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On efficiently finding reverse k-nearest neighbors over uncertain

graphs

Yunjun Gao'?3 . Xiaoye Miao! - Gang Chen!? .
Baihua Zheng* - Deng Cai'® . Huiyong Cui!

Abstract Reverse k-nearest neighbor (RkKNN) query on
graphs returns the data objects that take a specified query
object g as one of their k-nearest neighbors. It has significant
influence in many real-life applications including resource
allocation and profile-based marketing. However, to the best
of our knowledge, there is little previous work on RANN
search over uncertain graph data, even though many com-
plex networks such as traffic networks and protein—protein
interaction networks are often modeled as uncertain graphs.
In this paper, we systematically study the problem of reverse
k-nearest neighbor search on uncertain graphs (UG-RkNN
search for short), where graph edges contain uncertainty.
First, to address UG-RkNN search, we propose three effec-
tive heuristics, i.e., GSP, EGR, and PBP, which minimize the
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original large uncertain graph as a much smaller essential
uncertain graph, cut down the number of possible graphs via
the newly introduced graph conditional dominance relation-
ship, and reduce the validation cost of data nodes in order
to improve query efficiency. Then, we present an efficient
algorithm, termed as SDP, to support UG-RkNN retrieval by
seamlessly integrating the three heuristics together. In view of
the high complexity of UG-RANN search, we further present
a novel algorithm called TripS, with the help of an adaptive
stratified sampling technique. Extensive experiments using
both real and synthetic graphs demonstrate the performance
of our proposed algorithms.

Keywords Uncertain graph - RkKNN search -
Stratified sampling - Query processing - Algorithm

1 Introduction

Management of uncertain graphs (or networks) has become
an extremely important topic recently [8,15,16,23,29,32,35,
36,53,58], because graph structured data that are uncertain
or noisy by nature appear in diverse applications such as
traffic networks and protein—protein interaction (PPI) net-
works. Uncertainty exists commonly due to various reasons
such as anonymous communication data and data collected
through automated sensors [3], and such uncertainty is usu-
ally encoded in the graph edges. Hence, a general uncertain
graph model is utilized in this paper, where the graph edges
are represented as several possible values with probabilities.
This graph model considers not only the existence uncer-
tainty (where an edge will virtually disappear if the edge
weight is relatively large) but also the weight uncertainty
(that allows each edge to have different weights).
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Fig. 1 TIllustration of an uncertain graph. a Graph structure. b Possible
weights

Given a query node g and a data node set S, a reverse
k-nearest neighbor (RkNN) query finds a set of data nodes
s € § such that g is one of s’s kNN objects. RkNN search
has large application base including location-based services,
decision support, profile-based marketing, cluster and outlier
detection, traffic networks, adventure games, and molecular
biology [6,10,18,52]. In particular, there are two popular
versions of REKNN search, i.e., the monochromatic one and
the bichromatic one. The monochromatic RKNN query is
alike the definition above, and all objects are of the same type.
In contrast, there are two distinct object types S; and $7 in
the bichromatic RkNN query [7,22,52]. Specifically, given
two data node sets S (e.g., the customer set) and 7 (e.g., the
restaurant competitors) and a query object g, a bichromatic
RANN query retrieves the objects s € S; such that g is one
of their k-nearest neighbors from S;.

Example 1 RkNN search on uncertain traffic networks In
traffic networks, the weight of a road segment indicates the
travel time (e.g., the driving time) of this road segment. The
exact road weight is very hard to obtain, as a result of the
decreasing frequency of data collection to save resources,
data device limitations, and wireless network traffic. In other
words, because of the difficulty of measuring the exact traf-
fic time of every road segment and the large scale of a traffic
network, the road weight is usually uncertain [29]. Take the
network shown in Fig. 1 as an example; assume that the nodes
denote the interesting landmarks on the road network, and the
weights of each edge given in Fig. 1b represent the possible
travel time values with the probabilities. For instance, the
weight of edge e » between nodes n and ny is 2 with prob-
ability 0.3 and 3 with probability 0.7. It indicates that passing
the road ny, ny takes two time units with probability 30%,
and 3 time units with probability 70%.

Consider the scenario of evaluating the impact of open-
ing a pizza restaurant at a selected location; the manager
wants to examine how many residential areas would find the
new pizza restaurant as their k-nearest choices [2,14,44],
where the traveling time between a residential area and the
pizza restaurant is a critical factor, and should be taken into
account [30]. In addition, to cut down costs when carrying out
an advertising campaign, it would be profitable for a restau-

rant owner to send menu cards only to those customers who
have his/her restaurant as one of the k-closest pizza restau-
rants. For instance, for a candidate pizza restaurant location
in node n3 of Fig. 1, RkKNN search can find all the residen-
tial buildings such that n3 as one of their k-nearest pizza
restaurants from the uncertain traffic network. Note that the
network also contains some irrelevant nodes, such as node
np (e.g., shopping malls) in Fig. la. It is worth mentioning
that the uncertain graph structure in Fig. 1 serves as a running
example throughout the paper.

Example 2 RkNN search on uncertain PPI networks In
protein—protein interaction (PPI) networks, nodes denote
proteins, and edges represent interactions among them. The
edge of a protein pair indicates the reliability of the interac-
tion between the two proteins [28]. Since the interactions are
derived through noisy and error-prone lab experiments, each
edge is associated with an uncertainty value [4,19,36]. RKNN
search can help to provide the best correlation of protein
essentiality and placement of proteins in PPI networks [33].
In particular, RKNN topology, consisting of all proteins and
the edges to every protein from their RkNN's (generated from
the PPI network), is used to examine the connection of essen-
tial proteins and their placement. The related results show that
essential proteins are more likely to be proteins with many
RANNSs. Furthermore, RkNN search plays an important role
in many gene ontology processes [33]. Besides, RkNN search
is employed to identify novel inflammatory bowel disease
(IBD)-related proteins via PPI networks in recent work [42].
An observed protein whose influenced proteins (i.e., RkNNs)
are mostly known IBD-related proteins is statistically iden-
tified as a novel IBD-related protein. Therefore, the RKNN
query with the statistical enrichment test is a great tool to
identify IBD-related proteins in order to better understand
the complex disease mechanism.

RANN retrieval on deterministic graphs has been well
studied, including both the monochromatic version and
the bichromatic version [52]. Nonetheless, uncertain graph
processing brings new challenges, because of the §P-hard
complexity. Thus, applying directly existing RKNN query
algorithms on deterministic graphs to answer UG-RANN
queries cannot achieve good performance. Consequently,
motivated by these, in this paper, we focus on the prob-
lem of RkNN search on uncertain graphs (UG-RkNN search
for short), where the uncertain graph is modeled as a set of
deterministic possible graphs under possible world seman-
tic [16,24,29,36,54]. Based on the uncertain graph model,
given a query node ¢ and a data node set S on an uncertain
graph, a (monochromatic) UG-RkNN query finds a set of
data nodes s € S such that g is one of s’s kNN objects with
probability not smaller than a specified probability thresh-
old 6.



This paper is dedicated to the development of algorithms
that can support UG-RANN queries efficiently. Intuitively,
in order to obtain UG-RANN query result, we can convert
an UG-RKNN query to multiple RENN queries on all the
possible graphs, which can be supported by existing RkKNN
search algorithms. Let E, V, and §2(e) be the sets of edges,
nodes, and possible weights associated with an edge e on
an uncertain graph, respectively. It is not hard to find that
there are in total I1,cg |52 (e)| possible graphs w.r.t. a speci-
fied uncertain graph. If all the edges share the same number
of weights w (i.e., Ve € E,|2(e)|] = w), the total num-
ber of RkKNN queries we have to process for answering
an UG-RANN query is w!F!, with the time complexity of
ow!'El. (|V|2 -1g|V |+ |V]-|E])) that is extremely expen-
sive.

In order to make sure UG-RAKNN query processing is prac-
tical, we have to minimize the number of possible graphs (i.e.,
w!E1) as many as possible. To this end, we propose three novel
heuristics to significantly improve search performance. First,
we present graph structure pruning (GSP) heuristic to reduce
the value of |V| (and hence |E|) significantly by replacing
an original graph with a much smaller essential uncertain
graph and therefore cut down the number of possible graphs
we have to evaluate. The effectiveness of GSP is proved by
analysis as the number of nodes in the essential graph is
theoretically bounded, and is demonstrated via experimen-
tal studies. Second, we present equivalent graph removing
(EGR) heuristic to further reduce the number of possible
graphs we have to evaluate during UG-RkNN search, by
removing equivalent possible graphs that share the same
result sets with the evaluated possible graphs. Neverthe-
less, simply identifying those equivalent possible graphs is
as costly as finding RKNN query result on those possible
graphs, as explained in Sect. 4. As a solution, we formulate
graph conditional dominance relationship to locate certain
equivalent possible graphs with low cost. Third, we develop
probability bound pruning (PBP) heuristic to identify the
objects that are qualified or unqualified UG-RANN query
results as early as possible during the search, which helps to
minimize the validation cost of data nodes. Based on GSP,
EGR, and PBP heuristics, we propose an exact algorithm
called SDP to tackle UG-RkNN search.

Due to the gP-hard complexity of UG-RkNN search, there
is no exact algorithm which can handle UG-RkNN search in
polynomial time. In view of this, we present a novel sampling
algorithm, termed as TripS, to support UG-RkNN retrieval
efficiently. Specifically, on the top of essential uncertain
graph derived by GSP, TripS evaluates a group of sampled
possible graphs by using an adaptive stratified sampling tech-
nique (denoted as ASSP) to get the query result, instead of
the exhaustive evaluation over every possible graph. As the-
oretically guaranteed, ASSP, the adaptive stratified sampling
technique utilized in TripS algorithm, is unbiased, and its vari-

ance is at least as good as that of Monte Carlo sampling. TripS
takes O(N - (|E|+|V|*>-1g|V|)) time with N being the total
number of samples. In brief, our key contributions in this
paper are summarized as follows.

— We identify and formalize the problem of UG-RANN
query processing under a general graph model with
uncertain edge weights.

— We present three effective heuristics GSP, EGR, and PBP,
to effectively shrink the scale of uncertain graph and to
reduce the number of possible graphs we have to evaluate
during search. Based on these heuristics, we develop an
exact algorithm, i.e., SDP, for UG-RANN retrieval.

— We propose a novel algorithm, namely TripS, that inte-
grates GSP with an adaptive stratified sampling algo-
rithm, to perform UG-RANN queries in high efficiency
with theoretical guarantee. We also analyze the com-
plexities of our presented algorithms, and extend our
techniques to support bichromatic UG-RkNN search.

— We conduct extensive experiments with both real and
synthetic graphs to demonstrate the effectiveness and effi-
ciency of our proposed heuristics and algorithms.

The rest of the paper is organized as follows. First, we
present preliminaries of our work in Sect. 2. Then, we
describe GSP and EGR heuristics for UG-RkNN search in
Sects. 3 and 4, respectively. Our SDP and TripS algorithms
are proposed in Sects. 5 and 6, respectively. We report experi-
mental results and our findings in Sect. 7. Finally, we review
related work in Sect. 8 and conclude our work with some
directions for future work in Sect. 9.

2 Preliminaries

In this section, we first formalize the uncertain graph model
and our UG-RkNN problem, and then, we present a baseline
algorithm, denoted as Baseline, for UG-RkNN search. Table 1
lists the symbols used frequently throughout this paper.

2.1 Problem formulation

Definition 1 (Uncertain graph) An uncertain weighted
graph G = (V, E, £2, P), in which V denotes a set of nodes
and E represents a set of edges. Each edge e is a random
variable, £2(e) is the sample space of e, and P(x € £2(e))
is the probability mass function of e. In other words, £2:
E — P(R), i.e., 2 maps each edge to a set of real values;
and P: E — (R — [0, 1]) is a function, which maps each
edge to its probability mass function.

In fact, £2(e) is a set of positive random events, i.e.,
2(e)(C 2) = {wi(e), wa(e), ..., ws(e)}, in which w;(e)s



Table 1 Symbols and description

Notation Description

G(V,E,$2,P) An uncertain graph

D(G) A set of all possible graphs for G

G(V,E, W) A possible graph in @ (G)

2(e) The set of all weights for edge e € E

w(e) A weight of edge e with w(e) € £2(e)

w The cardinality of §2(e) for Ve € E

Pr(G) The existence probability of a possible graph G

Gmin The possible graph with the minimum weight in every edge of G

Gmax The possible graph with the maximum weight in every edge of G

S A relevant data node set (included in a node set V') for a query node in G

wd Data density, i.e., the ratio of the number of nodes containing data objects to the total number of nodes, i.e., d = %
SPg(ny,ny) The shortest path between nodes ny,n2 € V on G

dg(ny, ny) The shortest path distance between nodes n1, ny € V on G, i.e., the sum of all the edge weights on SPg(ny, n2)
dé‘; (n, S) The shortest path distance from a node n € V to its kth nearest neighbor (only for a data object set S) on G

Ge The essential uncertain graph of G

Dg, The set of equivalent possible graphs for G;

kNN(G, n, S) The k-nearest data nodes in S to a node n on G

RANN(G, q) The RkNN result set of a query node ¢ on G

Traverse(n, d, G)

A function returns all the nodes located at most d far from a node n on G

@ = 1,2,...,s) are the positive weights of an edge e.
Function P assigns each weight w;(e) € £2(e)(C £2) of
the edge e a probability p(e, w;(e)) which indicates the
likelihood of w(e) with }_, \co) Ple, wi(e)) = 1. As
formally defined in Definition 1, an uncertain graph actu-
ally refers to a graph whose edges have one or multiple
weights with respective probabilities. Note that our uncer-
tain graph model is similar as the one proposed in [29], and
we focus on the discrete random variable case for every edge
weight because of the following reasons: (i) the real-world
uncertain data does not always follow any common prob-
ability distribution, e.g., Gaussian distribution; (ii) it is not
always possible to capture accurately the probability den-
sity function (pdf) of real-world data; and (iii) sampling is
often employed to obtain the distribution of random data in
reality, which discretizes continuous random variables. In
addition, our uncertain graph model is more general than
the common model used in [16,24,36,54]. Specifically, our
model considers not only the existence probabilities of edges
(i.e., existence uncertainty) but also allows each edge to have
different weights with different probabilities (i.e., weight
uncertainty).

