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Abstract The importance of product recommendation has

been well recognized as a central task in business intelligence

for e-commerce websites. Interestingly, what has been less

aware of is the fact that different products take different time

periods for conversion. The “conversion” here refers to actu-

ally a more general set of pre-defined actions, including for

example purchases or registrations in recommendation and

advertising systems. The mismatch between the product’s ac-

tual conversion period and the application’s target conversion

period has been the subtle culprit compromising many exist-

ing recommendation algorithms.

The challenging question: what products should be recom-

mended for a given time period to maximize conversion—is

what has motivated us in this paper to propose a rank-based

time-aware conversion prediction model (rTCP), which con-

siders both recommendation relevance and conversion time.

We adopt lifetime models in survival analysis to model the

conversion time and personalize the temporal prediction by

incorporating context information such as user preference. A

novel mixture lifetime model is proposed to further accom-

modate the complexity of conversion intervals. Experimental

results on two real-world data sets illustrate the high good-

ness of fit of our proposed model rTCP and demonstrate its

effectiveness in time-aware conversion rate prediction for ad-

vertising and product recommendation.

Keywords conversion time, survival analysis, product rec-

ommendation, advertising
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1 Introduction

The last decade has witnessed the generation of massive

amounts of behavioral data on a daily basis, thanks to the

rapid development of online shopping, social media, and

location-based services. These behavioral data reveals user

preferences, needs and consumption habits through their

feedbacks from online recommendation systems and adver-

tising platforms. Based on the feedback information, targeted

recommendations or advertisements could be delivered to the

users who are more likely to respond. The recommendation

performance is measured by conversion rate. In a commer-

cial recommendation system, conversion is the consumption

or rating of a recommended product. In advertising system,

conversion refers to pre-defined behaviors such as purchases,

registrations and email subscriptions. A core mission of prod-

uct recommendation and advertising is to optimize conver-

sion rate prediction.

Traditional recommendation systems and advertising sys-

tems focus on finding the right product to recommend or the

right user to deliver a piece of advertisement. However, in

real applications it is typical that the actual conversion rate

also depends on the timing of the recommendation or adver-

tising. For instance, recommending TVs to a user who has

just recently bought a new one is likely to result in negative

impressions as most consumers would not purchase another

big-ticket item of the same kind, such as a car or a house,

within a short period of time. They might consider replacing

it or buying an extra one month or year later. A right prod-

uct, recommended at a wrong time, is an opportunity wasted
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huge. The pain is felt most acutely in product recommenda-

tion where users are disappointed by a recommendation list

full of products unwanted at the time, which drives home the

importance of time-awareness in the performance of conver-

sion rate prediction.

On the other hand, the task conversion rate prediction in

real life often comes together with a given time period con-

straint. Online shopping websites care most about products

that will be bought in a particular upcoming period, such as

one week or half a month. Advertising systems, especially

those specializing in behavior re-targeting, are more inter-

ested in users who are most likely to convert in a near future.

What is essential in all these scenarios is the ability to predict

the conversion rate for a given period of time. The question

we should answer is not just whether it is the right product

to recommend but also whether it is the right time to recom-

mend.

Some heuristic approaches [1–4] have been proposed to

improve recommendation performance with temporal infor-

mation. Previous works focus on selecting the right items in

which timing is treated just as temporal characteristics to im-

prove the prediction accuracy, e.g., holiday seasons are found

to be the favorite time for shopping [5]. In this paper, we pro-

pose a data-driven model to predict the probability of a user

to convert in a specified upcoming time period based on his-

torical behavior.

We adopt the lifetime models in survival analysis, where

survival time originally represents the lifetime of a patient

in treatment experiments. In this work, the survival time

is the conversion interval between a piece of recommenda-

tion/advertisement and the eventual conversion. In order to

achieve personalized recommendation, the model is com-

plemented by a linear regression of contextual covariates,

including among others user consumption preferences and

product quality. We also note that conversions tend to have

different types, such as long term conversions and short term

ones. For this reason, a novel mixture model is proposed to

classify and identify the conversion types. Furthermore, the

model has been extended with a hierarchical Bayesian frame-

work for regularization. The proposed model is called the

context-aware Weibull mixture model (cWMM for short). As

there is no closed-form solution for parameter learning, the

generalized expectation-maximization (EM) algorithm has

been used, with a gradient strategy in the maximization step.

However, the conversion interval does not exist if the con-

version never occurs, which is different from survival anal-

ysis where patients will die eventually. This is the reason

why we need two models: one to predict the conversion rate

and the other to predict the conversion interval. The prob-

ability that a user converts within a particular time period

is given by a rank-based time-aware conversion prediction

model (rTCP), which is proposed to integrate the two sub-

models.

Finally, the proposed model is evaluated on two real-world

datasets: the conversion data from a display advertising plat-

form (Criteo), and the online consumption data from an e-

commerce website (T-mall). The experimental results show

that the proposed approach effectively models conversion in-

terval and improves performance in temporal advertisement

conversion prediction and product recommendation.

The major contributions of this paper are summarized as

follows:

1) A new research problem has been proposed to identify

what products should be recommended for a given up-

coming time period, such as three days or one week.

2) A lifetime model based on Weibull distribution has been

proposed to model the conversion intervals in the con-

sideration of personalization. A more comprehensive

model has been proposed using a Bayesian framework

to regularize and utilize the generalized EM for param-

eter estimation.

3) A rank-based time-aware conversion prediction model

(rTCP) with cWMM has been proposed to estimate be-

haviors over a specific prediction period.

4) The proposed cWMM has been evaluated using two

real-world datasets. Experimental results confirmed the

goodness of fit of cWMM. Furthermore, the effective-

ness of rTCP in temporal advertising and recommen-

dation systems has been demonstrated, especially for

short term prediction.

The remainder of the paper is organized as follows. Sec-

tion 2 discusses the related work. Section 3 gives the prelimi-

naries and the problem definition. Section 4 introduces a tem-

poral behavior prediction model. Section 5 provides details

of some lifetime models, including a proposed context-aware

Weibull mixture model i.e., cWMM. The experimental eval-

uations are detailed in Section 6, and the paper is concluded

in Section 7.

