
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2017

On the effectiveness of virtualization based memory isolation on On the effectiveness of virtualization based memory isolation on

multicore platforms multicore platforms

Siqi ZHAO
Singapore Management University, siqi.zhao.2013@smu.edu.sg

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
ZHAO, Siqi and DING, Xuhua. On the effectiveness of virtualization based memory isolation on multicore
platforms. (2017). 2nd IEEE European Symposium on Security and Privacy EuroS&P 2017: Proceedings:
Paris, 26-28 April. 546-560.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3699

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

On the Effectiveness of Virtualization Based Memory Isolation on Multicore
Platforms

Siqi Zhao

School of Information Systems
Singapore Management University

siqi.zhao.2013@smu.edu.sg

Xuhua Ding

School of Information Systems
Singapore Management University

xhding@smu.edu.sg

Abstract—Virtualization based memory isolation has been
widely used as a security primitive in many security sys-
tems. This paper firstly provides an in-depth analysis of its
effectiveness in the multicore setting; a first in the literature.
Our study reveals that memory isolation by itself is inade-
quate for security. Due to the fundamental design choices in
hardware, it faces several challenging issues including page
table maintenance, address mapping validation and thread
identification. As demonstrated by our attacks implemented
on XMHF and BitVisor, these issues undermine the security of
memory isolation. Next, we propose a new isolation approach
that is immune to the aforementioned problems. In our design,
the hypervisor constructs a fully isolated micro computing
environment (FIMCE) that exposes a minimal attack surface
to an untrusted OS on a multicore platform. By virtue of
its architectural niche, FIMCE offers stronger assurance and
greater versatility than memory isolation. We have built a
prototype of FIMCE and measured its performance. To show
the benefits of using FIMCE as a building block, we have also
implemented several practical applications which cannot be
securely realized by using memory isolation alone.

1. Introduction

Recent advances of hypervisor-based security systems

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] against a

subverted kernel are by and large attributed to the memory

isolation feature introduced by modern hardware virtualiza-

tion technology. The cornerstone of memory isolation is the

hypervisor’s privilege and capability of specifying the access

permissions to physical page frames. To prevent a physical

memory region from being illicitly accessed by untrusted

threads (in particular, of kernel privilege), the hypervisor is

instructed to configure the so-called Extended Page Tables

(EPTs) on an Intel’s x86 platform

1

. The permissions in the

EPT supersedes the access permissions declared in the guest

page table managed by the guest kernel.

For instance, TrustVisor [7] uses the EPT to isolate

memory regions used by a sensitive security task. InkTag

[9] and AppShield [10] isolate the entire address space of

1. The equivalent data structure is called the Nested Page Tables on

AMD’s processors and called the Stage 2 translation on ARM processors.

a process also using EPT. Lares [12] protects its hooks in

guest kernel by setting EPT entries. SecVisor [8] ensures

lifetime kernel integrity via setting access permissions in

the EPT. BitVisor [4] manages guest’s device access by

intercepting such access by EPT. On ARM platforms, OSP

[11] constructs an efficient TEE using Stage 2 translation in

cooperation with TrustZone.

Most existing systems [7], [10], [9], [8] built on memory

isolation implicitly assume a unicore hardware platform.

While XMHF [13] and OSP [11] explicitly described their

mechanisms on a multicore setting, in their designs essen-

tially a single-threaded execution model is forced onto a

multicore platform. Although the unicore assumption sim-

plifies the design and verification of the systems, it is

increasingly distant from recent real-world hardware plat-

forms. Even many low-end mobile phones are equipped with

a dual-core processor, not to mention desktop computers

and high-performance servers. Running multiple CPU cores

in the platform has a non-negligible impact on security,

because the adversarial thread on one core can attack a

trusted thread executing on another core, which is infeasible

in a unicore setting. Hence, there exists an urgent need to

carefully re-evaluate memory isolation security on multicore

systems.

In this work, we conduct an in-depth analysis of memory

isolation in the multicore context. After scrutinizing both the

hardware architecture and the system design, we conclude

that the memory isolation method adopted in the literature

is ineffective on a multicore platform. This is evident from

the attacks we have schemed and implemented on XMHF

[13] and BitVisor [4], respectively. These two attacks allow

the rootkit in the guest to bypass the permission checks

enforced by the EPT. The analysis shows that memory

isolation in the multicore setting faces several intractable

security issues whose solutions (if exist) take a heavy toll

on the hypervisor’s code size and performance.

The deep-seated reason of ineffectiveness lies in the fact

that memory isolation is not complete in that the physical

memory is only one of several types of resources involved

in code execution. From this perspective, we propose to

construct a Fully Isolated Micro Computing Environment
(FIMCE) as a new building block to construct secure sys-

tems on multicore platforms. A FIMCE is fully isolated

from, and yet tightly-coupled with, the untrusted operating

system. Owing to its architectural niche, FIMCE offers

strong security and great versatility. Specifically, it allows

for I/O operations, has a malleable hardware setting, and can

run continuously together with the OS. Because of these

features, FIMCE is a more useful and powerful security

primitive than memory isolation. We have demonstrated

how to use it to tackle certain challenging problems, e.g.,

runtime kernel attestation. We have implemented a proto-

type of FIMCE with its micro-hypervisor. We have also

measured its performance by running benchmarks and built

four applications on top of it to showcase its versatility. The

experimental results confirm that FIMCE’s strong security

and high usability are at the cost of performance since the

OS has one less CPU core to use when the FIMCE is in

operation.

In short, we make the following contributions in this

paper:

1) We show that the widely used virtualization based

memory isolation method is not effective in multi-

core platforms. Our assertion is supported by con-

crete attacks on XMHF and BitVisor and an in-

depth and general examination on design defects

of memory isolation.

2) Based on the analysis of memory isolation short-

comings, we propose a new isolation primitive

called FIMCE. The new scheme provides stronger

security than memory isolation. Moreover, it has a

much wider application spectrum attributing to its

unique architectural niche.

3) We implement a prototype of FIMCE and use it

as a building block to construct several applica-

tions to showcase its valuable features including the

modularized software infrastructure, I/O support,

the malleable hardware setting and runtime trust

anchor. We measure its performance and argue that

the security gain outweighs the system’s perfor-

mance loss incurred by the core removal.

ORGANIZATION. In the next section, we explain the

background of address translation and memory access in

multicore systems. Then, we show two concrete attacks on

XMHF and BitVisor in Section 3, followed by an in-depth

examination of memory isolation in Section 4. We propose

the design of FIMCE in Section 5. Section 6 evaluates

the security and performance based on experiments with

a prototype of FIMCE. We discuss the related work in

Section 7 and conclude the paper with Section 8.

2. Background

This section explains the memory access paradigm on

a symmetric multiprocessor (SMP) system with hardware-

assisted virtualization. A virtual address (VA) is firstly

translated into a Guest Physical Address (GPA) by using

the guest page table managed by the kernel. A GPA is

then mapped to a Host Physical Address (HPA) by using

the Extended Page Table managed by the hypervisor. In

the SMP setting, each CPU core independently accesses

the shared main memory. Each core has its own MMU to

walk through the guest page table and the EPT. Typically,

a common set of EPTs are used globally by all CPU cores.