An uncertain graph G can generate a set of possible
graphs (denoted as set @ (G)), as formalized in Definition 2.
Different from the uncertain graph, a possible graph is a
deterministic graph with each edge e having exactly one con-
stant weight w (e). It refers to a single instance of an uncertain
graph G, with every edge assigned one and only one weight.

Since the likelihood of a given weight w; (e) could be very dif-
ferent from that of another weight w; (e), the chance that one
possible graph G; presents could be very different from the
presence probability of another possible graph G ;. In order to
capture how likely a specified possible graph may appear, we
introduce the existence probability, as defined in Eq. 1. As a
summary, an uncertain graph G is actually the union of all the
possible graphs derived based on G with corresponding exis-
tence probabilities, i.e., G = {(G;, Pr(G;)) | G; € ®(G)}.

Definition 2 (Possible graph) Given an uncertain graph G, a
possible world of uncertain graph (so-called possible graph),
denoted as G = (V, E, W), is an instance of G, where W :
E — R is the weight function that assigns each edge e € E
a positive weight wg (e) with wg(e) € §2(e). The existence
probability of a possible graph G [16,24], denoted as Pr(G),
is derived below.

Pr(G) = [ ple, wg(e)) (1)

ecE

Given a set of possible graphs w.r.t. an uncertain graph G,
we would like to point out that two graphs, denoted as G™"
and G™ are special. G™™ (G™) refers to the possible
graph in which every edge is assigned to its minimum (max-
imum) possible weight, i.e., Ve € E, Yw;(e) € $2(e), and
VG € @(G), wgmin(e) < wg(e) < wgmax (). We plot G™n
and G™®* of our sample uncertain graph in Fig. 2 for ease of
understanding.
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Fig. 2 TIllustration of possible graphs for the uncertain graph in Fig. 1.

=0.0127008. d G™**: Pr(G™*) = 0.0001512

The reason we emphasize on possible graphs G™" and
G™™* is the following observation. Given a pair of nodes n;
and n, its shortest path distance derived from Gmin ((Gmax)
provides a lower bound (an upper bound) for the shortest
path distance derived from any possible graph, as stated in
Lemma 1 where function dg (n;, n ;) returns the shortest path
distance between n; and n; in a graph G.

Lemma 1 Given an uncertain graph G(V, E, §2, P), let G,
be a possible graph in @ (G). For any pair of connected nodes
ni,nj € V,itis guaranteed that dgmin (n;, nj) < dg,(n;, n;)
<dgmx(n;,n;).

Proof Letd(SP¢(n;, nj)) denote the corresponding distance
of the shortest network path between n; and n (i.e., SPg (n;,
n;)) on a graph G. Based on the property that Ve € E and
Yw;(e) € 2(e), wgmin(€) < wg,(e) < wgmax(e), we have

dGmin (l’li, i’l]) = dGmin (SPGmin (n,-, l’lj))
< dgmin(SPg, (n;, nj))
<dg,(SPg,(ni, nj)) = dg,(ni, nj).

Thus, dgmin (n;,n;) < dg,(n;,n;) holds. Similarly, we
can derive thatdg, (n;, n;) < dgmax(n;, n ;) holds. Therefore,
the proof completes. O

Based on the uncertain graph model, we formalize RKNN
search and UG-RkANN query below. Note that function d, é (s,
S) returns the shortest path distance from s to its kth nearest
node in set S on a deterministic graph G.

Definition 3 (RkKNN search [52]) Given a deterministic
graph G = (V, E, W), a relevant data set S € V, and a
query node ¢ € V, a RkNN query returns all the objects
s € S that have g as one of their k-nearest neighbors, i.e.,
RINN(G, q) = (s € S | dg(q.s) < di(s. 9)). 2)
Definition 4 (UG-RkNN search) Given an uncertain graph
G =(V, E, 2, P), arelevant data set S C V, a user-specified
parameter 6 (0 < 6 < 1), and a query node ¢ € V, an
UG-RANN gquery retrieves all the objects s € S that take ¢
as one of their k-nearest neighbors with probability being at
least 6. Formally,

Ny, Sp
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ﬂ3 Ny, S 3 \O\
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Back to our sample graph illustrated in Fig. 1. Suppose
S = {ny, nq, ne, n7}, for the query node g (i.e., n3), node ns
is a R2NN object of ¢ on the possible graph G depicted in
Fig.2,as dg,(q, n2) = dél (n2, S) (=3), referring to Defini-
tion 3. Similarly, nodes n4 and n7 are also the R2NN objects
of ¢ on G1. In addition, given an uncertain graph, the prob-
ability of node s € S being an UG-R2NN object of ¢ is the
accumulative existence probability of all the possible graphs
on which s is one of ¢’s RkNN objects. Therefore, for the
sample uncertain graph shown in Fig. 1, the probability of
nodes ny, n4, and ny being UG-R2NN objects is 0.0036288
on Gj.

The formalization of UG-RANN search in Definition 4
follows the previous work on RkNN queries for uncertain
data [5,6,26]. Compared with the one based on expected dis-
tances or expected ranks [36], it has two main advantages:
(1) it calculates accurately the probability being an answer
object for each object, which improves search accuracy and
(i) UG-RANN search under this definition is adaptive and
flexible, since the user-specified probability threshold 6 is
tunable. It is worthwhile to mention that our UG-RkNN
definition does follow some important previous efforts on
querying uncertain graphs [16,24,25,29].

In addition, it is easy to find that the UG-RANN problem is
in gP-hard class. First, kNN search on uncertain graphs (UG-
kNN) is a fP-complete problem, as proved in [24]. Second,
through computing the kNN objects for every data node in S
on an uncertain graph using UG-kNN algorithm and return-
ing the data nodes o € § such that a query node g belongs
to 0o’s kNN objects, the UG-RAKNN query can be handled.
Hence, UG-kNN problem could be reduced to UG-RANN
search in polynomial time, and UG-RkNN search is a gP-
hard problem.

We would like to mention that due to space limitation,
we present UG-RAKNN search by mainly considering one
input dataset S (i.e., monochromatic version), but the tech-
niques proposed in this paper can be easily adjusted to support
bichromatic version, which is discussed at the end of Sect. 6
and experimentally confirmed in experimental evaluation of
Sect. 7. For the same reason, we assume that (i) the data



nodes in S and query node g are located on nodes (i.e.,
S € V and g € V), while our techniques could directly
support the case where they are located on edges, and (ii) the
graph edges have independent probability mass functions,
while our techniques can also be generalized to support the
UG-RANN query when the weights of a set of edges are
correlated [13,40], where the existence probability of any
possible world (i.e., the joint probability mass function) can
be derived by inference techniques of probabilistic graph
models (PGMs) such as junction tree and belief propaga-
tion. In particular, the pruning rule of GSP (to be presented
in Sect. 3) is always available no matter edge weights are
independent or not.

Furthermore, our proposed techniques in this paper can be
generalized to tackle the UG-RkNN query under the graph
model with uncertain nodes (e.g., considering the presence
or non-presence of nodes and their adjacent edge with a
given probability), which has a large application base in
unreliable P2P networks and uncertain RDF graphs [27].
However, we would like to leave it to explore UG-RANN
search under such graph model (with uncertain nodes) in our
future work.

2.2 Baseline algorithm

As mentioned in Sect. 1, the UG-RkNN query can be
answered by performing RkKNN search on every possible
graph. Next, we present this brute-force solution, denoted
as Baseline, with its pseudo-code depicted in Algorithm 1.
Baseline takes as inputs an uncertain graph G, a node set S, a
query node ¢, and parameters k and 6, and outputs the result
set Sg. It maintains the probability Pr(s) for eachnode s € S
to record the accumulative probability of g being one of s’s
kNN objects, which is initialized to O (line 1). Thereafter,
for every possible graph G from @ (G), Baseline retrieves its
RANN objects using lazy-EP algorithm proposed in [52], and
updates Pr(s) of answer objects s accordingly (lines 2-5).
Finally, the algorithm returns all the nodes s with Pr(s) > 6,
and terminates.

Algorithm 1 Baseline Algorithm (Baseline)

Input: an uncertain graph G = (V, E, §2, P), adatanode set S C V,
a query node ¢, and parameters &, 6

Output: the result set Sg of an UG-RAKNN query

/* lazy-EP(G, S, q, k): the algorithm proposed in [52] is to return the
result set of a RKNN query on a deterministic graph G.*/

1: initialize Pr(s € S§) < 0

2: for each possible graph G € @(G) do

Pr(G) < [1,eg Pe, wg(e)) //byEq. 1

4 for each data object s € lazy-EP(G, S, q, k) do

5: Pr(s) < Pr(s) + Pr(G)

6: return Sg containing all the nodes s € S with Pr(s) > 0

(98]

RENN search on a deterministic graph takes O(|V|? -
Ig|V| + |V]| - |E|) time, if it is assumed that a Dijkstra-
alike algorithm is adopted [16,29]. Consequently, Baseline
needs O (IToep|2(e)| - (V> - 1g|V| + |V] - |E])) time to
perform UG-RANN search. If we assume that all the edges
share the same number of distinct weights, denoted as w,
Baseline takes O (w!E!. (|V|?-1g|V|+|V|-|E])) time. Thus,
Baseline is very inefficient, and we have to improve the effi-
ciency of UG-RkANN retrieval for its practicability in real-life
applications.

3 Graph structure pruning

Based on the above discussion, we understand that there are
intotal I1,c|$2 (e)| possible graphs corresponding to a given
uncertain graph G. Given the fact that £2 (e) is determined by
the applications, we can consider reducing the value of |E|.
As aresult, we propose a novel pruning technique, i.e., graph
structure pruning (GSP), to reduce the number of nodeg(i.e.,
|V]) and the number of edges (i.e., | E|) accordingly. Specif-
ically, GSP is to serve the purpose of reducing the number
of possible graphs we have to consider during UG-RANN
search. Before presenting GSP, we first introduce the concept
of dominance between two deterministic graphs, formally
defined in Definition 5.

Definition 5 (Graph dominance) Given two possible
graphs G; = (V,E,W') and G; = (V, E, W”) w.rt. an
uncertain graph G, we say that G; dominates G j» denoted as
Gi < Gj,iff (i) Ve € E, wg, (e) < G, (e),and (ii) 3¢’ € E,
wg; (€') < wg;(€).

Take the possible graphs shown in Fig. 2 as an exam-
ple. There is no dominance relationship between G and G2
due to wg, (€34) < WG, (€3,4) and wg, (e2,4) > wG,(€2,4).
Graph G™" dominates G since edges e3 4 and e4 5 both have
smaller weights in G™™ than their weights in G, and all the
other edges have the same weights in G™" and G. Obvi-
ously, G™" dominates all the other possible graphs, while
G™¥ is dominated by all the other possible graphs.

The reason we introduce the graph dominance relationship
is that we want to present two important properties on the
shortest path distances between nodes in a given possible
graph G ; and another possible graph G; that dominates G ,
as stated in Lemma 2.

Lemma 2 Given an uncertain graph G, let G;, G; € @(G)
be two possible graphs such that G; < G ;. It is confirmed
that (i) Vny,ny € V, their shortest path distance on G; is
bounded by that on G, i.e., Vni,ny € 'V, dg,(n1,n2) <
dg,;(ni,n2); and (ii) Vn € V and VS C 'V, the shortest
path distance between n and its kth nearest neighbor in S
on G; cannot exceed that on G, i.e, Yn € V andVS C 'V,
dg (n, S) < déj (n, S).



Proof As G; < Gj, it is certain that Ve € E, wg,(e) <
wg;(e), and 3¢’ € E, wg,(¢) < wG; (¢') according to
Definition 5. First, we prove statement (i) dg, (n1,n2) =<
de (n1, ny) as follows.

dg,(ni,n2) = dg,(SPg, (n1,n2)) < dg;(SPg;(n1, nz))
<dg,;(SPg;(n1,n2)) =dg,(n1, n2).

Then, for statement (ii), we can get

dg;,(n, S) = max{dg,(n,s) | s € kNN(G,,n, S))
> max{dg,;(n,s) | s € kNN(G;,n, S)}
> dg. (n, S).

