes and optimization.

Existing reverse engineering and software exploration methods and tools are typically
domain specific and largely relate to software maintenance and engineering, database
reverse engineering and object-oriented design patterns and recovery for recovering
software-coding patterns at source-level. Examples of these methods and tools
include PLASTIC by Plastic Software, which provides documentation and annotation
capabilities once a pattern of the deployed computing services is discovered. Jbuilder
and TogetherSoft are Integrated Development Environment (IDE) tools. These IDE
tools provide two-way process in which discovered patterns can be modified and the
corresponding source codes are automatically changed and vice versa. Another
example is Microsoft Visio by Microsoft, which can construct an object model of a
database when the connection information for the database is provided. However, it
does not allow any modification to be made to the database schema unless the

database is supported by the Visio product.

Other such methods and tools are for website and web applications architecture
recovery and network topology designing. Examples of these methods and tools
include Adobe GoLive and Network Sonar. The Adobe GoLive can construct a
graphical diagram of the website development based on the web-page repositories by
traversing through the link elements found in the web-pages and construct the
diagram. The Network Sonar can construct topology diagrams, network connectivity
diagrams from existing network by employing probing techniques such as SNMP and
ICMP.

These methods and tools do not provide information on how each component (e.g.
web-servers and applications servers) inter-operates with each other, its dependencies
and configuration, which are essential information to aid in the understanding of the
existing infrastructure as a whole and planning for new deployments or migration.
Discovered service architectures and patterns are not readily modified and fine-tuned

due to the lack of proper tools and framework for storing information relating to the

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

4
deployed components. Further, discovered patterns that represent best practices and

bad practices cannot be archived for future references. Thus, future system
deployment designs cannot be leveraged from the knowledge of past experiences due

to the lack of such archives.

Clearly, there is a need for an apparatus for discovering computing services
architecture and developing patterns of computing services and method therefor,
wherein tools are provided for fine-tuning the discovered computing services
architecture and abstracting patterns therefrom and archiving the patterns for future

references.

Summary

An apparatus for discovering computing services architecture and developing patterns
of computing services and method therefor are disclosed. The apparatus, according to
an embodiment of the invention, provides a graphical user interface for displaying a
deployment plan of deployed computing services. Components in the deployment
plan are interconnected by links indicating dependency relationships between the
components. Each component and link is assigned a confidence value, which is based
on a calculated weight of the properties of each component. The apparatus further
provides editing tools for manipulating the components in the deployment plan as

well as for creating and managing patterns.

Therefore, in accordance with a first aspect of the invention, there is disclosed an
apparatus for discovering computing services architecture and developing patterns of
computing services, the apparatus comprising:

a component profile repository for containing component profiles of a
computing service, each component profile being associated with a corresponding
deployable component, at least one of the component profile being associated with a
corresponding deployed component of a computing service;

a computing service deployment plan, the computing service deployment plan
being constructed based on information contained in the component profiles of the

computing service; and

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

5
a discovering tool for manipulating the computing service deployment plan.

In accordance with a second aspect of the invention, there is disclosed a method of
discovering computing services architecture and developing patterns of computing
services, the method comprising the steps of:

providing a component profile repository for containing component profiles of
a computing service, each component profile being associated with a corresponding
deployable component, at least one of the component profile being associated with a
corresponding deployed component of a computing service;

constructing a computing service deployment plan, the computing service
deployment plan being constructed based on information contained in the component
profiles of the computing service; and

providing a discovering tool for manipulating the computing service

deployment plan.

Brief Descriptions of The Drawing
Embodiments of the invention are described hereinafter with reference to the
following drawing, in which:

FIG. 1 shows a block diagram representing a computing system deployment
model;

FIG. 2 shows a block diagram of a layer of the computing system deployment
model of FIG. 1 with a plurality of components contained therein being grouped in
clusters;

FIG. 3 shows a block diagram of a component profile of each component of
FIG. 2;

FIG. 4 shows a process flowchart of discovery steps according to an
embodiment of the invention;

FIG. 5 shows an overview of a working environment of the discovery steps of
FIG. 4;

FIGs. 6 to 12 and 14 show examples of a user graphic interface of an
apparatus for discovering and developing patterns according to an embodiment of the

invention; and

_ PCT/SG03/00113, _

WO 03/098451

10

15

20

25

30

35

6

FIG. 13 shows an example of a user interface for managing patterns in a

pattern library according to an embodiment of the invention.

Detailed Description
An apparatus for discovering computing services architecture and developing patterns

of computing services and method therefor are provided hereinafter.

The apparatus for and method for discovering computing services architecture and
developing patterns of computing services (hereinafter referred to as “the System”)
according to an embodiment of the invention is described with reference to FIGs. 1 to
14. The System is preferably based on a computing system deployment model 100 as
shown in FIG. 1.

The computing system deployment model 100 is for planning and realizing a
deployment of a computing system (not shown) onto a computer-based host system
102, which typically comprises multiple geographically dispersed sub-systems. The
computing system comprises multiple components 202 (shown in FIG. 2) residing
within the host system 102. These components 202 are generally classified as service
components, system components and resource components (all not shown in FIG. 1).
These components 202 are organized into separate layers 104 within the host system
102. The layers 104 typically include a service layer, system layer and resource layer,
which respectively contain service, system and resource components. Each layer 104
has an associated layer map 106. The layer map 106 of each layer 104 indicates the
physical locality of a component 202 within the host system 102 and the association

of another component 202 therewith.

The service components are for providing one or multiple application-specific,
vendor-specific or domain-specific services, which include providing service-related

contents such as web-contents and user account data.

The system components are conventionally known as server components and are for

providing computing system-based resources and services to other components 202

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

7

within the host system 102. Examples of such system components are DNS servers,

FTP servers, system libraries, Windows registries and key repositories.

The resource components represent one of a physical hardware that is associated with
a computing node or a virtual device representing the physical hardware. Examples
of hardware represented by the resource components include network cards, hard

disks, routers, firewalls and memory modules.

The components 202 in each layer 104 are grouped into clusters 204 based on the
functions thereof as shown in FIG. 2. Each cluster 204 contains at least one
component 202. In the service layer, the service components are grouped into service
clusters based on the similarity of services provided by each service component.
Similarly, in the system layer, the system components are grouped into system
clusters based on the function of each system component. Examples of system
clusters include an operating system (OS) cluster, a database cluster and a virtual
machine cluster. In the resource layer, the resource components are grouped into
resource clusters based on the function of the resource component. For example, in
the resource layer, there can be a network router cluster, a firewall cluster and a

storage cluster.
Each cluster 204 has an associated cluster profile (not shown). The cluster profile
contains a description of an associated cluster and a function descriptor describing the

function of the components 202 contained therein.

Component Profile

Each component 202 has a corresponding component profile 300 as shown in FIG. 3.
The component profile 300 contains management information, which is used for
planning the deployment of the component 202. The component profile 300
comprises a description 302 of the associated component 202, at least one association
requirement 304, at least one association restriction 306, and at least one contract

specification 308, a list of access controls 310, an ownership indicator 312, a

PCT/SG03/00113

WO 03/098451 PCT/SG03/00113

8

5 component history 314, a list of cost specifications 316 and a configuration

specification 318.

The association requirement 304 indicates which of the components 202 in the host
system 102 are required for associating with the component being described by the
10 component profile 300. For example, in the case of a service component, the
component profile 300 is a service profile. Thus, the association requirement 304
indicates system components required for associating with the service component

being described by the service profile.