2 Related work

We summarize research work in product recommendation

and computational advertising which are most related to con-
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version rate prediction.

The central task of commercial recommendation systems

is to recommend products catering to users’ consumption in-

terest. Some context-based methods have been proposed in

Refs. [6–9] which make recommendations by analyzing tex-

tual information and finding regularities in the content. An-

other popular technique, collaborative filtering, assumes that

users who rate items similarly have similar consumption be-

haviors [10]. To alleviate the data sparsity problem, which

is a crucial challenge in collaborative filtering, many dimen-

sionality reduction approaches have been proposed, includ-

ing matrix factorization methods [12, 13] and latent semantic

models [14, 15]. Recent works also take the sequential be-

haviors of users into account. The research in Ref. [16] fo-

cused on the sequential order of purchases, and combined

Markov chains and matrix factorization to predict the next

action. A matrix factorization method combining a personal-

ized Markov chain and region localization has been proposed

in Ref. [17] to recommend successive POI.

Many recent research papers have explored the problem of

conversion rate prediction in the context of computational ad-

vertising. An analysis work [18] posted a detailed analysis of

conversion rates in the setting of non-guaranteed delivery tar-

geted advertising and illustrated that the click-to-conversion

delay is a challenge to conversion prediction. Logistic re-

gression is the most popular model used in real-life adver-

tising platforms because it can be parallelized easily to han-

dle large-scale problems [19]. Lee et al. [20] combined some

individual estimators, such as user and publisher, and used

logistic regression to tackle extreme data sparsity of conver-

sions.

However, users’ purchase decisions tend to change with

time. Lathia et al. [21] showed that temporal diversity was

an important factor in recommendation systems, which had

been used as a new measure in many subsequent research

of temporal recommendation. Xiang et al. [22] proposed a

method that the score of a given product was determined

by both long-term preference (the relevance between a pro-

duce and a user) and short-term bias due to special events

(such as seasonal sales). Koren [23] modeled the temporal

dynamics along the whole time period to separate transient

factors from lasting ones. A purchase interval cube was pro-

posed in [24, 25] to measure the temporal similarity of users.

A fourier-assisted auto-regressive integrated moving average

(FARIMA) process was proposed in Ref. [26] to tackle with

the year-long seasonal period of purchasing data to achieve

daily-aware preference predictions. An intelligence recom-

mender system was proposed in Ref. [27] to detect users’

purchase intents from their microblogs in near real-time and

make product recommendation based on matching the users’

demographic information. In all these works, temporal fac-

tors are used as temporal characteristics and cannot provide

explicit recommendation for a specified upcoming period.

In this work, survival analysis is used to have a fine-grained

modeling of conversion intervals. The term “survival anal-

ysis” refers to the study and modeling of observed product

lifetime with various fields of application, including actuarial

science, economics, engineering, and social and behavioral

sciences [28]. It focuses on the occurrence time of a particu-

lar operation, such as death in biological survival studies and

failure in mechanical reliability. In this study, lifetime is the

interval of the transition from the preceding behavior to the

eventual conversion. Some research have used lifetime mod-

els in recommendation and advertising systems. Exponential

model was used in Ref. [29] to capture the conversion delay

in display advertising. Wang et al. proposed an opportunity

method to model the interval of purchases [30] and career

switches [31], but used the joint probability of the time prob-

ability and occurrence probability to predict the conversion

rate of a given time, which was different from the rank-based

method of this work. We find that the joint probability is not

suitable for the motivation of this work, which will be de-

tailed in Section 4.

3 Preliminaries and problem definition

In this section, we first introduce some notations about time-

aware conversion prediction, followed by the problem formu-

lation.

3.1 Preliminaries

In this paper, we aim to find how to recommend the right

products or advertisements for a specified upcoming period

based on the behavior sequences of users. Figure 1 shows

an ad browsing sequence and an online shopping sequence.

A behavior is defined as a quaternion tuple {action, object,

timestamp, contextual variables}, which means that a user

takes an action with respect to an object at some times-

tamp with corresponding contextual variables. Except for the

timestamp, the other three tuples can vary in different sce-

narios. For instance, in online shopping, the user is a con-

sumer, the object is a product (identified by name, brand,

or category), the activity is click or purchase, and contex-

tual variables includes user profile variables (user age, gen-

der, income, etc.), product profile variables (product category,
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price, discount, etc.), and time-dependent variables (recent

user clicks and purchases, etc.).

Fig. 1 Behavioral sequences on an advertising system and an online shop-
ping website. Each sequence consists of a chronological sequence of actions
by user i and user j, where i, j ∈ U

The following notations are used in this paper:

• U: a set of users, each of which has a behavior se-

quence.

• X′: a set of features determining whether a conversion

will be performed.

• C ∈ {0, 1}: indicating whether a conversion will be per-

formed.

• Δt: an upcoming period specified by applications.

• T : the current time.

• Cat: a set of product/ad categories. In product recom-

mendation, it can be the nature category of the prod-

uct, such as books & audible and home, garden & tools

or the category learned by clustering models, like laten

Dirichlet allocation (LDA) and k-means. In advertising,

the category are the brand of advertisements or the ad-

vertising campaign of an advertiser.

• M: a set of transitions, each of which refers to the type

of transition from the current behavior to the conver-

sion. A transition is related to the category of the object

and the action, but is not specific to a particular user. In

Fig. 2, the transition m ∈ M is {(action A, object B)→
(action C, object D)}. If object B is in category p and

object D is in category q, the transition is formed by

category {p → q}. In the ad browsing sequence shown

in Fig. 1, the transition from behavior bi,2 to behavior

bi,4 is {(view, ad B)→ (registration, ad B)}, whereas in

the online shopping sequence, it is {(cart, product A)→
(purchase, product B)}. Only conversion and purchase

are defined as the latter action because in product rec-

ommendation, advertising platforms and e-commerce

web sites pay more attention to final consequences.

• Nm: a set of observations, each of which is an ob-

served transition between two behaviors in a behavior

sequence of transition m, where m ∈ M. The former be-

havior of an observation is the triggering behavior and

the latter one the pre-defined conversion. Each observa-

tion consists of two parts: the time interval ym,n and the

covariates xm,n, as shown in Fig. 2.

