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Mitigating the impact of unreliability of information
retrieval based bug localization tools

Tien-Duy B. Le1 ·Ferdian Thung1 ·David Lo1

© Springer Science+Business Media New York 2016

Abstract Information retrieval (IR) based bug localization approaches process a textual
bug report and a collection of source code files to find buggy files. They output a ranked
list of files sorted by their likelihood to contain the bug. Recently, several IR-based bug
localization tools have been proposed. However, there are no perfect tools that can success-
fully localize faults within a few number of most suspicious program elements for every
single input bug report. Therefore, it is difficult for developers to decide which tool would
be effective for a given bug report. Furthermore, for some bug reports, no bug localization
tools would be useful. Even a state-of-the-art bug localization tool outputs many ranked lists
where buggy files appear very low in the lists. This potentially causes developers to dis-
trust bug localization tools. In this work, we build an oracle that can automatically predict
whether a ranked list produced by an IR-based bug localization tool is likely to be effec-
tive or not. We consider a ranked list to be effective if a buggy file appears in the top-N
position of the list. If a ranked list is unlikely to be effective, developers do not need to
waste time in checking the recommended files one by one. In such cases, it is better for
developers to use traditional debugging methods or request for further information to local-
ize bugs. To build this oracle, our approach extracts features that can be divided into four
categories: score features, textual features, topic model features, and metadata features. We
build a separate prediction model for each category, and combine them to create a compos-
ite prediction model which is used as the oracle. We name this solution APRILE, which
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stands for Automated PRediction of IR-based Bug Localization’s Effectiveness. We fur-
ther integrate APRILE with two other components that are learned using our bagging-based
ensemble classification (BEC) method. We refer to the extension of APRILE as APRILE+.
We have evaluated APRILE+ to predict the effectiveness of three state-of-the-art IR-based
bug localization tools on more than three thousands bug reports from AspectJ, Eclipse,
SWT, and Tomcat. APRILE+ can achieve an average precision, recall, and F-measure of
77.61 %, 88.94 %, and 82.09 %, respectively. Furthermore, APRILE+ outperforms a base-
line approach by Le and Lo and APRILE by up to a 17.43 % and 10.51 % increase in
F-measure respectively.

Keywords Text classification · Information retrieval · Bug reports · Bug localization ·
Effectiveness prediction

1 Introduction

Software debugging is an important task to maintain software quality. However, debugging
is an expensive task as it requires much time and manual labor to find root causes of bugs
and correctly fix them. In 2002, software bugs are reported to cost US economy more than
50 billion dollars annually (Tassey 2002). Therefore, there are demands to develop tools
which make debugging less costly.

To reduce debugging cost, several techniques have been proposed to support developers
in locating the root cause of bugs. One family of techniques is referred to as information
retrieval (IR) based bug localization techniques (Zhou et al. 2012; Saha et al. 2013; Wang
and Lo 2014). An IR-based bug localization technique takes as input a textual bug report and
a collection of source code files. It outputs a ranked list of files sorted by their suspiciousness
scores which are computed by considering the textual similarity of the files to the input
bug report. This ranked list of files is then forwarded to developers for manual inspection.
Developers can inspect the files one-by-one starting from the most suspicious to the least
suspicious ones.

Recently, Kochhar et al. have surveyed hundreds of developers from more than 30 coun-
tries on how they perceive fault localization (Kochhar et al. 2016). Their study highlights
that a large majority of the developers value research on fault localization and would like
to use fault localization tools if they meet some criteria. One of the criteria is the trustwor-
thiness of a fault localization tool, which is addressed in this work. Moreover, Xia et al.
have conducted a study on a fault localization tool and find that using a trustworthy tool,
developers can significantly reduce the cost involved in localizing a fault (Xia et al. 2016).
Imagine bug reports that are automatically populated with a list of relevant files by an IR-
based bug localization tool. In order to help developers, start and finish them more quickly,
it would be crucial to know whether the automatically generated results were reliable or
not. If an IR-based bug localization tool is effective, developers should be able to find a
buggy file by inspecting just a few files at the top of the ranked list. Unfortunately, the cur-
rent state-of-the-art IR-based bug localization tools are far from perfect. Currently, there is
no perfect bug localization tool that can successfully localize faults within a few number of
most suspicious program elements for every single input bug report. It is unclear whether
there will ever be such a tool in the future. These mean that there will be bug reports where
a more advanced bug localization tool is bad (i.e., ineffective), but a less advanced one is
good at these bug reports. With the many IR-based bug localization tools proposed in the
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literature, e.g., Zhou et al. (2012); Saha et al. (2013); Wang and Lo (2014), etc., it is difficult
for developers to decide which tool would be effective for a given bug report. Moreover, for
some bug reports, no bug localization tools would be useful. Developers would waste time
to go through the output of bug localization tools. Recently, Parnin and Orso conducted a
user study on an automatic debugging tool, and find that developers do not find an auto-
matic debugging tool useful if they cannot find the root cause of a bug early in a ranked
list (Parnin and Orso 2011). These ineffective cases can make developers lose confidence in
bug localization tools. A similar observation was made for many static analysis bug finding
tools (e.g., FindBugs (Hovemeyer and Pugh 2004) and Lint (Johnson 1978)) that typically
return many false positive warnings, which potentially cause developers to distrust their out-
puts (Heckman and Williams 2011; Kim and Ernst 2007; Johnson et al. 2013; Ayewah and
Pugh 2010).

In this work, we mitigate the impact of the unreliability of IR-based bug localization
tools by proposing a prediction framework that is able to compute the likelihood whether
an output of a bug localization tool is effective or not. We consider the output of a bug
localization tool as effective if a buggy file is among the top-N files. With the help of our
approach, developers can decide whether they want to use the output of a bug localization
tool or not. If the output of a bug localization tool is unlikely to be effective, developers are
better off to use traditional debugging methods to find the bug.

Our approach can potentially be integrated to an IDE and a bug tracking system. Given
a new bug report to be debugged in a bug tracking system (e.g., JIRA or Bugzilla), our
approach would run a number of IR-based bug localization techniques in the background,
and predicts their effectiveness. It will then pick the bug localization tool’s output that is
most likely to be effective, and highlight potentially buggy files to developers in the IDE. If
none of the outputs are likely to be successful, our approach will notify the developer that
there is no good recommendation and the developer can either improve the description of the
bug report or proceed with traditional debugging. Our approach can also be used standalone.
For this setting, developers can directly input the directory containing the source code files,
and the text in a bug report that he/she wants to debug, and our approach can process this
input to produce a list of potentially buggy files, or declare that no good recommendation
can be made.

To predict the effectiveness of a bug localization instance, i.e., the application of a bug
localization tool on a bug report, we extract important features from the input bug report and
the suspiciousness scores that are output by the bug localization tool. The set of extracted
features can be divided into four categories: features extracted from suspiciousness scores,
features extracted from words that appear in the textual contents of a bug report, features
extracted from topic models learned from the textual contents of a bug report, and features
extracted from the metadata of a bug report. For each feature category subset, we learn
a separate prediction model from a training dataset using a machine learning technique
(i.e., Support Vector Machine). A prediction model outputs a score given a bug localiza-
tion instance indicating the likelihood that the instance is effective. From the resultant four
models, one for each feature category, we create a final prediction model which combines
the four models by computing a weighted sum of their prediction scores. The weights are
tuned to maximize the prediction result on the training dataset. Then, we use the final
prediction model to predict the effectiveness of bug localization instances whose effective-
ness are unknown. We name this solution APRILE (Automated PRediction of IR-based
Bug Localization’s Effectiveness), which was introduced in our conference paper (Le et al.
2014b).
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In this journal paper, we propose an extension of APRILE and call it APRILE+. Intu-
itively, a combination of several prediction approaches and a voting scheme generally
outperforms a single learner (Bauer and Kohavi 1999; Breiman 1996a; Lemmens and Croux
2006; Prasad et al. 2006). Therefore, APRILE+ extends APRILE by integrating APRILE
with two other components that are learned using our bagging-based ensemble classifica-
tion (BEC) method. Each of these three components will output a recommendation and
APRILE+ will output a final recommendation based on majority voting, i.e., the output
(effective or ineffective) that is recommended by at least two out of the three components
will be the final prediction output.

We have evaluated the performance of APRILE+ to predict the effectiveness of state-of-
the-art bug localization techniques (i.e., BugLocator (Zhou et al. 2012), BLUiR (Saha et al.
2013), and AmaLgam (Wang and Lo 2014)) which are applied on a dataset of 3,800 bugs
from AspectJ, Eclipse, SWT, and Tomcat. Among these bugs, 3,459 bugs1 from AspectJ,
Eclipse, and SWT were used to evaluate state-of-the-art IR-based bug localization tools.
Our experimental results show that APRILE+ can achieve an average precision, recall,
and F-measure of 77.61 %, 88.94 %, and 82.09 % with effectiveness criteria of N = 10,
respectively.

In terms of F-measure (i.e., the harmonic mean of precision and recall), APRILE+ out-
performs a baseline based on the approach proposed by Le and Lo (Le and Lo 2013; Le
et al. 2014a) by up to 17.43 %. Le and Lo proposed an approach that predicts the effective-
ness of a spectrum-based bug localization tool, e.g., Tarantula (Jones and Harrold 2005).
Spectrum-based bug localization tools analyze execution traces rather than bug reports. We
adapt their approach to predict the effectiveness of an IR-based bug localization tool and
use it as the baseline. We have also compared the performance of APRILE+ against the per-
formance of APRILE and find that APRILE+ can outperform APRILE for all datasets by
up to a 10.51 % increase in F-measure.

Compared to the existing body of work in machine learning, our approaches (APRILE+
and APRILE) are novel in the following aspects:

(i) Although bagging based methods are quite popular, they have not been used for pre-
dicting effectiveness of bug localization instances. We are the first to apply a bagging
based method to predict effectiveness of IR-based bug localization instances.

(ii) Although individual parts of APRILE+ are not novel, the composition is not novel.
In fact, not all classification algorithms can be composed with APRILE, and result in
improvement as we have achieved. We have investigated a number of compositions
and find a working one.

(iii) The features that we extract to characterize IR-based bug localization instances are
peculiar of the software engineering problem being tacked (i.e., the prediction of the
effectiveness of IR-based bug localization tools).

The contributions of our work (inclusive of our preliminary conference paper) are as
follows:

1. We propose a comprehensive list of features extracted from an input bug report and
suspiciousness scores. Our features are divided into four categories: score, text, topic
model, and metadata features.

1https://bugcenter.googlecode.com/files/BugLocator.zip

https://bugcenter.googlecode.com/files/BugLocator.zip
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2. We propose a framework APRILE that utilizes all feature categories to predict the effec-
tiveness of an IR-based bug localization tool. For each feature category, we create a
separate prediction model trained by Support Vector Machine (SVM) algorithm. We
then construct a final model which combines the four prediction models.

3. We propose an extended framework APRILE+ which extends APRILE by combin-
ing it with two additional components learned using our Bagging-based Ensemble
Classification (BEC) approach. The three models are combined by integrating the
recommendations made by them using majority voting.

4. We evaluate our approach on a dataset of 3,800 bug reports from four software projects.
The empirical results show that APRILE+ performs well for various datasets and
settings.

We organize the remainder of our paper as follows. In Section 2, we discuss back-
ground information on IR-based bug localization, and ensemble learning. Then, we present
APRILE and APRILE+ in Section 3. Next, Section 4 describes our experiment settings and
results. We discuss related work in Section 6. Finally, we conclude and present future work
in Section 7.

2 Background

In this section, we discuss some background materials on IR-based bug localization and
ensemble learning.

2.1 IR-Based Bug Localization

An IR-based bug localization approach takes as input a textual bug report and a collection
of program source code files. Its output is a ranked list of files sorted by their likelihood
to be a buggy file that needs to be fixed to resolve the bug report. This ranked list is then
manually inspected from the beginning until the buggy files are identified.

Recently, many IR-based bug localization tools have been proposed (Zhou et al. 2012;
Saha et al. 2013; Wang and Lo 2014). The main idea behind an IR-based bug localization
tool is that a bug report and buggy files are likely to share common words. Also, if a program
file has higher textual similarity to the bug report than other files, it is more likely to con-
tain the bug. By deploying text retrieval models, IR-based bug localization tools calculate
similarity scores between a bug report and program files. Next, program files are sorted in
descending order of their textual similarity scores, and forwarded to developers for manual
investigation.