15 The association restriction 306 indicates which of the components 202 in the host
system 102 that are in conflict with and have been prohibited from accessing the
component being described by the cémponent profile 300. The association restriction
306 further provides information on potential and known conflicts. The information
on the conflicts allows the conflicts to be properly managed or alleviated during the

20 deployment of the computing system.

The contract specification 308 states the information to be provided by a
corresponding component 202 for accessing the component 202 described by the
component profile 300. An application of the contract specification is illustrated

25 using a hypertext transfer protocol (HTTP) server (not shown) as follows. The system
component of the HTTP server, for example an Apache HTTP server, requires a valid
alias and a root directory location to be specified for access thereto. The valid alias
_and root directory location requirements are stated in the contract specification 308 of
the system profile describing the system component of the Apache HTTP server.
30 Therefore, a service component of an Enterprise server, for example, requiring access
to the system component of the Apache HTTP server has to be provided with
information required by the contract specification 308 thereof. The service
component of the Enterprise server then provides the Apache HTTP server with the
required valid alias and root directory location to the system component of the

35 Apache HTTP server for access of the same thereby in accordance to the association

requirements 304 of the service profile describing the service component.

WO 03/098451

10

15

20

25

30

35

AW ARIWW

The list of access controls 310 specifies the ability of a component 202 contained in
another cluster 204, preferably from the same layer 104, to access the component 202
being described by the component profile 300 and vice-versa. The access controls
310 are conventionally provided by the vendors of the components 202 in the host
system 102 to avoid association of components 202 supplied by one vendor from
accessing or being accessed by components 202 supplied by another vendor. Further,
the access controls 310 can be utilized for marketing, political, security or operational

reasons.

The ownership history 312 indicates one or multiple owners of the component 202
described by the component profile 300 and the relative priority that each owner has
over the component 202 based on the configuration of the deployment. The owner is
one or more of any combination of a system including the host system 102, a cluster
including the service, system and resource clusters, and a component 202 in the host

system 102.

The component history 314 tracks the current and past configuration the component
described by the component profile 300 is deployed upon. The component history
314 further reflects the dependency of other components 202 in the host system 102
on the component. The component history 314 is further used for restoring and
archiving deployed computing systems. This enables any corruption to the computing
system or the components therein to be rectified by enabling redeployment or
restoration of the computing system to its most recent pre-corrupted state. .
The list of cost specifications 316 specifies the corresponding cost of using of the
component 202 being described by the component profile 300. The cost of using a
component includes virtual memory usage (for example a random access memory or
RAM), physical storage usage (for example a hard disk drive), the physical storage
expansion requirements with respect to time and the like system resource
requirements. The cost specifications 316 allows an administrator of a computing

system to decide upon the viability of installing a component or a cluster of

_PCT/SG03/00113

WO 03/098451 PCT/SG03/00113
[V

10

15

20

25

30

35

A WAINWV VYV VvV F VW]

10

components while considering the current and future impact on system resouice

requirements if the component is installed.

The component configuration specification 318 specifies multiple configuration
parameters for deploying the component. Each parameter is specified as a key-value
pair, wherein the key refers to the parameter name, such as “application-name” and
the value refers to as specific value corresponding to the parameter name, in this case,
the specific application name, such as “oracle”. Another example of a key-pair is
“server-port = 80”. Other parameters include run-time information relating to how
each component 202 is deployable and alterable parameters that affect the run-time
behavior of the component 202. The run-time information includes installation paths,
network ports and addresses, location of application-specific configuration files and
logs, and the like component configuration details. The run-time information is one
of application-specific, domain-specific and vendor-specific and ensures substantial
accuracy in planning for the deployment of the computing system or the realization of

the computing system infrastructure.

Discovery Steps

Using the framework of the component profile 300 described in the foregoing with
reference to FIG. 3, computing services deployed in an existing computing system can

be discovered by performing discovery steps 400 as shown in FIG. 4.

The operational principle behind the discovery steps 400 is based on the fact that
most, if not all, component profiles of deployable components have a default or
recommended configuration. Further, deployment of these components tends not tb
deviate too much from the recommended configuration and certain parameters used in
the recommended configuration are also used or customized in the actual deployment.
However, it is unlikely that one vendor supplies all the deployed components. As
such, information in the component profiles supplied by one vendor typically differs

from information in the component profiles supplied by another vendor.

WO 03/098451

10

15

20

25

30

35

11
The discovery steps 400 seek to detect the presence of the deployed components and

discover the properties (i.e. configuration and dependencies information) of the
detected components and re-organize these discoveries into the framework of the
component profile 300 for aiding the construction of a reusable deployment plan

using the computing system deployment model 100 described in the foregoing.

The operation of the discovery steps 400 is illustrated with reference to FIG. 5, which
shows an overview of a working environment 500 for the discovery steps 400. The
working environment 500 comprises a pool of component profiles 501, which are
typically supplied by different vendors, a pool of re-constructed component profiles
505, a deployment plan 510 and an existing computing system 515. The objective of
the discovery steps 400 is to discover and extract information to re-constructed the re-
constructed component profiles 505, which are in the framework of component profile
300. Initially, the content of the re-constructed component profiles 505 is not known.
Thus, the deployment plan 510, which comprises components 512 and dependencies
514 linking the components 512, are also not known. The components 512 typically
comprise service, system and resource components, while the dependencies 514 are
stipulated in the component profiles corresponding to each component 512. The
content of the re-constructed component profiles 505 is embedded in the deployed
components within the existing computing system 515 as stipulated in the component
profile 501 supplied by different vendors. The deployed components need to be
detected and the properties therein need to be discovered via a detection and
discovery process 502. Once discovered, the configurations and dependencies
information of the detected components are extracted 504 to re-construct the re-
constructed component profiles 505. Using the re-constructed component profiles
503, the deployment plan 510 of the deployed computer services is created 506.
Thereafter, the constructed deployment plan 510 can be fine-tuned, validated,
extended with new deployments and redeployed 512 to provide an improved and easy

to manage computing system.

The discovery steps 400 comprise a specification of discovery pool step 402, a

detection and extraction step 404, an ambiguity and incomplete discovery resolution

PCT/SG03/00113

10

15

20

25

30

35

WO 03/098451

12
step 406 and a deployment plan construction and validation step 408 as shown in FIG.

4,

Specifying Discovery Pool

The specification of discovery pool step 402 is concerned with specifying or
identifying a pool of component profiles for detecting the associated deployed
components. Typically, these component profiles are provided by the vendors of the
deployed components and contain default and/or recommended deployment
parameters. The step 402 preferably involves performing one or more of the

following tasks:

(a) Selecting one or more component profiles from a component profile

library in the computing system.

(b) Selecting one or more component profile libraries from which component

profiles are identified for including into the discovery pool.

(c) Creating new component profiles and discovery proxies for use in
discovering the profiles of the deployed components, if component

profiles of the deployed components are not readily available.

(d) Selecting one or more component profiles from any form of component

profile repositories, for example, web-site repositories.

Each discovery proxy specifies either discovery-scripts for self-constructing (or self-
discovering) the profile of a corresponding deployed component or a link to another
component profile from which the properties therein can be inherited when re-
constructing the profile of the corresponding deployed component. The information
discovered by the discovery-scripts associated with the discovery proxy is compiled
to provide a component profile, wherein the management information of the deployed

component is arranged according to the framework of the component profile 300.