This approach avoids synchronization of EPT updates and

improves efficiency. Each CPU core has its own CR3 register

pointing to the guest page table in use. They use the same

or different guest page tables depending on the kernel’s

scheduling. To reduce the latency due to two-level address

translation, each core is equipped with its own independent

Translation Lookaside Buffer (TLB), which caches recently

used entries in the guest page table and the EPT. Note that

both address mapping and the associated access permission

are stored in the TLB. To access a virtual address from a

core, its TLB is looked up first. If a TLB entry is hit, the

corresponding page table is not used during this translation.

We use Figure 1 to illustrate the paradigm.

12

core 1

TLB

Guest Page
Table

EPT

Guest Page
Table

Guest Page
Table

kernel
space
memory

hypervisor
space memory

core 2

TLB

core n

TLB

host physical memory access

VA

GPA

HPA

Figure 1. The paradigm of memory access in an SMP setting. Core 1 has

TLB misses and accesses the memory via two page tables whereas Core n

has TLB hits and accesses the memory without consulting any page table.

Unlike data cache and instruction cache, the consistency

between the TLB and the page tables in the main memory is

maintained by the software, instead of the hardware. There-

fore, when an address mapping is updated, the software

needs to explicitly invalidate the corresponding TLB entry.

Moreover, the hardware does not enforce coherence

among the TLBs on different cores. All such operations

need to be explicitly carried out by software as well. When

more than one core accesses an address space, the core that

changes the mapping is supposed to perform TLB shootdown
to invalidate any existing entries on other cores. Typically, it

is achieved by using the Interprocessor Interrupts (IPIs) for

this purpose. Specifically, the initiating core fires an IPI to

each core that needs to invalidate its TLBs. On modern x86

platforms, the Advanced Programmable Interrupt Controller

(APIC) interfaces with the bus for receiving and sending

IPIs. The IPI is received by the other cores and treated

exactly the same way as an external interrupt. A handler is

invoked and the specified TLB entry is invalidated. In this

way, the consistent view of the address space is maintained

across all CPU cores.

2

3. Attacks

As a prologue to our in-depth analysis and the proposal,

we present concrete attacks on two open-source micro-

hypervisors running on a PC with multiple cores. The

success of the attacks indicates that memory isolation on

the multicore setting requires a meticulous checking of all

implementation details.

Consider a typical isolation scenario where a security

sensitive application requests the hypervisor to protect a

given page by setting its access permission as, for exam-

ple, read-only in the EPT. The objective of the attack is

for the malicious OS to successfully access the protected

page without complying to the EPT permission setting. The

general idea behind the attacks is to use a stale TLB entry.

Obviously, if a CPU core still stores the TLB entry for the

protected page after the change on the EPT, the core can ac-

cess the page with the priorly granted permissions. Although

the TLB invalidation is widely known as an indispensable

step, it is not trivial to implement it without any flaw.

3.1. Stifling Attack

In order to invalidate the TLBs in other cores, the

hypervisor has to preempt the running threads on those

cores. A typical way of communicating with other cores is

the IPI. For this purpose, the hypervisor sets the External-

interrupt Exiting bit in all logic cores’ VMCS structures

during system initialization. After configuring the EPT to

protect a page specified by an application, the hypervisor

broadcasts an IPI which triggers VM-exit in all receiving

cores.

The stifling attack is to prevent a CPU core under the

malicious OS’s control from responding to the hypervisor’s

IPI so that this core’s TLB is not invalidated by the hy-

pervisor. The attack exploits a hardware design feature to

block all maskable external interrupts, including IPI. On x86

platforms, the IPI handler is expected to perform a write to

the EOI register in the local APIC before executing iret.

This operation signals the end of the current IPI handling

and allows the local APIC to deliver the next IPI message

(if any) to the core. If no such write is performed, the

local APIC withholds subsequent IPIs and never delivers

them. Note that using the interrupt masking bit (namely

EFLAGS.IF) cannot achieve the same malicious goal,

because it is overridden by the External-interrupt Exiting

bit in the VMCS set by the hypervisor. Also note that

setting the External-interrupt Exiting bit does not mandate

automatic EOI write by hardware, it is always the software’s

responsibility to perform such write, by either the hypervisor

or the OS.

Given this observation, we scheme the attack to bypass

the EPT’s access control. Suppose that the victim application

occupies core v while the kernel runs in two threads in

core 1 and core 2 respectively. The steps of the attack are

described below in the temporal order with a visualization

in Figure 2.

1) At core v: The victim application starts to run and

writes data into a memory buffer.

2) At core 1: The malicious kernel maps the guest

physical address of the buffer into its own address

space by changing its guest page table. It reads the

buffer so that the corresponding EPT entry is loaded

in its TLB. It also disables interrupt and preemption

so that it is not scheduled off from core 1 in order

to avoid any TLB invalidation.

3) At core 2: Another thread of the malicious kernel

sends an IPI to core 1 by using an legitimate IPI

vector for OS synchronization.

4) At core 1: The malicious IPI handler returns with-

out writing to the EOI register of the local APIC.

As a result, subsequent IPIs are never accepted by

core 1.

5) At core v: The victim issues a hypercall for mem-

ory protection. The hypervisor updates the EPT for

all other cores to disallow accesses. It broadcasts

an IPI to trigger VM exit on other cores.

6) At core 1: The IPI from core v is not delivered

to core 1. The kernel thread can continue to read-

/write the isolated buffer without trigger any EPT

violation exception, because the core’s MMU uses

the EPT entry in the TLB with the permissions

which are set prior to the hypercall.

9

data

victim app

RW

RW

NA

TLB

EPT EPT

core_1 core _2

Physical memory

RW

access
violation

attack

malicious kernel others

Figure 2. Illustration of the stifling attack bypassing the EPT’s access

control over the victim’s data. Grey regions are controlled by the attacker.

We have implemented the attack on top of the BitVisor

[4] with slight changes on its EPT management function and

interrupt handling. The experiment shows that the kernel

successfully continues its write access to the target page

without triggering any page fault, after the page’s permission

in the EPT is changed into read-only.

One possible solution to the stifling attack is to virtualize

local APICs so that the hypervisor intercepts the external

interrupts and enforces EOI writes. However, this approach

is against the goal of performance optimization proposed

in [14], [15] which advocate removing the hypervisor from

the code path handling interrupts. Moreover, it is against

the purpose of using a tiny hypervisor as it increases the

hypervisor’s code size and complexity.

3

An alternative is to resort to non-maskable interrupts

(NMIs) instead of IPIs. NMIs are delivered immediately by

the local APIC to the CPU core as they are usually sent by

hardware such as watchdogs to indicate critical hardware

failure which needs immediate attention. However, it is

strongly discouraged to use software to generate NMIs be-

cause of its complex handling. Moreover, it requires a high

level of expertise to implement a proper NMI handler [16]

because it needs to deal with recursive execution. Briefly

speaking, once an NMI is delivered to a core, subsequent

NMIs are blocked until the core executes iret. If the

NMI handler causes any exception, the exception handler’s

iret immediately allows the next NMI to be delivered

while the present one is still in processing. From the system

perspective, it has risks to use the hypervisor to issue and

handle NMIs.

3.2. VPID Attack

XMHF [13] is a micro-hypervisor on x86 platforms that

explicitly takes the multicore setting into the design con-

sideration. In fact, XMHF [13] enforces a single threaded
execution model for the hypervisor. When one core traps

to the hypervisor space, it “quiesces all other cores” by

broadcasting an NMI which causes a VM exit and effec-

tively pauses the execution of all other threads across the

system. Therefore, it is not subject to the stifling attack.