IR-based bug localization first extracts text that appear in summary and description
fields of bug reports. It also extracts comments and identifiers that appear in source code
files. Each bug report and source code file can then be represented by a textual document.
Next these documents are input to a text preprocessing procedure which consists of three
main steps: text normalization, stopword removal, and stemming. These steps are described
below:

– Text Normalization: In this step, special symbols and punctuation marks are removed
from a document. Next, the document is split into its constituent words. If a word is an
identifier in a source code file, it is again split into smaller words following the Camel
casing convention (e.g., “processFile” is split into “process” and “file”).
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Fig. 1 Information Retrieval based Bug Localization Framework

– Stopword Removal: In this step, we remove English stopwords2 from the normalized
document. These stopwords frequently appear in many documents and do not help
much in differentiating one document from another.

– Stemming: In this step, words are transformed to their root forms. For example,
“localized”, “localization”, “localize”, and “locally” are all simplified to “local”.

After the above steps are performed, the document representing a bug report is then com-
pared to documents representing source code files using various text retrieval models. These
text retrieval models assign weights to words in the documents and, based on common words
and their weights, compute similarity of one document and another. The details of the text
retrieval model differ for different bug localization techniques. Figure 1 shows the process
of generating a ranked list of source code files for an input bug report.

The state-of-the-art approaches are BugLocator proposed by Zhou et al. (2012), BLUiR
proposed by Saha et al. (2013), and AmaLgam proposed by Wang and Lo (2014). We
describe the details of these approaches below.

BugLocator BugLocator (Zhou et al. 2012) processes a bug report and produces a ranked
list of candidate buggy files based on several heuristics. The first heuristic is a bug report
and its relevant buggy files are likely to share similar words. The second heuristic is larger
files are more likely to be buggy. The third heuristic is two bug reports that are similar to
each other (in terms of their textual descriptions) are likely to be mapped to similar buggy
files.

2http://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html

http://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html
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To make use of the first and second heuristics, BugLocator compares the pre-processed
words in the bug report with the pre-processed words in each source code file. The com-
parison is performed using a revised vector space model (rVSM) which is an extension of
the standard vector space model (VSM). A vector space model (VSM) represents words in
a bug report as a vector, and words in a source code file as another vector. The similarity
of the bug report and the source code file is computed by taking the cosine similarity of
the two vectors, which is the dot product of the two vectors normalized by the product of
the two vectors’ magnitudes (Manning et al. 2008). rVSM extends VSM by multiplying the
cosine similarity score with a weight that is larger for larger source code files to produce
the rVSMScore – this is based on the second heuristic.

To make use of the third heuristic, BugLocator compares a new bug report against histor-
ical bug reports that have been fixed earlier. BugLocator then identifies files that are fixed
to resolve these similar past historical bug reports and computes their likelihood to be the
relevant buggy files of the new bug report (SimiScore). The rVSMScore and the SimiScore
are then combined together to produce a final score by taking their weighted sum. Source
code files are then sorted based on their final scores and the ranked list of files are presented
to developers to help them in debugging.

BLUiR BLUiR (Saha et al. 2013), proposed by Saha et al., improves the performance of
BugLocator by making use of structured information retrieval. Rather than treating each
bug report as one textual document, it splits the bug report into several parts: summary and
description. Each part corresponds to a field in a bug report – summary refers to a few-
word text that outlines a bug report, while description refers to a few-sentence text that
elaborates the symptoms of the bug and/or conditions that lead to failures that are caused by
the bug. Also, BLUiR breaks a source code file into several parts: class, method, variable,
and comments. These parts correspond to words that appear in class names (class), method
names (method), variable names (variable), and comments (comments). To compute the
similarity of a bug report to a source code file, BLUiR compares the similarity of each part
of the bug report to each part of the source code file. These similarity scores are summed
up together to produce the final score. Saha et al. have shown that BLUiR outperforms
BugLocator.

AmaLgam AmaLgam (Wang and Lo 2014), proposed by Wang and Lo, also uses struc-
tured information retrieval like BLUiR, however, it considers additional heuristics that are
not considered by BLUiR. Similar like BugLocator, AmaLgam also compares a new bug
report to historical bug reports that have been fixed before. Additionally, AmaLgam consid-
ers information gleaned from the version control system to identify files that are more likely
to be buggy. Files that are buggy many times before are likely to continue to be buggy in the
future. AmaLgam amalgamates these heuristics to create a more effective bug localization
technique. Wang and Lo have shown that AmaLgam outperforms BLUiR.

2.2 Bagging Method

Bagging (Breiman 1996b), which stands for bootstrap aggregation, is a method to improve
accuracy and stability of classification models (i.e., classifiers). Despite of its simplicity,
bagging is an effective method for ensemble learning (i.e., combining multiple classification
models) as it reduces variance and avoids overfitting. Originally, the method is proposed
to work with tree-based models, but it is applicable to other classification models. Given
a training data, bagging method creates several samples (with replacement). Each sample
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is referred to as a bootstrap sample, and used for constructing a base classification model.
Subsequently, the output of these models are combined by voting to return one final output.

3 Proposed Approach

In this section, we first describe information of extracted features in Section 3.1. Then,
Section 3.2 discusses technical aspects of APRILE+.

3.1 Feature Extraction

In this section, we list features that we extract from a bug localization instance. These
include features that we extract from suspiciousness scores produced by a bug localization
tool (score features), features that we extract from words that appear in textual contents of
an input bug report (text features), features that we extract from topic distributions of the
bug report (topic model features), and features that we extract from metadata of the bug
report (metadata features). The following sub-sections describe these features one by one.

3.1.1 Score Features

Table 1 shows a list of features that we extract from the suspiciousness scores. A bug local-
ization tool outputs a suspiciousness score for every source code file. In the table, features

Table 1 List of Score Features
ID Description

Raw Scores (20 features)

R1 Highest suspiciousness score

R2 Second highest suspiciousness score

Ri ith highest suspiciousness score
(3 ≤ i ≤ 20)

Simple Statistics of Raw Scores (5 features)

SS1 Mean of {R1, . . . ,R20}
SS2 Median of {R1, . . . ,R20}
SS3 Mode of {R1, . . . ,R20}
SS4 Variance of {R1, . . . ,R20}
SS5 Standard deviation of {R1, . . . ,R20}

Gaps (21 features)

G1 R1 − R2

G2 R2 − R3

Gi Ri − Ri+1(3 ≤ i < 20)

Gmin Min of {G1, . . . ,G19}
Gmax Max of {G1, . . . ,G19}
Relative Differences (18 features)

RD1
R2−R20
R1−R20

RD2
R3−R20
R1−R20

RDi
Ri+1−R20
R1−R20

(3 ≤ i ≤ 18)
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R1 to R20 are the suspiciousness scores of the top-20 files in a ranked list. If the suspicious-
ness scores of top ranked files are relatively low, then the instance is likely to be ineffective.
The next five features, SS1 to SS5, are simple statistics of the top-20 suspiciousness scores.
Next, features G1 to G19, Gmin, and Gmax capture absolute differences between two con-
secutive suspiciousness scores. If the difference between two consecutive scores are large,
the corresponding two files are very different from each other. An effective bug localiza-
tion instance should be able to separate buggy files from other files. Finally, the last 18
features, RD1 to RD18, capture how diverse the values of R1 to R20 are. The suspiciousness
scores of top-ranked files corresponding to an effective bug localization instance are likely
to be diverse. If all files are given the same suspiciousness score, then the bug localization
instance will be ineffective.

3.1.2 Text Features

We extract text from the summary and description fields of a bug report, and use them as
text features of a bug localization instance. Table 2 shows a list of features that we extract
from the textual contents of a bug report. The first feature in our list (TRACE) has a boolean
value. Its value is 1 if the summary or description field of a bug report contains a stack trace.
Otherwise, its value is 0. A program stack trace usually contains clues leading to a buggy
file as it contains names of relevant program files (e.g., “at org.aspectj.EclipseFactory.from-
Binding(EclipseFactory.java:202)”). Hence, the existence of a program stack trace can help
an IR-based bug localization tool to effectively localize bugs. Furthermore, we consider
each word in a bug report as a feature, and its value is the number of times the word appears
in the bug report. Before selecting words from bug reports as features, we perform text
preprocessing that is described in Section 2.1.

3.1.3 Topic Model Features

Topic modeling is a technique to discover latent topics in a collection of documents. These
latent topics are inferred based on the occurrences of words in the documents. One of the
most popular topic modeling techniques is Latent Dirichlet Allocation (LDA) (Blei et al.
2003). LDA posits that each document is a mixture of topics and each word in the document
is associated to a topic. Given a document, LDA generates its topic distribution, which
corresponds to the probability of each topic to be assigned to the document. We apply Latent

Table 2 List of text features
ID Description

TRACE One, if there is a stack trace in the summary or description
fields of a bug report. Zero, otherwise.

Fw1 Number of times word w1 occurs in the summary and
description fields of a bug report.

. . .

Fwi
Number of times word wi occurs in the summary and
description fields of a bug report.

. . .

Fwn Number of times word wn occurs in the summary and
description fields of a bug report.
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Dirichlet Allocation (LDA) (Blei et al. 2003) to extract a number of features from bug
reports. LDA accepts a number of input parameters:

1. k, which is the number of topics that should be inferred from the input documents (i.e.,
bug reports).

2. α, which affects the topic distributions per documents. Higher values of α make topics
more uniformly distributed (i.e., better smoothing of topics) in each document.

3. β, which governs the word’s distributions per topics. Higher values of β lead to words
more uniformly distributed in every topic.

4. n, which is the number of Gibbs’s iterations i.e., the number of times Gibbs sampler is
invoked (Blei et al. 2003).

The output of applying LDA is a topic-model that contains the following information:

1. k topics, where each topic is a distribution of words.
2. Probability of topic t to occur in bug report br .
3. Topic assigned to word w in bug report br .

Each time LDA is applied, it creates a topic model Mk where k is the number of topics.
For our approach, we apply LDA with k ∈ {5, 10, 15} to infer three topic model M5, M10,
M15. Then, we capture interesting features from the three topic modes. Importantly, LDA
models can be used to estimate topic probabilities of an unseen bug report that does not
belong to the training corpus (Blei et al. 2003). Therefore, in deployment phase, we calculate
topic features (i.e., topic probabilities) of emerging bug reports without updating M5, M10,
and M15 models. However, new bug reports might have hidden topics that one single topic
model cannot capture. For that reason, we construct a number of different topic models (i.e.,
M5, M10, and M15) in training phase to maximize the coverage on hidden topics of new bug
reports. Table 3 lists features that we extract from these models.

For each topic model Mk (k ∈ {5, 10, 15}), we use the topic probabilities of a bug report
as the features of the corresponding bug localization instance. Each topic is an abstraction
of a set of words. The set of topics inferred by a topic modeling technique based on the
number of topics setting k represents the level of abstraction. The higher the value of k is,

Table 3 List of topic model
features. Mk is a topic model
with the number of topics set to k

(k ∈ {5, 10, 15})

ID Description

Raw Topic Probabilities

TM1
k Probability of the 1st topic appearing in

Mk

TM2
k Probability of the 2nd topic appearing

in Mk

TMi
k Probability of the ith topic (3 ≤ i ≤ k)

appearing in Mk

Simple Statistics of Topic Probabilities in Mk

TS1k Max of {TM1
k, . . . ,TM

i
k}

TS2k Median of {TM1
k, . . . ,TM

i
k}

TS3k Variance of {TM1
k, . . . ,TM

i
k}

TS4k Standard deviation of {TM1
k, . . . ,TM

i
k}

TS1avg (TS15 + TS110 + TS115)/3
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the lower the abstraction level is. By using multiple topic models with various k values, we
capture information from many different abstraction levels in order to maximize the chance
to differentiate bug reports corresponding to effective bug localization instances from other
reports that lead to ineffective instances. In addition to the raw topic probabilities, we also
compute simple statistics of these probabilities as features.

3.1.4 Metadata Features

In addition to summary and description fields, bug reports have other fields. These fields
provide basic information such as report date, severity, priority, etc. We refer to this
information as metadata of bug reports.