• Y: the conversion interval if C = 1. As shown in

Fig. 2, ym,n ∈ Y is the time difference of the observa-

tion n in transition m: ym,n = tp − tq, where n ∈ Nm,

m ∈ M and observation n consists of behaviors bi,p and

bi,q.

• X: a set of features determining when a behavior will be

performed, of which each element xm,n is a vector that

presents the contextual information of an observation

pair n in transition m.

Figure 2 shows an example of the relationship among tran-

sition m ∈ M, observation n ∈ Nm, time interval ym,n, and co-

variates xm,n. It is assumed here that observations in the same

transition share similar properties, and therefore that obser-

vations in the same transition should be considered as hav-

ing the same scope, like a document in the LDA model [15].

Furthermore, covariates should contain the respective proper-

ties of each behavior, the characteristics of the corresponding

transition, and the preferences of the user. For example, the

covariates xm,n incorporate the inherent behavioral variables

�vi,p and �vi,q (such as the ratings of objects oi,q and oi,p), the

features extracted from transition m (such as the distance be-

tween two locations and the similarity of two products), and

the preferences of user ui (such as gender, age, and favorite

categories).

Fig. 2 Illustration of the relationship among behaviors, transitions, and ob-
servations with corresponding components

3.2 Problem definition

To recommend the right products or advertisements for a
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specified upcoming period Δt, we should first find some can-

didate products with high conversion rate for each user, then

exam which candidate has higher probability to convert. Re-

gardless of time, deciding what products or advertisements

should be recommended needs to predict the conversion rate

Pr(C = 1|X′). However, the conversion rate only gives the

probability of the occurrence in the future, but not the guid-

ance of the conversion time. This problem results in the

waste of recommending opportunity and poor user satisfac-

tion when the conversion has low possibility to occur within

Δt. We calculate the percentage of ad conversions (all ads are

of the same ad campaign) within different time intervals. As

shown in Fig. 3, about 70% of ad conversions occur within

ten hours of the clicks, about 20% of the conversions occur

in the interval between12 hours and seven days and the rest

10% happen much latter.

Fig. 3 Cumulative distribution of the interval between ad click and ad con-
version. All intervals are of the same ad campaign

The probability of conversion occurrence within an up-

coming periodΔt is determined by the specified periodΔt and

the distribution of the conversion interval p(Y). Suppose there

are two candidate ads with the same conversion rate. Some

advertiser pursuits short-term return; for instance, they want

more conversions within one day or three days. We should

deliver the ad with higher probability to convert within short-

term.

If we have a proper lifetime distribution, the first task is

how to use the lifetime model to improve the performance

of time-aware conversion prediction. It is difficult to combine

these two predictions: what product or advertisement should

be recommended, and when they should be recommended.

The problem will be discussed in Section 4. However, tradi-

tional statistical lifetime distributions are inadequate to model

the intervals between behaviors. Indeed, building a frame-

work for analyzing the time factor of a user behavior se-

quence effectively remains an open problem. So the second

task is find a proper lifetime distribution to model the person-

ality and complexity of interval distributions, which is more

difficult. Section 5 will introduce the proposed lifetime mod-

els.

4 Time-aware conversion prediction

This section discusses how to use a proper lifetime distri-

bution to improve the performance of time-aware conver-

sion prediction. The lower-case letters are the observed val-

ues of the random variables in Section 3.1. In time-aware

conversion prediction, the data set is made up of tetrads

(x′u,q, cu,q, tu,p, xu,p,q) of user u. The triggering behavior is bp,

the conversion is bq, cu,q indicates whether the conversion

happens, tu,p is the timestamp of bp, x′u,q determines whether

conversion will happen, and xi,p,q influences when the conver-

sion will happen. If cu,q = 1, the interval yu,p,q is also given.

Given the behavioral sequence of a user, two sub-models

are needed to predict whether he or she will perform a certain

conversion within a specific period Δt (e.g., three days or half

a month): a model of the conversion probability Pr(C|X′),
and a model of the conversion time Pr(Y − T < Δt|X,C =
1, Y, T,Δt). To estimate Pr(C = 1|X′), i.e., the probability that

a user will convert or the probability of purchasing a product,

we can use the existing classification models in recommen-

dation systems. In this study, the most widely used model,

the logistic regression model, has been applied to conversion

prediction (CP) as the baseline model:

Pr(C = 1|X′ = x′) =
1

1 + exp(−wTx′))
, (1)

where w is a vector of weights that can be learned by the

maximum likelihood estimation.

If a conversion occurs (C = 1), the time interval Y will be

modeled by a lifetime distribution p(y). When predicting the

occurrence time of a conversion, the model should focus on a

time period, not a single point in time. For example, in adver-

tising platforms, advertisers pay more attention to the proba-

bility that a user will convert within one day or one week; in

product recommendation systems, marketers would prefer to

know the products that a user is most likely to buy in the next

week or the next month. Therefore, the time prediction model

(TP) is designed to provide the probability that a conversion

will be performed within Δt:

Pr(Y − T < Δt|X,C = 1, Y, T,Δt) =
∫ Δt

0
p(y)dy. (2)
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The cumulative function of cWMM and p(y) is the proba-

bility density function of a lifetime model. This represents

the probability that a conversion happens within the period of

[T, T + Δt].

Under these models, a straightforward approach is using

the joint probability of CP (Eq. (1)) and TP (Eq. (2)) to cal-

culate the probability that a user converts within Δt. This

is called the naive TCP model, which is the opportunity

model in Refs. [30, 31]. However, in naive TCP, the value

of TP suppresses that of CP. If C = 1, TP provides the

probability that a user will perform the conversion within

[T, T + Δt]. Regardless of whether a behavior will be per-

formed, Pr(Y − T < Δt|X,C = 1, Y, T,Δt) is close to one

when Δt is large enough. In this situation, a negative conver-

sion will be misestimated as positive when Pr(C = 1|X′) is

small and Pr(Y − T < Δt|X,C = 1, Y, T,Δt) is large.