Nevertheless, it still has another TLB-related vulnerability,

although XMHF has been formally verified.

The early hardware virtualization flushes the TLB on

VM Exits, because the hypervisor uses an independent

address space from that of the guest. Since this approach

incurs a great overhead due to TLB misses after the VM

(re)entry, more recent x86 processors introduce a feature

called Virtual Processor ID (VPID). It assigns identifiers to

address spaces of each virtual core and of the hypervisor and

also tags TLB lines with the respective identifiers. When an

TLB entry is hit during translation, it is valid only when its

VPID tag matches the VPID of the present address space.

As a result, a VM exit does not imply the invalidation of

all TLB entries of a core.

This performance improvement unfortunately dents the

security of the hypervisor. Since not all TLBs are evicted

by the hardware during a trap to the hypervisor, the stale

entries must be invalidated by the hypervisor. However, the

XMHF hypervisor neglects this issue. It assigns VPID 0

to the hypervisor and VPID 1 to the guest. Unfortunately,

there is no explicit invalidation of TLB entries tagged with

VPID 1 during the handling the quiesce-NMI. Out of this

observation, we devise the following attack by which the

guest OS can continue its access to a page despite the access

policy update at the EPT.

1) At core v: The victim application starts execution,

it allocates a page which expects memory isolation.

2) At core 1: The malicious kernel running on core 1

maps the buffer into its own space, reads it once

so that an TLB entry is loaded by the MMU. It

disables interrupt and preemption so that the TLB

entry is not evicted.

3) At core v: The victim application performs a hy-

percall to the XMHF hypervisor. The hypervisor

issues an NMI used to quiesce other cores and

clears the access permission for the page in the

EPT after all other cores are paused.

4) At core v: The execution returns to the victim

application.

5) At core 1: The guest OS resumes its execution.

Due to incomplete TLB invalidation, the stale entry

still exists. The guest OS continues to read and

write the isolated buffer, regardless what the per-

mission on the EPT is set.

We have implemented the attack on the latest version

of XMHF on an Intel platform. As a proof of concept, we

build a hypapp based on the APIs provided by the XMHF

core. The hypapp takes an address of a physical page as

input and sets its access permission in EPTs as inaccessible

via the EPT manipulation API. The hypapp is invoked via

a hypercall from an application bound to a core. The kernel

runs a malicious thread on another core to continuously

access the page. We observed that the malicious thread keeps

a stale TLB entry and is able to successfully read and write

the target page without triggering EPT violation, although

it is marked as inaccessible in the EPT.

Caveat. We reiterate that the intention of presenting the

attacks above is not to show the vulnerability of existing

schemes, but to emphasize that applying memory isolation

on the multicore setting is not as straightforward as one

thinks. The low-level system implementation subtleties, if

not treated properly, may compromise the security. We

remark that the TLB invalidation problem is only the tip of

the iceberg of the difficulty of securely implement memory

isolation on a multicore setting.

4. In-depth Examination of Memory Isolation

Memory isolation is the primitive used in almost all

virtualization based security systems [9], [10], [17], [18],

[8], [7], [13], [19], [8]. It denies any unauthorized access

to the concerned physical memory pages. Most existing

schemes in the literature focus on how to make use of it

to achieve their high-level security goals, without carefully

examining the technical details. In this section, we first

revisit the existing memory isolation technique and then

analyze the complications.

Before proceeding to the analysis, we spell out the

system model and the threat model used in the rest of the

paper. The system in consideration is a commodity multicore

platform running a bare-metal micro-hypervisor with a sin-

gle domain called the guest. The adversary is the kernel of

the guest subverted by a rootkit. With the kernel’s privilege,

the rootkit can launch arbitrary software-based attacks, such

as illicit memory accesses and manipulating the execution

context. It may even have a CPU emulator to emulate the

4

hypervisor’s behavior. We assume that BIOS, the firmware

and the hardware in the platform are of integrity in the sense

that their behaviors comply with the respective specifications

and are not subverted by the adversary. We assume that

the micro-hypervisor code, data and control flow are not

compromised either during boot-up or at runtime. We do

not consider side channel attacks or denial of service attacks.

For the convenience of presentation, we use “the guest” and

“the kernel” throughout the paper to refer to the virtual

machine in the system and its kernel, respectively. Note

that the models described above are the same used in the

literature [9], [10], [17], [18], [8], [7], [13], [19].

4.1. The Common Practice

Early memory isolation schemes (e.g., Overshadow [2])

use para-virtualization with the shadow page tables and

the hypervisor effectively manages all address mappings.

With the advances of CPU virtualization, most of recent

systems (e.g., [13], [7]) rely on the access control feature

provided by EPT to realize memory isolation. To the best

of our knowledge, most schemes are presented without

stating whether they run on the multicore setting, except

XMHF [13]. We consider a generic procedure in the uni-

core setting to explain the common practice of memory

isolation widely used in the literature, including InkTag[9],

AppShield[10], Heisenbyte[17], SPIDER[18], SecVisor[8],

TrustVisor[7] and Sentry[19]. The isolation runs in the

following steps.

• Step 1. The hypervisor is instructed to isolate a page

at the virtual address Va (e.g., via a hypercall) so

that Va can be accessed by the authorized code with

permission p and by any unauthorized code with

permission p̂. For instance, p can be read and write

while p̂ can be read-only so that unauthorized code

cannot modify the page.

• Step 2. The hypervisor walks through the present

kernel page table to obtain the corresponding guest

physical address Ga and then walks through the

EPT to locate the entry � that maps Ga to the

corresponding host physical page Hp. It sets the

permission bits on � according to p̂.

• Step 3. At runtime, if the hypervisor determines that

the requested access is from the authorized code,

it sets the permission bits on � according to p.

When the hypervisor detects that the authorized code

execution is to be scheduled off from the CPU (e.g.,

due to interrupts), it flushes the TLBs and sets back

the p̂ permission on �.

An variant of the above method is to switch the mapped

physical address inside � so that different views of physical

memory are presented depending on the trustworthiness

of the execution thread on the core. SPIDER [18] and

Heisenbyte [17] are exemplary systems using this approach.

4.2. Complications of Memory Isolation In Multi-
core Setting

The aforementioned memory isolation procedure runs

securely on a unicore platform. However, the situation be-

comes much more complex due to parallel execution in the

multicore setting. A malicious thread on one core can attack

the trusted code execution on another core. In the following,

we present an in-depth analysis of the complications from

three perspectives.

4.2.1. Cumbersome EPT Management. As shown in Sec-

tion 2, each CPU core in the multicore setting makes in-

dependent accesses to the physical memory. Therefore, the

access permission p for the trusted code and the permission

p̂ for the untrusted code may co-exist in the system, in

contrast to permission switches described earlier in the

unicore setting.

This fact gives rise to two implications. Firstly, it is no

longer sufficient to maintain a single set of EPTs with all

cores given the same access rights. At least two sets of EPTs

are needed with one for the trusted execution and the other

for the untrusted. In general, consider a system with n CPU

cores and k applications requesting for memory isolation.