Here, kNN(G, n, S) denotes the set of k objects in S
that are closest to n on G. Thus, we have dg, (n1,n2) =<
dg;(n1,ny) and df; (n, S) < df (n,S). The proof com-

s 1 J
pletes. O

Again, we use G| and G™" depicted in Fig. 2 as
an example. As G™" < G, the distance between any
two nodes on G™" is definitely bounded by that on
Gi, e.g., dgmin(ns,n2)(= 5) < dg,(ns,n2)(= 7) and
dgmin(n2, n3) = dg,(n2, n3) = 3. In addition, the distance
from a given node n to its kth nearest node from S in G™"
cannot exceed that in G. Take node n; as an example. Given
S = {no, n4, ng, n7}, we have démm (n2, ) = dgmin (2, n4)
=3 and dél(nz, S) = dg,(n2, n4) = 5. It is worth noting
that the kth nearest node of a specified node n in one possible
graph might be different from its kth nearest node in another
possible graph, although 77 has the same third nearest node
(i.e., n4) in both G™™ and G.

Based on Lemma 2 and the fact that G™® (G™#) dom-
inates (is dominated by) all the other possible graphs, we
derive the upper bound of the distance between a given node
n and its kth nearest node in any possible graph, and use this
upper bound to prune away all the nodes that cannot be one
of n’s kNN objects in any given possible graph, as stated
in Lemma 3. Here, function Traverse(n, démax (n, S), GMin)
returns all the nodes in the graph G™™" that are located at
most démax (n, §) away from n.

Lemma 3 Given an uncertain graph G, let G € ®(G) be a
possible graph, n € V be a node, and S C V be a data
node set. It is confirmed that démm (n,S) < dé(n, S) <
démax (n, S). Consequently, the k-nearest nodes to n are
located at most démax(n, S) away from n in G™" je.,

kNN(G, n, S) C Traverse (1, d%mu (1, S), G™M).

Proof We prove kNN(G, n, S§) C Traverse(n, d](‘;maX (n,S),
G™™) by contradiction. Assume that there is a node n’ € V
such that one of its k-nearest nodes o in G; € @(G) has
its distance to n’ on G™" larger than dgmax(n’, S), ie.,

Algorithm 2 Graph Structure Pruning (GSP)
Input: an uncertain graph G = (V, E, §2, P), adatanode set S C V,
a query node ¢, and parameter k
Output: an essential uncertain graph G, and a candidate result set N,
1: initialize H < {{g, 0)},and No <~ Ny < &
2: get G™" and G™** of G
3: while H is not empty do

4: (n,dgwin(n, q)) < de-heap(H)

5:  if nis not visited then

6: A démax (n, S) and mark n as visited

7: if dgmin (n, g) < d™** then

8: Ne < N.J{n} //Lemma4

9: Ng < N, | Traverse(n, d™>, G™")  // Heuristic |
10: for each adjacent unvisited node n; of n do

11: en-heap(n;, dgmin (n, q) + dgmin (n, n;))

12: construct G, by nodes in N with the corresponding edges
13: return G, and N,

Jo € kNN(G;,n’, S) such that dgmin(n’, 0) > démﬂx(n/,
S). On the one hand, based on Lemma 2 and the assump-
tion that o € kNN(G;, n’, S), it is certain that dgmin (0, 1)
<dg, (o, n') < déi (n’, S). On the other hand, according
to Definition 5, we have G™" < G < G™* for any G €
®(G) — {G™n G™MaX} Then, we can guarantee d*._. (n, S)
< dkn,S) < dfmu(n, S) based on the statement (ii) of
Lemma 2, i.e., dgp, (', S) < d’(‘;[ (', S) < dbnx(n', 5).
Next, we can derive that dgmin (0, n') < démﬂx (n', S),ie.,o0 €
Traverse(n’, démax (n’, §), G™M), which contradicts with our
assumption. The proof completes. O

Applying Lemma 3 in UG-RkNN search, we are certain
that for any given node n, if a query node g ¢ Traverse(n,
démax (n, S), GMM) then g cannot be one of n’s kNN objects,
and thus, node n cannot be an UG-RkNN object for ¢, as
stated in Lemma 4.

Lemma 4 (Candidate resultset) Given an uncertain graph
G, a node set S C V, and a query node q, let N, be the set
of nodes n € V satisfying dgmin (n, q) < démux (n,9), ie.,

Ne={neV | dgmn(n,q) < dsmx(n, S)}. 3

Then, UG-RkNN(G, g) € N, and nodes in (V — N.) can
be safely pruned.

Proof Assume that the above statement is invalid, and there
is at least one answer object n’ € UG-RANN(G, ¢) such that
n’ € (V — N,) with dgmin (n', q) > démax (n’, S). According
to Lemma 2, we have dg, (n’, ¢) > dgmin (n’, ), and hence,
dg,(n',q) > dbnux(n',S) > dgi (', S), ie., n’ is not an
answer object. Therefore, our assumption is invalid, and the
proof completes. O

Based on the fact that set N, is a super set that covers
all the answer objects for an UG-RANN query, we present
graph structure pruning (GSP) in Heuristic 1. GSP forms an



essential uncertain graph, denoted as G,, which is a subgraph
of G and meanwhile contains all the candidate nodes in N,
for an UG-RKNN query. The other node set N is formed by
all the nodes in the formed essential uncertain graph, which
is a super set of N, i.e., No € Ng, as stated in Lemma 5.

Heuristic 1 (Graph structure pruning) Given an uncer-
tain graph G, a data node set S C V, and a query
node q, let Ny represent the set of nodes returned by
Traverse(n,démax(n, S), G™™) for the nodes n € N,
(satisfying dgmin(n, @) < dbmax (1, S)), ice.,

Ng =[] Traverse(n, dim (n. $), G™).

neN,

“

For UG-RENN search, it only needs to consider the sub-
graph, namely the essential uncertain graph G,, formed by
Ng and corresponding edges between the nodes in Ny.

Proof To the contrary, we assume that evaluating G, is not
sufficient to answer UG-RkNN search on G, as there is at
least one object/node s" € (V — Ng) such that (i) 5" is an
answer object in G; € @(G), or (ii) s” directly affects the
decision on whether a data object 0 € N, is an answer object
in G; € @(G) or not. First, we prove case (i) is impossible.
According to Lemma 4, answer object s* € N, and s’ €
Traverse(s’, d’(‘;max (s’, ), G™MM). Therefore, we can confirm
that s" € N, based on Eq. 4, which contradicts with our
assumption that s” € (V — N,). Hence, case (i) is impossible.
Next, we prove case (ii) is also invalid. According to Lemma 3
and Eq. 4, for each candidate object 0 € N, all its possible
k-nearest nodes are included in N, i.e., kNN(G, 0, S) C
Traverse(o, démax (0, S), G™iny C Ng. Thus, Vs" € (V — Ny),
it cannot change the fact that any object 0 € N, is or is
not an answer object, i.e., case (ii) is also invalid. The proof
completes. O

Lemma S Givennode sets N. and Ny w.r.t. a given uncertain
graph G, it is confirmed that N € Ng. Accordingly, G,
covers all the candidates in N, for the UG-RkNN query.

Proof The proof is very straightforward, and thus, we skip
it due to limited space. O

Heuristic 1 suggests that only an essential uncertain graph
G., a subgraph of a specified uncertain graph G, is necessary

for processing an UG-RAKNN query. Thus, we present GSP
algorithm as the implementation of Heuristic 1 to form the
essential uncertain graph G,, with its pseudo-code listed in
Algorithm 2. First, GSP initializes a min-heap H, a candi-
date result set N., and a node set of an essential uncertain
graph N, and then, it gets the possible graphs G™" and G
(lines 1-2). Note that all the entries in H correspond to nodes
n € V in the form of (n, dgmin(n, q)), sorted in ascending
order of their distances to a query node g on G™". Next, GSP
starts the network expansion to retrieve the candidate answer
objects, guided by H (lines 3—11). GSP de-heaps the head
entry (n, dgmin (1, q)) from H, and processes n only if n has
not yet been visited until H is empty. It drives the upper bound
d™ of n’s distance to its kth nearest node in any possible
graph, and compares d™** with the lower bound of the dis-
tance from n to g (lines 6-7). When the lower bound does not
exceed d™*  node n is inserted into N, based on Lemma 4,
and the nodes returned by function Traverse(n, d™, Gminy
are added to N, based on Heuristic 1 (lines 8-9). In the
sequel, GSP en-heaps all n’s unvisited adjacent nodes into H
for expansion later (lines 10—11). Thereafter, GSP constructs
Ge based on nodes in N, and then, it returns both N and G,
to demonstrate the algorithm (lines 12-13).

Example 3 In order to illustrate how GSP forms an essen-
tial uncertain graph for ease of understanding, we assume
that an UG-RINN (k = 1) query is issued from a node n3
on the sample uncertain graph depicted in Fig. 1 with § =
{n2, n4, ng, n7}. Table 2 lists the procedure of GSP, based on
its possible graphs G™™ and G™* shown in Fig. 2. GSP first
evaluates the query node n3 from a min-heap H, and gets
démax (n3, S) = 4 from G™®*, which is larger than d(n3, q)
(= 0). Thus, GSP sets N, as {n3}, inserts all the nodes that
are located within distance lemax (n3, S) = 4 to n3 on G™n
into Ng (= {n3, n1, n4, nz, ns}), and en-heaps n3’s adjacent
nodes {n1, ng, ns} into H. Similarly, GSP visits the nodes
ni, n4, np, and ns in order (refer to Table 2). Once H is
empty, the essential uncertain graph is constructed based on
the node set Ny = {n3, ni, n4, nz, ns}, and N {n3,n}
forms a candidate result set for UG-RANN search.

Since GSP forms a subgraph G, that contains fewer nodes
and hence fewer edges, it helps to reduce the number of pos-
sible graphs. Take our sample graph as an example. GSP

Table 2 Procedure of graph

structure pruning Object - Ne Ne A
(n3(q), 0) 4 {n3} {n3, n1, n4, na, ns} (n1, 1), (n4, 3), (ns, 4)
(n1, 1) 3 {n3,n1} {n3, ni, ng, na, ns} (n4, 3), (n2, 3), (ns, 4)
(n4, 3) 2 {n3,n1} {n3, ni, n4, na, ns} (n2,3), (ns, 4)
(na, 3) 2 {n3,n} {n3, n1, na, na, ns} (ns, 4)
(ns, 4) 3 {n3,n} {n3, n1, na, na, ns} %)




forms a G, with only 5 nodes and 6 edges, and it cuts down
the number of possible graphs to I1,cg/|$2(e)| = 64 where
E’ is the edge set of G,.

In what follows, we prove the correctness of GSP heuristic
in Lemma 6 and approximate the size of an essential uncertain
graph G, (in terms of |N,|) in Lemma 7.

Lemma 6 (Correctness) Given an uncertain graph G and a
querynode q, ifanode n € V is not visited during the traver-
sal of G™™ in Algorithm 2, node n cannot be an answer object
on any possible graph G; € ®(G), that is, GSP algorithm
is correct with no false negative (i.e., there are no miss-
ing answers) and no false positive (i.e., there are no false
answers) for UG-RkNN search.

Proof Assume, to the contrary, that an answer object s on one
possible graph G; € @(G) is not visited during the traversal
of G™" Since s is not visited during the traversal of Gmin,
there must be at least one node n on the path S Pg, (n’, ¢) on
a graph G; satisfying dgmin (1, q) > d’c‘;max (n, S). According
to Lemma 3, node ¢ is not included in kNN(G, n, S) for
VG € ©(G) (i.e., n cannot be an answer object for G). Thus,
we have

dg,(n',q) = dg,(n',n) +dg,(n, q)
> dg,(n',n) +dg (n. S)
> max{dg, (n',0) | o € kNN(G;,n, S)}
=dg (', S).

Then, we can conclude that the node n’ (data object s) is
not a real answer object on G;, and the assumption is invalid.
Thus, for any unvisited node » in Algorithm 2, n cannot be
an answer object on any possible graph G € @(G), i.e., GSP
algorithm has no false negative for UG-RkNN search.

On the other hand, we know that set N. covers all the
answer objects for an UG-RkNN query, as stated in Lemma 4,
and all the candidate nodes n € N, with all their k-nearest
neighbors are included in the essential uncertain graph G, for
a given uncertain graph G based on Heuristic 1 and Lemma 5.
Consequently, it is guaranteed that GSP has no false positive.
Hence, GSP is correct for UG-RANN retrieval, and the proof
completes. O

Lemma 7 (Effectiveness) Given an UG-RkNN query w.r.t.
an uncertain graph G, assume that every node n contains a
data object (i.e., data density d =1), and let p denote the
maximal average degree in G. The cardinality of node set N
of the essential uncertain graph G,, i.e., |Ng|, is bounded by

2k+1_1
. IVD.

min(

Proof First, we prove that the k-nearest nodes (kKNNs) of a
query node ¢ must appear in the nearest & layers of the graph
in Fig. 3, which is similar to the breadth-first search (BFS)

Fig. 3 Illustration for the proof of Lemma 7

traversal tree from ¢ on any graph G. Assume, to the contrary,
that one node n located outside those k layers is one of ¢’s
kNNs. Then, there must be at least k nodes o (different to g
and n) on the shortest path from ¢ to n. Thus, the shortest
path distances from ¢ to those k nodes o are certainly smaller
than that between ¢ and n, regardless of the edge weights.
Hence, node n cannot be one of ¢’s kNNs, which contradicts
our assumption. Similarly, kNNs of any node in V' are within
its closest k layers on the BFS traversal tree in Fig. 3. Based
on Heuristic 1, N, contains all the objects o’ that may be
answer objects and 0”’s all possible nearest neighbor data
nodes. Thus, N, at most contains the first 2k layers of nodes

R . . U1 _
in Fig. 3, i.e., [Ng| < Y% pl = £ — !