Therefore, a rank-based time-aware conversion prediction

method, named rTCP, is proposed here to integrate CP and

TP, which is shown in Algorithm 1. We use a threshold δ to

determine the relationship between CP and TP. When CP is

high, TP dominates the output of rTCP, and when CP is low,

TP dominates. That means TP has stronger effect on the be-

haviors when the CP predicted value is lower than that when

the CP predicted value is higher. Therefore, in rTCP, thresh-

old δ changes for different predicted values of CP: if the CP

predicted value is high (e.g., [0.8, 1]), δ is small; whereas if

the CP predicted value is low (e.g., [0, 0.4]), δ is large. On

the other hand, rTCP also reflects that if the cumulative prob-

ability is too small, it is too early to say that a behavior will

not be performed. Here, the heuristic ranking strategy given

in Algorithm 1 is proposed, but there are other approaches to

set δ, which can be explored in the future.

Algorithm 1 Ranking strategy in rTCP

Input: A, B

Output: RANK of A and B

δ = 1 −max(CP(A),CP(B));

If |CP(A) − CP(B) � δ|
return rank(TP(A),TP(B)); //ordering A and B with TP.

else

return rank(CP(A),CP(B)); //ordering A and B with CP.

5 Mixture temporal model

This section presents a novel lifetime model for exploring the

time factor in sequential behaviors. First, the characteristics

of conversion intervals and the Weibull distribution are intro-

duced. Then an extension of the basic distribution to capture

personalization and complexity is illustrated, and the param-

eter estimation using the EM algorithm is detailed.

5.1 Conversion intervals

Figures 4(a) and 4(b) show the distributions of the intervals

and log intervals within the same ad campaign over 14 days.

The oscillating shape is due to daily cyclic trends, where the

peak hour can be considered as the preferred hour of a user.

Figures 4(c) and 4(d) show the purchase intervals from an e-

commerce website. As shown in Fig. 4, the distributions of

the intervals in are much more complex than a basic lifetime

distribution such as the exponential or Weibull distribution.

A related study [29] assumed that the ad conversion intervals

followed an exponential distribution. However, an exponen-

tial distribution gives a straight-line regression for log inter-

vals, which fails to match the distribution shown in Fig. 4(b).

The Weibull distribution with a shape parameter less than one

may provide a better fit for short intervals. However, even

the Weibull distribution tends either to under-predict short

intervals (< 2 days) or to over-predict long intervals (> 2

days), which means that the interval distribution appears to

be a mixture of short and long intervals. Furthermore, unlike

the common lifetime distributions, the shapes of the purchase

interval distributions fluctuate widely. This phenomenon in-

dicates that the distributions tend to change over time, which

reflects the complexity and personality of behavior patterns

and user preferences. It also implies that a mixture lifetime

model is required to model the conversion intervals.

5.2 Weibull distribution

The Weibull distribution is one of the most widely used life-

time distributions in survival analysis. Here, the lifetime is

conversion interval Y. In statistics, the Weibull distribution,

which is characterized by a shape parameter α and a scale

parameter θ, is a versatile distribution that can take on the

characteristics of various other distributions. The exponential

distribution is an exceptional type of Weibull distribution in

which α = 1.

Let p(ym,n) be the probability density function of the

Weibull distribution:

p(ym,n) =
α

θ

(ym,n

θ

)α−1
exp

[
−
(ym,n

θ

)α]
, (3)

where ym,n is the time interval between behavior bi and be-

havior b j of observation n in transition m, and p(ym,n) is the

probability density function of the continuous variable ym,n.

The transition modes between behaviors are denoted by α

and θ. As shown in Fig. 5, the shape parameter α is concerned
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with the tail behavior, and the scale parameter θ is related to

the distribution peak.

• A value of α < 1 indicates that the event occurrence rate

decreases over time. The shape parameter α for most in-

tervals between ad impressions (or clicks) and conver-

sions is less than one, which indicates that the influence

of an ad fades quickly with time, as can be observed in

Figs. 4(a) and 4(b).

• A value of α = 1 indicates that the event occurrence

rate does not change with time. This indicates that the

willingness of users to go to some location or buy some

product is independent of time.

• A value of α > 1 indicates that the event occurrence

rate increases over time. This happens in some re-

consumption cases in which the purchase willingness

of a product can at first be low when the user has just

bought it. Unlike distributions with α � 1, p(ym,n = 0)

is not the distribution peak when α > 1.

• The scale parameter θ reflects the values around which

the ys mainly cluster (the distribution peak). When α =

1 or α � 1, the mean value, i.e., ȳm,n = θΓ

(
α + 1
α

)
,

equals to θ.

Fig. 4 Probability density function (pdf) of intervals and log intervals between behaviors. (a) pdf of intervals between clicks and conversions
(mean: 0.9 day); (b) log pdf of intervals between clicks and conversions (mean: 0.9 day); (c) pdf of intervals between purchases and purchases
(mean: 27.0 days); (d) log pdf of intervals between purchases and purchases (mean: 27.0 days)

Fig. 5 Probability density functions for various values of the shape parameter αs and the scale parameter θs (time is in hours). (a) α < 1; (b)
α = 1; (c) α > 1
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The Weibull distribution has been proved to perform better

as a lifetime distribution than other continuous distributions

[32]. However, both exponential distribution and Weibull dis-

tribution are adequate to model conversion intervals, since

each of them has both advantage and disadvantage. Weibull

distribution fits the interval data better than exponential distri-

bution with adaptable shape parameter α, while exponential

distribution is much simpler than Weibull distribution. There-

fore, applications have the right to analyze the trade-off and

choose which distribution is more suitable for individual re-

quirements. If exponential distribution is chosen, we can sim-

ply set α to 1.

Considering personalization, the interval distribution is

also strongly related to contextual information. Therefore, the

scale parameter θ is re-characterized using the covariate vec-

tor xm,n and the weights β. The parameter θ, which is regarded

as the pseudo-mean of the time interval ym,n, can be repre-

sented by the exponential linear combination of xm,n and β as

exp
[
βTxm,n

]
. Then the probability density function is changed

to:

p(ym,n) =
α

exp
[
βTxm,n

]
(

ym,n

exp
[
βTxm,n

]
)α−1

exp

[
−
(

ym,n

exp
[
βTxm,n

]
)α]
. (4)

5.3 Context-aware Weibull mixture model

As discussed in Section 5.1, it is difficult to model intervals

using a single Weibull distribution. In this section, we pro-

pose a novel context-aware Weibull mixture model (cWMM)

which incorporates covariates to introduce contextual infor-

mation and leverages a mixture of models to cover the vari-

ance of behavioral patterns and motivations. This model is

only an optional extension to fit the conversion intervals bet-

ter, but it is not necessary when applications attach more im-

portance to efficiency than accuracy.