The hypervisor has to record k + 1 different versions of

permission settings. In the worst case, the hypervisor has

to properly install n different EPTs at runtime for each

core. A more complicating issue is that the hypervisor

should have an algorithm to detect potential conflicts and/or

inconsistency among the permission policies. The load of

managing multiple EPTs not only expands the hypervisor

code size, but also significantly complicates its logic.

The second issue is about the switch from the high-

privilege permission (e.g., read and write) to the low priv-

ilege permission (e.g. non-accessible). The privilege down-

grade mandates that all related permission records have

to be updated in an atomic way, including the page table

entries and the TLB entries. Our attacks in Section 3 have

shown that it requires knowledge of the low-level hardware

behavior and sophisticated skills to update or invalidate all

obsolete permissions.

4.2.2. Insecure Guest Page Table Checking. In the com-

mon practice described in Section 4.1, the trusted thread and

untrusted threads use distinct EPT settings. However, they

may use the same segment register and the guest page tables

which are managed by the guest kernel and affect the CPU

core’s memory access. Stephen et. al. have used the Iago

attack [20] to show that the malicious kernel can manipulate

the VA-to-GPA mapping to attack memory isolation. On a

unicore system, the hypervisor can arguably verify such

data structures before entering the isolated environment.

Because once verified, they are not subject to malicious

modification because there is only one core, so that the

guest OS is paused. Following this approach, InkTag [9],

TrustVisor [7] and AppShield [10] have implemented kernel

page table verification/protection when the hypervisor sets

5

up the isolation environment and while the protected thread

is in execution.

However, although these schemes are secure in a unicore

setting, they are vulnerable to the race condition attacks

in the multicore setting. Note that the verification of the

guest page table cannot be instantly completed. The hy-

pervisor has to walk through the entire guest page table

and sets the permission bits in the EPT. InkTag, TrustVisor

and AppShield do not enforce core quiesce. Therefore, the

guest kernel and the hypervisor can execute simultaneously.

Therefore, the race condition attack can cause the access

control policy to be enforced on unintended pages.

We use the following example to illustrate this. Suppose

that a security-sensitive program is just launched and the

hypervisor needs to setup its isolated environment. In order

to lock and verify the current guest page table, the hyper-

visor has to find where it resides. In other words, it has to

find out all physical memory pages used to store the guest

page table, so that it is able to configure the corresponding

EPT to lock it. Unfortunately, the hypervisor does not have

the prior knowledge, because the guest page table is priorly

managed by the kernel. Therefore, the hypervisor has to

traverse all guest page table entries starting from the root

pointed to by CR3 in order to find out the physical locations.

Page table walking with software is a lengthy operation

because it involves a number of mappings and memory

access operations. Thus, the guest OS running on another

core has a non-negligible time window to change one of the

leaf page tables after it is verified but before it is locked.

If the traversal is along the ascending order of the address

space, the page table pages for the lower end address are

easier to attack because they are exposed with a longer time

gap. In our experiment, it takes around 120,000 CPU cycles

to lock the entire page table used by a simple user-space

application, which is long enough for the kernel to tamper

with one page table entry. As a result, the guest page table

locked up by the hypervisor is not the actual one used by the

security-sensitive program which could still be vulnerable

to the Iago-like attack. More generally, any data structure

used during the address translation such as the segment

descriptors are also potential attack vectors.

Note the core quiesce technique used in XMHF can

defeat the aforementioned race-condition attack, since it

freezes all untrusted execution while the hypervisor is in ex-

ecution. However, it incurs a remarkably high performance

cost. The hypervisor needs to find out all physical pages

for the guest page table, sets the corresponding EPT to

prevent the kernel’s modification, and verifies whether the

guest page table harbors any poisonous mappings. Note that

the system is effectually frozen throughout these three steps.

Another solutions is to use the shadow page table instead

of the EPT when the guest is launched. Obviously, the

method does not fully leverage the hardware virtualization

advantage. It affects the platform performance and signifi-

cantly expands the hypervisor’s size. We argue that it is not

an ideal solution for the micro-hypervisor like XMHF and

TrustVisor.

4.2.3. Incapable Thread Identification. Since the trusted

threads and the untrusted threads run in parallel, the hy-

pervisor has to differentiate them and apply the appropriate

EPTs for the respective execution. Therefore, a prerequisite

of secure isolation is to correctly identify the subject that

intends to access the protected memory pages.

The subject identity of the security-sensitive program

piggybacks on a kernel-level abstraction, e.g., a process

or a thread. A high-level access policy is in the form of

“Process X is allowed to read and write page #n; and other

processes cannot access”. To enforce such a policy in the

EPT, the hypervisor maintains the association between the

process X and the protected physical pages. Typically, it

is implemented by using the present CR3 register value

(e.g., as in TrustVisor [7]) or the combination of CR3
register value and the address of the kernel stack (e.g., as

in AppShield [10]).

It is a challenging task for the hypervisor to correctly

identify the subject requesting memory access. The hypervi-

sor sits underneath the OS and lacks the semantic knowledge

of the execution. It is only able to acquire those hardware-

related information, such as the instruction pointer stored

in the EIP register and the page table root address stored

in the CR3 registers. Note that the application semantics

of those data is translated by the kernel. For instance, the

EIP register stores the virtual address of the next instruction

to execute. It requires the mapping defined by the kernel

to derive its guest physical address. Since the kernel is a

potential adversary, it is infeasible for the hypervisor to

correctly infer the logical representation of the subject from

the hardware information.

Overshadow [2] uses the hypervisor-supplied Address

Space ID (ASID) and its associated thread context’s address

to identify the subject. Nonetheless, the guest page table is

also involved in storing and retrieving the ASID. Therefore,

its security remains as weak. In the following, we consider

a security-sensitive program P whose data buffer has been

isolated by the hypervisor and show the impersonation at-

tacks CR3 and ASID based identification.

Impersonation Attack. Suppose that the CR3 register is

used to identify the subject. The malicious guest OS can

launch a malicious process P 0
with the same CR3 content

as P , but with a different VA-to-GPA mapping. When P 0

issues a hypercall, the hypervisor is fooled to believe that

the subject is program P . As a result, P 0
may exfiltrate

the secret of P and tamper with its data. Enclosing kernel-

related objects such as the stack address does not improve

the situation because they are still subject to forgery. Sup-

pose that a hypervisor-supplied object such as the ASID is

used to identify the subject. Program P needs to store its

ASID and to explicitly supply it to the hypervisor in order to

access its isolated memory. Nonetheless, this method ends

up with the chicken-and-egg dilemma. On the one hand,

if P ’s ASID is unprotected, it can be used by P 0
with

the kernel’s assistance. On the other hand, if the ASID is

restricted to be used by P only, the hypervisor does not

have the clue to decide when the ASID is used by P or P 0

6

which is also an identification problem.

4.2.4. Summary. To summarize, memory isolation in the

multiple core setting is challenging. Most complications are

caused by two factors. One factor is due to the multicore

setting. Namely, a mixture of trusted and untrusted threads

run at the same time. The second factor is due to the design

defect of the current memory isolation technique used in

the literature. Namely, the isolation technique is incomplete.

The boundary between the trusted and the untrusted is only

drawn on the GPA-to-HPA mapping. At least, the VA-to-

GPA mappings and the CPU core are still controlled by the

kernel, which exposes a large attack surface to the adversary.