. Considering that

. 2k+1_

N, € V, we have |[Ng| < mln(pp71 1, [V]). The proof
completes. O
It is important to note that the larger the value of %

is, the more effective the GSP is. Take the real co-authorship
network DBLP with 1,226,749 nodes and 5,557,805 edges as
an example. Let us set the node degree p to the average node

degree 4.5 and k to 2. When data density d = 1, |[Ng(DBLP)|

5 . . .
< ‘:_55:11 ~ 527. Clearly, the size of nodes in an essential

uncertain graph is much smaller than the node set size in an
original uncertain graph. Moreover, the lower bound of the
effectiveness of GSP heuristic for DBLP can be approximated
as % ~ 99.96%, meaning that at least 99.96% nodes in
DBLP can be pruned by GSP heuristic for an UG-RANN
query.

It is worthwhile to mention that the derived bound in
Lemma 7 holds without any assumption on the probability
mass function of edges, other than the positive edge weights.
Note that the positive weights guarantee that for a given node
n, the shortest path distances from n to the accessed nodes
are non-decreasing with the extending network. It indicates
that all of n’s k-nearest neighbors could be obtained in the
k-layer extension of the network from n (if d = 1). Further, if
the edges in the graph share the same weight, the [log, k1-
layer extension from node n is sufficient for getting n’s k
nearest neighbors. In this case, |Ng| could be tightened as

. pZ[logp KI+1_4
min(=— ——, V).

On the other hand, the general assumption with positive
weights is the main reason that the derived bound is mostly
likely to be loose, even to |V] (i.e., the original node size).
Fortunately, GSP can prune away many nodes to reduce sig-
nificantly both the size and the number of possible graphs we




have to evaluate during UG-RkNN search, as demonstrated
via our experimental results in Sect. 7.

4 Equivalent graph removing

In Sect. 3, we present GSP heuristic whose purpose is to
replace an uncertain graph G with a much smaller essen-
tial uncertain graph G, for supporting UG-RANN search
efficiently. Although G, has successfully reduced the node
size from |V| to |N,|, the number of possible graphs we
have to consider w.r.t. G, might be still large, i.e., in total
IT,cp182(e)| possible graphs with E' = {e; j € E|n;j,nj €
Ng} (ie., E’ is the edge set of G,). In this section, we
present another pruning technique, i.e., Equivalent Graph
Removing (EGR), which tries to reduce the number of pos-
sible graphs via removing equivalent possible graphs. In the
sequel, we first explain the concept of equivalent possible
graph, and then, we propose a new EGR heuristic based on
this new concept to save the evaluation of certain possible
graphs.

Before we formally define the concept of equivalent pos-
sible graph, we first present an intuitive example to explain
why certain possible graphs are equivalent. To simplify our
discussion, we introduce an edge set E g’l for a given possible
gr%ph G; = (V,E, W) e ®&(G,) that consists of two subsets

Eg, and Eg; Sp" , defined in Egs. 6 and 7, respectively. The edge

set Eob Gi refers to the set of edges that present in the shortest
path from ¢ to any node in V on G;; and E; P denotes the
set of edges that appear in the shortest paths frorn node n in

V to its k-nearest data nodes on graph G; (i.e., those nodes
returned by function kNN(G;, n, 5)).

E§ = Eg'|JES )

Eg' = U{e | e € SPG,(n, 9) (©)
nev

Ei?i" = U{e | e € SPG;(n,0),0 € kNN(G;,n,S)}  (7)
nev

Take the graph G; shown in Fig. 4a as an example. When
d =1 (ie., S = {n1, n2, n3, ng, ns}), for k = 1, we can get
Eg' = {e13. €12, €34, e35} and ES" = {e13., e, eas).
Note that an edge might belong to both E(s;pi” and ESGPI_" (e.g.,
edges e 3 and e 2). For simplicity, we only mark them once
in Fig. 4.

The reason we introduce the edge set Esti is that Esti
defines the part of the graph that is traversed during RKNN
search. Given two possible graphs G; and G; (e.g., G; and
G; depicted in Fig. 4) satisfying the three conditions of
Eg’l = Egp (as stated in Lemma 8), it is confirmed that
they share the same result set to RkKNN retrieval.

--------------- SP(n, q)
— ——— SP(n,0)

n3'__,. ) n-? 1N T2
qﬂ(: ) X Q/ 3/%3 q—éo \ 5/,(,3
4 i
,‘: — 2 - n4 :/ 2 - n4
O’1/5 055
(a) (b)

Fig. 4 Illustration of equivalent possible graphs. a G;. b G

Lemma 8 Given two distinct possible graphs G; and G
w.rt. an uncertain graph, for the RkNN query issued at a
node q, it is confirmed that ES ESp = RENN(G{, q) =

RkNN(G] q), where E = ESP holdc iff (i) Ve € E
ee EY . (ll)VeeEp,,eeE ,,and(zzz)VeeEqP,/E .
GJ J Gl l J

wi(e) = wj(e).

Proof For any object 0 € G;/Gj, we know that all edges
on SPg,(0,q) / SPg;(0,q) and SPg, (o, 0’)/SPGj (0, 0"
(o' € kNN(G;, 0, §)/kNN(G|, 0, S)) are included in the
set EZPI-/Eg’,- based on Eq. 5. As Ezi = Eg)j, we can derive
that dg, (0, q) = de (0,q), kNN(G;, 0, §) = kNN(G, o,
S), and thus, déi (0,8) = df;j (0, S). Hence, we are cer-
tain that 0 € RKNN(G;,q) = o € RkNN(G}, g), and
o € RkKNN(Gj,q) = o € RkNN(G;, g). Consequently,
RENN(G;, g) = RkNN(G , g), and the proof completes. O

We would like to highlight that the third condition of
Eg’_ = EGp is necessary for Lemma 8. Take the possible
graphs G, and Gy in Fig. 5 as example; they satisfy the first
two conditions of E; L = E; °P ~ (which includes both of the
two edges). Nevertheless the two possible graphs G, and
Gy have different RkNN sets, since RkKNN(Gy, ¢) = @ and
RENN(Gy, q) = {n}. In other words, only the first two con-
ditions of E; P = =E; °P cannot guarantee the identical RkNN
result set, andl thus, the third condition is necessary.

Notably, given a possible graph G; and its RKNN result
set, we can safely ignore all the possible graphs G; with
Egj =F Z?i based on Lemma 8. Accordingly, we introduce
the concept of equivalent possible graph in Definition 6. By
removing all the equivalent possible graphs, we can further
reduce the number of possible graphs we need to evaluate to
improve query efficiency.

Definition 6 (Equivalent possible graph) Given a possible
graph G; € @(G,), its equivalent possible graphs, denoted
as Dg;, include all the other possible graphs G; € @(G.)
with £, = Eg .ie.Dg, = {G;(# Gi) € 2(Ge) | B, =
EZ}.

Although we understand that we can remove equivalent
possible graphs Dg, w.r.t. a given possible graph G;, we also
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Fig. 5 Explanation for Lemma 8.a G..b G,

realize that locating the edge set E 2) _on any possible graph
G; € Dg, is as expensive as finding RkKNN result on G ;. In
other words, we are not able to save anything via identifying
and then removing equivalent possible graphs. We need to
find a better way to utilize the findings that certain possible
graphs actually share the same RkNN result set and evalu-
ating one of them is sufficient. That is why we introduce a
stronger dominance relationship, namely conditional domi-
nance, between two possible graphs, as formally defined in
Definition 7.

Definition 7 (Graph conditional dominance) For two pos-
sible graphs G; and G ; w.r.t. an uncertain graph G = (V, E,
£2, P), with a given set E; C E, graph G; E;-dominates
graph G; conditionally, denoted as G; <g, Gj, iff (i)
Ve € Eq, wg, (e) = wg, (e); (i) Ye' € (E — Eq), wg, (¢') <
wG; (€'); and (iii) " € (E — Eg), wg, (e") < wG; ().

We would like to highlight that conditional dominance
relationship is stronger than the dominance relationship
introduced in Definition 5. For two possible graphs G; and
G; and a given edge set Ey, if G; <g, G, then G; < G;.
However, the reverse is not always valid. Take the possi-
ble graphs shown in Fig. 2 as an example. G™" dominates
G 1. On the other hand, it E;-dominates G| conditionally for
E4 = {e1,2, e1,3}, butnot for E; = {ej 2, 2 4}. In fact, when
E, is empty, conditional dominance relationship is equiva-
lent to dominance relationship, i.e., <g < <.

As stated in Lemma 9, using conditional dominance rela-
tionship based on the edge set ESp,, we can locate a set
of possible graphs DCG,' with each IGj € Dg[ having its
Eg’j = Esti, i.e., D"Gi C Dg,. Note that locating equiva-
lent possible graphs in DCG,» does not require us to identify
the edge set Eg’j of any possible graph G ; € DCG’_.

Lemma 9 Given a possible graph G; € ®(G,) with set Eg:
(w.r:t. a query node q), let Dﬁ;i be the set of possible graphs
G that are conditionally dominated by G; based on E Sp[,
ie., DCG,- ={G; € 2(G.) | G; <Esti Gj}. It is confirmed
that D < Dg;.

Proof For any graph G € D¢ - according to the definitions
of Dgi and graph conditional dominance, edges in E SGPI share

the same weights on G and G;, and edges in (E — E g’_ ) have
larger or equal weights on G than/to those on G;. Hence, we
have Ep; = Eg’l_ based on Eq. 5. Referring to D¢, formalized

in Definition 6, we can confirm that graph G € Dg;. Thus,
Dgi C Dg;, and the proof completes. O

Take the possible graphs G; and G ; depicted in Fig. 4 as
an example. It is clear that G; € Dgi and G; € Dg;, and
meanwhile G; € D¢, but G; ¢ DCG,-'

We are now ready to present equivalent graph removing
(EGR) technique in Heuristic 2. Its correctness is guaranteed
by Lemma 8 and Lemma 9. EGR enables us to skip the
evaluation of certain possible graphs and thus to boost search
performance.

Heuristic 2 (Equivalent graph removing) Given a possi-
ble graph G; € ®(G,), a data node set S, and a query
node q, it is confirmed that the possible graphs G; €
D%i C @(G,) have the identical RkNN result set as G, i.e.,
RKNN(G;, q) = RKNN(G}, q). Hence, those graphs G j in
DCGI- can be safely removed after evaluating RkKNN search
on Gj, with Pr(o) of each answer object o € RKNN(G;, q)
updated accordingly.

Next, we explain how to update Pr(o) of each answer
object 0 € RkNN(G;, g), when a possible graph G ; in DCG,‘
is removed, as mentioned in Heuristic 2. In particular, given
two possible graphs G; and G/, set D‘(';i might overlap with
setDy,, e, D%i MDY, # . This is because they both might
conditilonally dominate the same possible graph even though
they do not conditionally dominate each other. Thus, given an
answer object o € RkKNN(G;, g), for every possible graph
Gj e D':Gi, the existence probability of G; (i.e., Pr(G;))
is added to Pr(o) (because 0 € RkNN(G, ¢)). However,
Pr(G ) contributes once only to Pr(o). That is to say, given
an answer object o € RKNN(G,, ¢) N RkNN(Gy, ¢g) and a
possible graph G € D; N Dg, . if Pr(G ) has been added
to Pr(o) during the evaluation of G, it does not contribute
to Pr(o) again during the evaluation of G.

It is important to note that if possible graphs G € @(G,)
are evaluated in a random order, it is very likely that the
equivalent possible graphs in D(; are evaluated earlier than
G, which significantly degrades the effectiveness of our
presented EGR heuristic. Thus, in order to make sure that
graph G € @(G,) is evaluated earlier than graphs in D¢,
we introduce the incremental access strategy (IAS) to decide
the evaluation order of possible graphs in @ (G,). For ease of
understanding, we take the sample graph as an example to
explain IAS strategy as follows.

First of all, before evaluating any possible graph, IAS sorts
the edges in a random order, e.g., edge ej» ranked first
and edge e; 3 ranked second as illustrated in the first row
of Table 3. Then, it assigns all the edges to their minimum
weights, and visits the corresponding possible graph g1 (i.e.,
Gmi“) first. Based on g, it increases the weight of the first
edge to generate the second possible graph for evaluation, i.e.,
g2 in Table 3. As edge e 2 has only two possible weights 2



Table 3 Illustration of the incremental access strategy

Graph w(e12) w(e1,3) w(ez4) w(e26) w(e2,7) w(e34) w(e3s) w(ess) w(e46) w(es )
g1 2 1 3 3 2 3 4 2 2 1
o 3 1 3 3 2 3 4 2 2 1
g3 2 4 3 3 2 3 4 2 2 1
o 3 4 3 3 2 3 4 2 2 1
g5 2 1 5 3 2 3 4 2 2 1

Algorithm 3 Equivalent Graph Removing (EGR)

Input: an essential uncertain graph G,, a data node set S, a query node
¢, and parameter k

Output: a data node set S with RkKNN probabilities

1: initialize equivalent possible graph set Ipc < &

2: for each possible graph G € @(G,) — I'pe do // using IAS strategy

3: Pr(G) « ]_[eeE ple,wg(e)) [//byEq.1

4:  RENN(G, g)« Egj <~ @, H < {{n(gq), 0)}

5:  while H is not empty do

6: (n,dg(n, q)) < de-heap(H)

7 if n.flag = 1 then continue

8: n.flag < 1

9: insert edges on S Pg (0 € kNN(G, n, S), n) into EE?