•Model description The proposed cWMM is a probabilis-

tic mixture generative model of time interval ym,n in a cer-

tain transition m with contextual covariates xm,n, which can

be represented by the graphical model in Fig. 6. The great-

est strength of the cWMM is that it can take into account the

complexity of multiple behavioral transition patterns in dif-

ferent time periods. The model considers the inherent differ-

ences among transitions, and hence the observations in each

transition m share the same parameters.

Because mixture models without priors are sensitive to sin-

gularities, the mixture Weibull model was extended to the

Bayesian version. Parameters in different transitions are in-

dependent, but share the same global priors. To represent the

mixture of Weibull models, a hidden variable zm,n was intro-

duced to indicate which basic distribution generated obser-

vation ym,n. Given the Weibull parameter φm and the mixture

parameter ωm, the joint distribution of the time interval ym,n

and its mixture variable zm,n is:

p
(
ym,n, xm,n, zm,n | φm, ωm

)

=

K∑
k

p
(
zm,n = k | ωm

)
p
(
ym,n, xm,n | φm,k

)

=

K∑
k

ωm,kWeibull
(
ym,n;αm,k, exp

[
βm,k

T, xm,n

])
, (5)

where ωm is a K-dimensional vector containing the weight of

each Weibull distribution. Algorithm 2 illustrates the process

of generating the cWMM.

Fig. 6 Illustration of cWMM as a generated probability graph, where ob-
servation n is of transition m, M is the number of transitions and Nm the
number of observations of transition m. ym,n is the time interval of obser-
vation n and xm,n is the corresponding set of covariates. zm,n is the mixture
indicator of the K Weibull distributions, ω is the parameter of zm,n with prior
γ, and αm,k and βm,k are the parameters of the kth Weibull distribution with
prior a, b, μ, ω

Algorithm 2 Probabilistic generative process in cWMM

for each transition m, m ∈ M do

Draw ωm ∼ Dirichlet
(
ωm; γK , . . . ,

γ
K

)
;

for each Weibull distribution k, k ∈ K do

Draw αm,k ∼ Gamma
(
αm,k ; a, b

)
;

Draw βm,k ∼ Gaussian
(
βm,k; μ,Σ

)
;

end for

for each observation n, n ∈ Nm do

Draw zm,n ∼ Discrete
(
zm,n;ωm

)
;

for each single Weibull distribution k, k ∈ K do

let θm,n,k = exp
[
βm,k

Txm,n

]
;

end for

Draw ym,n |zm,n = k ∼Weibull
(
ym,n;αm,k , θm,n,k

)
;

end for

end for

•Model training This model is an extension of the mixture

model, in which each basic distribution is a Weibull distri-
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bution. The EM algorithm has been used to perform parame-

ter estimation. Because the scale parameter of each Weibull

distribution is assigned to the linear regression of the contex-

tual covariates, there is no closed-form solution in step M.

The generalized EM method is used to optimize the Weibull

parameters {α, β} using a gradient-based method. As for the

global priors and hyper-parameters, they are treated as fixed

values (i.e., a = 2, b = 2, μ = {0.1, . . . , 0.1}, σ = 0.5I, γ =

{0.1, . . . , 0.1}, k = 3). For the current iteration t:

In the expectation step, α, β, ω, and the sample zm,n are

fixed for all the observations as follows:

rm,n,k
t = p

(
zm,n = k | ym,n, xm,n, φm,n

t−1, ωm
t−1

)

=
ωm,k

t−1 p
(
ym,n|xm,n, φm,n,k

t−1
)

∑K
j ωm, j

t−1 p
(
ym,n|xm,n, φm,n, j

t−1
) , (6)

where rm,n,k is the probability that this observation is gener-

ated by the kth Weibull distribution.

In the maximization step, the first task is to update the

parameters {αm,k, βm,k} for each Weibull distribution in tran-

sition m. Because there is no closed-form solution to opti-

mize the log likelihood of the complete data, a gradient-based

method has been leveraged to perform parameter estimation

with maximum a posteriori probability (also known as MAP).

The log likelihood of the observed data of transition m is:

L(φ) ∝
K∑
k

Nm
(k)∑

n(k)

rm,n,k log[p
(
ym,n

(k)|αm,k, exp
[
βm,k

Txm,n
(k)

])

p
(
αm,k|a, b) p

(
βm,k |μ,Σ)]. (7)

The first-order derivatives of the shape parameter αm,k and

the covariate weights βm,k can be directly calculated from the

log likelihood as follows:

∂L(φ)
∂αm,k

=

Nm
(k)∑

n(k)

rm,n,k(
a
αm,k
+

⎡⎢⎢⎢⎢⎢⎢⎣1 −
⎛⎜⎜⎜⎜⎜⎜⎝ ym,n

(k)

exp
[
βm,k

Txm,n
(k)

]
⎞⎟⎟⎟⎟⎟⎟⎠
αm,k

⎤⎥⎥⎥⎥⎥⎥⎦
(
ln ym,n

(k) −
[
βm,k

Txm,n
(k)

])
− 1

b
), (8)

∂L(φ)
∂βm,k

=

Nm
(k)∑

n(k)

rm,n,k(−αm,k

⎡⎢⎢⎢⎢⎢⎢⎣1 −
⎛⎜⎜⎜⎜⎜⎜⎝ ym,n

(k)

exp
[
βm,k

Txm,n
(k)

]
⎞⎟⎟⎟⎟⎟⎟⎠
αm,k

⎤⎥⎥⎥⎥⎥⎥⎦
(
xm,n

(k)
)T − 1

2

[
Σ−1 (
βm,k − μ)]T

). (9)

In the update procedure, given the current hidden variables

zm,n, αm,k and βm,k are estimated using an optimization strat-

egy based on the L-BFGS optimizer in the current imple-

mentation. Then θm,kt =
(
αm,k

t, βm,k
t) are set using the new

estimates for k = 1 : K.