PCT/SG03/00113

10

15

20

25

30

35

WO 03/098451

13
The discovery-scripts are platform-dependent or platform-independent scripts, which

are executed during the detection and extraction step 404 as described hereinafier.
Existing software reverse-engineering techniques such as source-code-level and
binary-level analysis can be incorporated into the discovery scripts, depending on the
granularity of extraction and level of understanding of the deployed components
needed and difficulties in discovering the information. The discovery-scripts can also
serve as additional discovery hints to enhance the detection and extraction process.
Thus, component profiles can be tailored not just for planning and deployment but
also for the discovery thereof. That is, the component profiles can be used as a means
for specifying explicit instructions to drive and guide the detection and extraction

process. Examples of the discovery-scripts include:

Component Detection discovery-script — used for detecting the presence of the

deployed component;

Configuration Extraction discovery-script — used for extracting configuration

information of the deployed component upon detection thereof;

Contract Extraction discovery-script — used for extracting dependencies and

contract information of the deployed component upon detection thereof;

Self-construct discovery-script — used in self-constructing discovery proxies
and when executed performs component detection, property extraction and
completely re-constructs the component profile of the deployed component in

accordance with the framework of the component profile 300; and

Service discovery-script — used for discovering complete services that may be
composed of multiple deployed components, thus, performing multiple

component discoveries.

In order to enhance the detection of component dependencies and conflicts,

components that are specified in the association requirement and association

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

14
restriction properties of each specified component profile may be automatically

included into the discovery pool. However, the dependencies and mandatory contract
specifications of the components automatically included into the discovery pool are
preferably validated in this step 402 according to the contract specification 308 as
defined in the component profile of each deployed component. Therefore,
components that meet the association requirement but do not meet the contract

specification are not included into the discovery pool.

Detecting and Extracting

Once the pool of component profiles is specified, the detection and extraction step
404 is nitiated to search for the deployed components corresponding to the specified
component profiles in the discovery pool and extract properties therefrom upon
detecting the deployed components. The step 404 comprises three sub-steps:

(1) detecting the presence of deployed components;

(ii) extracting detected component configuration; and

(iii) determining detected component dependencies.

In the sub-step (i), a component corresponding to a specified component profiles in

“the discovery pool is deemed successfully- detected if one or a combination of the

following weighted parameters are detected in the file-system, system resources (such
as network ports), system registries or other operating system dependent information

source.

Base Directory Detection. A BasePath pathname attribute in the configuration
property, which specifies the default base pathname location for the deployed
component, matches fully or partially against pathnames that exist in the actual file-
system. For partial matching, only the last element of the pathname is matched. The
matching process is non-case sensitive and involves discarding any leading or ending

non-alphabetical and white-space characters.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

15
Configuration File Detection. A filename specified by a ConfigFile attribute in the

configuration property matches fully or partially with one or more filenames that exist

in the detected base directory or sub-directories thereof.

Error Log File Detection. A filename specified by an ErrorLog attribute in the
configuration property matches fully or partially with one or more filenames that exist

in the detected base directory or sub-directories thereof.

Log File Detection. A filename specified by a Log attribute in the configuration
property matches fully or partially with one or more filenames that exist in the

detected base directory or sub-directories thereof.

A Content Detection. One or more filenames or pathnames specified in the content
property (not shown in FIG. 3) maiches with one or more filenames that exist in the

detected base directory or sub-directories thereof.

Component Name Detection. A Component Name attribute in the descriptor property
matches a filename or directory name fully or partially in the existing file-system or a

key ina system registry.

Vendor name Detection. A Component Vendor Name attribute in the descriptor
property matches a filename or directory name fully or partially in the existing file-

system or a key in a system registry.

Discovery-script Component Detection Test. For discovery proxies or component
profiles with discovery-scripts, executing the component detection discovery-scripts

returns a COMPONENT _DETECTED or COMPONENT NOT_DETECTED result.

Using a simple conditional probability, which measures the likelihood that a
component is present, the final score of a component, after the performance of the

sub-step (i), is given by:

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

16
Hpi W
i=1

where p represents the likelihood that a parameter is present, the value of p is between
0 and 1, with 1 indicating that the parameter is very likely to be present, w represents
a weight associating with the parameter, the value of w is between 0 and 1, with 1
indicating that the parameter is very important, and » represents the number of

parameters associated with one component.

Further, the foregoing detection conditions can be used to test for heuristics by using
the association requirement and association restriction properties specified in the
component profiles. These heuristics includes (a) Absence of Conflicts — no
conflicting components detected and (b) Presence of Dependencies — detected

presence of some or all dependant deployed components.

The outcome of the sub-step (i) is the successful detection of deployed components
having corresponding component profiles as specified in the discovery pool. Further,
any successfully detected conditional values or attributes are also updated into the
appropriate properties and attributes of the corresponding component profiles. These
updated component profiles are referred to as re-constructed component profiles.
Information in each re-constructed component profile is arranged in a systematic and
consistent manner in accordance with the component profile 300 framework described

in the foregoing with reference to FIG. 3.

If the discovered attributes of the detected component fail to match with the attributes
that are specified in the corresponding component profile, the detected component is
tagged with an Identity-Incomplete status. If two or more detected components are
found to match with one component profile specified in the discovery pool, each of

these detected components is tagged with an Identity-Ambiguous status.

In the sub-step (ii), information relating to the configurations of the detected
components are exiracted and updated in the configuration property of the

corresponding re-constructed component profiles. Atiributes that are previously

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

17

updated in the sub-step (i) are ignored. Incomplete and un-customized or default

attributes are information that need to be extracted from the detected components.

For discovery proxies or component profiles with discovery-scripts, the extraction
process is performed by executing the configuration extraction discovery-script
therein. Otherwise, if configuration files are detected in the sub-step (i), partial
matching of configuration keys is performed to deduce and extract the corresponding
key values from the configuration files. This is achieved by performing string
matching against the detected configuration files. This matching is also extended to
the system registry, if one exists. If the component profile specifies only one default
configuration set, which comprises multiple configuration key-value pairs of a
component, in this case all the configuration key-value pairs, but multiple
configuration sets are extracted from the detected component, the detected component
is tagged with a Configuration-Ambiguous status. Thus, several possible
configuration sets are generated for the user to choose from. However, if the
extraction process fails to extract configuration keys specified in the component

profile, the detected component is tagged with a Configuration-Incomplete status.

The outcome of ‘the sub-step ‘(i) is the updated configuration information in the
configuration property of the re-constructed component profiles of the detected
deployed components. Further, each detected component is tagged with an

appropriate status.

In the sub-step (iii), one or more detected components having dependency
relationships detected in the sub-step (i) are verified to comply with mandatory
dependency relationships specified in the requirement property of the corresponding
component profiles. To determine if a dependency relationship of the one or more
detected components is valid, contract information is extracted from the detected
components and compared against contract information specified in the corresponding
component profiles. If contract information cannot be extracted, the dependency

relationship is deemed invalid.

PCT/SG03/00113

10

15

20

25

30

35

WO 03/098451

18
For discovery proxies or component profiles with discovery-scripts, the contract

extraction discovery-script is used for extracting contract information from the
detected components. If there are no discovery-scripts and if configuration files are
detected for the components having the same dependency relationship, partial
matching of default and mandatory contract keys contained in the configuration files
of the detected components is performed to deduce and extract common contract
values that describe the dependency relationship. If a system registry exists, the
matching process is also extended thereto. If the required dependency contract key

and value cannot be determined, the dependency relationship is deemed invalid.