Table 4 shows a list of metadata features that we are interested in. In total, there are 14
metadata features. Among the features, features MT1 and MT2 capture severity and priority
of the reported bug. Intuitively, bug reports assigned with high severity or priority are likely
typically to be highly-noticeable bugs that affect major functionalities of an application.
These bugs are often well described by reporters, and thus the bug reports are likely to
contain important and highly relevant words that can better lead IR-based bug localization
tools to the exact faulty files. Next, features MT3 to MT7 capture the context where the bug
is observed, and features MT8 to MT14 capture factors that might impact the quality of bug
reports such as the experience of the reporter, the number of attachments, etc. We utilize
features extracted from bug report metadata to maximize the chance to capture distinctive
characteristics of bug reports that correspond to effective bug localization instances.

Table 4 List of Metadata
Features ID Description

Importance of a Bug

MT1 Priority

MT2 Severity

Context of a Bug

MT3 Product

MT4 Component

MT5 Software version

MT6 Hardware platform (e.g., PC etc.)

MT7 Operating system platform (e.g., XP, Linux
etc.)

Quality of a Bug Report

MT8 Name of reporter

MT9 Number of bug reports the reporter has submit-
ted so far at time of the current bug report.

MT10 Number of persons in CC list when the bug
report is first submitted.

MT11 Total number of attachments in the bug report

MT12 Number of attachments that are applications

MT13 Number of attachments that are texts

MT14 Number of attachments that are images
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3.2 APRILE+

In this section, we first describe the overall framework of APRILE+. Next, we present
the details of APRILE (Le et al. 2014b)’s effectiveness prediction model and bagging-
based ensemble classification (BEC) method that are used to build several components of
APRILE+.

3.2.1 Overall Framework

Figure 2 shows the overall framework of APRILE+. There are two main phases in the
framework: training and deployment. In the training phase, APRILE+ takes as input a set
of training bug localization instances and their corresponding effectiveness labels. Each
instance in the training set corresponds to a bug and comes with the following information:
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1. A bug report that describes the bug.
2. Suspiciousness scores that are assigned to source code files by an IR-based bug

localization tool.
3. Effectiveness label (i.e., “effective” or “ineffective”).

These inputs are then used to construct the three classifiers inside APRILE+ (i.e., APRILE,
SVMBEC, and RBFBEC). Each of these classifiers has its own training phase where features
are first extracted from the inputs (see Section 3.1), and prediction models are constructed
according to its learning strategy (see Section 3.2.2 and Section 3.2.3). In the deployment
phase, APRILE+ takes as input the three learned classifiers and a set of bug localization
instances whose effectiveness is to be predicted. APRILE+ applies the classifiers on each
of the bug localization instances and receives a prediction output (which specifies whether
the instance is likely to be effective or not) from each classifier. APRILE+ Voter takes these
prediction outputs and employs majority voting to pick the final effectiveness label (i.e., the
effectiveness label which is predicted by the majority of the classifiers is considered as the
final classification label). To avoid a tie in the voting process, APRILE+ contains an odd
number of classifiers in its framework.

APRILE+ is the combination of RBFBEC, SVMBEC, and APRILE (Le et al. 2014b).
Among the three classifiers, RBFBEC and SVMBEC are trained from the set of features pre-
sented in Section 3.1 (i.e., score features, text features, topic features and metadata features)
by the bagging-based ensemble classification (BEC) method (see Section 3.2.3). Compared
to APRILE, the BEC method is generic and can be used to build many other additional clas-
sifiers by using one of the off-the-shelf classification algorithms (e.g., k-nearest neighbor,
random forest, etc.) as the underlying (or base) classification algorithm. From the extracted
features, we respectively apply BEC to construct RBFBEC and SVMBEC models with RBF
network and SVM as underlying classification algorithms.

A radial basis function (RBF) network is a type of artificial neural network that can be
used for supervised learning problems including classification (Broomhead and Lowe 1988;
Mitchell 1997). The goal of a RBF network is to learn to convert a set of inputs into an
output given a set of labeled examples. A RBF network consists of several layers, namely
the input layer, hidden layer, and output layer, where each layer consists of a set of nodes.
The nodes (or neurons) in the input layer corresponds to the set of inputs. The nodes in
the hidden layer implements a set of radial basis functions (i.e., Gaussian functions) which
convert a set of inputs into intermediary outputs. The node in the output layer sums up the
intermediary outputs generated by the hidden layer. In the training process, the weights of
edges connecting nodes in the input layer to nodes in the hidden layer are first determined.
Next, the weights of edges connecting nodes in the hidden layer to nodes in the output layer
are determined. RBF network can be trained in a short amount of time and it has good
performance for various classification problems.

SVM is a popular classification algorithm that has been shown effective for many kinds
of problems (Han and Kamber 2006). It represents data instances as points in a multi-
dimensional space where each feature is a dimension. It then separates data instances from
different classes by finding a multi-dimensional hyperplane that best separates them. This
hyperplane is often called themaximummarginal hyperplane (MMH). The underlying func-
tion (i.e., kernel) that defines the plane itself can be customized. The commonly used one
is the linear kernel. In this work, we use SVM with linear kernel to build prediction mod-
els and consider a bug localization instance as a point in a multi-dimensional space. SVM
is used to find the plane that separates effective bug localization instances from ineffective
ones.
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3.2.2 APRILE’s Effectiveness Prediction model

APRILE’s prediction model contains four internal components which analyze score, text,
topic model, and metadata features. Each component consists of a prediction model that
specializes in a particular feature category. For example, score component only analyzes the
score features, text component only analyzes the text features, and so on. We use Support
Vector Machine (SVM) to train the prediction model of each component.

In the training phase, SVM algorithm takes as input features of training bug localization
instances whose effectiveness are known and learns a prediction model. A prediction model
can process features of a bug localization instance and output a prediction score of that
instance. The prediction score indicates how likely a bug localization instance is effective. If
the score is greater than a threshold, then the corresponding instance is predicted as effective
by that prediction model. Otherwise, it is predicted as ineffective. We linearly combine
scores generated by the prediction models of the four internal components together to obtain
the final score and prediction (i.e., APRILE score) as follows:

APRILEPREDICTION(p) =
{

p is effective if APRILE(p) > ω

p is ineffective if APRILE(p) ≤ ω
(1)

APRILE(p) = α × SVMScore(p) +β × SVMText(p) + γ × SVMTopic(p)

+δ × SVMMeta(p)

(α, β, γ, δ ∈ [0, 1] ∧ α + β + γ + δ = 1) (2)

In the above equation, p is an input bug localization instance, APRILEPREDICTION(p)

is the predicted effectiveness of p, APRILE(p) is the combined prediction score for p,
SVMScore(p), SVMText(p), SVMTopic(p), and SVMMeta(p) are the prediction scores output
by the score, text, topic model, and metadata components, respectively. Each of the compo-
nent has a weight in range of [0, 1] and their sum equals to 1. We also define a threshold for
APRILE to differentiate prediction scores of effective and ineffective instances. We denote
the threshold as ω. If APRILE(p) > ω, then p is an effective instance. Otherwise, p is
ineffective.

We need to tune values of α, β, γ, δ and ω. We tune these values such that the per-
formance of APRILE is maximized on the training data. We measure the performance of
APRILE in terms of F-measure (see Section 4.1). We try different weight combinations by
varying the value of each weight from 0 to 1, in a step of 0.025, with a constraint that the
four weights will add up to 1. Implementation-wise, we pick the values of α, β, and γ ; if
their total weight is less than 1, we set the value of δ such that the summation of the four
weights is equal to 1. Next, we follow (2) to calculate APRILE scores of bug localization
instances . Then, we call procedure tuneOmega to tune the threshold ω such that the F-
measure is maximized. We select the weight combination of α, β, γ, δ and ω that results in
the best F-measure.

Next, we describe procedure tuneOmega. The procedure takes as input a set of bug
localization instances, and their effectiveness labels. tuneOmega first sorts bug localization
instances in ascending order of their APRILE scores (line 1). Next, tuneOmega calculates
F-measures for two base cases. The first case is when all instances are predicted as effective
(line 3). The second case is when all instances are predicted as ineffective (line 5). From
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lines 11 to 17, tuneOmega iterates through various ω values by taking the average of the
APRILE scores of two consecutive instances in the sorted list. The ω value which results in
the highest F-measure is selected and returned.

In the deployment phase, we apply the learned final prediction model to predict the
effectiveness of bug localization instances whose effectiveness are unknown. Given an
input instance p, we calculate APRILE(p) (see (2)) by using prediction models SVMScore,
SVMText, SVMTopic, SVMMeta, and weights α, β, γ, δ, which are learned in the train-
ing phase. Then, we compare APRILE(p) with threshold ω, which is also learned in
the training phase, and output the predicted effectiveness label of p (i.e., “effective”, or
“ineffective”).

We divide the features into 4 categories as each category of features captures a specific
characteristic of bug localization instances. Each of them is distinctive and different from
the others. For example, score features capture numeric properties of the output suspicious-
ness scores, which are different from information captured by text features, topic model
features, and metadata features. Therefore, each prediction model inferred from a category
of features has its own prediction power leveraging on specific characteristics of bug local-
ization instances. Equation 2 combines these models together to formulate APRILE by
tuning each model’s contribution (i.e., parameter) in order to maximize the accuracy. We do
not mix all the features together and learn a single model as the many features may inter-
fere with one another making it harder to learn a good discriminative model, or one group
of features may dominate the rest in an unbalanced way, and in the end result in a poorer
effectiveness.

3.2.3 Bagging-Based Ensemble Classification (BEC) Method

Our bagging-based ensemble classification (BEC) method has two main phases: training
and deployment. In the training phase, BEC takes as input a set of IR-based bug localization
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instances along with their effectiveness labels. BEC also takes as input an underlying clas-
sification algorithm (e.g., RBF or SVM) that will be called multiple times to construct an
ensemble of classifiers. We denote the ensemble of classifiers built using BEC method with
CLA as the underlying classification algorithm as CLABEC. The deployment phase employs
the BEC classifier constructed in the training phase to predict the effectiveness labels of
unseen bug localization instances.

In the training phase, BEC first extracts features from a training set of bug localization
instances, and divides the extracted features into four categories (see Section 3.1). For each
feature category FC, we create a category-specific BEC classifier on a training set of bug
localization instances T using Algorithm 1. The algorithm takes as input a set of training
instances T , a number of simple classifiers in the resultant BEC classifier NC, a sampling
rate SR, an underlying/base classification algorithm CLA, and a feature category FC.

At lines 1 to 3, Algorithm 1 computes the value of variable n which is the num-
ber of effective and ineffective instances to be sampled. The value of n is set to be the
product of the sampling rate SR and the number of instances in the minority class (i.e.,
effective or ineffective class) in T . At lines 5 to 10, the algorithm learns NC simple
classifiers from NC samples, each containing 2 × n instances, with equal numbers of
effective and ineffective instances. The algorithm takes each of the generated samples Xk

to learn a simple classifier SCXk
using the base classification algorithm CLA. At line

12, it returns a category-specific BEC classifier which is a collection of simple classifiers
{BCXk

|k ∈ {1 . . . NC}}.
With the above steps, we can generate a powerful ensemble classifier which is a collec-

tion of simple classifiers trained by the base classification algorithm CLA. The sampled
data Xk (line 8 in Algorithm 1) used to build the simple classifiers would be diverse. There-
fore, the effectiveness of the corresponding simple classifiers for different kinds of bug
localization instances vary from sample to sample. That gives the BEC prediction model,
which is a collection of the simple classifiers, more chances to capture various aspects of
different kinds of bug localization instances.
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In total, we construct four category-specific BEC classifiers corresponding to the score,
text, topic model, and metadata features. To create a more powerful prediction model (i.e.,
classifier), we construct a final prediction model based on the four classifiers as follows:

CLABEC(p) = α × CLABEC,Score(p) + β × CLABEC,Text(p)

+γ × CLABEC,Topic(p) + δ × CLABEC,Meta(p)

(α, β, γ, δ ∈ [0, 1] ∧ α + β + γ + δ = 1) (3)

In the above equation, p is an input bug localization instance, CLABEC(p) is the pre-
diction score for p based on all features across the four categories (i.e., score, text,
topic model, and metadata features), CLABEC,Score(p), CLABEC,Text(p), CLABEC,Topic(p),
and CLABEC,Meta(p) are the prediction scores output by the four category-specific BEC
prediction models.