5. Full Isolation on Multicore Platforms

Considering the pitfalls of memory isolation in multi-

core systems, we propose to isolate an entire computing

environment including the CPU core, the memory region,

and (optionally) the needed peripheral device. To be differ-

entiated from the existing memory only isolation, we name

the new isolation paradigm as fully isolated micro computing
environment or FIMCE.

In the following, we describe the hardware and software

architecture of FIMCE, and then present its versatile usages

beyond isolation.

5.1. FIMCE Architecture

Figure 3 depicts the architectural difference between the

memory isolation used in existing schemes and the full

isolation of FIMCE. The main distinction is the boundary

between the trusted and the untrusted.

10

Task
untrusted
OS

memory

CPU

software

Untrusted domain µ-ICE

Task

untrusted
OS

CPU

software

memory

(a) Memory isolation

10

Task
untrusted
OS

memory

CPU

software

Untrusted domain FIMCE

Task

untrusted
OS

CPU

software

memory

(b) Full isolation

Figure 3. The comparison between memory isolation and full isolation. The

grey areas denote resources controlled by the adversary while the areas with

dots denoted isolated resources.

Core Isolation. Memory isolation neglects the CPU cores

entirely, which is the reason why it faces the challenges

of managing the EPT and identifying threads as explained

in Section 4. The CPU core used by the protected task is

isolated from the untrusted OS for two reasons. One is

to avoid the same flaw as in memory isolation and the

second is that the untrusted OS may use the inter-core

communication mechanisms such as INIT signals to attack

the task. Note that core isolation does not mean that a CPU

core is permanently dedicated to a protected task. In fact,

the task can migrate from one core to another. However,

whenever it runs, it exclusively occupies the CPU and is not

preemptible by other threads, until it quits or is terminated

by the hypervisor.

In addition, the hypervisor sets up the virtual core of

the isolated environment such that external interrupts, NMI,

INIT signal and SIPI are all trapped to the hypervisor.

Once VMX is enabled on an Intel platform, the hard-

ware automatically triggers VM Exit when receiving INIT

signal and SIPI. To intercept NMI and external interrupts

(including IPI), the hypervisor sets the NMI exiting bit

and the External-interrupt exiting bit in the pin-based VM-

Execution control bitmap of the VMCS structure. If an ex-

ternal interrupt has a non-empty handler installed inside the

FIMCE, the hypervisor passes it to the FIMCE; otherwise,

the interrupt is dropped.

CAVEAT. Our notion of CPU isolation has a different

implication from the one in the system literature. The latter

is mainly for performance loading and does not consider the

kernel as an adversary.

Memory Isolation. Memory isolation still plays an im-

portant role in FIMCE. Existing memory isolation schemes

in essence only separate the host physical address space

of the security task from the rest. Since the guest page

table is managed by the guest kernel, the security task’s

virtual address space and guest physical address space are

still under the guest kernel’s control.

In contrast, memory isolation in FIMCE is complete.

The entire address translation process is out of the guest

kernel’s reach. All data structures used in the translation pro-

cess such as the guest page table and the Global Descriptor

Table (GDT) are separated from the kernel. Moreover, the

physical memory pages used by a FIMCE is allocated from

a region reserved by the hypervisor. Since those pages are

never mapped into the guest, the guest does not have any

valid TLB entry to access it.

I/O Device Isolation. We utilize DMA remapping and

interrupt remapping supported by hardware based I/O vir-

tualization, together with VMCS configuration and EPTs to

ensure that a FIMCE has exclusive accesses to peripheral

devices annexed to it. Firstly, any I/O command issued

from the guest to the FIMCE device should be blocked. For

port I/O devices, the hypervisor sets corresponding bits in

the guest’s I/O bitmap. For MMIO devices, the hypervisor

configure the guest’s EPT to trap accesses to the MMIO

region of the device.

Secondly, the interrupt and data transferred by a FIMCE

device is only bound to the FIMCE core. For this purpose,

the hypervisor configures the translation tables used by

DMA and interrupt remapping. The former redirects DMA

accesses from the device to the memory region inside the

FIMCE and the latter ensures that interrupts from the device

are delivered to the FIMCE core rather than other cores of

the guest.

7

5.2. Modularized Software Infrastructure of
FIMCE

It is widely recognized that memory isolation schemes

do not furnish the isolated task with the dependent software

modules, which is one of the reasons why they require the

task to be self-contained. In contrast, FIMCE has the inborn

support for dynamically setting up the software infrastruc-

ture e.g., libraries, drivers and interrupt handlers, to cater to

the task’s needs.

Although it is theoretically possible to load a full-fledged

OS into a FIMCE, our design goal is to use a FIMCE

as a nimble environment hosting critical tasks within a

program. Therefore, we propose to use a structured way

to construct the needed software infrastructure. Based on

their functionalities, a set of software modules called pillars
are stored in the disk in the form of ELF files. A pillar

is a self-contained shared library for a particular purpose.

For instance, a TPM pillar consists of all functions needed

to operate the TPM chip. Based on the protected task’s

demand, the guest OS loads the needed pillar files from the

disk to the memory. Then, the hypervisor relocates them

into the FIMCE. To ensure the security, the hypervisor also

takes a whitelist approach to verify their integrity and finally

links them with the task.

The FIMCE only has a single and non-stopping execu-

tion thread since it is exclusively used by the protected task.

When I/O operations are needed, the hypervisor also loads

the interrupt handler table to the environment. When the

protected task only accesses the enclosed memory, it can be

optionally granted with Ring 0 privilege so that no context

switch is needed in dealing with interrupts.

5.3. Applications of FIMCE

Although the basic idea of FIMCE is intuitive, it is ad-

vantageous over other isolation techniques on x86 platforms

in terms of versatility. We briefly describe below several

ways to use FIMCE. Due to the length limit, we leave the

details in the full version of the paper.

Isolation. FIMCE surely supports conventional isolation

applications e.g., to protect a decryption or authentication

function. FIMCE offers better efficiency and stronger se-

curity than memory based isolation, since all those hassles

described in Section 4.2 are no longer applicable. FIMCE

also allows I/O operations which is infeasible for either SGX

or memory isolation. In Section 6, we report our experiments

of FIMCE with password-based decryption and Apache.

Malleability. The isolated FIMCE environment can be

configured and used in non-standard ways to cater to the

security goals. For instance, the hypervisor can twist the

CPU registers and even the TPM configuration as needed.

To illustrate the benefit of a malleable FIMCE, we

consider the challenge of ensuring that an application P ’s

long term secret k can only be accessed in an isolated

environment. Suppose that k has been initially encrypted

with the binding to the isolated environment. The difficulty

lies in how to authenticate the thread that requests to enter

into the isolated environment and to access k.

Since the application cannot hide any secret in the unpro-

tected memory against the OS, both have the equal knowl-

edge and capability in terms of presenting the authentication

information to the hardware such as the TPM chip or the

SGX enclave. One may suggest to leverage the hypervisor

to perform authentication as shown in [7]. However, as we

have analyzed in Section 4.2, it is also challenging for the

hypervisor to securely authenticate the application.