Finally, the mixture weights ωm are updated using the

tractable posterior probabilities of the pseudo-counts, de-

noted as rm,k =
∑Nm

n rm,n,k. The mixture parameters are up-

dated by the expectation of the Dirichlet posterior:

p (ωm |y; γ) = Dirichlet
(
rm,1 +

γ

K
, . . . , rm,K +

γ

K

)
, (10)

and ωm is updated using:

wm,k
t =

rm,k
t +
γ

K∑K
j

(
rm, j

t +
γ

K

) . (11)

6 Experimental evaluation

6.1 Datasets of sequential behaviors

To analyze the distribution of conversion intervals, two real-

world datasets are used.

• Criteo The conversion behavior dataset is obtained from

Criteo1) , a display advertising platform specializing in re-

targeting [29]. In various campaigns, display ads are posted

in different forms (e.g., iFocus ads and floating ads) through

various channels (e.g., portal web sites and social web sites).

An ad campaign aims to deliver a message about a specific

brand to the target audiences. This dataset contains the click

and conversion records for one month, including 15 998 883

click-conversion observations (25% being positive samples

and 75% negative samples)2) in 13 073 ad campaigns. Be-

havioral timestamps are in seconds.

This scenario focuses on the transitions between clicks and

conversions. Post-click attribution means that a conversion

assigns the whole credit to a particular click, which means

in turn that the conversion behavior is caused by the click.

This is a commonly accepted attribution model in the on-

line advertising industry. The time intervals between clicks

and conversions are valuable in temporal conversion-rate pre-

diction and in campaign performance analysis. In statistical

terms, approximately 46% of conversions occur within one

day of the click and 13% after two weeks. The statistics of

the whole intervals is quite different from interval distribu-

tion of a champaign, which is shown in Fig. 3. This fact indi-

cates that interval distributions of different transitions should

be modeled separately. However, the number of observations

for each campaign tends to follow the power law distribution,

which means that the observations in most campaigns are too

rare to build a model. Therefore, 1 603 025 click-conversion

1) http://labs.criteo.com/downloads/2014-conversion-logs-dataset/
2) In the real case, the conversion rate Pr(conversion|click) can be as low as 1%, and the dataset is sampled as one positive: three negatives for model training
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pairs from the largest 100 campaigns are used in the experi-

ments.

• Tmall The online consumption behavior dataset is ob-

tained from the competition for the Tmall Recommendation

Prize 20143) and is provided by Ali. The Tmall dataset con-

tains a user history log of browsing and consumption for four

months, including clicking, adding an item to the wish list,

adding an item to the shopping cart, and purchasing. Behav-

ioral timestamps are in days. After filtering out records where

the user made no purchase or where the brand was clicked

fewer than 50 times or purchased fewer than ten times, the

dataset contains 182 879 records (including 9 684 conver-

sions), 2 149 brands, and 748 users.

Online stores always want to know what products a user

will purchase in the next week or next month. However, a

crucial challenge of product recommendation is that users

tend to buy “new products”. User behavior log reveals that

most products (as much as 75%) which are bought in the last

month are never clicked or bought in the former three months.

Therefore, this research considers two kinds of intervals, in-

cluding click-to-purchase transitions (the term “click” here

includes actions except purchases) and purchase-to-purchase

transitions. Purchase to purchase transitions are important in

this scenario because the products users have purchased have

strong intention of user preference and can be used to predict

the potential upcoming products.

The products users have purchased also reveal the latent re-

lationship between products. Therefore, the brands are clus-

tered into ten categories using LDA [15] based on the con-

suming records of users. The conversion intervals between

two brands are extremely sparse. Under this condition, the

interval distributions between two brands tend to be stochas-

tic and can not be modeled by any well-known distribution.

Even if the dataset contains more users and brands, it would

still be impossible to model intervals between brands because

most users usually purchase at most dozens of products per

month, and thus the conversion intervals between brands are

still sparse.

6.2 Effectiveness of lifetime models

Next, the goodness of fit of the proposed lifetime models

will be demonstrated. First, the experimental setup, includ-

ing data preparation and the diverse approaches used, will be

described. Then the main experimental results will be demon-

strated on each dataset. Finally, the question about how to

analyze different transition modes will be explored.

6.2.1 Data preparation

The experimental setup is constructed as follows. For the

Criteo dataset, 100 campaigns are used in the experiments.

Each campaign is treated as a transition, and the click-

conversion pairs in each campaign are divided into four

groups. The average number of observations in each tran-

sition is 13 356. The contextual covariates include eight

counting features and nine categorical features, which are

directly provided by the publisher and anonymized. As for

the Tmall dataset, all users are divided into four groups, and

click-purchase and purchase-purchase transitions are exam-

ined among categories (all brands are clustered into ten cat-

egories) as separate transitions. There are on average 1 782

click-purchase observations and 613 purchase-purchase ob-

servations in each group. The covariates include various fea-

tures, including how many times the category transition has

appeared before and how many times the product has been

bought before. For both datasets, fourfold cross validation is

applied to the cWMM and to all competing models.

6.2.2 Contrasting approaches

To evaluate the rationality and necessity of the proposed

cWMM, the following three components are examined: 1)

the effect of the Weibull distribution; 2) the effect of the con-

textual covariates; and 3) the effect of the mixture extension.

The following contrasting models are evaluated:

• EMM: exponential mixture model, k = 1, 2, 3, . . .

(when k = 1, this is a basic exponential model (EM).)

• WMM: Weibull mixture model, k = 1, 2, 3, . . . (when

k = 1, this is a basic Weibull model (WM). )

• cEMM: context-aware exponential mixture model, k =

1, 2, 3, . . . (when k = 1, this is a context-aware expo-

nential model (cEM).)