Given an instance p, a category-specific BEC model predicts the effectiveness of the bug
localization instance p by applying their simple classifiers on p. The prediction score of p

is computed by taking the difference between the number of simple classifiers that predict
p as effective and those that predict p as ineffective. If the prediction score of p is greater
than zero, the category-specific BECmodel predicts it as an effective instance. Otherwise, p
is predicted as ineffective. Intuitively, the prediction score of p reflects the trend among the
simple classifiers when predicting the effectiveness of p. If there are more simple classifiers
that predict p as “effective” than “ineffective”, the prediction score of p has a positive value.
Similarly, p has a negative prediction score if there are less simple classifiers that predict p
as “effective” than “ineffective”. Algorithm 2 describes how a category-specific BECmodel
computes a prediction score for a bug localization instance p.

According to (3), each of the category-specific BEC model has a weight in the range
of [0, 1] and the sum of the weights equals to 1. Each weight reflects the influence of the
corresponding category-specific BEC model to the final model. We tune the values of the
weights α, β, γ , and δ in such a way that they maximize the effectiveness of CLABEC on the
training bug localization instances. To achieve that goal, we perform a grid search process
by considering all possible combinations of α, β, γ , and δ in the range of [0, 1] where
α + β + γ + δ = 1. We choose values of α, β, γ , and δ that result in the best F-measure on
the training data.

In the deployment phase, we employ the learned final prediction model to predict the
effectiveness of bug localization instances whose effectiveness labels are unknown. Given
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an input localization instance p, based on the category-specific models learned in the
training phase, we first compute the following scores, CLABEC,Score(p), CLABEC,Text(p),
CLABEC,Topic(p), and CLABEC,Meta(p), using Algorithm 2. Then, we compute the final pre-
diction score of p using (3) and the tuned values of α, β, γ , and δ learned in the training
phase. If the prediction score is greater than zero, p is predicted as effective. Otherwise, we
predict p as an ineffective instance.

In APRILE+, we use two underlying/base classification algorithms, i.e., RBF netowrk
and SVM, to build two BEC classifiers, i.e., RBFBEC and SVMBEC. By default, we set
NC = 10 and SR = 80 % for RBFBEC, and NC = 50 and SR = 80 % for SVMBEC.

4 Experimental Evaluation

In this section, we first describe our dataset and experiment settings. Next, we describe
the research questions and our experiment results that answer these questions. We finally
describe the threats to validity.

4.1 Dataset and Experiment Settings

Dataset We conduct experiments using three sets of bug reports and source code files from
AspectJ3 , Eclipse4 , and SWT5 which contain a total of more than three thousands bug
reports. The details of our dataset are shown in Table 5. Originally, the dataset is introduced
by Zhou et al. to evaluate BugLocator. Later, (Saha et al. 2013) and (Wang and Lo 2014)
also utilize these bug reports to evaluate BLUiR and AmaLgam. According to (Zhou et al.
2012), for each software project, all bug reports of fixed bugs in the study periods shown in
Table 5 are collected. To find the ground truth (i.e., faulty files), BugLocator’s authors adopt
heuristics proposed by (Bachmann and Bernstein 2009) to link bug reports to source code
files. Furthermore, we extend our original dataset by manually collecting issue reports and
source code files from Apache Tomcat6. We exclude bug reports for which names of faulty
files are explicitly mentioned in the summaries and descriptions of the bug reports. For
these bugs, it is unnecessary to run bug localization tools (Kochhar et al. 2014). Therefore,
it is also unnecessary to use our approach to predict the effectiveness of bug localization
instances of these bugs. Details of the dataset are shown in Table 5. In total, we investigate
a dataset of 3,800 bug reports. The textual bug reports and ground-truth (i.e., faulty files) of
our dataset are publicly available7.

Effectiveness Criterion We consider a bug localization instance effective if a buggy file
can be found in the top-N position in the ranked list. In our experiments, the default value
of N is 10.

3https://www.st.cs.uni-saarland.de/ibugs/
4http://goo.gl/Ojqrrp
5https://bugcenter.googlecode.com/files/swt-3.1.zip
6http://svn.apache.org/repos/asf/tomcat/trunk/
7https://github.com/lebuitienduy/aprile plus

https://www.st.cs.uni-saarland.de/ibugs/
http://goo.gl/Ojqrrp
https://bugcenter.googlecode.com/files/swt-3.1.zip
http://svn.apache.org/repos/asf/tomcat/trunk/
https://github.com/lebuitienduy/aprile_plus
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Table 5 Dataset Summary:
Third column (#Bugs) is the
number of bug reports. Last
column (#Files) is the number of
source code files

Project Study Period #Bugs #Files

AspectJ Jul 2002 - Oct 2006 286 6,485

Eclipse (3.1) Oct 2004 - Mar 2011 3,075 12,863

SWT (3.1) Oct 2004 - Apr 2011 98 6,485

Tomcat Jan 2010 - Jan 2014 341 1,879

Evaluation Metrics We use precision, recall, and F-measure (Han and Kamber 2006) to
evaluate the performance of our proposed approach. We use four statistics to calculate pre-
cision and recall. These statistics are true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The following are their definitions:

– TP: Number of effective bug localization instances that are predicted correctly.
– FP: Number of ineffective bug localization instances that are predicted incorrectly.
– TN: Number of ineffective bug localization instances that are predicted correctly.
– FN: Number of effective bug localization instances that are predicted incorrectly

Using the above statistics, we compute precision, recall, and F-measure as follows:

Precision = TP

TP + FP

Recall = TP

TP + FN

F-measure = 2 × Precision × Recall

Precision + Recall
In the above equations, precision is the proportion of true positives among the IR-based bug
localization instances that are predicted as effective. Recall is the proportion of true posi-
tives among the IR-based bug localization instances that are effective. Both precision and
recall reflect the performance of a prediction model. Usually, there is an inverse relationship
between precision and recall where higher precision might result in lower recall (and vice
versa). Hence, F-measure, which is the harmonic mean of precision and recall, is usually
used as a summary measure which informs whether a gain in precision (recall) outweighs a
decrease in recall (precision).

Cross-Validation We perform a ten-fold cross-validation to evaluate the performance of
our approach. Cross-validation is a standard method to assess accuracy of prediction mod-
els (Han and Kamber 2006). It evaluates whether the result of a prediction model generalizes
to an independent test dataset. In ten-fold cross-validation, for each project, we randomly
partition its bug reports into 10 distinct subgroups of data. Subsequently, we learn a pre-
diction model on nine subgroups, and test the prediction model on the remaining subgroup.
We repeat the process 10 times by using each of the 10 subgroups as test data. Finally, we
aggregate all outputs from the ten repetitions, and calculate the final precision, recall, and
F-measure.

Text Preprocessing In our experiments, we apply Java’s regular expression
API to split identifiers to smaller words following the Camel case conven-
tion. At first, we construct a regular expression to split a string as follows:
“(?<!(ˆ|[A-Z]))(?=[A-Z])|(?<!ˆ)(?=[A-Z][a-z])”. This regular expres-
sion makes sure a string is split according to Camel casing convention. e.g., “processFile”
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is split to “process” and “File”. It also correctly detects acronyms, e.g., “ASTParser” is split
to “AST” and “Parser”. Moreover, we use the Porter Stemming algorithm (Porter 1980),
which is a popular stemming algorithm, to reduce words to their root forms.

Latent Dirichlet Allocation We employ Stanford Topic Modeling Toolbox8 to train topic
models. We set the number of topics to 5, 10, and 15. We use these numbers of topics to
capture high-level concepts that are shared by many bug reports – the less the number of
topics, the more abstract (or high-level) the topics are. For the other parameters of LDA
we use the default settings of Stanford Topic Modeling Toolbox: α = 0.01, β = 0.01, and
number of iterations = 1000.

4.2 Research Questions

We analyze several research questions (RQs) to evaluate the performance of our proposed
approach. These RQs are presented in the following paragraphs.

RQ1: How good is the performance of APRILE+ when predicting the effectiveness of an
IR-based bug localization tool?

Answer to this research question will shed light on the utility of APRILE+. To answer this
research question, we use APRILE+ to predict the effectiveness of BugLocator (Zhou et al.
2012), BLUiR (Saha et al. 2013), and AmaLgam (Wang and Lo 2014) to locate buggy files.
For each bug report in our dataset, we set the effectiveness criterion N = 10 and predict if
each ranked list produced by BugLocator, BLUiR, and AmaLgam is effective or not.

RQ2: How good is APRILE+ compared to other effectiveness prediction approaches?

Recently, Le and Lo propose an approach to predict the effectiveness of a spectrum-based
bug localization tool (Le and Lo 2013; Le et al. 2014a). A spectrum-based bug localiza-
tion tool analyzes a set of failed and correct execution traces, and computes suspiciousness
scores of program elements (e.g., statements). Le and Lo’s approach is the first study that
predicts the effectiveness of automated debugging tools. To a certain extent, our proposed
solution in predicting effectiveness of IR-based bug localization instances is a downgrade of
Le and Lo’s approach from spectrum-based bug localization to IR-based bug localization.
On the other hand, Le and Lo’s approach uses features extracted from program execution
traces and suspiciousness scores. In IR-based bug localization setting, there is no execution
traces; thus we can only run Le and Lo’s approach on features that are extracted from sus-
piciousness scores of files. We use this approach as a baseline to compare with APRILE+.
We denote this baseline as SVMExt,Score. Furthermore, we also compare APRILE+ against
APRILE.

RQ3: Which of the proposed features best discriminate effective IR-based bug localization
instances from ineffective ones?

8http://nlp.stanford.edu/software/tmt/tmt-0.4/

http://nlp.stanford.edu/software/tmt/tmt-0.4/
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We investigate which features from our list are helpful in predicting effective IR-based bug
localization instances. In machine learning, Fisher score are usually used to estimate how
much discriminative features are. The Fisher score of a feature is calculated as follows

FS(j) =
∑#class

class=1(x̄
(class)
j − x̄j )

2

∑#class
class=1(

1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j )2)

(4)

In the above equation, FS(j) is the Fisher score of the j th feature, nclass is the number
of data points (i.e., number of bug localization instances) with label class (i.e., effective
or ineffective), x̄j is the average value of the j th feature over all data points, x̄(class)

j is the

average value of the j th feature over all data points with label class. If a feature has a Fisher
score of zero, then that feature does not help to discriminate effective IR-based bug local-
ization instances from ineffective ones. On the other hand, a feature is very discriminative
if its Fisher score is much greater than zero. In this research question, we investigate the
overall most discriminative features for every software project (i.e., AspectJ, Eclipse, SWT,
and Tomcat).

RQ4: What is the effect of changing the effectiveness criterion on the performance of
APRILE+?

By default, a bug localization instance is deemed effective if the top-N (N=1) file in the
ranked list is buggy. This corresponds to the case when a developer is willing to inspect
only the first recommended program file. However, developers might be willing to inspect
more files. In this research question, we vary the effectiveness criterion by considering N =
5 and N = 10. For each of these effectiveness criteria, we evaluate the performance of our
approach.

RQ5: Could bug localization instances of one software project be used to learn a model
for predicting effectiveness of instance of another software project?

In new software projects, the amount of bug localization instances are not always sufficient
to formulate good training data. Therefore, we investigate the effectiveness of APRILE+ in
cross-project setting in this research question. Assuming we have bug localization instances
from P different software projects. We learn APRILE+’s prediction model from instances
of P − 1 projects. This model is then employed to predict effectiveness of bug localization
instances from the other project.

RQ6: How good is the performance of APRILE+ if only the most discriminative features
are selected to construct prediction models?