If one or more mandatory dependency relationships are not uniquely matched or
validated, each of the corresponding detected components is tagged with a
Dependency-Ambiguous status. If a complete match or one mandatory dependency
relationship is not successfully verified, each of the corresponding detected

components is tagged with a Dependency-Incomplete status.
The outcome of the sub-step (iii) is the confirmation of the dependency relationships
between the detected components as specified in the corresponding component

profiles.

Ambiguity and Incomplete Discovery Resolution

At the conclusion of steps 402 and 404, the properties of the deployed components are
either completely discovered or partially discovered. The partially discovered
components are tagged with one or a combination of Identity-Ambiguous, Identity-
Incomplete, Configuration-Ambiguous, Configuration-Incomplete, Dependency-
Ambiguous and Dependency-Incomplete statuses. These partially discovered
components may be further fine-tuned in the step 406.

The step 406 requires user-assistance and preferably involves using the System
according to an embodiment of the invention to help in resolving the ambiguity and
incomplete discoveries. For the ambiguous discoveries, namely, the identity,

configuration and dependency ambiguities, the user is required to select one of the

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

19
detected alternatives for each of the ambiguities. For the incomplete discoveries,

namely, the identity, configuration and dependency incompletes, the user is required
to provide the incomplete parameters and attributes in the corresponding component

profiles.

Deployment Plan Construction and Validation

In the step 408, a deployment plan is constructed from the re-constructed component
profiles of the corresponding detected deployed components provided by the previous
steps 402, 404 and 406. Further, the constructed deployment plan can be further
refined and validated by using the System to provide a final deployment plan and

patterns therefrom can be extracted and archived for future references.

The deployment plan is preferably graphically presented as nodes (each node
represents a component) and dependency lines linking the nodes for indicating
dependency relationships therebetween, like the exemplary deployment plan 505
shown in FIG. 5.

The step 408 also addresses over-detection and under-detection issues. Over-

- ‘detection of deployed components, which- is partially addressed in the earlier steps

where such components are tagged with ambiguous and/or incomplete statuses, arises
from incorrect detection conditions or incorrect assignment of parameter weights.
Thus, in the step 408, components that appear in the deployment plan but are not
actually deployed in the computing system are removed or deleted from the
deployment plan. The over-detection issue can be address by making the default
detection conditions and weights dynamically adjustable or by having an adaptive or
self-learning detection process. Alternatively, specific discovery-scripts are needed to

accurately detect specific components.

Under-detection is typically detection misses that occur due to the following factors:

Deployed components having corresponding component profiles that are not

specified in the discovery pool;

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

20

Deployed components having corresponding component profile that are
specified in the discovery pool but the component profiles fails to provide
sufficient hints for detecting the deployed components or the deployed
components are heavily customized since the deployment thereof rendering
the deployed components unrecognizable (i.e. cannot be generically detected);

and

Deployed components do not have corresponding component profiles.

The first factor can be easily resolved by including the component profiles into the
specified discovery pool. The second factor can be addressed by fine-tuning or
relaxing the detection conditions and weights. Alternatively, discovery-scripts can be
used to accurately detect the deployed components. The third factor can be addressed
by creating a component profile for each of the detected components. Discovery
proxy can be provided to automatically self-construct a component profile from the
discoveries made by the execution of the discovery-scripts therein. Alternatively, a
component profile can be recreated in a conventional manual way by describing the
corresponding detected component and embedding hints therein for use during the

detection and extraction process.

The System
Steps 406 and 408 preferably use the System according to an embodiment of the

invention to help resolve the partially discovered components and to refine and
validate the constructed deployment plan to provide a final deployment plan and

patterns of the computing service.

The System allows the characteristics of the components of a computing service to be
represented in a logical and easy to understand manner and provides editing tools for
users to manipulate the properties and associations of the components. Further, the

System enables patterns of deployment plan to be abstracted, analyzed and archived

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

21
for future referencing. Thus, the System also provides tools for managing patterns of

deployment plan and documentation.

The System comprises a graphical user interface (GUI) 600 as shown in FIG. 6. The
GUI 600 comprises a visualizer window 602, an interaction mode controller 604, a
minimum threshold controller 606 and an acceptable threshold controller 608 as
shown in FIG. 6.

The deployment plan of a computing service is represented graphically in the
visualizer window 602. Typically, each component 610 in the computing service is
comnected to another component 610 by a link 612 indicating a dependency
relationship between the linked components 610. The arrowed end of the link 612
indicates the parent component and the non-arrow end of the link 612 indicates the
child or dependent component. For example, as shown in FIG. 6, component A is
dependent on components D and E to function properly. The deployment plan is
constructed based on the latest information found in the component profile of each
component 610, which is re-constructed based on information obtained from the
detection and extraction process described in the foregoing. The information
contained in the component profile comprises properties described in the foregoing
with reference to FIG. 3 as well as the conditional probability accorded to the

component as described in the foregoing.

Confidence Value and Confidence Difference Value

Each component 610 and link 612 of the deployment plan in the visualizer window
602 is annotated with a confidence value. The confidence value for each component
610 is derived from the detection probability of each component 610 and the
confidence value for each link 612 is derived from dependency conditional
probability of one component on another component. The conditional probabilities of
each component 610 and link 612 are normalized to provide a confidence value
between zero and 100 with the value 100 indicating that the component is discovered

with 100 percent confidence.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

22
The confident value assigned to each component 610 indicates the likelihood the

component 610 is actually present in the computing system. For example, as shown
in FIG. 6, components A, C and E have confidence values 95, 45 and 65, respectively.
Thus, the likelihood of finding components A, C and E in the computing system are
95, 45 and 65 percent, respectively. The confidence value assigned to each link 612
indicates the likelihood the dependent component has a dependency on another
component. For example, as shown in FIG. 6, the link 612 linking components A and
E has a confidence value of 100 percent, which indicates that the likelihood of

component A depends on component E is 100 percent.

Further, the components 610 and links 612 can be color coded to enhance
understanding. The color given to each component 610 and link 612 is dependent on
the confidence value thereof. For example, as shown in FIG. 6, component B can be
presented in green color to indicate a high confidence value of 95, while component D
can be presented in red color to indicate a low confidence value of 30. Similarly, the
links 612 with high confidence values can be presented in green color, while the links

with low confidence values can be presented in red color.

‘If the user sets a minimum threshold to 50, by using the minimum threshold controller

606, then components 610 and links 612 with confidence values lower than the
minimum threshold are represented in red color indicating an un-acceptable
confidence level. The user can also set an acceptable threshold for all the components
610 and links 612 by using the acceptable controller 608. For example, as shown in
FIG. 6, the acceptable threshold is set to 85. Thus, components 610 and links 612
with confidence values equal to or greater than the acceptable threshold are
represented in green color indicating an acceptable confidence level. For components
610 and links 612 that have confidence values between the minimum threshold and
acceptable threshold, colors, other than red and green, can be used to represent the

components 610 and links 612 depending on the confidence values thereof.

Alternatively, each component 610 and link 612 may be assigned a confidence

difference value as shown in FIG. 7. The confidence difference value is the

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

23
difference value between the acceptable threshold and the confidence value. For

example, if the acceptable threshold is set at 85 and component A has a confidence
value of 90, then the confidence difference value for component A is +5. Similarly,
the confidence difference values for the remaining components 610 and links 612 can
be calculated and displayed as shown in FIG. 7. For example, in FIG. 6, the
confidence value of component C is 45. The corresponding confidence difference
value of component C is —40, which is the difference between the acceptable
threshold set by the user and the confidence value of component C as shown in FIG.
7.