10: if node n has a data node s with dg (s, ) < dé (n, S) then
11: RANN(G, g)< RKNN(G, q) U {s}

12: Pr(s) < Pr(s) 4+ Pr(G)

13: if dg(n, ) < dg;(n, S) then

14: for each adjacent node n; of n with n;. flag = 0 do
15: en-heap(n;, dg(n, q) + dg (n, n;))

16 EY < EF U {nmy)

17: DG < {Gj € 2(G.)|G <E® G;} //Lemma?9

18:  Pr(s) <« Pr(s) + ZG,E<D27FD(_)Pr(G/) for each s €
RANN(G, q)

19: FDL'<—FDC UD%

20: return §

and 3 (shown in Fig. 1), g1 and g; are the only two graphs
generated by changing the weights of edge e 2, with the
weights of edges ranked behind e; > all set to the minimum.
Based on g; and g3, it increases the weight of the second
edge to generate two more graphs g3 and g4 for evaluation.
Similarly, based on g1, g2, g3, and g4, it increases the weight
of the third edge to generate another four more graphs for
evaluation. The above process proceeds until the last graph
G™¥ ig generated and evaluated. Note that IAS guarantees
that graph G € @(G,) is accessed before those in D¢, and
hence, all the RkNN evaluation of equivalent possible graphs
in Ugea(g,)D; could be saved.

Based on Heuristic 2 and IAS strategy, we detail the
implementation of EGR, with its pseudo-code presented in
Algorithm 3. First, EGR empties IDec, the set of equiva-
lent possible graphs (line 1). Then, it evaluates the possible
graphs in (@ (G,) — I'pc) based on the strategy IAS described
previously (lines 2—-19). To be more specific, for each possi-
ble graph G it visits, EGR derives the existence probability

Pr(G) by Eq. 1, empties RkKNN set and Eg) set, and inserts a
query node g into heap H (lines 3—4). The evaluation on G
is performed by evaluating the nodes in H. For each de-
heaped node n, it is only evaluated once which explains
the reason behind n.flag. It marks the node n by set-
ting n.flag and inserts the edges on the shortest paths
SPg(o € kNN(G,n, S), n) into Eg) set (lines 5-9). If n
contains a data node s satisfying dg (s, q) < dé (s, 8), s is
added to RkKNN set and its probability of being an answer
object Pr(s) is updated accordingly. In addition, if n satisfies
dg(n,q) < d’c‘; (n, S), EGR en-heaps its unmarked adjacent
nodes into H, and inserts corresponding adjacent edges into
Est (lines 10-16). The above process repeats until H is
empty. Then, EGR updates /e and the probability Pr(s) for
every s € RkNN(G, ¢), and visits the next possible graph
(lines 17-19). Until all the possible graphs in (@ (G,) — D)
have been evaluated, EGR returns set S with RkKNN proba-
bilities.

Example 4 In order to facilitate the understanding of EGR,
we illustrate how to derive D¢ ,;, for G™" depicted in Fig. 2¢
during UG-RINN query processing. Table 4 lists the content
of an edge set Eg)min and that of a heap H. First, EGR de-
heaps the query node n3 from H, and inserts edge e3 4 into
ESGpmin, since it presents on the shortest path from n3 to its
nearest neighbor s7(n4). Then, EGR en-heaps its unmarked
adjacent nodes n1, n4, and ns into H, and updates Egjmm
to {e1,3, €34, €35}. In this way, EGR continues evaluating
the remaining nodes in H. Finally, it forms the set E?mm =
{e13,e3.4, €35, €12, €46,€2.7,ea5}. Thus, DCGmin contains 7
possible graphs on which at least one of the edges e 4, €2 6,
and es g has larger weight than that on G™" according to

Lemma 9.

5 Exact algorithm

In this section, we propose an exact algorithm, termed as SDP,
for processing UG-RANN search. Note that the algorithm
utilizes three key techniques, including graph structure prun-
ing (GSP) and equivalent graph removing (EGR) presented
in previous two sections, and probability bound pruning
(PBP) discussed later. In what f(ﬁlows, we first presgnt PBP



Table 4 Procedure of

equivalent graph removing Object Eg)mi“ H
(n3(q), 0) {e13. €34, €35} (n1, 1), (n4, 3), (ns, 4)
(n1, 1) {e13. €34, €35, €12} (n4,3), (n2, 3), (ns, 4)
(na, 3) {e13, €34, €35, €12, ea6} (n2,3), (ns, 4)
(n2, 3) {e13, €34, €35, €12, €16, €27} (ns, 4)
(ns, 4) {e13,e34,€35,€12,ea6, €27, €45} a

technique and then detail our SDP algorithm. As stated in
Heuristic 3, PBP tries to reduce the data node validation cost
for UG-RANN retrieval.

Heuristic 3 (Probability bound pruning) Given any pos-
sible graph G; € ®(G,), a query node q, and a specified
parameter 0, let P be the total existence probability of
remaining unvisited possible graphs that have not been
removed by EGR (see Heuristic 2). For a data node o €
RANN(G;, q), if o satisfies Prg, (0) > 0 or Prg, (0) +P <96,
then o can be pruned during UG-RkNN search. Here, Pr, (0)
denotes the probability of o to be an answer object based on
currently evaluated possible graph.

Proof The proof is intuitive, and thus, it is omitted. O

It is worth mentioning that Prg, (0) and Prg, (0) + P are
actually the lower bound and the upper bound of Pr(o) (i.e.,
o’s probability to become an answer object), respectively.
The fact Prg, (0) > 6 means that o is definitely an answer
object, and the fact Prg, (0) + P < 0 indicates that o is
definitely not an answer object.

Our SDP algorithm to support UG-RANN query process-
ing is depicted in Algorithm 4. To begin with, SDP initializes
the RkKNN probability Pr(s) as zero for each data objects € S.
Then, itutilizes GSP heuristic to derive the essential uncertain
graph G, (line 2) in order to effectively cut down the size of
the uncertain graph and thus to reduce the number of possible
graphs. Based on G,, SDP invokes EGR (i.e., Algorithm 3),
and integrates PBP heuristic to evaluate possible graphs and
update Pr(s) for every data node s € S accordingly (line
3). Note that PBP can be easily integrated into EGR algo-
rithm. Every time when the total existence probability P or
any Prg, (0) changes, PBP is used to validate/invalidate data
nodes for UG-RkNN search. Finally, SDP retrieves the data
objects s € S N N, with Pr(s) > 6 to complete the process.

Time complexity of SDP First, the traversal of a graph takes
O(|V|-1g|V|+]E|) time, assuming that Dijkstra-alike algo-
rithm is used [16,29]. Thus, GSP heuristic (i.e., Algorithm 2)
takes O (|V|?- Ig|V|+|V]|-|E]) time. Second, the time com-
plexity of EGR heuristic (i.e., Algorithm 3) is O w!El. (v |*
Ig|V| 4+ |V| - |E])) in the worst case, as there are wlEl
possible graphs if all the edges share the same number of
weights w (i.e., Ve € E, |£2(e)] = w). In addition, PBP

Algorithm 4 SDP Algorithm

Input: an uncertain graph G, a data node set S C V, a query node ¢,
and parameters k, 0

Output: the result set Sg of an UG-RkKNN query

1: initialize Pr(s € §) < 0

: (Ge, Ny < GSP(G, S, q,k) /] Algorithm 2

. S < EGR(G,, S, q, k) //integrating PBP in Algorithm 3

: insert data nodes s € S N N, with probability Pr(s) > 6 into Sg

: return Sg

[ RS I )

needs O(w!E! . |V]) time, since the number of data objects
is at most | V| for every possible graph. Consequently, in the
worst case, the total time complexity of SDPis O (w!El.(|V |>-
Ig|V|+ V|- |ED).

Although SDP has significantly improved search perfor-
mance compared with Baseline, its cost is still high. In order
to further boost the performance of UG-RkNN search, we
propose an adaptive sampling algorithm to be introduced in
the next section.

6 Sampling algorithm

Due to the #P-hard complexity of UG-RkNN search as dis-
cussed in Sect. 2, there is no algorithm to exactly solve the
UG-RkNN query in polynomial time. In view of this, we
present an efficient algorithm, termed as TripS, which uses
graph structure pruning and an adaptive stratified sampling
technique, for UG-RANN search. In particular, the frame-
work of TripS is given in Algorithm 5. It first employs
GSP (Algorithm 2) to get the essential uncertain graph (line
2). Second, on the top of essential uncertain graph, TripS
conducts RkNN search on every sampled possible graph, cap-
tured by the adaptive stratified sampling technique (ASSP),
for UG-RANN retrieval (line 3). Note that the final result set
contains the objects having the probabilities not smaller than
0" (=036 is samplea PT(G)). Given the fact that GSP heuris-
tic has been introduced in Sect. 3, we only focus on ASSP
sampling technique in this section.

Before we present ASSP, we first explain the popular
metric used to evaluate the performance of the sampling
algorithms. Assume that an sampling algorithm F is the
estimator of true value F, an essential metric to evaluate
the accuracy of sampling approach is the mean squared



Algorithm 5 TripS Algorithm

Input: an uncertain graph G, a data node set S, a query node q, &, 6,

the parameters used in the sampling technique including the sorted

edge set Ey, sample size N, threshold of sample size N;, and tunable

parameters 1, 12

Output: the result set Sg of an UG-RAKNN query

1: initialize Pr(s € S) <0

2: (G, N.) < GSP(G, S, q,k) // Algorithm 2

3: § <« ASSP(G,, S, Es, g, empty string X, N, Ny, k, y1, y2) I/
Algorithm 6

4: insert data nodes s € S N N, with probability Pr(s) > 6’ into Sg

5: return Sg

error (MSE) [16,24,25], denote as E[(ﬁ — F)2], which
measures the expected difference between an estimator and
the true value. It can be decomposed into two parts [45],
ie., E[(F — F)2] = Var(F) + [E(F) — F? = Var(F) +
[Bias(I:“ , F)?]. Here, Var(I:“ ) represents the average devia-
tion from its expectation. It is easy to find that for an unbiased
estimator, the variance is simply the MSE. In other words, the
key criterion to discriminate the estimators is their variances,
if they are unbiased.

We use a naive unbiased random sampling method, i.e.,
Monte Carlo sampling [16,24,25] for UG-RkKNN search.
Specifically, Monte Carlo first draws N possible graphs,
denoted as G, G, ..., Gy from G, and then, it finds RKNN
objects for each possible graph G;. Finally, it obtains Monte
Carlo estimator by summarizing the RKNN results on the
sampled possible graphs.

Different from the naive Monte Carlo estimator, the strati-
fied sampling is an effective and popular sampling technique
to tackle query processing [21,24,25]. It partitions the entire
population into disjoint strata, and then represents every stra-
tum by capturing specified number of samples in that stratum.
Its main advantage is to capture the most representatives of
a population. As a result, in TripS algorithm, we propose a
new adaptive stratified sampling technique, namely ASSP,
for UG-RANN search, which is proved to be unbiased and
achieves a variance at least as good as Monte Carlo sampling
does.

Before we formally introduce the detailed ASSP tech-
nique, we first present an illustrative example to explain the
basic idea of ASSP technique. To simplify discussion, we
assume that an uncertain graph G has four edges ej, 2, €3,
and ey, and every edge has two distinct weights (denoted as
v, and vp), i.e., Ve, |£2(e)| = w = 2. The weight of an edge
might be different from the weight of another edge. Then,
there are in total 2* possible graphs w.r.t. G. In ASSP, these
possible graphs (i.e., the whole sample space) are divided into
several sample subspaces, and the specified number of possi-
ble graphs are captured from each sample space. As shown in
Table 5, assume that the 16 possible graphs G, G2, ..., Gig
are partitioned into 4 strata A1, As, Az, and A4, according
to the weights of edges e and e;, and the total sample size

Table S Illustration of stratified sampling on uncertain graphs

Sample space  Possible graph  w(e;]) w(ez) w(e3) wl(es)
Ay Gy Va Va Va Va
Go Vg Vg Vg Vp
G3 Va Va Up Va
Gy Vg Vg vp vp
Ay Gs Vg Vp Va Vg
Ge¢ Vg vp Vg vp
G Va U Up Va
Gg Vg vp Up Vp
A3 Go U Va Va Va
Gio Up Vg Vg Up
G vp Vg Up Vq
G2 Up Vg Up Up
Ay Gi3 Up Up Vg Vg
Gla Up Up Vg Up
Gis Up vp Up Va
Gie Up Up Up vp

N is specified as 8. For simplification, we assume ASSP ran-
domly captures 2 out of 4 possible graphs in every stratum
in Table 5. In other words, we utilize 8 sampled possible
graphs to answer UG-RkNN query approximately, instead
of exploring all 16 possible graphs.

Consequently, we are aware that sample allocation and
stratum partition are two critical steps for ASSP. To begin
with, in ASSP, we employ the proportional sample allocation
(PSA) [38]. Specifically, given the total sample size N, for
achieving proportional samples, we assign sample size N; for
each stratum A; proportional to the population probability of
the stratum. The population probability, denoted as 7;, w.r.t.
a subspace A;, accumulates the existence probabilities of all
the possible graphs included in A;, i.e.,

= Z Pr(G,) (8)

G,EA,‘

where Pr(Gy) is the existence probability of possible graph
G;. Specifically, the sample size N; is defined by Eq. 9.