Feature selection techniques are proposed to improve the accuracy of classification mod-
els. However, by default, feature selection is not integrated into APRILE+. Thus, in this
research question, we deploy features selection to our proposed approach by selecting the
top K percent features with highest Fisher scores in each category to construct APRILE+’s
prediction models. We refer to APRILE+ deployed with feature selection as FSAPRILE+.
We use FSAPRILE+ to predict the effectiveness of BugLocator’s instances with K ∈
{40 %, 60 %, 80 %, 90 %, 95 %}, and compare its precision, recall, and F-measure to those
of APRILE+.
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4.3 Results

4.3.1 RQ1: Overall Performance

Table 6 shows the statistics of effective and ineffective bug localization instances output by
BugLocator, BLUiR, and AmaLgam to localize faults for 3,800 bug reports in our dataset.
With effectiveness criterion N = 10, there are more effective instances than ineffective
instances in most of data and bug localization tools. Considering all three bug localiza-
tion tools (i.e., BugLocator, BLUiR, and AmaLgam), effective instances of BugLocator,
BLUiR, and AmaLgam are 2,385, 2,456, and 2,557 respectively, which account for 62.76%,
63.63 %, and 67.29 % of the total instances, respectively.

Table 7 shows the precision, recall, and F-measure of APRILE+ when predicting effec-
tiveness of BugLocator, BLUiR, and AmaLgam instances in AspectJ, Eclipse, SWT, and
Tomcat dataset. According to the table, APRILE+ achieves an F-measure of 66 % or higher
in predicting effectiveness of instances in AspectJ, Eclipse, SWT, and Tomcat project.
Noticeably, APRILE+’s F-measure is up to 91.33 % when predicting effectiveness of
BLUiR instances in SWT. For Tomcat, APRILE+ achieves an F-measure of 66.19 %,
77.46 %, and 78.53 %, respectively in predicting effectiveness of BugLocator, BLUiR, and
AmaLgam instances. We find F-measures of APRILE+ in Tomcat dataset are smaller com-
pared to AspectJ, Eclipse, and SWT dataset. This is because the proportion of effective
instances to ineffective instances in Tomcat is less than the ones in AspectJ, Eclipse, and
SWT. For the three bug localization tools (i.e., BugLocator, BLUiR, and AmaLgam), we
note that APRILE+ achieves comparable average F-measures of 82.09 %, 84.27 %, and
84.23 %, respectively. Furthermore, the F-measure results are comparable to or better than
those achieved by other software analytics studies (Seo and Kim 2012; Valdivia Garcia and
Shihab 2014; Shihab et al. 2013; Le and Lo 2013).

Table 8 shows detailed results of APRILE+ when predicting effectiveness of BugLoca-
tor, BLUiR, and AmaLgam instances in AspectJ dataset. APRILE+ achieves an F-measure
of 88.20 %, 84.40 % and 87.17 % for BugLocator, BLUiR, and AmaLgam, respectively.
For BugLocator, APRILE+ is able to correctly predict 157 out of 172 effective instances,
and 87 out of 114 ineffective instances. For BLUiR, our approach can correctly identify 138
out of 157 effective instances, and 97 out of 129 ineffective instances. For AmaLgam, it can
correctly identify 180 out of 196 effective instances, and 53 out of 90 ineffective instances.
Noticeably, without our tool, developers using BugLocator would inspect all instances (i.e.,
286 instances), and they would be useless 39.86 % of the time (i.e., 114 out of 286 instances

Table 6 Number of effective and ineffective instances for BugLocator, BLUiR, and AmaLgam (effective-
ness criterion N = 10)

Project BugLocator BLUiR AmaLgam

(+) (–)
∑

(+) (–)
∑

(+) (–)
∑

AspectJ 172 114 286 157 129 286 196 90 286

Eclipse 1978 1097 3075 2010 1065 3075 2059 1016 3075

SWT 78 20 98 86 12 98 88 10 98

Tomcat 157 184 341 203 138 341 214 127 341

Total 2385 1415 3800 2456 1344 3800 2557 1243 3800



Empir Software Eng

Table 7 Precision, Recall, and
F-measure of APRILE+ on
BugLocator, BLUiR and
AmaLgam instances
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 85.33 % 91.28 % 88.20 %

Eclipse 81.45 % 87.46 % 84.35 %

SWT 90.79 % 88.46 % 89.61 %

Tomcat 52.85 % 88.54 % 66.19 %

Average 77.61 % 88.94 % 82.09 %

BLUiR

AspectJ 81.18 % 87.90 % 84.40 %

Eclipse 79.92 % 88.31 % 83.90 %

SWT 90.80 % 91.86 % 91.33 %

Tomcat 66.32 % 93.10 % 77.46 %

Average 79.56 % 90.29 % 84.27 %

AmaLgam

AspectJ 82.95 % 91.84 % 87.17 %

Eclipse 82.13 % 86.84 % 84.42 %

SWT 97.18 % 78.41 % 86.79 %

Tomcat 69.82 % 89.72 % 78.53 %

Average 83.02 % 86.65 % 84.23 %

are ineffective). By using our tool’s predictions, they are only useless 14.67 % of the time
(i.e., 27 out of 184 instances predicted as effective are actually ineffective). Similarly, devel-
opers using BLUiR would find that the instances are useless 45.1 % of the time (i.e., 129
out of 286 instances are ineffective). By using our tool’s predictions, they are only useless
18.82 % of the time (i.e., 32 out of 170 instances predicted as effective are actually inef-
fective). Last but not least, developers using AmaLgam would find that the instances are
useless 31.47 % of the time (i.e., 90 out of 286 instances are ineffective). By using our tool’s
predictions, they are only useless 17.05 % of the time (i.e., 37 out of 217 instances pre-
dicted as effective are actually ineffective). Furthermore, averaging across the three tools,
the precision, recall, and F-measure of our approach for AspectJ are 83.15 %, 90.34 %, and
86.59 %, respectively.

Table 9 shows detailed results of APRILE+ when predicting effectiveness of BugLo-
cator, BLUiR, and AmaLgam instances in Eclipse. APRILE+ achieves an F-measure of
84.35 %, 83.90 % and 84.42 % for BugLocator, BLUiR, and AmaLgam, respectively. For
BugLocator, APRILE+ is able to correctly predict 1730 out of 1978 effective instances, and
703 out of 1097 ineffective instances. For BLUiR, our approach can correctly identify 1775
out of 2010 effective instances, and 619 out of 1065 ineffective instances. For AmaLgam,
it can correctly identify 1788 out of 2059 effective instances, and 627 out of 1016 ineffec-
tive instances. Noticeably, without our tool, developers using BugLocator would inspect all
instances (i.e., 3075 instances), and they would be useless of 35.67 % of the time (i.e., 1097
out of 3075 instances are ineffective). By using our tool’s predictions, they are only use-
less 18.55 % of the time (i.e., 394 out of 2124 instances predicted as effective are actually
ineffective). Similarly, developers using BLUiR would find that the instances are useless
34.63 % of the time (i.e., 1065 out of 3075 instances are ineffective). By using our tool’s
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Table 8 True positives, false positives, true negatives, false negatives, precision, recall, and F-measure of
APRILE+ on predicting effectiveness of BugLocator, BLUiR, and AmaLgam instances in AspectJ project

Run TP FP TN FN Precision Recall F-measure

BugLocator

1 16 3 7 2 84.21 % 88.89 % 86.49 %

2 15 3 8 2 83.33 % 88.24 % 85.71 %

3 15 1 8 4 93.75 % 78.95 % 85.71 %

4 14 5 8 1 73.68 % 93.33 % 82.35 %

5 15 1 12 1 93.75 % 93.75 % 93.75 %

6 13 6 7 3 68.42 % 81.25 % 74.29 %

7 21 2 4 2 91.30 % 91.30 % 91.30 %

8 14 2 13 0 87.50 % 100.00 % 93.33 %

9 17 1 11 0 94.44 % 100.00 % 97.14 %

10 17 3 9 0 85.00 % 100.00 % 91.89 %

Overall 157 27 87 15 85.33 % 91.28 % 88.20 %

BLUiR

1 15 1 10 2 93.75 % 88.24 % 90.91 %

2 15 2 9 2 88.24 % 88.24 % 88.24 %

3 14 3 10 1 82.35 % 93.33 % 87.50 %

4 11 7 7 3 61.11 % 78.57 % 68.75 %

5 12 4 12 1 75.00 % 92.31 % 82.76 %

6 14 1 12 2 93.33 % 87.50 % 90.32 %

7 16 1 9 3 94.12 % 84.21 % 88.89 %

8 13 5 10 1 72.22 % 92.86 % 81.25 %

9 12 6 10 1 66.67 % 92.31 % 77.42 %

10 16 2 8 3 88.89 % 84.21 % 86.49 %

Overall 138 32 97 19 81.18 % 87.90 % 84.40 %

AmaLgam

1 22 2 4 0 91.67 % 100.00 % 95.65 %

2 19 3 4 2 86.36 % 90.48 % 88.37 %

3 17 2 7 2 89.47 % 1 89.47 % 89.47 %

4 17 7 3 1 70.83 % 94.44 % 80.95 %

5 18 4 5 2 81.82 % 90.00 % 85.71 %

6 19 2 6 2 90.48 % 90.48 % 90.48 %

7 18 3 5 3 85.71 % 85.71 % 85.71 %

8 17 2 7 3 89.47 % 85.00 % 87.18 %

9 15 10 3 1 60.00 % 93.75 % 73.17 %

10 18 2 9 0 90.00 % 100.00 % 94.74 %

Overall 180 37 53 16 82.95 % 91.84 % 87.17 %

Column “Run” represents each run in cross validation, “TP” is the number of true positive cases, “FP” is the
number of false positive cases, “TN” is the number of true negative case, and “FN” is the number of false
negative cases

predictions, they are only useless 20.08 % of the time (i.e., 446 out of 2221 instances pre-
dicted as effective are actually ineffective). Last but not least, developers using AmaLgam
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Table 9 True positives, false positives, true negatives, false negatives, precision, recall, and F-measure of
APRILE+ on predicting effectiveness of BugLocator, BLUiR, and AmaLgam instances in Eclipse project

Run TP FP TN FN Precision Recall F-measure

BugLocator

1 177 45 59 26 79.73 % 87.19 % 83.29 %

2 182 35 69 21 83.87 % 89.66 % 86.67 %

3 173 37 76 21 82.38 % 89.18 % 85.64 %

4 155 38 81 33 80.31 % 82.45 % 81.36 %

5 173 37 77 20 82.38 % 89.64 % 85.86 %

6 170 49 68 21 77.63 % 89.01 % 82.93 %

7 171 40 66 31 81.04 % 84.65 % 82.81 %

8 182 33 71 22 84.65 % 89.22 % 86.87 %

9 179 47 57 25 79.20 % 87.75 % 83.26 %

10 168 33 79 28 83.58 % 85.71 % 84.63 %

Overall 1730 394 703 248 81.45 % 87.46 % 84.35 %

BLUiR

1 181 41 59 26 81.53 % 87.44 % 84.38 %

2 180 38 63 26 82.57 % 87.38 % 84.91 %

3 179 55 54 19 76.50 % 90.40 % 82.87 %

4 168 48 73 18 77.78 % 90.32 % 83.58 %

5 173 50 61 23 77.58 % 88.27 % 82.58 %

6 176 53 54 25 76.86 % 87.56 % 81.86 %

7 161 48 72 27 77.03 % 85.64 % 81.11 %

8 193 37 58 20 83.91 % 90.61 % 87.13 %

9 189 35 58 26 84.38 % 87.91 % 86.10 %

10 175 41 67 25 81.02 % 87.50 % 84.13 %

Overall 1775 446 619 235 79.92 % 88.31 % 83.90 %

AmaLgam

1 186 40 55 26 82.30 % 87.74 % 84.93 %

2 179 35 61 32 83.64 % 84.83 % 84.24 %

3 177 48 60 22 78.67 % 88.94 % 83.49 %

4 168 46 70 23 78.50 % 87.96 % 82.96 %

5 169 33 70 35 83.66 % 82.84 % 83.25 %

6 185 43 58 22 81.14 % 89.37 % 85.06 %

7 172 47 66 23 78.54 % 88.21 % 83.09 %

8 187 33 57 31 85.00 % 85.78 % 85.39 %

9 192 23 65 28 89.30 % 87.27 % 88.28 %

10 173 41 65 29 80.84 % 85.64 % 83.17 %

Overall 1788 389 627 271 82.13 % 86.84 % 84.42 %

Column “Run” represents each run in cross validation, “TP” is the number of true positive cases, “FP” is the
number of false positive cases, “TN” is the number of true negative case, and “FN” is the number of false
negative cases

would find that the instances are useless 33.04 % of the time (i.e., 1016 out of 3075 instances
are ineffective). By using our tool’s predictions, they are only useless 17.87 % of the time
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(i.e., 389 out of 2177 instances predicted as effective are actually ineffective). Furthermore,
averaging across the three tools, the precision, recall, and F-measure of our approach for
Eclipse are 81.17 %, 87.54 %, and 84.22 %, respectively.