The confidence difference value is a helpful indicator indicating to the user how far
off the level of confidence of the components 610 and links 612 are from the
acceptable level. Thus, the objective of the user is to manipulate the components 610
to arrive with components 610 and links 612 that have confidence difference values as

close to zero as possible, and, preferably, greater than zero.

The GUI 600 provides three interaction modes for users to interact with the
deployment plan in the visualizer window 602. These interaction modes include an
Automatic Mode, a Fine Tuning Mode and a Manual Mode. In each interaction
mode, the users are provided with editing tools for manipulating parameters

associating with each component 610.

The Automatic Mode is preferably configured as a default mode. In this mode, each
component 610 and link 612 in the deployment plan is displayed with a confidence
value thereof as shown in FIG. 6. Further, manipulating the components 610 and
links 612 are restricted. However, a user is permitted to adjust the thresholds 606 and
608.

In the Fine Tuning Mode, the user is given more access to fine tune critical
parameters associating with each component 610 and link 612 to arrive at a higher
level of confidence value. A single adjustment of a parameter of a selected

component 610 resulis in the System inspecting and recalculating the confidence

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

24
values of all components 610 and links 612 in the deployment plan. As such, this

mode is preferably used by experience users. To further facilitate the adjustments, the
confidence value of each component 610 and link 612 is displayed as confidence

difference value as shown in FIG. 7.

The Manual Mode is similar to the Fine Tuning Mode except that the System only
performs the inspection and recalculation of the confidence values upon the user
instructing the System to do so. The reason behind this is to overcome certain
functional impediments due to auto-adjustment of the confidence values upon every
adjustment to a parameter of a component 610. This mode of interaction is preferred
for situations where many manipulations are required and the user prefers to carry out
all the manipulations before instructing the System to re-inspect and recalculate the
confidence values of the modified deployment plan. A further advantage of this mode

over

The GUI 600 also provides a Learning Mode, which operates in conjunction with the
above three described interaction modes. The Learning Mode can be activated by
simply checking a learn mode box 605. Once activated, the Learning Mode captures
known heuristics. These ‘heuristics may include the type of component that works
well with another. For example, through the adjustments made to the components
610, the user may arrive at the knowledge that certain databases work very well with
certain application servers. Thus, this knowledge may be captured as a pattern that
can be used for future deployment plans. Alternatively, if it is established that a
database component does not work well with an application server as reflected by the
low confidence value, this knowledge may also be captured as anti-pattern. These
heuristics may be deposited in a knowledge management framework for future
reference. Based on these heuristics, for example, the probability of an application
server is present in a computing system can be deduced based on the knowledge that
an associated database component, as per the reference pattern, is present in the

computing system.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

25
The Automatic Mode, Fine Tuning Mode and Manual Mode can be selected by using

the interaction mode controller 604.

The System further comprises editing tools such as discovery tools, pattern tools and

learning tools.

Discovery Tools

Discovery tools are provided for manipulating components 610 and links 612
(dependency relationships) between the components 610 in a deployment plan to
provide confidence values for the components 610 and links 612 as close to 100 as
possible. Manipulating a component involves associating the component with a
corresponding component profile from a component profile library, adjusting
component dependencies, or modifying the confidence value of the component.
Examples of the discovery tools include tool for single component focus; tool for
single dependency focus; tool for single component-single dependency focus and tool
for single component-multiple dependency focus. Each of these tools can be

activated by clicking a button on a floating toolbar 610, as shown in FIG. 6.

- The single component focus tool allows a user to focus on one detected component at

a time. The user can manipulate the detected component by performing a text-based
association or by providing a ranking of possible component profiles based on the
confidence values. For example, as shown in FIG. 8, a list of possible component
profiles 802 is provided when the user presses the right mouse button while the mouse
cursor is over a component 610. The user can choose the most suitable component
profile for associating with a component 610. Once a choice is made, the System
automatically calculates new confidence values (if operating in the Fine Tuning
Mode) and displays the confidence difference values for all the components 610 and

links 612 in the deployment plan.

The user can also force change the confidence value of a component if the user is
certain that the detected component is the correct component. For example, if steps

402 and 404 described in the foregoing detect a component with a confidence value of

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

26
60, but the user is certain that correct component is detected, the user can force

change the confidence value to 100 to compensate for the inadequate discovery.

Further, in the cases where it is obvious to the user, a relationship between two

~ components 610 can be force changed by the user. This is achieved by having the

user clicking on one end of a link 612 connecting the two components 610 in the
visualizer window 602 and dragging selected end of the link 612 to another

component 610 to establish a new relationship thereto.

The single dependency focus tool allows a user to focus on one dependency at a time.
This tool is used for improving the dependency confidence level by changing the
components 902 and 904 as shown in FIG. 9. Since the user is only interested in the
relationship between components 902 and 904, the user is presented with component
lists 802 and 906 for components 902 and 904, respectively. Each component in the
lists 802 and 906 is provided with a confidence value. If the user selects Oracle 9i for
component 902, the System recalculates the confidence value for component 904. In
addition, the confidence value of each component in the list 906 is recalculated in

response to the selection of Oracle 9i. Similarly, if the user selects Apache HTTP for

- component 904, the System recalculates the confidence values for component 902 and

the components in the list 802. Based on the selected component, the dependency

confidence level is changed according.

The single component-single dependency focus tool allows a user to find the best
option available for a single dependency. For example, as shown in FIG. 10, if the
focus is on a component 1002, all parent components (1004, 1006 and 1008) that the
component 1002 depends on are provided in the visualizer window 602. Thus, all that
is required of the user is to select the dependency component that provides the highest
level of dependency confidence value. In the example, component 1004 provides the

highest level of dependency confidence value.

The single component-multiple dependency focus tool allows a user to manipulate a

detected single component 1102 having multiple dependency relationships (links

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

27
1110A-C) as shown in FIG. 11. For each dependency relationship, there is provided a

list of components with confidence values from which the user can choose to confirm
the dependency relationship with component 1102. For example, for dependency
relationship link 1110A, a component list 1104 containing four components with
different confidence values is provided. The selected component is underlined, or
alternatively, can be presented using a color, preferably, green. Components with
confidence values below the minimum threshold can be presented using a color,
preferably, red. Similarly, for dependency relationship links 1110B-C, component
lists 1106 and 1108 are provided.

Pattern Tools

Pattern tools are provided for users to create and define patterns. A pattern is created
when multiple components are grouped together. The grouping process involves
registering the components and the dependency relationships between the components
within the group. The created pattern may have dependency relationships with
external components that are not part of the created pattern. Further, links and
references to other patterns can also be specified as part of the created pattern. The
user may also be prompted to provide information relating to how, when and where

the created pattern is preferably usable.

A pattern is defined by using either a text-based approach or a graphic-based
approach. The graphic-based approach is illustrated in FIG. 12, where a boundary is
drawn around components identified for including into a pattern. A pattern floating
toolbar 1202 containing various tools is provided. One such tool is a selection pen
tool. Using the selection pen tool, the user can draw a boundary on the visualizer
window 602 for grouping components that constitutes a pattern. Examples of patterns
created using the selection pen tool are patterns 1204 and 1206, as shown in FIG. 12.
The patterns can be created at varying granularities based on the importance of the
patterns. For example, a pattern can be defined for a service such as an e-Store
service. The e-Store service provides details such as the components that should be
present and how these components should be configured together to satisfy the

business requirements. On the other hand, a pattern can be defined to specify how a

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

28
single component is to be deployed. For example, a pattern may suggests that a

component Oracle is to be deployed in such a way that the transaction server is found

in one computing system while a database is setup in another computing system.