 Yg,ea PG

N; = :
C Ygen PG

N=7T,'~N (9)

Note that the total probability of all possible graphs (included
in @(G)) is equal to one. As a result, strata with large popula-
tion probabilities should be sampled heavily, whereas strata
with small population probabilities deserve a relatively small
sample size. It is important to point out that a naive allocation
method is to assign sample size N; by % - N, where L; is the
number of possible graphs contained in stratum A;, and L



Table 6 Illustration of partition

based on y = 2 edges Sample space w(er) w(e2) Possible graphs

Al Vg Vg G, G, G3,Gy

Al Va vp Gs, Gs, G7, Gg

Al Up * Gy, G0, Gi1, G2, G13, G4, Gi5, Gi6
g:sl::lg Zn Eh:tgasgge:f partition Sample space w(er) w(e2) w(e3) Possible graphs

A/l/ Vg Vg Va G, Ga

A Va Va Vp G3, Gy

A Vg vp * Gs, Gg, G7, Gg

Ay vp * * Go, G0, G11, G12, G13, G4, G1s, Gig

is the total number of possible graphs. This naive method is
inferior to our used method. This is because it allocates sam-
ple sizes based on the assumption that every possible graph
has the same existence probability (without considering the
different probabilities of the possible graphs).

Now, we start to our stratum partition methods in details.
To begin with, we select y edges from the edge set E of an
uncertain graph G to partition the space into w? subspaces,
assuming that each edge has w distinct weights. Note that w”
is the largest size of subspaces that could be partitioned by y
edges. For instance, let y = 2 in the above example. 2 edges
can produce the maximal w? = 22 = 4 subspaces. This naive
partition is simple but it has limitations. A small change of
y will cause a significant change of the subspace size. Thus,
it is hard to achieve a flexible sample space partition. On the
other hand, given y edges, the minimum size of subspaces
that could be partitioned by those y edgesisy - (w — 1) + 1.

As depicted in Tables 6 and 7, two (three) edges can
partition the previous example uncertain graph into 3 (4)
subspaces. Note that the notation x indicates the weight of
an edge e is not specified, i.e., all the weights of the edge
e could be allowed in the corresponding space. In addition,
the 3 subspaces in Table 6 are actually the partition for the
whole sample space, since they are disjoint between each
other, and the union of them is the whole space. In other
words, the y - (w — 1) 4 1 subspaces that y edges divide
must satisfy that those subspace are disjoint between each
other, and the union of them forms the whole space. Not any
y - (w — 1) + 1 possible graph sets could form a partition
of the whole sample space. For example, instead of A’ , A’z,,
and A’3 in Table 6, we assume that there are three other pos-
sible graph sets (denoted as Pj, P>, and P3) w.rt. y = 2,
such that P; is identified by (e1(v,), e2(v,)), P> is labeled
by (e1(vp), e2(x)), P3 is denoted by (ej(x), e2(vp)). Then,
these three possible graph sets cannot form a partition of the
whole sample space. The reason is that the possible graphs
with edge weights e (vp) and ez (vp) could belong to P> and
P53 simultaneously. In other words, one possible graph may be

divided into two possible graph sets, which does not satisfy
the disjointness of the partition.

As y increases, it has a linear impacton y - (w — 1)+ 1, the
minimum number of subspaces generated. However, we also
notice that the partition using y - (w — 1)+ 1 renders the diver-
sity of the sampling, since only a small group of subspaces is
considered by sampling algorithm, which is not desirable for
UG-RENN retrieval. In order to maximize the advantages of
two simple partition approaches above and meanwhile min-
imize their limitations, ASSP adopts two tunable parameters
y1 and p». It selects (y1 +y2) edges such that the space is par-
titioned into w?! - (2 - (w — 1) + 1) subspaces. Note that the
partition based on (y +y») edges is superior to the above two
partitions based on y edges, which will be further confirmed
by our experimental studies to be presented in Sect. 7.

Next, we want to emphasize that ASSP is a recursive strat-
ified sampling algorithm. Specifically, in every recursion,
ASSP chooses (y1 +y») unselected edges from the edge set E
of an uncertain graph, and partitions the current sample space
into w" - (y» - (w — 1) 4 1) subspaces, as discussed above. It
is important to note that there are at most (> — 1) edges with
unspecified edge weights in the selected (y; 4 y») edges. For
example, when y = y» = 2(3) in Tables 6 and 7, there is
one edge (there are two edges) with unspecified weights in
the selected y edges. Without loss of generality, if an edge is
selected in one recursion but its weight is still unspecified, it
is regarded as an unselected edge in the next recursion. The
recursion (or the sample space partition) terminates until the
size of E is smaller than (y; + y»), or the allocated sample
size w.r.t. the current space is small than a given sample size
threshold. When the final smallest subspaces A; are obtained,
the Monte Carlo sampling is used to capture m; - N possi-
ble graphs within each subspace A; for UG-RkNN search,
where N is the total sample size.

In addition, we also want to highlight that in order to
achieve more adaptive diversity, ASSP sorts all the edges in an
uncertain graph based on the breadth-first search (BFS) edge
selection strategy that invokes BFS starting from the query



Algorithm 6 Adaptive Stratified Sampling (ASSP)

Input: G,, S, edge list E, g, the string representation of the states for
sample edges X, sample size N, threshold of sample size Ny, k, y1, 2
Output: a data node set S with RKNN probabilities

/* lazy-EP(G, S, q, k): the algorithm proposed in [52] is to return the
result set of a RKNN query on a deterministic graph G. */

1:if |Eg| < y1 +y2 or N < N; then

2:  for eachi=1to N do

3 initialize an empty string Y

4 for each edge e in the unsample edges from E; do
5 randomly select a weight w(e) for e

6: insert the string representation of w(e) to Y

7 generate the possible graph G based on X + Y

8 if the graph G has not been sampled yet then

9: compute Pr(G) by Eq. 1

10: for each data object s € lazy-EP(G, S, q, k) do
11: Pr(s) < Pr(s) + Pr(G)

12: else

13:  Ej < {the first unselected y; edges of E;}

14:  E, < {the following y» edges of E;}

15:  let SV| be the w”! edge state possibilities for edge set E

16:  let SVa be the (y» - (w — 1) 4+ 1) edge state possibilities of E»
17:  for each state vector pair svy, svy € SV| x SV, do

18: Y <« string(svy) + string(svy)

19: compute the existence probability of Y, i.e., my

20: Nn<n-—Lrn<ntl,

21: ASSP(G,, S, Es,q, X + Y,y N, Ny, k, max{yy, 0}, y2)
22: return S

object g to order edges, which will be maintained by an edge
list E5. Hence, in every recursion, ASSP first chooses y1 uns-
elected edges from Ej and then another y» unselected edges
from Ej;. In other words, ASSP actually explores the edges
closer to the query node earlier. Furthermore, we decrease
the value of y; but increase that of y, with the depth of the
recursion so that ASSP actually divides more subspaces w.r.t.
the edges closer to the query.

The pseudo-code of ASSP is given in Algorithm 6, which
aims to find the candidate data objects with RkKNN prob-
abilities, by taking as inputs the essential uncertain graph
G. = (V, E, W, P), adata node set S, a query object g, an
edge list E; that maintains the edges in E sorted based on
BFS strategy from ¢, the string representation of the states
(i.e., the weights) for selected edges X, sample size N, sam-
ple size threshold N;, and parameters k, y1, y». Specifically, if
|Es| < y14+y20r N < N;, ASSP captures N sample graphs
from the sample space related to one stratum denoted by X
via Monte Carlo sampling, and updates the RkNN probabil-
ity of every data object through /azy-E P algorithm (lines
1-11). Otherwise, ASSP gets the first y; unselected edges
from E; and next y» unselected edges from Ej, maintained
by E| and E», respectively (lines 13—14). It is important to
note that the E list during sampling is static without edge
deletion or insertion. One simple method to identify the uns-
elected edges in E is via the comparison between X and E;
where the first edge in E; but not in X is just the first edge
of the y; edges in the current recursion (should be inserted

in Ep). Then, for each state vector of those y; edges in E
(there are w"! state vectors in total) and each state vector of
those y» edges in E; (there are y» - (w — 1) + 1 state vectors
in total), we maintain their string representation Y (line 18),
and derive the corresponding existence probability 7y of ¥
(line 19). After updating X = X + Y, y; = max{y; — 1, 0},
y2 =2+ 1,and N = my - N for the input parameters of
ASSP, ASSP is recursively recalled in line 21.

In the last part of this section, we analyze our TripS
algorithm (including ASSP technique) and explain how to
adapt our algorithms newly proposed to support bichromatic
UG-RiNN query in order to demonstrate the flexibility and
generality of our algorithms.

First, in TripS algorithm, the ASSP sampling technique
needs to estimate the population proportion [38], according
to UG-RkNN query problem in Definition 4. This is because
the probability Pr(o) of every object o to be an actual answer
object is actually the proportion of possible graphs G such
that o is a real answer object on G. It is guaranteed that the
ASSP estimator is unbiased, and the variance of ASSP is at
least as good as that of Monte Carlo sampling, as stated in
Theorems 1 and 2, respectively.

Theorem 1 The ASSP estimator, denoted as Ia 'ASSP, IS unbi-
ased, i.e., E(Fassp) = F.

Proof The detailed proof can be found in Appendix A. O

Lemma 10 Let N; be the number of samples in stratum i, L;
be the number of population for stratum i, and T be the total
number of strata divided by stratified sampling. The variance
of ASSP, denoted as Var(I:" 'ASSP), can be derived

Li—Ni Fassp(l — Fassp)
L, —1 N; ’

T
Var(Fassp) = Y 7} -

i=1
Proof The detailed proof can be found in Appendix B. O

Theorem 2 The variance of ASSP, i.e., Var(ﬁAssp), is
at least as good as that of Monte Carlo sampling, i.e.,
Var(Fymce). Formally, Var(Fassp) < Var(Fumce).

Proof The detailed proof can be found in Appendix C. 0O

Time complexity of TripS RKNN query for each possible
graph takes O(|V|?-1g|V|+ |V| - |E|) time. Let N be the
total number of samples, since sampling N possible graphs
needs at most O (N - |E|) time as discussed in [24], the time
complexity of ASSP is O(N - (|V|> - 1g|V| + |V]| - |E])).
Therefore, the time complexity of TripS algorithm is O (|V 2.
Ig|VI+ V- |ED) + ON - (IV]* - 1g|V] + |V| - |E])) =
ON - (V> 1g|V[+ V|- |E]).

Bichromatic UG-RkNN search Bichromatic UG-RANN
query is a powerful tool in many real-life applications, includ-
ing business decision and resource allocation in complex



networks, as explained in Sect. 1. Thus, we further explore
bichromatic UG-RkNN search, as defined in Definition 8
based on bichromatic RkKNN retrieval over deterministic
graphs described in Sect. 1.

Definition 8 (Bichromatic UG-RkNN query) Given an
uncertain graph G =(V, E, §2, P), two relevant data node sets
S1, 8> C V, auser-specified parameter 6 (0 < 6 < 1), and a
query node g € V, a bichromatic UG-RkKNN query returns
the objects s;1 € S; that have g as one of their k-nearest
neighbors from S, with the probability being no smaller than
0. Formally,

UG-bRANN(G, q) = {s1 € S1 |
Z Pr(G) > 6}

s1EbRANN(G €@ (G),q)

It is worth noting that the presented SDP and TripS
algorithms can be easily extended to support bichromatic
UG-RENN search, by implementing following two changes.
First, let KANN(G, n, S») denote node n’s k-nearest neighbors
in S> on a graph G, and dé (n, $7) represent the distance
from node n to its kth nearest neighbor in S> on G. For
bichormatic UG-RANN retrieval, we only need to replace
kNN(G, n, S) and the distance dé(n, S) used in SDP and
TripS algorithms with kANN(G, n, S») and dé (n, S2), respec-
tively. Second, to answer bichromatic UG-RkNN search, the
extended SDP will focus on set S only to find the objects
with the probability of being answer objects no smaller than
6. The extended SDP and TripS algorithms can support bichro-
matic UG-RANN query efficiently, as to be demonstrated in
Sect. 7.4.

7 Experimental evaluation

In this section, we present a comprehensive experimental
evaluation. The objectives are threefold. First, we would
like to verify the efficiency of the exact SDP algorithm for
UG-RANN query, and three pruning heuristics, i.e., GSP,
EGR, and PBP. Second, we want to demonstrate the high
performance of TripS algorithm. Finally, we would like to
evaluate the performance of our proposed algorithms for
bichromatic UG-RkANN search. In what follows, we first
present our experimental settings, and then, we report the
experimental results and our findings. All algorithms were
implemented in C++, and all experiments were conducted
on an Intel Core 2 Duo 2.10GHz Virtual Machine with
16GB RAM, running Microsoft Windows 7 Professional Edi-
tion.