Table 10 True positives, false
positives, true negatives, false
negatives, precision, recall, and
F-measure of APRILE+ on
predicting effectiveness of
BugLocator, BLUiR, and
AmaLgam instances in SWT
project

Run TP FP TN FN Precision Recall F-measure

BugLocator

1 5 2 1 1 71.43 % 83.33 % 76.92 %

2 7 1 0 1 87.50 % 87.50 % 87.50 %

3 9 0 1 0 100.00 % 100.00 % 100.00 %

4 7 2 0 1 77.78 % 87.50 % 82.35 %

5 8 0 2 0 100.00 % 100.00 % 100.00 %

6 5 0 4 1 100.00 % 83.33 % 90.91 %

7 8 0 1 1 100.00 % 88.89 % 94.12 %

8 8 1 0 1 88.89 % 88.89 % 88.89 %

9 5 1 3 1 83.33 % 83.33 % 83.33 %

10 7 0 1 2 100.00 % 77.78 % 87.50 %

Overall 69 7 13 9 90.79 % 88.46 % 89.61 %

BLUiR

1 7 1 0 1 87.50 % 87.50 % 87.50 %

2 7 1 0 1 87.50 % 87.50 % 87.50 %

3 9 1 0 0 90.00 % 100.00 % 94.74 %

4 8 1 1 0 88.89 % 100.00 % 94.12 %

5 8 1 1 0 88.89 % 100.00 % 94.12 %

6 5 1 1 3 83.33 % 62.50 % 71.43 %

7 10 0 0 0 100.00 % 100.00 % 100.00 %

8 8 1 0 1 88.89 % 88.89 % 88.89 %

9 9 1 0 0 90.00 % 100.00 % 94.74 %

10 8 0 1 1 100.00 % 88.89 % 94.12 %

Overall 79 8 4 7 90.80 % 91.86 % 91.33 %

AmaLgam

1 6 0 0 3 100.00 % 66.67 % 80.00 %

2 6 1 0 2 85.71 % 75.00 % 80.00 %

3 8 0 1 1 100.00 % 88.89 % 94.12 %

4 5 0 2 3 100.00 % 62.50 % 76.92 %

5 8 0 1 1 100.00 % 88.89 % 94.12 %

6 7 1 1 1 87.50 % 87.50 % 87.50 %

7 9 0 0 1 100.00 % 90.00 % 94.74 %

8 7 0 1 2 100.00 % 77.78 % 87.50 %

9 5 0 1 4 100.00 % 55.56 % 71.43 %

10 8 0 1 1 100.00 % 88.89 % 94.12 %

Overall 69 2 8 19 97.18 % 78.41 % 86.79 %

Column “Run” represents each
run in cross validation, “TP” is
the number of true positive cases,
“FP” is the number of false
positive cases, “TN” is the
number of true negative case, and
“FN” is the number of false
negative cases
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Table 10 shows detailed results of APRILE+ when predicting effectiveness of BugLoca-
tor, BLUiR, and AmaLgam instances in SWT. APRILE+ achieves an F-measure of 89.61 %,
91.33 % and 86.79 % for BugLocator, BLUiR, and AmaLgam, respectively. For BugLo-
cator, APRILE+ is able to correctly predict 69 out of 78 effective instances, and 13 out
of 20 ineffective instances. For BLUiR, our approach can correctly identify 79 out of 86
effective instances, and 4 out of 12 ineffective instances. For AmaLgam, it can correctly
identify 69 out of 88 effective instances, and 8 out of 10 ineffective instances. Notice-
ably, without our tool, developers using BugLocator would inspect all instances (i.e., 98
instances), and they would be useless of 20.41 % of the time (i.e., 20 out of 98 instances
are ineffective). By using our tool’s predictions, they are only useless 8.14 % of the time
(i.e., 7 out of 86 instances predicted as effective are actually ineffective). Similarly, devel-
opers using BLUiR would find that the instances are useless 12.24 % of the time (i.e., 12
out of 98 instances are ineffective). By using our tool’s predictions, they are only useless
9.2 % of the time (i.e., 8 out of 87 instances predicted as effective are actually ineffective).
Last but not least, developers using AmaLgam would find that the instances are useless
10.20 % of the time (i.e., 10 out of 98 instances are ineffective). By using our tool’s pre-
dictions, they are only useless 2.82 % of the time (i.e., 2 out of 71 instances predicted as
effective are actually ineffective). Furthermore, averaging across the three tools, the pre-
cision, recall, and F-measure of our approach for SWT are 63 %, 90.45 %, and 74.06 %,
respectively.

Table 11 shows detailed results of APRILE+ when predicting effectiveness of BugLo-
cator, BLUiR, and AmaLgam instances in Tomcat. APRILE+ achieves an F-measure of
66.19 %, 77.46 %, and 78.53 % for BugLocator, BLUiR, and AmaLgam, respectively. For
BugLocator, APRILE+ is able to correctly predict 139 out of 157 effective instances, and
60 out of 184 ineffective instances. For BLUiR, our approach can correctly identify 189 out
of 203 effective instances, and 42 out of 138 ineffective instances. For AmaLgam, it can
correctly identify 192 out of 214 effective instances, and 44 out of 127 ineffective instances.
Noticeably, without our tool, developers using BugLocator would inspect all instances (i.e.,
341 instances), and they would be useless of 53.96 % of the time (i.e., 184 out of 341
instances are ineffective). By using our tool’s predictions, they are only useless 47.14 %
of the time (i.e., 124 out of 263 instances predicted as effective are actually ineffective).
Similarly, developers using BLUiR would find that the instances are useless 40.47 % of the
time (i.e., 138 out of 341 instances are ineffective). By using our tool’s predictions, they
are only useless 33.68 % of the time (i.e., 96 out of 285 instances predicted as effective
are actually ineffective). Last but not least, developers using AmaLgam would find that the
instances are useless 37.24 % of the time (i.e., 127 out of 341 instances are ineffective).
By using our tool’s predictions, they are only useless 30.18 % of the time (i.e., 83 out of
275 instances predicted as effective are actually ineffective). Furthermore, averaging across
the three tools, the precision, recall, and F-measure of our approach for Tomcat are 63 %,
90.45 %, and 74.06 %, respectively.

4.3.2 RQ2: APRILE+ vs. Baselines

Table 12 shows precision, recall, and F-measure of SVMExt,Score, and APRILE when
predicting effectiveness of BugLocator instances with effectiveness criterionN = 10. Com-
paring the F-measures of SVMExt,Score and those of APRILE+ (shown in Table 7), we can
note that APRILE+ outperforms SVMExt,Score on all datasets by up to 17.43 %. Similarly,
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Table 11 True positives, false positives, true negatives, false negatives, precision, recall, and F-measure of
APRILE+ on predicting effectiveness of BugLocator, BLUiR, and AmaLgam instances in Tomcat project

Run TP FP TN FN Precision Recall F-measure

BugLocator

1 12 12 7 3 50.00 % 80.00 % 61.54 %

2 11 11 8 4 50.00 % 73.33 % 59.46 %

3 14 15 4 1 48.28 % 93.33 % 63.64 %

4 15 9 9 1 62.50 % 93.75 % 75.00 %

5 15 12 6 1 55.56 % 93.75 % 69.77 %

6 16 13 5 0 55.17 % 100.00 % 71.11 %

7 13 8 10 3 61.90 % 81.25 % 70.27 %

8 13 13 5 3 50.00 % 81.25 % 61.90 %

9 15 12 6 1 55.56 % 93.75 % 69.77 %

10 15 19 0 1 44.12 % 93.75 % 60.00 %

Overall 139 124 60 18 52.85 % 88.54 % 66.19 %

BLUiR

1 18 12 1 3 60.00 % 85.71 % 70.59 %

2 18 10 5 1 64.29 % 94.74 % 76.60 %

3 17 13 2 2 56.67 % 89.47 % 69.39 %

4 17 12 4 1 58.62 % 94.44 % 72.34 %

5 18 8 6 2 69.23 % 90.00 % 78.26 %

6 18 9 6 1 66.67 % 94.74 % 78.26 %

7 23 4 6 1 85.19 % 95.83 % 90.20 %

8 16 10 6 2 61.54 % 88.89 % 72.73 %

9 22 7 5 0 75.86 % 100.00 % 86.27 %

10 22 11 1 1 66.67 % 95.65 % 78.57 %

Overall 189 96 42 14 66.32 % 93.10 % 77.46 %

AmaLgam

1 18 6 7 3 75.00 % 85.71 % 80.00 %

2 18 5 8 3 78.26 % 85.71 % 81.82 %

3 21 9 4 0 70.00 % 100.00 % 82.35 %

4 18 10 3 3 64.29 % 85.71 % 73.47 %

5 21 8 5 0 72.41 % 100.00 % 84.00 %

6 18 11 2 3 62.07 % 85.71 % 72.00 %

7 21 7 5 1 75.00 % 95.45 % 84.00 %

8 17 9 3 5 65.38 % 77.27 % 70.83 %

9 20 10 2 2 66.67 % 90.91 % 76.92 %

10 20 8 5 2 71.43 % 90.91 % 80.00 %

Overall 192 83 44 22 69.82 % 89.72 % 78.53 %

Column “Run” represents each run in cross validation, “TP” is the number of true positive cases, “FP” is the
number of false positive cases, “TN” is the number of true negative case, and “FN” is the number of false
negative cases

comparing the F-measures of APRILE against that of APRILE+, we can note that APRILE+
outperforms APRILE on all datasets by up to 10.51 %.
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Table 12 Precision, recall, and
F-measure of SVMExt,Score and
APRILE on predicting
effectiveness of BugLocator
instances (effectiveness label
N = 10)

Baseline Project Precision Recall F-measure

SVMExt,Score AspectJ 60.14 % 100.00 % 75.11 %

Eclipse 64.33 % 100.00 % 78.29 %

SWT 79.59 % 100.00 % 88.64 %

Tomcat 56.89 % 60.51 % 58.64 %

APRILE AspectJ 95.35 % 68.62 % 79.81 %

Eclipse 87.56 % 74.82 % 80.69 %

SWT 94.87 % 84.09 % 89.16 %

Tomcat 89.17 % 50.91 % 64.81 %

4.3.3 RQ3: Most Important Features

Table 13 shows the top-10 features with highest Fisher scores across the four categories of
features. According to the table, we find that the score features and text features are the most
discriminative ones. In particular, text features are more important for AspectJ and SWT,
i.e., top-10 features with the highest Fisher scores for AspectJ and SWT are text features. We
believe that there is a correlation between effectiveness labels of bug localization instances
and occurrences of words in AspectJ and SWT’s textual bug reports, i.e., many effective and
ineffective instances are likely described with different sets of words. On the other hand,

Table 13 Overall most
important features Rank AspectJ Eclipse

1 provid Std. Deviation (SS5)

2 enforc Variance (SS4)

3 hope Mode (SS3)

4 assum 17th highest score (R17)

5 repli 19th highest score (R19)

6 suggest 18th highest score (R18)

7 singl 20th highest score (R20)

8 basic 16th highest score (R16)

9 multipl 15th highest score (R15)

10 busi Max. Gap (Gmax)

Rank SWT Tomcat

1 effect Std. Deviation (SS5)

2 static Variance (SS4)

3 correctli Rel. Diff (RD14)

4 shell Rel. Diff (RD13)

5 displai Rel. Diff (RD9)

6 public Rel. Diff (RD12)

7 arg 10th highest score (R10)

8 sleep Median (SS2)

9 void 13th highest score (R13)

10 readanddispatch Rel. Diff (RD11)
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Table 14 Number of effective
and ineffective instances of
BugLocator for various
effectiveness criteria

Project N=1 N=5 N=10

(+) (−) (+) (−) (+) (−)

AspectJ 65 221 139 147 172 114

Eclipse 974 2101 1694 1381 1978 1097

SWT 35 63 68 30 78 20

Tomcat 53 288 120 221 157 184

Total 1127 2673 2021 1779 2385 1415

score features are more discriminative in Eclipse and Tomcat as most of the features in the
top-10 are from the suspiciousness score category. This is likely because the differences
between the suspiciousness scores of faulty and non-faulty files in Eclipse and Tomcat are
significant enough to distinguish effective from ineffective instances. Overall, text features
are important for the AspectJ and SWT dataset, and score features are the most important
for the Eclipse and Tomcat dataset.