FIMCE offers an elegant solution, attributing to its mal-

leable environment. In our solution, the hypervisor uses the

TPM Locality 2 and assigns the OS with Locality 0 and

the code inside a FIMCE with Locality 1. During boot up,

the DRTM extends PCR17 and PCR18 with the hypervisor

and other loaded modules. When a FIMCE is launched, the

hypervisor resets PCR20 and extends PCR20 with all code

and data loaded in the FIMCE. The protected code in turn

extends it with all relevant data, and seals the secret k with

PCR17, PCR18 and PCR20. Once the seal operation is

done, it extends PCR20 with an arbitrary binary string to

obliterate PCR20 content and relinquishes its Locality-1

access so that the OS is free to use the TPM. The same

steps are performed in order to unseal k.

Note that PCR17 and PCR18 are in Locality 4 and 3

respectively. The hardware ensures that they cannot be reset

by any software. During the boot up, the DRTM extends

these two registers with the loaded modules. Their correct

content implies the loading time integrity of the hypervisor.

Since the OS is in Locality 0, it does not have the privilege

to extend or reset PCR20, even though it can prepare

the same input used by the hypervisor and application P .

Other (malicious) applications in their own FIMCEs cannot

impersonate P either. PCR20 bears the birthmark of a

FIMCE instance because the code in an FIMCE cannot reset

PCR20. Therefore, other applications cannot remove their

own birthmarks to produce the same digest as P does.

The advantage of our method is that the hypervisor does

not hold any secret and is oblivious to the application’s logic

and semantics. Besides the stronger security bolstered by

the hardware, it is beneficial to minimize the TCB size and

supports process migration.

Runtime Trust Anchor. Another noticeable strength of

FIMCE is its ability to provide a secure environment that

runs in parallel, and yet tightly-coupled, with the untrusted

OS. The environment can host a trust anchor to tackle

runtime security issues such as monitoring and policy en-

forcement. To show the benefit of a runtime trust anchor,

we sketch out two secure systems below.

The first system is to protect sensitive files in the

disk from being modified or deleted by the untrusted OS.

This problem has been considered by Guardian [21] and

Lockdown [22]. The scheme used in Guardian cannot be

scaled to protect arbitrary files chosen by applications while

Lockdown suffers from performance loss as every disk I/O

operation causes a context switch (if not optimized). In our

approach, the hypervisor isolates the disk to the FIMCE. A

8

disk I/O filter is loaded in the FIMCE. It continuously loads

the disk DMA request placed by the OS in a shared buffer.

If the request is compliant with the security policy, the filter

forwards it to the disk controller. Otherwise, it is dropped.

All disk interrupts are channeled to the OS so that the filter

is not necessarily involved in handling them. We expect

a performance advantage of FIMCE based disk protection

over Lockdown, because there is no context switches during

disk operations. Note that a similar scheme can be used for

filtering network packets.

The second system is about the runtime attestation of

the OS behavior. Most existing remote attestation schemes

[23], [24], [7] focus on loading time integrity check. It is

challenging to realize runtime attestation because it requires

the attestation agent to run securely inside the attesting

platform managed by an untrusted OS. FIMCE has the

natural fit to this problem. Intuitively, the agent resembles

a kernel module which is shielded by the FIMCE and runs

side-by-side with the OS. The attestation agent can read the

kernel objects without facing the challenging semantic gap

problem [25], [26], [27], [28]. To support kernel memory

read, the entire kernel page table is reused in the FIMCE.

The hypervisor properly configures the EPTs such that only

the agent code pages are executable in order to prevent

untrusted kernel code from executing inside the FIMCE.

We observe that it is difficult, if not impossible, for mem-

ory isolation schemes to achieve the same security goals

described above. One of the fundamental reasons is that the

OS in those schemes still manages the CPU cores. The OS

can schedule off the protected execution thread from its CPU

core before its attacks. In contrast, the FIMCE is immune

from the OS’s tampering and can function continuously.

6. Evaluation

In this section, we first discuss the security of FIMCE

with a comparison with memory isolation. We then report

our prototype implementation as well as the benchmarking

and experimental results.

6.1. Security Analysis

It remains as an open problem to formally prove the

security of a system design (not implementation). There-

fore, the security analysis below is informal. We first argue

that the multicore complications plaguing memory isolation

systems are not applicable to our design. We then evaluate

FIMCE security based on it attack surface and TCB size.

Complication Free. Recall that Section 4.2 has enumerated

three security complications due to the multicore setting,

namely complex EPT management, insecure guest page ta-

ble checking and incapable thread identification. We remark

that they all vanish in FIMCE.

• The EPT management of FIMCE is rather tidy. The

EPT used for the OS (and the applications) are not

affected by FIMCE while the EPT used for the

FIMCE is static after it is launched. Since the trusted

and untrusted execution flows do not interleave with

each other on any CPU core, the hypervisor does not

need to trace the executions in order to switch EPTs.

In addition, the attacks in Section 3 that exploit stale

TLB entries are infeasible. The physical memory of

the FIMCE is never accessed by threads outside of

the environment. Moreover, when a FIMCE is termi-

nated, the TLB entries in the core are all flushed out.

Hence, there is no stale TLB entry in the system.

• FIMCE does not suffer from the issue of guest page

table checking. The execution inside the FIMCE

does not use any data controlled by the guest OS

including the page tables, which makes Iago-like at-

tacks impossible. It is also clear that the full isolation

is not subject to the race condition attack described

in Section 4.2.

• Memory isolation schemes need subject identifica-

tion to choose the proper EPT setting. This challeng-

ing problem does not exist in our scheme. The iso-

lated task is bound to the FIMCE instance created for

it through its whole lifetime. It exclusively accesses

the memory. The task may continue the execution

without being preempted by other threads under the

OS’s control. In case that it relinquishes the CPU, its

FIMCE hibernates without changing ownership. In

other words, all memory states and the CPU context

are saved. The CPU states are cleaned up before

be handed to the OS. When needed, the FIMCE is

re-activated from the saved state. Therefore, subject

identification is not needed.

Minimal Attack Surface. The malicious kernel in memory

isolation systems enjoys a large attack surface, as it has

the full control over the CPU cores and over the VA-to-

GPA mapping, which leads to various attacks and design

complications described in Section 3 and 4. In contrast, the

attack surface exposed by our scheme is minimal.

Owing to the full isolation approach, the FIMCE’s hard-

ware and software are beyond the kernel’s access, interfer-

ence and manipulation. The kernel cannot access the FIMCE

core’s registers, L1 and L2 caches. L3 cache is not effec-

tively accessible either because the FIMCE’s host physical

address region is never mapped to the guest. Although the

kernel may use IPI or NMI to interrupt the FIMCE, the

worst consequence is equivalent to a DoS attack. Since the

isolated code responds to the interrupts by itself, an IPI or

NMI only cause a detour of the control flow. Note that there

is no context switch inside the FIMCE.

Another attack vector widely considered in the literature

is the interaction between the hypervisor and the kernel. The

FIMCE hypervisor only exports two hypercalls, for setting

up and tear down an FIMCE respectively. Moreover, the

hypervisor does not interpose on either the guest execution

or the FIMCE execution.

The FIMCE may exchange data with threads in the

outside environment. In that case, the malicious kernel may

poison the input data to the isolated task. We acknowledge

that the protected code is subject to such attacks if no proper

9

input checking is in place. However, it is out of scope of

our work to cope with such attacks.