Once a pattern is created, the pattern can be archived in a pattern library for future
references. The pattern can be used as template, which indicates a best practice or
bad practice. Bad practice template (or anti-pattern) should be avoided even though
the pattern solves a problem. This identification process can be performed either
manually or automatically. The user can manually tag a pattern as a good pattern or a
bad one based on the experience of the user. Alternatively, pattern-matching
techniques can be employed to match an identified pattern against a list of known

good or bad patterns to provide a score of how good or bad a pattern is.

Each pattern can also be assigned a unique signature. The unique signature is
generated by using a hashing scheme, which processes information contained in the
component profiles of the components in the pattern. Accordingly, once a component
in the pattern is changed or modified, the unique signature for the pattern also
changes. Thus, the unique signature can also be used as an index for searching

purposes. -

The System preferably provides a user interface 1300 for managing or documenting
patterns in the pattern library, as shown in FIG. 13. The user interface 1300
comprises a pattern location box 1302 for indicating the location of a pattern
repository, a patterns window 1304 for displaying the patterns in the specified pattern
repository and a pattern description window 1306, which provides brief information

on a selected pattern.

The user interface 1300 further comprises a More Info button 1308 for providing
extra information on a selected pattern, a Create button 1310, a Modify button 1312, a
Delete button 1314, a Compare button 1316 and a Discover button 1318, as shown in
FIG. 13.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

29
The buttons 1310, 1312, 1314 and 1316 allow a user to create, modify, delete and

compare patterns in the patterns window 1304, respectively. The Discover button
1318 allows the user to either start a fresh discovery process based on a selected
pattern or search for a selected pattern in a computing system. This discovery process

is also known as a pattern based discovery process.

The pattern based discovery process allows a user to search for matching patterns in
the Internet or exiracting patterns from an identified computing system. The pattern
extracting process involves analyzing the identified computing system for patterns
and comparing the patterns against patterns in a pattern library. If a match is found,
either partially or fully, the patterns extracted are displayed in the visualizer window
602, where components that constitute a matched pattern are preferably highlighted in
the same color. Further, the user is able to mark each pattern extracted as correct,

acceptable or anti-pattern, which is then archived for future use.

Each pattern can also be assigned a weight, similar to the weights assigned to the
properties in a component profile as described in the foregoing. The pattern weight is

a useful indicator when comparing an infrastructure against a partial pattern, which is

- a subset of ‘a complete pattern. For example, as shown in FIG. 12, a complete pattern

is displayed in the visualizer window 602. Within the complete pattern, two partial
patterns 1204 and 1206 are defined. Comparing an infrastructure against these partial
patterns 1204 and 1206 yields weights, which are converted into confidence values of
100 and 90, respectively, as shown in FIG. 12. Based on the confidence value, the
user manipulates the partial patterns 1204 and 1206 to provide as high a confidence
value as possible for the partial patterns 1204 and 1206.

Tools are also provided for comparing one pattern against another to derive a super-
pattern, which is typically a merger of two or more individual patterns together. For
example, if a user observes two patterns consistently deployed on the same computing
system, the user may combine the two patterns together to provide one super-pattern.
The pattern comparing process involves superimposing one pattern on another. Once

the overlaying association is established, the System compares the differences

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

30

between the overlaying patterns and provides an indicator, preferably similar to the
confidence value or confidence difference value, for indicating the level of matching
accuracy. The higher the level of matching is, the closer a pattern is to a known

pattern.

A strategy-to-pattern approach is another way for creating patterns. Strategies are
often associated with computing service deployment process. Thus, strategies
typically comprise specific deployable components as well as actual deployment
options such as configuration information and specific products to be used. Using a
strategy as a starting point, patterns can be created by modifying the specific
deployable components in the strategy to a generic component. For example, FIG. 14
shows a graphical representation of a strategy in the visualizer window 602. A
pattern 1402 can be defined by using the selection pen tool from the pattern floating
toolbar 1202 to draw a pattern boundary enclosing multiple components 610 as
shown. If the strategy is to use Oracle 8i database and if the user is certain that any
Oracle database works equally well, then the user may select Any Oracle DB as a new
(generic) component for the pattern. Once the components enclosed in the pattern
boundary are confirmed, the pattern 1402 is deemed created. The pattern 1402 can

then be archived for future references.

Learning Tools

The System also provides learning tools that are similar to macro recorders, which
record the user’s interaction in the visualizer window 602. The recorded interaction
may be supplemented with additional information manually provided by the user.
The recorded interaction is archived as an activity that can be invoked by the user to

repeat the activity, thus, enhancing the productivity of using the System.

In the foregoing manner, an apparatus for discovering and developing patterns of a
computing service and method therefor are described according to an embodiment of
the invention for addressing one or more of the foregoing disadvantages of

conventional methods and tools. It will be apparent to one skilled in the art in view of

PCT/SG03/00113

WO 03/098451 PCT/SG03/00113

31
5 this disclosure that numerous changes, modifications and combinations can be made

without departing from the scope and spirit of the invention.

WO 03/098451 PCT/SG03/00113
32
5 Claims:
1. An apparatus for discovering computing services architecture and developing

10

15

20

25

30

35

patterns of computing services, the apparatus comprising:

a component profile repository for containing component profiles of a
computing service, each component profile being associated with a corresponding
deployable component, at least one of the component profile being associated with a
corresponding deployed component of a computing service;

a computing service deployment plan, the computing service deployment plan
being constructed based on information contained in the component profiles of the
computing service; and

a discovering tool for manipulating the computing service deployment plan.

2. The apparatus as in claim 1, wherein each component profile comprises
multiple properties, each property being one of:

a description of the component;

a configuration specification;

at least one association requirement;

at least one association restriction; and

at least one contract specification, each contract specification specifying at

least one parameter required from another component for associating thereto.

3. The apparatus as in claim 1, wherein the computing service deployment plan
is represented by a plurality of nodes and links, each node is associated with a
deployed component and each link linking one node to another node for establishing a

dependency relationship thereto.

4. The apparatus as in claim 3, wherein each node and link is annotated with a
component confidence value and a dependency confidence value respectively, the
component confidence value being indicative of the likelihood a component
associated with the node being present in a computing system, the dependency
confidence value being indicative of the likelihood of a component has a dependency

relationship on another component, the component and dependency confidence values

WO 03/098451

10

15

20

25

30

35

33

being calculated based on the respective detection probability and dependency

probability of a component associated with the node.

5. The apparatus as in claim 3, wherein the discovering tool comprises means for
changing a dependency relationship of a first component on a second component to a
third component thereby establishing a new dependency relationship of the first

component on the third component in the computing service deployment plan.

6. The apparatus as in claim 4, wherein the discovering tool comprises a
minimum confidence value threshold controller for setting a minimum confidence
value threshold.

7. The apparatus as in claim 6, wherein the each node and link having the
respective component and dependency confidence values lower than the minimum

confidence value threshold are represented using a color.

8. The apparatus as in claim 4, wherein the discovering tool comprises an
acceptable confidence value threshold controller for setting an acceptable confidence

value threshold.

9. The apparatus as in claim 8, wherein each node and link having the respective
component and dependency confidence values equal to or higher than the acceptable

confidence value threshold are represented using a color.

10. The apparatus as in claim 4, wherein the discovering tool comprises means for

changing the component confidence value of a node.