• cWMM: context-aware Weibull mixture model, k =

1, 2, 3, . . . (when k = 1, this is a context-aware Weibull

model (cWM). )

The log likelihood and perplexity have been used to eval-

uate how well the model fits the test data. The log likelihood

formula has been defined as:

log p(y) =
M∑
m

log p (ym) . (12)

The perplexity is used by convention in language mod-

els [11] and topic models [15]. It decreases monotonically

3) http://102.alibaba.com/competition/addDiscovery/index.htm
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as the likelihood of the test data increases. For a test set of M

transitions, the perplexity can be defined according to [33]:

perplexity(y) = exp

[
−

∑M
m log p(ym)∑M

m Nm

]
. (13)

In general, a better fit means a larger log likelihood and less

perplexity. For both log likelihood and perplexity, the likeli-

hood of a transition in the purposed cWMM is:

p(ym) =
Nm∏
n

K∑
k

ωk p
(
ym,n, xm,n | φm,k

)
. (14)

6.2.3 Experimental results

The experimental results obtained are shown in Fig. 7. In gen-

eral, the proposed cWMM has the best performance among

all the competing models. First, it can be seen that the Weibull

distribution always provides a better fit than the exponential

distribution, regardless of whether it is used with contextual

covariates or mixture extensions. Second, contextual infor-

mation helps both the Weibull and exponential distributions

fit real-world behavioral data more closely. This can be ex-

plained by the statistics that models with contextual covari-

ates have a self-adapting scale parameter, which means that

the mean value of the model for each interval ym,n is deter-

mined by the corresponding contextual covariates xm,n. Fi-

nally, mixtures further improve the fitting ability of models

because the mixed models all performed better than the non-

mixed models. Once K is large enough to cover the diver-

gence of the time factor, performance will not be further im-

proved by increasing K. In the Criteo dataset, the cWMM fits

the test set well when k = 2; whereas in the Tmall dataset,

the cWMM fits the test set well when k = 3. The models

of click-conversion intervals (in Criteo) all combine a small

shape parameter α (approximately 0.3) and a bigger one (ap-

proximately 0.9). The models of purchase-purchase intervals

(in Tmall) have a shape parameterα greater than one (approx-

imately 1.6). It is also apparent that contextual regression and

mixture extension improve fitting performance more in Tmall

than that in Criteo, which means that in Tmall the individual

context and the transition mode of difference observations

have a stronger effect on interval probabilities. This result

explains the irregular shapes of the interval distributions in

Figs. 4(c) and 4(d).

6.2.4 Transition mode analysis

The proposed cWMM provides a non-monotonic hazard

function to identify the various transition modes in different

periods, with the character of the shape parameter. In survival

analysis, the hazard rate reflects the occurrence rate of a be-

havior. In this research, it is used to reflect the transition mode

from one triggering behavior bi,p to the conversion bi,q. One

great advantage of the Weibull distribution is that the shape

parameter α directly reflects the tendency of the hazard rate.

If the shape parameter αm,k = 1, the hazard rate is a constant,

which means that the behavior occurrence rate is independent

of time. If 0 < αm,k < 1, the hazard rate decreases with time,

which means that the positive influence of the triggering be-

havior is fading. If αm,k > 1, the hazard rate increases with

time, which means that the negative influence or inhibiting

effect of the triggering behavior is fading.

Fig. 7 Overall comparison between EMM, WMM, cEMM, and the proposed cWMM. (a) Log likelihood for Cretio; (b) log likelihood for
Tmall; (c) perplexity for Cretio; (d) perplexity for Tmall
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Table 1 Transition modes

Click→Purchase Purchase→Purchase
Ordered Hazard rates

Brand 1 Brand 2 Brand 3 Brand 1 Brand 2 Brand 3

α(p1)<α(p2)<α(p3) 0.011 0.019 0.009 0.019 0.015 0.019

α(p1)<α(p3)<α(p2) 0.899 0.781 0.863 0.187 0.203 0.327

α(p2)<α(p1)<α(p3) 0.006 0.006 0.018 0.007 0.041 0

Click and buy 0.916 0.806 0.890 0.213 0.259 0.346

α(p2)<α(p3)<α(p1) 0.031 0.094 0.048 0.206 0.239 0.106

α(p3)<α(p1)<α(p2) 0.029 0.063 0.027 0.510 0.404 0.308

α(p3)<α(p2)<α(p1) 0.023 0.037 0.035 0.080 0.098 0.240

Re-consumption 0.083 0.194 0.110 0.786 0.741 0.654

This section introduces how to use the order of αs in dif-

ferent periods to reflect the transition modes of observations.

In the cWMM (k = 3), if the αs in three periods are less than

one, equal (or approximately equal) to one, and greater than

one, the model is competent to model the transition modes be-

tween behaviors. There are six orders of α, and α(pi) is used

here to represent the shape parameter of period pi. p1, p2, and

p3 represent three periods in which α is increasing. The value

of pi can be set to the mean value of the Weibull distribution:

ȳ(k) = θkΓ

(
αk + 1
αk

)
(θk = exp

[
βk

Tx
]
). Table 1 shows the per-

centages of the six transitions in the Tmall dataset. The six

types can be summarized in two categories: click and buy

and re-consumption.

The first three orders belong to the first category: click

and buy. In this category, the hazard function first decreases

and finally converges to a constant. This indicates that each

triggering purchase promotes the following one and that the

promotional effect decreases with time to a constant hazard

rate (0.02 or so). If α(p2) > 1, the hazard rate might increase

over the short term. If α(p3) > 1, the probability of the latter

behavior is relatively high in period p3, but the hazard rate

will still converge to a constant value.

The second three orders belong to the second category: re-

consumption. In this category, the hazard function first in-

creases and then decreases, finally converging to some con-

stant. When α(p1) > 1, p1 can be regarded as the fatigue

period, which means that the negative effect of the triggering

consumption suppresses later consumption. If α(p2) > 1, this

situation is much more complex, and the negative effect of

the triggering consumption is closely related to other factors,

such as the length of the periods and the value of α.

The statistical results in Table 1 demonstrate that most

click → purchase observations belong to click and buy

and most purchase → purchase observations belong to re-

consumption. However, only about 75% of purchase→ pur-

chase observations are found in re-consumption, which indi-

cates that consumption fatigue does not happen every time in

purchase→ purchase transitions.

6.3 Just-in-time conversion rate prediction

In advertising systems, the probability that an ad will be con-

verted within a specific time period is useful for optimizing

advertising strategies. Because the ranked conversion rates of

clicked ads are helpful for real-time bidding, the area under

the ROC curve (AUC) is chosen as the metric in this case.