Discussion Table 13 indicates the most important features for each project is considerably
different from one another. Noticeably, the overall most discriminative features for AspectJ
and SWT are all text features, which are different from important features for Eclipse and
AspectJ (see Table 13). The difference is due to the diverse characteristics of issue reports
and source code files between Eclipse and Tomcat against the other two projects (i.e.,
AspectJ and SWT).

Table 15 Precision, Recall, and
F-measure of APRILE+ for N=1,
N=5, and N=10

Project Precision Recall F-measure

N=1

AspectJ 69.23 % 83.08 % 75.52 %

Eclipse 59.79 % 77.41 % 67.47 %

SWT 71.79 % 80.00 % 75.68 %

Tomcat 25.76 % 64.15 % 36.76 %

Average 56.64 % 76.16 % 63.86 %

N=5

AspectJ 85.16 % 78.42 % 81.65 %

Eclipse 77.20 % 86.36 % 81.53 %

SWT 84.06 % 85.29 % 84.67 %

Tomcat 51.40 % 76.67 % 61.54 %

Average 74.37 % 81.69 % 77.35 %

N=10

AspectJ 85.33 % 91.28 % 88.20 %

Eclipse 81.45 % 87.46 % 84.35 %

SWT 90.79 % 88.46 % 89.61 %

Tomcat 52.85 % 88.54 % 66.19 %

Average 77.61 % 88.94 % 82.09 %
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4.3.4 RQ4: Effect of Varying Effectiveness Criterion

Table 14 shows the number of effective and ineffective BugLocator instances for N = 1,
N = 5 and N = 10. Clearly, the number of effective instances increases when we vary
the value of N from 1 to 10. Overall, the numbers of effective BugLocator instances for
N equals to 1, 5, and 10, are 29.66 %, 53.18 %, and 62.76 % of all BugLocator instances,
respectively.

Table 15 shows the effect of using various effectiveness criteria on the performance of
APRILE+. We notice that the average F-measure increases from 63.86 % to 82.09 % when
N varies from 1 to 10. That indicates APRILE+ still performs well in various effectiveness
criteria.

4.3.5 RQ5: Cross-project Setting

To answer this research question, we apply APRILE+ to predict the effectiveness of
BugLocator, BLUiR, and AmaLgam instances with effectiveness criteria N = 10 in cross-
project setting. Table 16 shows precision, recall, and F-measure of APRILE+ among the
investigated bug localization tools. According to the table, APRILE+ achieves the overall
F-measure of 47.57 %, 54.33 %, and 69.02 % when predicting effectiveness of BugLoca-
tor, BLUiR, and AmaLgam instances, respectively. Noticeably, compared to Table 7 (i.e.,
standard cross-validation setting), we find F-measure of APRILE+ significantly reduces in
most of projects and bug localization tools. This is as expected since cross-project prediction
is much harder than within-project prediction – c.f., (Zimmermann et al. 2009). However,
F-measures of APRILE+ remain high (up to 90.91 %) in SWT for all instances of BugLo-
cator, BLUiR, and AmaLgam. This implies that it is still possibly to use bug localization

Table 16 Precision, Recall, and
F-measure of APRILE+ in
cross-project setting
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 73.68 % 8.14 % 14.66 %

Eclipse 81.52 % 33.67 % 47.66 %

SWT 82.76 % 92.31 % 87.27 %

Tomcat 49.63 % 42.68 % 45.89 %

Overall 77.41 % 34.34 % 47.57 %

BLUiR

AspectJ 61.76 % 13.38 % 21.99 %

Eclipse 79.02 % 39.15 % 52.36 %

SWT 88.89 % 93.02 % 90.91 %

Tomcat 58.43 % 76.85 % 66.38 %

Overall 75.27 % 42.51 % 54.33 %

AmaLgam

AspectJ 78.18 % 21.94 % 34.26 %

Eclipse 71.49 % 68.58 % 70.00 %

SWT 95.83 % 78.41 % 86.25 %

Tomcat 65.2 % 83.18 % 73.10 %

Overall 71.66 % 66.56 % 69.02 %
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instances of one or many projects to infer APRILE+’s models for predicting effectiveness
of instances in another project.

4.3.6 RQ6: APRILE+ with Feature Selection

Table 17, 18, 19, 20, 21 show the average precision, recall, and F-measure of FSAPRILE+ in
various settings. According to the table, FSAPRILE+ achieves average F-measures of 77 %
or higher. Compared to the effectiveness of APRILE+ shown in Table 7, the F-measure of
FSAPRILE+ is lower (for K ∈ {40 %, 60 %, 80 %}), but remains comparable to or better
than those achieved by other software analytics studies (Le and Lo, 2013; Seo and Kim,
2012; Shihab et al. 2013; Valdivia Garcia and Shihab, 2014). For K ∈ {90 %, 95 %}, the
F-measure of FSAPRILE+ is comparable to that of APRILE+. Therefore, we conclude that
most of the features contribute to the performance of APRILE+; removing a small percent-
age of features do not affect the performance much, while the performance is adversely
affected when a substantial number of features are removed (e.g., more than 20 %).

5 Discussions

5.1 Why Bagging is Good?

Bagging (i.e., bootstrap aggregation) is an ensemble learning method that can potentially
reduce the variance of a learned classification model (aka. a classifier). Model variance
corresponds to error due to sensitivity of the model to small fluctuations in a training data.

Table 17 Precision, Recall, and
F-measure of FSAPRILE+ on
BugLocator, BLUiR, and
AmaLgam instances for K=40 %
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 89.15 % 66.86 % 76.41 %

Eclipse 81.93 % 83.67 % 82.79 %

SWT 90.28 % 83.33 % 86.67 %

Tomcat 52.90 % 87.26 % 65.87 %

Average 78.56 % 80.28 % 77.94 %

BLUiR

AspectJ 84.56 % 73.25 % 78.50 %

Eclipse 79.60 % 80.75 % 80.17 %

SWT 96.23 % 59.30 % 73.38 %

Tomcat 65.98 % 94.58 % 77.73 %

Average 81.59 % 76.97 % 77.45 %

AmaLgam

AspectJ 84.86 % 80.10 % 82.41 %

Eclipse 82.02 % 83.73 % 82.86 %

SWT 96.97 % 72.73 % 83.12 %

Tomcat 67.89 % 94.86 % 79.14 %

Average 82.94 % 82.86 % 81.88 %
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Table 18 Precision, Recall, and
F-measure of FSAPRILE+ on
BugLocator, BLUiR, and
AmaLgam instances for K=60 %
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 88.89 % 65.12 % 75.17 %

Eclipse 83.20 % 80.13 % 81.64 %

SWT 98.21 % 70.51 % 82.09 %

Tomcat 55.97 % 86.62 % 68.00 %

Average 81.57 % 75.59 % 76.72 %

BLUiR

AspectJ 86.51 % 69.43 % 77.03 %

Eclipse 83.39 % 82.94 % 83.16 %

SWT 95.83 % 53.49 % 68.66 %

Tomcat 65.74 % 93.60 % 77.24 %

Average 82.87 % 74.87 % 76.52 %

AmaLgam

AspectJ 87.63 % 83.16 % 85.34 %

Eclipse 84.26 % 82.42 % 83.33 %

SWT 95.59 % 73.86 % 83.33 %

Tomcat 69.42 % 94.39 % 80.00 %

Average 84.23 % 83.46 % 83.00 %

High variance potentially causes overfitting. An overfit classifier usually has poor predictive
performance on unseen dataset as it is adversely affected by random errors or noise.

Our problem of predicting the effectiveness of bug localization instances is prone to
noise, which is likely to translate to higher model variance. There are many types of bugs,
each with their own peculiarities. Moreover, many program elements returned by a bug
localization technique may share the same scores, and thus the top-N most suspicious
program elements are decided by arbitrarily breaking ties.

We hypothesize that bagging is good for our approach since it reduces model variance.
To validate this hypothesis, we conduct an empirical analysis using the bug localization
instance dataset shown in Table 5. We use the bias-variance decomposition method (Kohavi
et al. 1996) to infer the variance of classifiers built using SVM and bagging-based SVM
(i.e., SVMbagging). We build different classifiers with different features (i.e., score, text,
topic model, and metadata features) extracted from different datasets. Table 22 shows the
variance of SVM and SVMbagging classifiers. From the table, we note that for 9 out of the
16 dataset-feature type pairs, SVM models have higher variance than SVMbagging models.
This validates our hypothesis.

5.2 Threats to Validity

Threats to internal validity relate to experimenter errors. We have carefully rechecked our
implementation several times, but there may still be errors that we do not notice. Thus, we
make APRILE+’s data and implementation publicly available for inspection by the public.
The other threat to external validity is our choice of classification algorithms to construct
prediction models. We selected only two algorithms: Support Vector Machine and Radial
Basis Function Network. There are still other potential algorithms that are more accurate
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Table 19 Precision, Recall, and
F-measure of FSAPRILE+ on
BugLocator, BLUiR, and
AmaLgam instances for K=80 %
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 90.21 % 75.00 % 81.90 %

Eclipse 84.85 % 78.16 % 81.37 %

SWT 96.72 % 75.64 % 84.89 %

Tomcat 54.89 % 92.99 % 69.03 %

Average 81.67 % 80.45 % 79.30 %

BLUiR

AspectJ 80.37 % 83.44 % 81.88 %

Eclipse 84.89 % 79.10 % 81.90 %

SWT 89.55 % 69.77 % 78.43 %

Tomcat 65.53 % 94.58 % 77.42 %

Average 80.09 % 81.72 % 79.91 %

AmaLgam

AspectJ 85.16 % 79.08 % 82.01 %

Eclipse 86.51 % 80.33 % 83.30 %

SWT 94.37 % 76.14 % 84.28 %

Tomcat 68.68 % 90.19 % 77.98 %

Average 83.68 % 81.44 % 81.89 %

than these two algorithm. In the future, we plan to integrate more classification algorithms
in APRILE+. LDA is quite sensitive to the calibration of its parameters (i.e., α, β, number
of iterations, and number of topics). In this paper, we set the number of topics as 5, 10, and
15. We also fixed the α, β, and number of iterations to the default values of Stanford Topic
Modeling Toolbox v0.4.0 implementation of LDA (i.e., α = 0.01, β = 0.01, and number of
Gibbs’ iterations = 1000). These values may not be optimal, and the result of APRILE and
APRILE+ may improve when these parameters are optimized. Threats to external validity
relate to the generalizability of our findings. We have only experimented on bug reports
from 4 open source projects. Moreover, the projects are all written in Java and use the
same bug reporting system (i.e., Bugzilla). In the future, we plan to reduce these threats by
experimenting on more projects written in various programming languages and which use
various bug reporting systems. We also plan to extend our study to closed source software
systems. We have only investigated 3 IR-based bug localization tools. These tools are the
latest IR-based bug localization tools proposed in the literature. In the future, we also want
to investigate other IR-based bug localization tools. Threats to construct validity relate to
the suitability of our evaluation metrics. We use precision, recall, and F-Measure to evaluate
our approach. These metrics are well known (Han and Kamber 2006) and have been used
in many software engineering studies (Menzies and Marcus 2008; Antoniol et al. 2008; Le
and Lo 2013). Thus, we believe there is little threat to construct validity.