11. The apparatus as in claim 4, wherein the discovering tool comprises means for
performing component and dependency confidence values recalculation upon
detecting a change in the information contained in a component profile of a

corresponding component in the computing service deployment plan.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

34
12. The apparatus as in claim 1, wherein the discovering tool comprises means for

replacing the component profile of one component in the computing service

deployment plan with a different component profile.

13. The apparatus as in claim 1, wherein the discovering tool being operable in
multiple interaction modes for providing different levels of capability for
manipulating and re-constructing the computing service deployment plan, each

interaction mode being one of automatic mode, fine tuning mode and manual mode.

14. The apparatus as in claim 1, further comprising a learning tool for capturing
and repeating a sequence of computing service deployment plan manipulating steps

using the discovering tool thereby enhancing productivity.

15. The apparatus as in claim 1, further comprising a pattern tool for creating and

managing a pattern, the pattern comprising at least one deployable component.

16. The apparatus as in claim 15, wherein the pattern tool comprises a selection
pen for identifying at least one computing service component for defining a pattern,

the selection pen being a virtue selection tool.

17. The apparatus as in claim 15, wherein the pattern tool comprises means for
acquiring information relating to how, when and where a pattern is usable upon

defining the pattern.

18. The apparatus as in claim 15, wherein the pattern tool comprises means for
tagging a pattern with a status upon defining the pattern, the status being one of a

good pattern and a bad or anti-pattern.

19. The apparatus as in claim 15, wherein the pattern tool comprises means for
assigning a pattern a unique signature, the unique signature being generated using a
hashing scheme which processes information contained in the at least one component

profile corresponding to the at least one deployable component in the pattern.

PCT/SG03/00113

WO 03/098451 PCT/SG03/00113
35
5
20. The apparatus as in claim 19, wherein the unique signature of the pattern is
used as an index for searching purposes.
21. The apparatus as in claim 15, wherein the pattern tool comprises means for

10

15

20

25

30

35

archiving a pattern upon defining the pattern and retrieving the pattern.

22. The apparatus as in claim 15, wherein the pattern tool comprises a user
interface for managing patterns in a pattern library, the user interface comprising:
means for locating the pattern library;
means for displaying patterns contained in the pattern library; and

means for displaying information relating to a selected pattern.

23. The apparatus as in claim 15, wherein the pattern tool comprises means for

deleting a selected pattern.

24. The apparatus as in claim 15, wherein the pattern tool comprises means for

comparing at least two selected patterns.

25. The apparatus as in claim 15, wherein the pattern tool comprises means for
discovering a pattern, the means for discovering the pattern being one of a tool for
starting a component discovery process based on a selected pattern and a tool for

searching for a selected pattern in a computing system.

26. The apparatus as in claim 15, further comprising a graphical user interface for
interfacing a user with the computing service deployment plan, the discovering tool

and the pattern tool.

27. A method of discovering computing services architecture and developing
patterns of computing services, the method comprising the steps of:
providing a component profile repository for containing component profiles of

a computing service, each component profile being associated with a corresponding

WO 03/098451

10

15

20

25

30

36
deployable component, at least one of the component profile being associated with a

corresponding deployed component of a computing service;

constructing a computing service deployment plan, the computing service
deployment plan being constructed based on information contained in the component
profiles of the computing service; and

providing a discovering tool for manipulating the computing service

deployment plan.

28. The method as in claim 27, wherein the step of constructing the computing
service deployment plan comprises the step of representing the computing service
deployment plan using a plurality of nodes and links, each node is associated with a
deployed component and each link linking one node to another node for establishing a

dependency relationship thereto.

29. The method as in claim 28, wherein the step of constructing the computing
services deployment plan further comprising the step of annotating each node and link
with a component confidence value and a dependency confidence value respectively,
the component confidence value being indicative of the likelihood a component
associated -with the node-being present in a computing system, the dependency
confidence value being indicative of the likelihood of a component has a dependency
relationship on another component, the component and dependency confidence values
being calculated based on the respective detection probability and dependency

probability of a component associated with the node.

30. The method as in claim 28, wherein the step of providing the discovering tool
comprises the step of providing a tool for changing a dependency relationship of a
first component on a second component to a third component thereby establishing a
new dependency relationship of the first component on the third component in the

computing service deployment plan.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

37

31. The method as in claim 29, wherein the step of providing the discovering tool
comprises the step of providing a minimum confidence value threshold controller for

setting a minimum confidence value threshold.

32. The method as in claim 31, wherein the step of constructing the computing
services deployment plan further comprising the step of representing each node and
link having the respective component and dependency confidence values lower than

the minimum confidence value threshold in a color.

33. The method as in claim 29, wherein the step of providing the discovering tool
comprises the step of providing an acceptable confidence value threshold controller

for setting an acceptable confidence value threshold.

34. The method as in claim 33, wherein the step of constructing the computing
services deployment plan further comprising the step of representing each node and
link having the respective component and dependency confidence values equal to or

higher than the acceptable confidence value threshold in a color.

35. The method as in claim 29, wherein-the step of providing the discovering tool
comprises the step of providing a tool for changing the component confidence value

of a node.

36. The method as in claim 29, wherein the step of providing the discovering tool
comprises the step of providing a tool for performing component and dependency
confidence values recalculation upon detecting a change in the information contained
in a component profile of a corresponding component in the computing service

deployment plan.

37. The method as in claim 27, wherein the step of providing the discovering tool
comprises the step of providing a tool for replacing the component profile of one
component in the computing service deployment plan with a different component

profile.

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

38

38. The method as in claim 27, wherein the step of providing the discovering tool
comprises the step of providing multiple interaction modes for providing different
levels of capability for manipulating and re-constructing the computing service
deployment plan, each interaction mode being one of automatic mode, fine tuning

mode and manual mode.

39. The method as in claim 27, further comprising the step of providing a learning
tool for capturing and repeating a sequence of computing service deployment plan

manipulating steps using the discovering tool thereby enhancing productivity.

40. The method as in claim 27, further comprising a step of providing a pattern
tool for creating and managing a pattern, the pattern comprising at least one
deployable component.

41. The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing a selection pen for identifying at least one computing
service component for defining a pattern, the selection pen being a virtue selection

tool.

42. The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing a tool for acquiring information relating to how, when

and where a pattern is usable upon defining the pattern.

43, The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing a tool for tagging a pattern with a status upon defining

the pattern, the status being one of a good pattern and a bad or anti-pattern.

44. The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing a hashing scheme for generating a unique signature

for assigning to a pattern, the hashing scheme generates the unique signature by

PCT/SG03/00113

WO 03/098451

10

15

20

25

30

35

39

processing information contained in the component profile corresponding to the at

least one deployable component in the pattern.

45. The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing tools for archiving a pattern upon defining the pattern

and retrieving the pattern.

46. The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing a user interface for managing patterns in a pattern
library, the user interface comprising:

means for locating the pattern library;

means for displaying patterns contained in the pattern library; and

means for displaying information relating to a selected pattern.

47. The method as in claim 40, wherein the step of providing the pattern tool

comprises the step of providing a tool for deleting a selected pattern.

48. The method as in claim 40, wherein the step of providing the pattern tool

comprises the step of providing a tool for comparing at least two selected patterns.

49. The method as in claim 40, wherein the step of providing the pattern tool
comprises the step of providing a tool for discovering a pattern, the tool for
discovering the pattern being one of a tool for starting a component discovery process
based on a selected pattern and a tool for searching for a selected pattern in a

computing system.