Small TCB Size. The hypervisor is the only trusted code

in the system. Owing to its simple logic, our hypervisor

has a tiny code base with around 6K source lines of code

for runtime execution. The concurrency issue of FIMCE is

not difficult to handle. Because only the setup and teardown

code are possible to execute concurrently on different cores,

they can be guarded with simple spinlocks. Note that each

FIMCE instance does not have overlapping regions, which

also simplifies the concurrency handling.

6.2. Implementation

We have implemented a prototype of FIMCE on a

desktop computer configured with an Intel Core i7 2600

quad-core processor running at 3.4 GHz, Q67 chipset, 4GB

of DDR3 RAM and a TPM chip. The platform runs a guest

Ubuntu 12.04 with the stock kernel version 3.2.0-84-generic.

We have implemented the FIMCE hypervisor of around

6000 SLOC. The TCB of FIMCE only consists of the hy-

pervisor. It exports two hypercalls, i.e., FIMCE_start()
and FIMCE_term(), for starting and terminating a FIMCE

respectively. We slightly modify Intel’s open source TXT

bootloader tboot2

as the DRTM to load our hypervisor.

During hypervisor initialization, a set of EPT entries are

initialized such that a chunk of physical memory is reserved

for exclusive use by the hypervisor. During the OS kernel

initialization, all cores are set to use the same set of EPT,

ensuring a uniform view of the memory.

To showcase the applications of FIMCE, we have also

developed three pillars: a 7KB serial port driver pillar that

supports keyboard I/O, a comprehensive crypto pillar of

451KB size based on the mbed TLS library

3

, a TPM driver

pillar of 20KB size. The implementation also encloses a

pillar management code of 413 SLOC which verifies and

links pillars in the FIMCE.

6.3. Benchmarks

Since a FIMCE occupies a CPU core exclusively, the

OS has less computation power at its disposal while a

FIMCE is running. In order to understand the overall im-

pact of a running FIMCE on the platform, we choose

multithreaded SPECint rate 2006 and kernel-build as well

as single threaded lmbench, postmark and netperf as the

performance benchmarks. We run them on top of the OS

without any FIMCE running and then repeat the evaluation

with an infinite loop running inside a FIMCE.

For the multithreaded SPECint rate 2006, we set the

concurrency level to four. Figure 4 shows that it has 15%

percent performance drop in average due to the presence

of FIMCE. In the kernel-build experiment, we compile the

Linux kernel v2.6 using the default configuration with four

levels concurrency. The results are reported in Table 1.

2. http://sourceforge.net/projects/tboot/

3. https://tls.mbed.org/

!!"#
$%"# $&"# '&&"# (!"#

!)"# ('"# ()"# (*"# (*"# (("# (+"#

Figure 4. SPECint rate 2006 results. The numbers are the percentage of

the score with FIMCE to the score without FIMCE.

TABLE 1. KERNEL BUILD TIME, IN SECONDS

Concurrency level 4 6 8 12
W/O FIMCE 783 708 640 643

With FIMCE 900 828 797 803

Performance Loss (%) 15 17 24 24

The two sets of experiments indicate that the relative

performance loss grows with the degree of concurrency,

mainly due to more frequent context switches. Nonetheless,

the loss is bounded by the inverse of the number of physical

cores in the platform (namely 25% in our setting).

To verify our estimation that FIMCE does not incur

much performance for single-threaded applications, we run

Lmbench, Netperf and Postmark with and without FIMCE.

Figure 5 shows that most tasks of Lmbench are not affected

by FIMCE, except one task has 8% performance drop.

Similar results are also found for Netperf as in Table 2 and

Postmark as in Table 3.

!""#$!""#$!""#$!"!#$!""#$
!"%#$

!""#$
%&#$

!"&#$

'()*+,$ -+.$
/+01$

-+.$
234,+$

5)(67$ --89$
3+01$

),:;<$ =>??$ +:+)$ 6@A0>?,$

Figure 5. Lmbench results. The numbers are the percentage of the score

with FIMCE to the score without FIMCE.

TABLE 2. NETPERF BANDWIDTH WITH AND WITHOUT FIMCE

RUNNING, IN MBPS.

TCP Stream UDP Stream
W/O FIMCE 93.92 95.99

With FIMCE 93.95 95.95

Performance
Loss (%)

0.03 0

TABLE 3. SINGLE-THREADED POSTMARK PERFORMANCE WITH AND

WITHOUT FIMCE RUNNING, IN SECOND

W/O FIMCE 327

With FIMCE 330

Performance Loss (%) 1

10

6.4. Component Costs

The major overhead of FIMCE is in its launching phase.

The security task’s execution inside FIMCE does not involve

the hypervisor and thus incurs no cost as compared to its

normal execution. The launching cost consists of three parts:

a hypercall (a VM Exit and a VM Entry), FIMCE setup

including resource allocation and environment setup, and

code loading.

On average, a null hypercall on our platform takes 0.31
millisecond. FIMCE setup takes about 47.33 milliseconds

which is the interval between the FIMCE_start hypercall

to the INIT signal prior to start of FIMCE execution. The

code loading time depends on the total binary size of the

loaded pillars and the security task. Table 4 shows the

time needed to copy a chunk of bytes from the guest to

the FIMCE, including preparing the mapping and memory

read/write. On our platform, every 4KB memory read and

write cost about 2µs. Pillar loading also involves integrity

TABLE 4. LOADING TIME FOR PILLARS WITH VARIOUS SIZES

Size (KB) 7 11 15 19 23 27 31 35

Time (µs) 56 58 61 63 63 65 66 68

verification. Our measurement shows that it takes about

40.3 microseconds to verify one RSA signature inside a

FIMCE. Therefore, the total cost of launching a FIMCE,

(mostly depending on the number of public key signatures

to verify), is in the range of 100 milliseconds to a few

seconds. There are several ways to save this one-time cost.

For instance, a pillar’s integrity can be protected by using

HMAC whose verification is several orders of magnitude

faster than signature verification. Another is for the hyper-

visor to cache some frequently used pillars which are used

without integrity check during FIMCE launching.

6.5. Application Evaluation

We have implemented four use cases to demonstrate

the power of FIMCE. The use cases include a password

based decryption, an Apache server performing online RSA

decryption, a long term secret protection case and a runtime

kernel state attestation case.

Password based decryption. Through this case study,

we demonstrate FIMCE’s advantage over memory isolation

in terms of supporting I/O operation. It is challenging to

protect tasks with I/O operations using memory isolation,

mainly because I/O operations are normally in the kernel

level with a large and dispersed code base and are interactive

with devices. Therefore, Driverguard[5] relies on manually

instrumenting the driver code, which is tedious and error-

prone, whereas TrustPath [29] has to relocate the entire

driver into the isolated user space code, which not only

requires significant changes on the user space, but also

burdens the hypervisor with complex functions. As a result,

there are a lot of hypercalls when issuing I/O commands

TABLE 5. MODIFIED APACHE PERFORMANCE, SSL HANDSHAKE PER

SECOND

Concurrency
Level

1 2 4 32 128 256

W/O FIMCE 7.39 13.96 20.21 26.95 27.88 29.69

With FIMCE 7.31 14.04 20.09 20.21 21.09 22.23

Overhead (%) 1 0 0.5 25.0 24.4 25

TABLE 6. OVERHEAD OF OTHER PROTECTION SCHEMES

Schemes Overhead
TrustVisor [7] 9.7% to 11.9% depending on concurrent

transaction

InkTag [9] 2% in throughput, 100 concurrent request

Overshadow [2] 20% to 50% on a 1Gbps link, 50 concurrent

request

and handling interrupts, which incurs a heavy performance

drop because of frequent expensive VM exits.