Table 8 Statistics of the datasets used

Dataset # of nodes # of edges References

NA 175,813 179,179 [29]

DBLP 1,226,749 5,557,805 [16,24,25,31,36,52,54]
Facebook 4,974 97,754 [24]

STRING 45,340 10,000,000 [23,32,53,55-57,59]
ER 12,500 50,000 [16,24,25,36]

7.1 Experimental setup

Datasets: four real datasets, viz., North America (NA),
DBLP, Facebook, and STRING, are used in our experiments,
representing real uncertain traffic networks, co-authorship
networks, social networks, and PPI networks, respectively,
as summarized in Table 8. Note that in order to show the
popularity of the datasets, Table 8 also cites the specified
work that used those datasets.

— NA contains 175, 813 nodes and 179, 179 edges, repre-
senting the locations and the road segments between two
adjacent locations of North America, respectively.

— DBLP is a weighted collaboration network with 1,226,749
nodes and 5,557,805 edges. Each node denotes an author.
The edge weight is set to the Jaccard distance of the pub-
lished papers of the two nodes, which is based on the
intuition that the more the papers they co-authored, the
closer the relationship between the two authors is.

— Facebook includes a list of user-to-user links from the
Facebook New Orleans network, in total 4, 974 users and
97,754 links. Every node signifies one anonymized user
identifier.

— STRING is a prediction database derived from MINT,
HPRD, BIOGRID, and INTACT, where each node rep-
resents a protein, and each edge stands for an interaction
between two proteins with a confidence score that is used
as the probability value in our study. In our experiments,
we extract 45, 340 proteins with 10,000,000 interactions.

We also generate a synthetic Erdos—Renyi (ER) random
graph, with 12, 500 vertices and 50, 000 edges. Following the
popular methodology used in previous work [16,29,54,59],
we simulate three possible weights for every edge with the
existence probabilities under several typical distributions.
Specifically, the weight distribution dtr,, can follow the Uni-
form (U, for short) distribution or the Gaussian (G, for
short) distribution with mean as original weight @ (in the
original graphs) and variance o2 as 0.1. For the uniform dis-
tribution with mean o and variance o2, it means the weights
are in the range (@ — \/50, w+ «/§a) uniformly, and thus,
it is often abbreviated as Uniform(w — V3o, o + 30).
For the Gaussian distribution with the mean as @ and the



variance o2 as 0.1, it is abbreviated as Gaussian(w, 0.1). In
addition, we use a simple normalized approach to generate
the weight probabilities. It first gets the probabilities follow-
ing the probability distribution dtr,, including the Uniform
(U for short) distribution and the Gaussian (G, for short)
distribution with mean as 0.5 and variance as 0.25. Then, it
normalizes the weight probabilities of one edge to sum up to
one. Note that another simple method to generate probabili-
ties is to allocate the probabilities for them uniformly. Also,
more reasonable and complex techniques can be employed
to set the probabilities. It is worth noting that as confirmed
by the experimental study later, the probability setting is not
very sensitive to the performance of our proposed heuristics
and algorithms.

Algorithms: there are in total six algorithms evaluated in
our experiments, as described below.

— Baseline (i.e., Algorithm 1).

— SDP (i.e., Algorithm 4). It employs three pruning heuris-
tics including GSP, EGR, and PBP to get the exact
UG-RANN query result.

— TripS (i.e., Algorithm 5). It utilizes GSP heuristic to prune
the graph scale and then uses ASSP sampling to derive
the query result.

— GMC (GSP + Monte Carlo sampling). It first prunes the
graph scale by our proposed GSP heuristic, and then,
it derives the query result using Monte Carlo sampling
based on [10].

— GR-l (GSP+ RSS-I). It employs GSP first and then uses
RSS-I technique [24,25] to get the query result.

— GR-Il (GSP+ RSS-II). It gets the query result via utilizing
GSP and RSS-II techniques [24,25].

Itis worth noting that RSS-T and RSS-II are the two special
cases discussed in Sect. 6, where RSS-I partitions the whole
space into w” subspaces, and RSS-II partitions the whole
space into y - (w — 1) + 1 subspaces with w being the number
of different weights for an edge. In addition, we set by default
k=2,0=05,d=0.8, y; =20, and y, = 30 for ASSP, y
= 50 for RSS-I and RSS-II, and sample threshold N; =10 in
every set of experiments. Unless mentioned otherwise, we
report the average query execution time of 20 queries issued
at random nodes.

Parameters: we explore several factors in our experiments,
including weight/probability distribution dtr, graph size (i.e.,
the number of edges | E|), probability threshold 6, data den-
sity d (i.e., |S|/| V|, the rate of the nodes contain data objects
to the total nodes in the graph), average node degree p (i.e.,
|E|/|V]|, the average rate of the number of edges to the num-
ber of nodes), query parameter k, and sample size N. The
settings of all these parameters are summarized in Table 9,
where the default values are shown in bold, and | Dg | denotes
the original number of edges for each graph dataset. In every

Table 9 Parameter ranges and default values

Parameter Range

Weight distribution dtr,,
Probability distribution dtr),

Uniform, Gaussian
Uniform, Gaussian

Graph size |E| 5, 10, 20, 100, 1000, |Dg|

Query threshold 6 0.4,0.5,0.6,0.7
Data density d 0.7,0.8,09, 1.0
Average node degree p 1,2,3,4,5

k (of UG-RkNN query) 1,2,4,8

Sample size N 500, 1000, 1500, 2000

set of experiments, we only change one parameter, with the
rest set to their defaults.

Metrics: we employ the average query time and the prun-
ing rate as the main performance metrics. Specifically, we
employ the pruning rates Rgsp, RegRr, and Rpgp W.r.t.
Heuristic 1 GSP, Heuristic 2 EGR, and Heuristic 3 PBP,
respectively. Note that the pruning rates of GSP, EGR, and
PBP are calculated individually, and they prune the graph
scale, the number of possible graphs, and the number of
data nodes, respectively. The pruning rates are defined as
follows.

— The pruning rate Rggp is the ratio of the number of nodes
pruned by GSP to the total number of nodes |V| in the
. . . _ |V_N gl
original graph, i.e., Rasp = —y7*-
— The pruning rate RggRr equals the ratio of the total num-
ber of equivalent graphs (defined in Definition 6) to the
number of possible graphs w.r.t. the essential uncertain

. Dc
graph G,, i.e., REGR = ||<1L>J(ge)‘\'

— The pruning rate Rpgp is the ratio of the number of data
nodes identified (discarded/qualified) by PBP (denoted
as Pruned(s)) to the number of datanodes S, i.e., Rpgp =

[Pruned(s)|
N ’

In addition to the pruning rate, for these three heuristics,
we also report the average execution time (in seconds) of
GSP (denoted by GSP-time), the times of EGR executed suc-
cessfully (denoted by #EGR), i.e., the number of possible
graphs pruned by EGR | | D¢|, as well as the times of PBP
executed successfully (denoted by #PBP), i.e., the number of
data nodes pruned by PBP |Pruned(s)|.

Furthermore, we introduce three different metrics to mea-
sure the accuracy of sampling algorithms, including the
Fi-score, the root mean square error (RMSE), and the rel-
ative variance. Specifically, the Fi-score is calculated by
I%Lﬁ? where precision P = % and recall R = TPTJr—I}N.
Here, TP, FP, and FN denote the number of true positives,
false positives, and false negatives for a sampling algorithm,

respectively.



The RMSE metric is leveraged to measure the difference
between the result derived by sampling algorithms and the
real result (derived by exact algorithm SDP). The smaller the
RMSE value, the smaller the difference between the result
of sampling algorithm and the real result. For every query
node, let zg denote the exact probability vector of the |S]|
data nodes to be UG-RkNN objects, and z; be the probability
vector derived by a sampling algorithm at the ith time (i =
1,2, ..., 100). The RMSE of the result derived by sampling
algorithms w.r.t. the real result, i.e., the difference between

100 |81 . .
zg and all z;s, is defined as =12 :ll(g(i)[]]_ZO[j])z ,in which
zi[j] is the jth dimensional value of z;, i.e., the probability
of the jth data node in S to be a RkNN object.

In addition, as mentioned in Sect. 6, the MSE metric
becomes the variance for unbiased algorithms including
Monte Carlo sampling and TripS. Hence, following the pre-
vious work on uncertain graphs [16,24,25], we employ
the relative variance to further evaluate the performance
of sampling algorithms, since the exact variances of the
algorithms are intractable due to the fP-hard complexity of
UG-RkNN search. The relative variance of a sampling algo-
rithm (denoted as F ) is defined as o /oy, where o and

oy are the variances of F and GMC algorithms, respectively.
The smaller the relative variance, the better the performance
of the sampling algorithm, as compared with Monte Carlo
sampling. Let z; be the average probability vector of all z;s,
C; be the cosine distance between z; and z,, and C be the

. . Y0 (¢, —C)?
mean of all C;s. The variance o is defined as ==55——.

7.2 Results on exact algorithms

In the first set of experiments, we evaluate the perfor-
mance of SDP under different edge weight distributions dtr,,
and weight probability distributions dtr,. The experimen-
tal results on NA graph are shown in Fig. 6, where four
distribution combinations (i.e., Uy /Up, Uyw/Gp, Guw/Up,
and G,/ G p) are evaluated. It is observed that the execution
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time of SDP algorithm, as well as the execution time of GSP
heuristic, is not very sensitive to weight/probability distribu-
tions. Three heuristics GSP, EGR, and PBP are effective in
most cases. This is because heuristic GSP performs similarly
under different weight distributions, and it is not affected
by the weight probability distributions. Thus, without loss
of generality, in the following experiments, the edge weights
follow Uni form (U,,) distribution, and the probabilities fol-
low Gaussian (G ) distribution by default (i.e., dtry, = Uy,
and dtr, = Gp).

Moreover, in order to further verify the effect of high
weight uncertainty on the algorithm performance, we gener-
ate the weights following Uniform(1, 10), Uniform(1, 100),
and Uniform(1, 1000) over NA graph, where the probability
follows Gaussian(0.5,0.25) by default. As depicted in Fig. 7,
one can see that with the increasing of the weight uncer-
tainty, the execute time of SDP algorithm grows remarkably.
This is because the power of GSP becomes a little weak
for high uncertainty, and therefore, the possible graphs we
have to evaluate grow exponentially, which resulting in much
overhead for query processing. Notably, the large increasing
number of possible graphs we have to evaluate (with the
ascend of weight uncertainty) can also be confirmed by the
remarkable growth on the number of possible graphs pruned
by EGR when the pruning rate of EGR does not vary signifi-
cantly.

The second set of experiments compares the performance
of Baseline and SDP algorithms for UG-RANN search with
various graph sizes, as depicted in Fig. 8. To vary graph size,
we extract connected subgraphs from the original graphs as
the experimental graphs. The extraction follows the same
method used in [29], which expands the graph from a random
selected vertex via breadth-first traversal. Obviously, SDP
outperforms Baseline significantly, when the size of edges is
larger than 10, and the average execution time of Baseline
is around 10° s when edge size is 20. The reason is that the
average query cost of Baseline grows exponentially with the
increasing of edge size, which is consistent with the com-
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plexity of Baseline, i.e., O (w!El- (V|2 -1g|V|+ V|- |E])).
Hence, the time cost of Baseline is unacceptable when edge
size is larger than 20. In other words, Baseline is impracti-
cal on large graphs. In contrast, SDP is equipped with three
effective heuristics GSP, EGR, and PBP, which boost the per-
formance of UG-RkNN search.

Another observation is that GSP and EGR become more
powerful when graphs turn larger in most cases. This is
because when the graph is small, it limits the room for
improvement. GSP takes much less time to prune more than
99% nodes of the original big graphs. It signifies at most 1%
nodes are remained in the essential uncertain graphs. In addi-
tion, the power of PBP drops with the growth of graph size in
most cases. The reason is that as GSP and EGR do not work
efficiently on smaller graph, it gives PBP the chance to prune
more data nodes. However, with the increasing power of GSP
and EGR, fewer data nodes remain for PBP in UG-RANN
retrieval.

The third set of experiments reports the experimental
results with k& varying from 1 to 8, as depicted in Fig. 9.
It is worthwhile to point out that due to the high complexity
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and poor performance of Baseline, Baseline is impractical for
these graphs. Hence, we focus on SDP algorithm only in this
and the rest sets of the experiments. Evidently, the average
query time of SDP ascends significantly with the growth of
k. The reason is that as k grows, the number of nodes in the
essential uncertain graph formed by GSP becomes larger;
therefore, the number of possible graphs we have to evaluate
grows exponentially. It is also consistent with our analysis
presented in Lemma 7 of Sect. 3, where the pruning rate
Rgsp drops with the growth of k. When k turns large, e.g.,
k =4 and 8, the average query time of exact SDP algorithm
is relatively long (even more than 10°s). This time cost is
beyond the scope of acceptance. Notably, the first step of
SDP algorithm, i.e., GSP heuristic, has been conducted com-
pletely. It is important to note that in Fig. 9, we only plot
part of the results (i.e., the CPU time and the pruning rates)
when the average query time is acceptable. The correspond-
ing pruning rates of EGR and PBP are denoted by the dash
“— if the time cost is unacceptable.

The fourth set of experiments verifies the influence of data
density d on the efficiency of SDP. The average query time
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of SDP and the pruning performance of three heuristics on
different datasets are depicted in Fig. 10, with varying d from
0.7 to 1.0. Note that data density d is the ratio of the number
of nodes containing (relevant) data objects to the total num-
ber of nodes, i.e., | S|/|V|. Observed that the average query
time drops as d grows. The reason is that there are more data
objects on the graphs with the growth of d. Therefore, for
a given k, the distance from every node n to its kth nearest
neighbor becomes smaller, resulting in an essential uncertain
graph with smaller size. Thus, query performance improves.
Itis obvious that all the three heuristics are consistently effec-
tive in all cases.