50. The method as in claim 40, further comprising a step of providing a graphical
user interface for interfacing a user with the computing service deployment plan, the

discovering tool and the pattern tool.

PCT/SG03/00113

WO 03/098451 PCT/SG03/00113

1/8

HOST SYSTEM 102

Layer 104

Layer Map 106

Layer 104

Layer Map 106

Layer 104

Layer Map 106

FIG. 1

LAYER

Component

Component
202

202

Component
202

Component
202

Component
202

FIG. 2

WO 03/098451 PCT/SG03/00113

2/8
300
Description Access Control
302 310
Asso.c iation Ownership Indicator
Requirement 312
304 —
Association Component History
Restriction 314
306
Cost Specification
Contract 316
Specification
308
Configuration
Specification
318

__/

Specification of Discovery Pool
402

A\ 4

Detection and Extraction
404

A\ 4

Ambiguity & Incomplete Discovery Resolution
406

Deployment Plan Construction & Validation
408

FIG. 4

WO 03/098451

3/8

Component
Profile
301

.
\

A

~o

510 /r_

Validate
&
Re-deploy

| S
e ®
[’\

PCT/SG03/00113

514

506

Detect
&
Discover

502 j_

Re-constructed
Component Profile

305

504

Extract
& Re-construct

FIG. 5

WO 03/098451) PCT/SG03/00113

4/8

Discovery Visunalizer

Discovery Tools 90
EEEN 612
5 1P a 602
614
/\/ 606
608
Automatic Mode ¥| Minimum Threshold M L~
Learn Mode (Acceptable Threshold ™ i ,! {85

S

605 604

FIG. 6

: 600
Discovery Visualizer

Discovery Tools +5
HENEN /x/m
614
: . - Y
Fine Tuning Mode V| Minimum Threshold e——— 5
A 4
Learn Mode Acceptable Threshold Mo 85 FI1G. 7

WO 03/098451

LK YR VLAV

5/8

Discovery Visualizer

PCT/SG03/00113
v v Vv g

Discovery Tools 90
HEEEN o2
5 V7 /\/
614
mn B
Oracle 9i (88%)
SQL Server (78%)
Oracle 8.1.7 (55%) pD
j IBMDB2 (55%) [yl
802 TUNIPT
Manual Mode ¥| Minimum Threshold 5
h 4
Learn Mode Acceptable Threshold === 85
FIG. 8

Discovery Visualizer

Discovery Tools
EEEN
614 65 L~
Comp Comp
902 904
Oracle 9i (88%) A Microsoft 1IS (80%) i
/ SQL Server (78%) Apache HTTP (75%)] |~_L-
802 | Oracle 8.1.7 (55%) |
IBM DB2 (55%) Vi A4
Manual Mode V| Minimum Threshold e ———5(
A4
Learn Mode Acceptable Threshold M= 85

Single Dependency Focus Active

906

FIG. 9

i

vJ

WO 03/098451 PCT/SG03/00113

6/8

Discovery Visualizer

Discovery Tools

EEEE

614 L~ 602

1004 1006 1008
Manual Mode V| Minimum Threshold e —5(
A4

Learn Mode Acceptable Threshold = g5

Single Component - Single Dependency Focus Active FIG. 10

Discovery Visualizer

1104
Oracle 9i (88%) _A_
SQL Server (78%)
Oracle 8.1.7 (55%)
IBM DB2 (55%)
IBM Websphere (90% A Microsoft IIS (80%) A A\~ 1108
Sun iPlanet (60%) \L Apache HTTP (75%)| []
BEA Weblogic (40%) | -
eblogic (40%) v 1106 =
Manual Mode V| Minimum Threshold et 5()
A4
Learn Mode Acceptable Threshold == 85
Single Component - Multiple Dependency Focus Active FIG. 11

WO 03/098451

7/8

PCT/SG03/00113

Discovery Visualizer

Pattern Tools

........
R R B

s - e S - -

- T\ 1206

)

Automatic Mode

V| Minimum Threshold

Learn Mode

Acceptable Threshold y

50

85

FIG. 12

1300

Location v GO Search

1302 1304 1304

E-Commerce A| | Published by XXX A

Generic RDBMS | | 2003 April |

Oracle 8.7.1

BEA Weblogic Solves the problem for a medium

Ticket Booking sized enterprise that deals ...
v v

More Info Create Modify Del Compare Discover

1308 1310 1312 1314 1316 1318 FIG. 13

PCT/SG03/00113

wo 03/0984s51
8/8
Discovery Visualizer
i —9-(.) IR Pattern Tools
,' ------ ?
—— . mmmm
e — I
AT -,) A
050 2100~ Oracle 8i el 1202
LT N | Oracle 9i)
Iy \-.---7*] Any Oracle DB
N “.----7] Any RDBMS

Automatic Mode \ 4 Minimum Threshold e ———5()
Learn Mode Acceptable Threshold ”I“—-“I—Iv.; 85

FIG. 14

INTERNATIONAL SEARCH REPORT International application No.
PCT/SG03/00113

A, CLASSIFICATION OF SUBJECT MATTER

Int. CL ™ GO6F 13/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPAT: IPC Mark, Keywords- deploy+, discover+, profile?, component?, device?, layout?, configur+

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
US 5°821 937 A (TONELLI et al.) 13 October 1998
X Entire document 1-50
WO 01/20426 A (SONY ELECTRONICS INC.) 22 March 2001
X Entire document 1-50
EP 0772318 A (HEWLETT-PACKARD COMPANY) 7 Mazy 1997
A Entire document 1-50
Further documents are listed in the continuation of Box C See patent family annex
* Special categories of cited documents:

"A" document defining the general state of the art "T" later document published after the international filing date or priority date
which is not considered to be of particular and not in conflict with the application but cited to understand the principle
relevance or theory underlying the invention

"E" earlier application or patent but published on or "X" document of particular relevance; the claimed invention cannot be
after the international filing date considered novel or cannot be considered to involve an inventive step

when the dociiment is taken alone N

"L" document which may throw doubts on priority "y document of particular relevance; the claimed invention cannot be
claim(s) or which is cited to establish the considered to involve an inventive step when the document is combined
publication date of another citation or other special with one or more other such documents, such combination being obvious to
reason (as specified) : a person skilled in the art

"O" document referring to an oral disclosure, use, "&" document member of the same patent family
exhibition or other means

"P" document published prior to the international filing
date but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

27 June 2003 : 03 JuL 2003
Name and mailing address of the ISA/AU i Authorized officer

AUSTRALIAN PATENT OFFICE

PO BOX 200, WODEN ACT 2606, AUSTRALIA . CHARLES BERKO

E-mail address: pct@ipaustralia.gov.au Telephone No : (02) 6283 2169

Facsimile No, (02) 6285 3929

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SG03/00113
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
EP 1211 843 A (HEWLETT-PACKARD COMPANY) 5 June 2002
Entire document 1-50

P.X

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/SG03/00113

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars

which are merely given for the purpose of information.

Patent Document Cited in Patent Family Member
Search Report B
US 5821937 US 5831610 US 6229540 US 6330005
WO 200120426 AU 200074846
EP 772318 JP 9204384 US 5787252

EP 1211843 US 2002161879

END OF ANNEX

	Apparatus for discovering computing services architecture and developing patterns of computing services and method therefor [SG 107499]
	Citation

	Biblio page:1
	Description page:3
	Claims page:34
	Drawings page:42
	ISR page:50