6 Related Work

In this section, we highlight related studies on IR-based bug localization and spectrum-
based bug (fault) localization and related studies that employ classification techniques to
automate software engineering tasks. The survey here is by no means complete.
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Table 20 Precision, Recall, and
F-measure of FSAPRILE+ on
BugLocator, BLUiR, and
AmaLgam instances for K=90 %
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 89.53 % 89.53 % 89.53 %

Eclipse 80.80 % 89.79 % 85.06 %

SWT 89.74 % 89.74 % 89.74 %

Tomcat 51.45 % 90.45 % 65.59 %

Average 77.88 % 89.88 % 82.48 %

BLUiR

AspectJ 78.74 % 87.26 % 82.78 %

Eclipse 80.16 % 89.65 % 84.64 %

SWT 88.51 % 89.53 % 89.02 %

Tomcat 65.61 % 92.12 % 76.64 %

Average 78.25 % 89.64 % 83.27 %

AmaLgam

AspectJ 85.19 % 93.88 % 89.32 %

Eclipse 83.63 % 87.86 % 85.69 %

SWT 91.01 % 92.05 % 91.53 %

Tomcat 67.59 % 91.59 % 77.78 %

Average 81.85 % 91.34 % 86.08 %

6.1 IR-Based Bug Localization

These techniques leverage information retrieval techniques to measure the similarity
between a bug report and source code files to produce a ranked list of most similar files.
Rao and Kak applied many standard IR techniques for bug localization and evaluated their
performances (Rao and Kak 2011). Lukins et al. proposed the use of Latent Dirichlet Allo-
cation (LDA) for bug localization (Lukins et al. 2010). Marcus and Maletic used Latent
Semantic Indexing (LSI) to recover document to source code traceability links (Marcus and
Maletic 2003). Sisman and Kak proposed a technique that predicts the likelihood of a file
to be buggy by learning from information stored in version history and use these likeli-
hoods along with a Vector Space Model (VSM) to perform bug localization (Sisman and
Kak 2012). Zhong et al. proposed BugLocator, a bug localization tool that uses a special-
ized VSM model (Zhou et al. 2012). Saha et al. used the structure of source code files and
bug reports to build a structured retrieval model for bug localization (Saha et al. 2013).
Tantithamthavorn et al. consider co-change histories to improve performance of BugLoca-
tor (Tantithamthavorn et al. 2013). Thomas et al. analyze the impact of input parameters
on performance of various IR-based bug localization tools, and introduce a framework for
combining results of different bug localization tools (Thomas et al. 2013). Wang and Lo
combined the approaches by Sisman and Kak, Zhou et al., and Saha et al. to build a better
bug localization tool (Wang and Lo 2014). Le et al. introduced the concept of suspicious
words for bug localization and proposed a multi-modal approach that utilizes information
from textual bug reports and program execution traces to localize bugs (Le et al. 2015).

In this work, we extend these studies by building an approach that can predict if a ranked
list that is output by a bug localization technique is likely to be effective or not. If it is
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Table 21 Precision, Recall, and
F-measure of FSAPRILE+ on
BugLocator, BLUiR, and
AmaLgam instances for K=95 %
(effectiveness criterion N = 10)

Project Precision Recall F-measure

BugLocator

AspectJ 87.22 % 91.28 % 89.20 %

Eclipse 80.07 % 86.55 % 83.19 %

SWT 90.12 % 93.59 % 91.82 %

Tomcat 52.40 % 90.45 % 66.36 %

Average 77.45 % 90.47 % 82.64 %

BLUiR

AspectJ 77.51 % 83.44 % 80.37 %

Eclipse 79.80 % 87.26 % 83.37 %

SWT 88.64 % 90.70 % 89.66 %

Tomcat 65.84 % 91.13 % 76.45 %

Average 77.95 % 88.13 % 82.46 %

AmaLgam

AspectJ 86.45 % 94.39 % 90.24 %

Eclipse 81.24 % 86.01 % 83.56 %

SWT 90.91 % 90.91 % 90.91 %

Tomcat 68.44 % 90.19 % 77.82 %

Average 81.76 % 90.38 % 85.63 %

likely to be ineffective, developers can ignore the ranked list and use conventional debug-
ging methods. Following an ineffective bug localization output wastes developers’ time and
effort.

6.2 Spectrum-Based Bug (Fault) Localization

These techniques analyze program execution traces and pass/fail outputs of test cases to
rank program elements (e.g., program statements). Jones and Harold proposed a suspicious-
ness formula called Tarantula that assigns suspiciousness scores to program elements (Jones
and Harrold 2005). Intuitively, Tarantula considers program elements that appear more in
failed executions as more likely to be buggy. Similarly, Abreu et al. proposed a suspicious-
ness formula called Ochiai (Abreu et al. 2009). Studies have shown that Ochiai outperforms
Tarantula in ranking buggy program elements. Borrowing concepts from the data mining
community, Lucia et al. investigated the effectiveness of 40 association measures and found
that Klosgen and Information Gain are promising measures for bug localization (Lucia et al.
2014). Recently, Xie et al. (2013a) theoretically proved that several families of suspicious-
ness formulas outperform the others. Xie et al. (2013b) further analyzed the effectiveness
of SBFL formulas created by applying a genetic programming algorithm (Yoo 2012).
Xuan and Monperrus employed a learning-to-rank algorithm to combine suspiciousness
scores computed by different SBFL formulas (Xuan and Monperrus 2014). Le et al. pro-
posed a learning-to-rank solution for spectrum-based fault localization by utilizing likely
invariants (Le et al. 2016).

Other studies also analyze execution traces to find buggy program elements. However,
these studies do not compute suspiciousness scores. Zeller and Hildebrandt proposed Delta
Debugging that search for failure inducing inputs (Zeller and Hildebrandt 2002). Employing
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Table 22 Variance of SVM and
bagging based SVM (i.e.,
SVMbagging) models on score,
text, topic model, and metadata
features of BugLocator instances
(effectiveness criteria N = 10)

Feature Type SVM SVMbagging Decrease Percentage

AspectJ

Score 0.0 0.0 0.0 %

Text 0.0389 0.0003 99.23 %

Topic Model 0.0 0.0 0.0 %

Metadata 0.0257 0.0003 98.83 %

Eclipse

Score 0.0 0.0 0.0 %

Text 0.008 0.0019 76.25 %

Topic Model 0.0 0.0 0.0 %

Metadata 0.0395 0.0004 98.99 %

SWT

Score 0.0 0.0 0.0 %

Text 0.0 0.0 0.0 %

Topic Model 0.0 0.0 0.0 %

Metadata 0.0049 0.0 100.0 %

Tomcat

Score 0.0173 0.0 100.0 %

Text 0.0382 0.0208 45.55 %

Topic Model 0.0185 0.0 100.0 %

Metadata 0.0461 0.0167 63.77 %

this technique, Zeller searched for minimal state difference between failed and successful
execution traces (Zeller 2002). Cleve and Zeller extended Delta Debugging further by incor-
porating cause transitions, which is implemented in a tool named AskIgor (Cleve and Zeller
2005).

In this work, we focus on predicting the effectiveness of an IR-based bug localization tool
instead of a spectrum-based bug localization tool. Le and Lo have developed an approach
that predicts the effectiveness of a spectrum-based bug localization tool (Le and Lo 2013; Le
et al. 2014a). We have used an adapted version of Le and Lo’s approach (i.e., SVMExt

Score) as
a baseline and demonstrated that our approach can outperform this baseline on all datasets
by up to a 94.39 % increase in F-measure.

6.3 Classification Techniques for Software Engineering

There are many studies that employ classification techniques to solve software engineering
problems. Bowring et al. employed active learning to predict whether an execution trace is
correct or faulty (Bowring et al. 2004). Brun and Ernst applied classification algorithms to
generate prediction models that classify fault-revealing properties of code (Brun and Ernst
2004). Antoniol et al. proposed an approach that predicts whether an issue is a bug report or
a feature request (Antoniol et al. 2008). Lamkafi et al., Menzies and Marcus, and Tian et al.
proposed techniques that predict the severity of reported bugs (Menzies and Marcus 2008;
Lamkanfi et al. 2010; Lamkanfi et al. 2011; Tian et al. 2012a). Jalbert and Weimer proposed
an approach that predicts whether a bug report is a duplicate or not (Jalbert and Weimer
2008). Tian et al. extended Jalbert and Weimer’s work using a more effective solution (Tian
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et al. 2012b). Shibab et al. proposed an approach that predicts whether a closed bug report
would be reopened (Shihab et al. 2010).

Different from the above studies, we propose a new classification framework to solve a
different software engineering problem, namely the prediction of the effectiveness of IR-
based bug localization instances.

6.4 Query Performance Prediction in Information Retrieval

In information retrieval, query performance prediction approaches are the most relevant
to our work in predicting effectiveness of bug localization tools. This line of research
focuses on estimating query difficulty, i.e., the quality of search results retrieved for a query
from a given collection of documents. There are two main groups of query performance
prediction approaches: pre-retrieval and post-retrieval. In general, pre-retrieval prediction
approaches estimate the quality of query’s results before the retrieval takes place (He and
Ounis 2004; Mothe and Tanguy 2005). On the hand, post-retrieval prediction approaches
analyzes rankings returned by search engines/retrieval systems to estimate quality of query’s
results (Vinay et al. 2006; Cronen-Townsend et al. 2002; Shtok et al. 2009; 2010). In
comparison with query performance prediction, our work is more relevant to post-retrieval
approaches based score distribution analysis (Shtok et al. 2009; 2010).

In (Shtok et al. 2009; 2010), Shtok et al. propose NQC (i.e., Normalized Query Com-
mitment) which is a predictor (i.e., measurement) to estimate the query performance. For a
given query q, the NQC value of q is the standard deviation of retrieval scores of all docu-
ments normalized by the query likelihood retrieval score of the whole corpus. If NQC of q is
greater than the mean retrieval score, q is estimated as “difficult”. Otherwise, q is an “easy”
query. Different from Shtok et al., we compute several statistics from suspiciousness scores
(i.e., retrieval scores) such as gaps between suspiciousness scores, relative differences, etc.,
in addition to standard deviation. Furthermore, we extract textual and context-specific fea-
tures from bug reports besides features from suspiciousness scores. Furthermore, we employ
state-of-the-art machine learning classification algorithms to predict the effectiveness of
bug localization instances instead of comparing a statistic based on standard deviation of
retrieval scores as Shtok et al.’s approach. However, different from query performance pre-
diction methods, we predict effectiveness of ranked lists returned by an information retrieval
based bug localization tool for a given bug report.

7 Conclusion and Future Work

In this paper, we address the unreliability of IR-based bug localization techniques by propos-
ing APRILE+ which is an automatic approach that can predict the effectiveness of a bug
localization instance. We propose a number of features that we extract from an input bug
report and a ranked list of suspiciousness scores that are output by a bug localization tool.
These features include: suspiciousness score features, text features, topic model features,
and metadata features. For each feature category, we use the values of the features extracted
from a training data to learn a prediction model. These models are then combined into a
composite prediction model in which the relative contributions of the individual models are
learned from the training data. We name this solution, which was introduced in our confer-
ence paper (Le et al. 2014b), APRILE, which stands for Automated PRediction of IR-based
Bug Localization’s Effectiveness. We further integrate APRILE with two other compo-
nents that are learned using our bagging-based ensemble classification (BEC) method, i.e.,
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RBFBEC and SVMBEC. We refer to the extension of APRILE as APRILE+. We evaluate
APRILE+ to predict the effectiveness of state-of-the-art bug localization techniques applied
on a dataset of 3,800 bugs from AspectJ, Eclipse, and SWT. Our approach can achieve an
average precision, recall, and F-measure of 77.61 %, 88.94 %, and 82.09 %, respectively.
Furthermore, APRILE+ outperforms a baseline based on the approach proposed by Le and
Lo (Le and Lo 2013; Le et al. 2014a) and APRILE by up to a 17.43 % and 10.51 % increase
in F-measure, respectively.

For future work, we plan to add more features to improve the F-measure of APRILE+
further. We also plan to evaluate APRILE+ with additional bug reports from various soft-
ware projects that are implemented in different programming languages to reduce the threats
to external validity further. Moreover, we plan to employ other approaches (i.e., learning to
rank algorithms or meta-heuristics etc.) to tune coefficients of models in (2) and (3). Fur-
thermore, to reduce the threats of internal validity, we plan to create a robust test suite and
share our code using iPython notebook which can be transparently shared.

Dataset and tool release APRILE+’s dataset and source code are publicly available at
https://github.com/lebuitienduy/aprile plus.
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