The fifth set of experiments investigates the impact of
parameter 6 on UG-RkNN search, with the results plotted
in Fig. 11. It is observed that the average query time of the
algorithms is not very sensitive to 8. This is because 6 only
affects the performance of PBP heuristic, which is employed
in the final refinement step of UG-RAKNN query. Moreover,

all the heuristics demonstrate significant pruning power in all
cases. Note that due to the similar performance under various
0s, we only report the corresponding results on NA and DBLP
for clarity and simplicity.

We also study the effect of graph structure on the perfor-
mance of SDP. We show the average query time of SDP and
the pruning efficiency of heuristics on E R dataset in Fig. 12
by changing the average node degree p. Note that average
node degree p denotes the average ratio of the number of
edges to the number of nodes, i.e., |E|/|V|. Specifically, we
set p to 1, 2, 3, 4, and 5, respectively, by selecting/adding
the corresponding proportion of the edges from every orig-
inal graph (with a given node set V). Clearly, the average
query time becomes larger with a high node degree p. This
is because for a specified number of nodes, the size of edges
grows with p, incurring a large number of possible graphs
during search. The average query time increases accordingly.
This phenomenon is consistent with our analysis presented in
Lemma 7 of Sect. 3, where the pruning rate Rggp decreases
with the growth of p. Also, we again observe that all three
heuristics perform efficiently in all cases.

In total, SDP algorithm has a good performance, compared
with Baseline. It benefits from the three effective heuristics
including GSP, EGR, and PBP.

7.3 Results on sampling algorithms

In this subsection, we verify the efficiency of TripS algorithm
on UG-RiNN search. First, we present the experimental
results of SDP and TripS algorithms with sample size being
1000 under various k values in Table 10. We can observed that
TripS algorithm performs better than SDP in several orders
of magnitude for all datasets. This is because TripS answers
UG-RkNN query approximately via sampling 1000 possible
graphs (instead of evaluating all the possible graphs). The
processing time increases with the growth of k. The reason
behind is as same as the explanation of Fig. 9. Note that
in Table 10, some results of SDP are denoted by the dash
“—.” meaning that the corresponding query time of exact
SDP algorithm is beyond the scope of acceptance.

Second, we evaluate the accuracy of the sampling algo-
rithms (including GMC, GR-I, GR-Il, and TripS) by three

Table 10 Average query time

(in seconds) of SDP and TripS Dataset k=1 k=2 k=4 k=8

algorithms under different k SDP TripS SDP TripS SDP TripS SDP TripS

values NA 1.306 0.001 1.744 0.022 499.262 0.063 - 0.115
DBLP 2.940 0.001 636.156 0.043 - 6.375 - 32.729
Facebook 3.691 0.001 11,635.800 0.049 - 1.177 - 7.100
STRING 110.257 0.021 3,290.841 0.106 - 0.743 - 3.526
ER 3.278 0.018 4,585.634 0.046 - 0.116 - 14.729




Table 11 RMSE of the result from sampling algorithms w.r.t. the exact
result

Dataset GMC GR-I GR-ll TripS
NA 0.573 0.575 0.572 0.569
DBLP 0.749 0.749 0.749 0.733
Facebook 0.512 0.512 0.511 0.500
STRING 0.723 0.722 0.721 0.708
ER 0.511 0.511 0.510 0.500

metrics, i.e., the Fj-score, the root mean square error
(RMSE), and the relative variance. From the experimental
results, we observe that all the four algorithms have identi-
cal F-score on every dataset, e.g., the Fi-score is 0.696 on
DBLP dataset with & = 0. This is because these algorithms
find the same answer objects (with different probabilities to
be RkKNN objects) in most cases, while the probability infor-
mation is not measured by Fj-score metric. In fact, what
distinguishes these algorithms is usually the probabilities to
be RkNN objects. This exactly reveals the shortcoming of the
F1-score metric for sampling algorithms. Due to this observa-
tion, we skip the experimental results w.r.t. Fj-score metric.

Table 11 lists the RMSE between the result of sampling
algorithms and the real result. Notice that TripS consistently
generates a smaller RMSE than its competitors, because of
the adaptive recursive stratified sampling used in TripS. In
other words, TripS returns the result that is the closest to the
real result.

Figure 13 shows the relative variances and the average
query time of sampling algorithms with varying sample size
N. Note that we use the line (bar) to represent the relative
variance (query time). Clearly, under the comparable aver-
age query time, TripS consistently achieves a higher accuracy
(indicated by a lower relative variance) than GMC, GR-I, and
GR-Il. This is because TripS shares the same time complexity
with the competitors, and thus, their runtime is similar, but
TripS adopts an adaptive recursive stratified sampling tech-
nique to achieve a lower relative variance. It also signifies
that our ASSP technique employed in TripS is superior to its
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competitors including Monte Carlo sampling, RSS-I sam-
pling, and RSS-II sampling [24,25]. In addition, the relative
variance drops (i.e., the accuracy improves) and the query
time increases with the increasing sample size. The reason is
that more RKNN queries need to be conducted when there are
more sampled possible graphs, resulting in more expensive
query cost and higher accuracy.

To sum up, TripS performs the best for UG-RANN search.
In addition, we would like to highlight that both the F-score
metric and the RMSE metric are inapplicable if the exact
algorithm for UG-RANN search is impractical. Thus, due
to the gP-hard complexity of UG-RkANN query, the relative
variance is a relatively appropriate metric for sampling algo-
rithms.

7.4 Results on bichromatic UG-RANN search

In order to verify the efficiency of the algorithms for pro-
cessing bichromatic UG-RkNN queries, we first report the
average query time of SDP algorithm and the pruning rates
of GSP, EGR, and PBP heuristics under default settings, as
listed in Table 12. As expected, similar to the performance
reported in the above (monochromatic) UG-RANN retrieval,
three pruning heuristics are always effective. Furthermore,
GSP plays an important role in SDP algorithm for bichro-
matic UG-RkNN search.

In addition, we also report the accuracy and the aver-
age query time of GMC, GR-I, GR-Il, and TripS algorithms
in Tables 13 and 14, respectively. Compared with the perfor-
mance of SDP shown in Table 12, it is obvious that TripS is
much faster than SDP algorithm in all cases. From Tables 13
and 14, we can conclude that TripS can support bichromatic
UG-RANN queries with high accuracy and comparable time,
compared with state-of-the-art algorithms including GMC,
GR-l, and GR-ll. Note that in this set of experiments, the
data node set S in default (i.e., |S| = 0.8 x |V|) is ran-
domly partitioned into two equal-sized node sets S7 and S
for bichromatic UG-RkNN search. Due to the same complex-
ity of the algorithm as that of (monochromatic) UG-RANN
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Table 12 Results on exact bichromatic UG-RkNN search

Dataset SDP(sec) GSP (%) EGR(%) PBP(%)
NA 3,571 99.99 12.06 21.83
DBLP 6,271 99.99 1.66 4.68
Facebook 167,014 99.97 11.94 6.45
STRING 5,450 99.99 60.49 8.33
ER 11,782 99.96 26.44 12.72
Table 13 Comparison of the accuracy (relative variance)

Dataset GMC GR-I GR-lI TripS
NA 1 0.917 0.892 0.815
DBLP 1 0.805 0.802 0.740
Facebook 1 0.957 0.947 0.832
STRING 1 0.804 0.766 0.486
ER 1 0.257 0.242 0.224
Table 14 Comparison of average query time (in seconds)

Dataset GMC GR-I GR-lI TripS
NA 3.230 3.119 3.159 3.129
DBLP 48.041 47.516 47.602 47.857
Facebook 20.608 20.485 20.518 20.614
STRING 32.162 32.503 32.389 32.268
ER 29.880 29.376 29.195 29.079

query, we omit the experimental results for bichromatic
UG-RANN search under different parameters.

8 Related work

In this section, we review the existing work on RkNN queries
and the management of uncertain graphs.

8.1 Reverse k-nearest neighbor queries

RANN search has received considerable attentions in the last
decade, since the concept of reverse nearest neighbor (RNN)
was first introduced in [18]. Many algorithms have been
proposed in answering RNN/RANN query and its variants
in the literature [9,11,12,20,37,41,43,47-51]. Probabilistic
RANN retrieval on uncertain data has also been extensively
studied. Lian and Chen [26] study the PRNN query, which
retrieves the data objects with their probabilities being RNNs
greater than or equal to a user-specified threshold, and pro-
pose an effective pruning method, i.e., geometric pruning
(GP). Cheema et al. [6] explore the problem of RNN queries
on uncertain data, and develop novel pruning rules that
can effectively prune the objects that cannot be the answer

objects. Bernecker et al. [S] developed a general frame-
work for probabilistic reverse nearest neighbor queries on
uncertain data. Xu et al. [49] explore interval reverse nearest
neighbor (IRNN) queries over moving objects, which return
the objects that maintain nearest neighboring relations to the
moving query objects for the longest time in a given inter-
val. IRNN actually considers location uncertainty of moving
objects.

In addition, Yiu et al. [52] investigate the RKNN query
on graphs and present a fundamental lemma that can be
employed to prune the search space. Safar et al. [39] show
how Voronoi diagram can be applied to spatial query pro-
cessing, and in particular to RNN search. Li et al. [22] study
continuous RkNN search on road networks. They utilize a
new data structure, called DLM tree, to represent the whole
monitoring region of a continuous RKNN query. Cheema et
al. [7] adopt a filter-and-refinement technique to solve contin-
uous RkNN search on Euclidean spaces and road networks,
respectively. Wang et al. [46] utilize the concept of influ-
ence zone to address the problem of continuous monitoring
of RkNN queries in road networks. The influence zone is a
region in the network such that a client ¢ is the RkKNN if and
only if it lies inside this zone.

Note that all the aforementioned methods are unsuitable
for UG-RANN search because they either only focus on the
deterministic graph (network) or only consider the uncer-
tainty of the data but not uncertain structure of the graph.

8.2 Uncertain graphs

Recently, how to manage uncertain graphs has become
an increasingly important research topic. There are four
main research lines on uncertain graphs: (i) the queries
based on shortest path distances over uncertain graphs,
such as k-nearest neighbor search on uncertain graphs [36],
aggregate nearest neighbor retrieval on uncertain graphs
[29], and distance-constraint reachability computation on
uncertain graphs [16]; (ii) pattern mining on uncertain
graphs, e.g., frequent subgraph pattern mining over uncer-
tain graphs [8,23,31,59], finding (top-k) maximal cliques
on uncertain graphs [32,58], and uncertain graph data min-
ing [17]; (iii) subgraph/ supergraph (similarity) search over
uncertain graphs, such as finding reliable subgraph from
probabilistic graphs [15] and subgraph/ supergraph (sim-
ilarity) search on uncertain graphs [53,55-57]; and (iv)
keyword search over uncertain graphs [27,54]. In addition,
there are some studies on the representation of uncer-
tain graphs [1,34] and sampling over uncertain graphs
[10,24,25].

We want to highlight that our work is different from
the above efforts on uncertain graphs, because we focus on
RANN retrieval over uncertain graphs. This is, to the best of
our knowledge, the first attempt on UG-RANN search.



9 Conclusions

In this paper, we study the problem of reverse k-nearest
neighbor queries on uncertain graphs (UG-RkNN query for
short). We first introduce GSP heuristic to replace the origi-
nal uncertain graph with a much smaller essential uncertain
graph, which reduces the size of uncertain graph significantly
for UG-RkNN search. The effectiveness of GSP is guaranteed
by a theoretical analysis, and is confirmed via experimental
study. Then, we propose EGR heuristic to remove the equiva-
lent possible graphs to further reduce the number of possible
graphs. A novel concept of graph conditional dominance
relationship is introduced to enable an efficient implemen-
tation for EGR. We also present PBP heuristic to minimize
the validation cost of the data nodes. Combining these three
newly presented heuristics, we propose SDP algorithm to
support exact UG-RkNN search. We further present a novel
sampling algorithm, i.e., TripS, based on an adaptive strati-
fied ASSP sampling and GSP heuristic, for UG-RkNN search.
ASSP is unbiased, and its variance is at least as good as that
of Monte Carlo sampling. We also generalize our heuristics
to tackle bichromatic UG-RANN retrieval. Extensive exper-
iments using both real and synthetic graphs demonstrate the
efficiency of our proposed algorithms. In the future, we plan
to explore UG-RkNN search under the graph model with
uncertain nodes.
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Appendix
A Proof of Theorem 1

Proof Let t; be the rate of the number of samples (N;) to
the number of population (L;) for stratum i, as defined in
Eq. 10. Based on the theorem of mathematical analysis [38],
for stratum #, the variance of the sample Sl.2 and the variance
of the simple random sampling Var(F;) are given in Egs. 11
and 12, respectively.

ti = (10)
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=N i
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Based on these three equation, let 7 represent the total
number of strara in stratified sampling, and F; denote the
estimator of the true value F in the stratum i, where 7; =
L;/L. Then, we have
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B Proof of Lemma 10

Proof
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[38], Thus, we have
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C Proof of Theorem 2
Proof On the one hand,
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