The competing models are CP and naive TCP. The two fea-

ture vectors X′ and X are the same in this experiment, which

is introduced in Section 3.1. In the mixture lifetime models,

we set K to 2, according to the results in Section 6.2.3. The

prediction periods in this experiment are one, three, and seven

days.

The results are presented in Table 2. It is clear that it is

more difficult to predict conversion rates over a short period

than over a long period. The proposed rTCP greatly improves

the baseline method CP when the prediction period is one

day. As the period increases, the AUCs of CP and rTCP be-

come closer. This result can be explained by observing that

approximately 50% of conversions occur within one day of

the triggering click (see Section 3.1). If the elapsed time is

too short, it is too early to tell that the click does not eventu-

ally lead to conversion. As for the CP predictions of similar

values, the proposed rTCP gives a higher rank to observa-

tions with higher time-aware conversion prediction. This is

why the predictions of CP may suffer from false negatives

over a short period. It is also apparent that naive TCP fails in

this task. The joint probabilities of CP and TP make more er-

roneous predictions over long prediction periods because the

predictions of TP increase with the prediction period, which

impairs the effect of CP.

Comparing the lifetime models in Table 2, we can see that

even the most simple exponential distribution improves the

performance of time-aware conversion prediction a lot, espe-

cially when the prediction period is short. Context informa-

tion obviously improves the accuracy, which implies that the
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history behaviors and preferences of a user have significant

influence on the conversion time. And context-aware expo-

nential model performs better than Weibull models without

context information. It also indicates that personalization is

an important factor of conversion interval prediction. Further-

more, mixture models perform better than the others with-

out mixture, and mixture exponential models even perform a

little better than Weibull models without mixture. The com-

parison of these lifetime models shows that all the models

improve the accuracy of conversion prediction for a speci-

fied upcoming period, and more comprehensive models have

better performance. Each specific application could choose a

proper model by considering the tradeoff between accuracy

and computing efficiency.

Table 2 AUC and AUC improvement

1 day 3 days 7 days
Method Method

AUC Imp. AUC Imp. AUC Imp.

CP 0.734 – 0.819 – 0.847 –

naive TCP cWMM 0.653 –0.081 0.648 –0.171 0.613 –0.234

EM 0.778 0.044 0.827 0.008 0.851 0.004

WM 0.785 0.051 0.830 0.011 0.853 0.006

cEM 0.801 0.067 0.834 0.015 0.856 0.009
rTCP

cWM 0.813 0.079 0.836 0.017 0.859 0.012

cEMM 0.817 0.083 0.839 0.020 0.864 0.017

cWMM 0.824 0.090 0.841 0.022 0.865 0.018

6.4 Just-in-time product recommendations

In the context of product recommendation over time, an on-

line shopping web site wants to know what products will be

bought in a specific upcoming period. This is a typical item

selection and recommendation problem4) and can be mea-

sured by the F1-score. The CP, naive TCP, and rTCP models

can predict only products that the user has clicked or pur-

chased before. A high percentage of new purchases requires

a candidate product set based on recommendation algorithms.

Therefore, in addition to the three methods used in the last ex-

periment, the following recommendation models are chosen:

• TopPop: a non-personalized baseline to recommend the

most popular products to the user.

• LDA: a widely used probabilistic model to estimate the

preference value P(product|user). It has better perfor-

mance in item selection applications than recommenda-

tion models based on matrix factorization, such as SVD

and PMF [34].

In this research, TopPop or LDA was used to generate a

candidate product set for each user. Then CP, naive TCP, and

rTCP re-estimated the product purchase rate for the candidate

sets. In the three proposed models, the feature vector X′ con-

tains a number of features, including the preference value of

LDA and how many times the product has been purchased. In

practice, 20 latent factors are used in LDA to achieve better

recommendation results. Theoretically, these can be the same

as in the LDA used earlier for product clustering (Section

6.1), but the motivation is different. The prediction periods in

this experiment are 7, 15, and 30 days.

The specified periodΔt and the transition m are determined

by the triggering product bi,p and the candidate product bi,q

of ui. The triggering product can be any historical behavior

of ui. In this research, the behavior with the highest transition

probability is chosen5) as the triggering product. In this rec-

ommendation system, the top N products are recommended

to a user, where N is the average number of products that the

user buys in the same period. If a user normally purchases

two products within seven days, then N = 2 for 7 days; if a

user normally purchased five products within 30 days, then

N = 5 for 30 days.

The results of these experiments are shown in Fig. 8. CP,

naive TCP, and rTCP can recommend only products that

users clicked or bought in the training set. In collaboration

with TopPop or LDA, the three models gain the ability to han-

dle new purchases. The recall of TopPop and LDA is higher

than their precision, especially over short prediction peri-

ods, which reveals that some potential products, which will

be bought eventually, may not be bought in the short term.

Therefore, the temporal factor should be taken into consider-

ation. However, like the results of conversion rate prediction,

the naive joint probabilities CP and TP introduce extra erro-

neous estimates, and the results are worse for long predic-

tion periods. In conclusion, the proposed rTCP has achieved

the best performance. It markedly improves the recommen-

dations, especially for short prediction periods.

7 Conclusions

This research has focused on recommending the right prod-

ucts for a specified period. Considering both relevance and

4) Item selection is in comparison to item rating. Item selection focuses on which items will be selected by users; whereas item rating focuses on the rating
that a user will give to an item

5) The transition probability is: Pr(bi,p, bi,q) =
#(bi,p, bi,q)

#(bi,∗, bi,q) + 1
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Fig. 8 Precision, recall, and F1-score of competing product recommendation models

conversion time, a rank-based time-aware conversion pre-

diction model (rTCP) is proposed. We make an analogy be-

tween conversion intervals and lifetimes in survival analysis

and propose a novel lifetime model (cWMM) based on the

Weibull distribution to embody the influence of personalized

preference and the complexity of behavioral motivation. And

experimental results have shown that the cWMM provides

a good fit to the conversion intervals. Moreover, rTCP is

helpful in improving the performance of time-aware ad con-

version rate prediction and product recommendation.
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