FIMCE offers a much tidier solution. The code running

inside a FIMCE is in Ring 0 and is capable of handling

interrupts. Furthermore, with hardware virtualization, the

hypervisor can channel the peripheral device interrupts to

the FIMCE core for the isolated task to process. Therefore,

a device’s I/O can be conveniently supported as long as its

driver pillar is loaded into the FIMCE.

In this case study, a program performs an AES decryp-

tion after converting a user password through the keyboard

into the decryption key. When a FIMCE is launched to

protect this program, the hypervisor isolates the keyboard

by intercepting the guest’s port I/O accesses. A serial port

pillar and the crypto pillar are loaded into the FIMCE. We

run the program with FIMCE protection for 100 times. In

average, it takes 0.94 milliseconds to decrypt the ciphertext

with 1kilobytes, which is only 5.2% slower than in the guest.

Apache Server. In this case study, we utilize FIMCE to

harden an SSL web server by isolating its RSA decryption

of SSL handshakes into a FIMCE. As noted previously,

existing systems [7], [2] on Apache protection is not secure

under the multicore setting. In their schemes, the isolated

code runs in the same thread as its caller. As a result, it

incurs frequent VM-exits and VM-entries as the control flow

enters and leaves the isolated environment. FIMCE does not

incur context switches at runtime because the isolated task

in a FIMCE runs as a separated thread in parallel as others.

In the experiment, we customize the Apache source code

so that its SSL handshake decryption function is protected

by a FIMCE. Apache runs in prefork mode with eight

worker processes. Each worker process forwards incoming

requests to the decryption function inside the FIMCE and

subsequently fetches the decrypted master secrets.

We connect our server to a LAN and run ApacheBench

with different concurrency levels. The Apache server hosts

an HTML page of 500KB. We compare it with the same

experiment without using FIMCE protection whereby all

worker processes are able to perform the decryption con-

currently. The results are shown in Table 5.

It is evident that at low concurrency level up to four,

11

the FIMCE-enabled Apache server performs almost equally

well as the native multithreaded Apache. It outperforms

existing schemes listed in Table 6 due to the fact that FIMCE

does not involve costly context switches. However, its per-

formance drops with the concurrency level increasing, but

is bounded by 25%. This is because of the single-threaded

of FIMCE cannot match the performance of a multithreaded

Apache which can uses all four cores to perform concurrent

decryption. The performance of TrustVisor[7], InkTag[9]

and Overshadow[2] is not affected by concurrency, albeit

they are not secure in a multicore system due to the stifling

attack.

However, we remark that the design of FIMCE can cer-

tainly be extended to support concurrent FIMCE instances,

at the expense of more cores dedicated for security. We also

note that in real word web transactions, the time spent for

RSA decryption accounts for a much smaller portion of the

entire transactions as compared to in the benchmark testing,

because of (1) longer network delays in the Internet; (2)

more SSL sessions using the same master key decrypted

from one SSL handshake; (3) more time needed to generate

or locate the need web pages. Therefore, we expect the

performance loss of using FIMCE for a real web server

does not appear as discouraging as in our experiments.

Long Term Secret Protection. We demonstrate the mal-

leability of FIMCE architecture via the long term secret

protection case. We implemented a prototype to bind a long

term secret to a FIMCE instance. The system is booted using

DRTM. A simple security task and the TPM pillar are loaded

into a FIMCE. During loading the hypervisor extends PCR
20 accordingly. The security task seals and unseals a long

term secret to PCR17, PCR18 and PCR20 which bear

the birthmark of this FIMCE instance. We measured time

taken by the TPM seal and unseal operations inside FIMCE

and compared it with the performance inside the guest. For

running inside the guest, we converted the TPM pillar to a

kernel module and run it inside the kernel space. In both

experiments, a 20 byte long secret is used. The results are

in Table 7.

TABLE 7. TPM PERFORMANCE TEST, IN SECONDS

TPM Seal TPM Unseal
Guest 0.54 0.96

FIMCE 0.41 0.94

FIMCE shows slight speed up compared to the per-

formance inside the guest. One of the contributing factors

is that there is more code in the kernel involved when

running the TPM operations inside the guest. The kernel also

performs scheduling, because the entire operation is rather

lengthy. In contrast, due to the simple structure, FIMCE does

not have such overhead.

It is also straightforward to use this facility by the

security task. It only needs to instruct the hypervisor to load

the TPM pillar and invoke corresponding functions inside.

Compared to existing approaches that virtualize the TPM

using software such as [7], our approach places the trust

anchor directly on the hardware TPM chip. In contrast,

virtualizing TPM requires one more entity which is the

code that virtualizes the TPM to be included in the trust

chain. The architecture of FIMCE allows us to multiplex

accesses to the TPM chip in such a way that eliminate the

requirement, shrinking the attack surface and TCB.

Runtime Kernel Introspection with Attestation. We im-

plement a prototype of the introspection. We use a security

task to read the mm_struct member of the init_task
structure and measured the performance. It takes about

3.04µs to read a kernel object which is comparable with

the time (around 3.11µs) needed by the kernel itself. Our

introspection system is more efficient than [28] because

it runs natively on the hardware in the same fashion as

running inside the kernel. According to our experiment, the

speed of native instruction execution with MMU translating

a virtual address is about 300 times faster than using a

software to walk the page table. Our system also provides

stronger security because the introspection code runs with

the genuine CR3 presently used in the guest, which implies

the same address layout and mapping as the kernel.

The introspection results can be attested by the FIMCE

system to a remote verifier. As there is a chain of trust

established during FIMCE launching, it is convenient to use

the code inside the FIMCE to do runtime attestation. The

root of the trust chain is Intel’s TXT facility. When the

hypervisor is loaded, the hardware measures its integrity

before launching. The hypervisor then measures all code

during FIMCE launching. At runtime, the code inside the

FIMCE measures the kernel’s states. The measurements are

stored in various PCRs depending on the assigned localities.

Note that one of the challenges of existing TPM-based attes-

tation schemes is to have a reliable attestation agent which

(ideally) is immune from attacks of the attested objects, and

at the same time, nimble enough to dynamically perform

measurements whenever needed. FIMCE exactly offers such

a solution.

In our case implementation, the introspection code inside

the FIMCE uses the crypto pillar to signs the introspection

results with a TPM quote for PCR 17, 18 and 20 which

vouches for the FIMCE environment. The entire process

runs in parallel to the guest OS. It takes 3.47 seconds in

average to perform the entire procedure, including the time

for TPM quote operation.

7. Related Work

Virtualization Based Security. Our work is directly related

to virtualization based security systems. The immediate

benefit of virtualization is that the resources of a platform

can be partitioned such that two virtual domains cannot

interfere with each other. Following this idea, TERRA [1]

and Proxos [30] were proposed to partition a system into

a trusted domain and an untrusted domain, where critical

applications run in the former while others run in the latter.

Although this coarse-grained approach is effective and easy

to implement, its security is undermined by the large TCB

12

as it encloses the operating system which is widely regarded

as vulnerable to attacks.

With the development of hardware techniques, the main-

stream commodity platforms nowadays enjoy hardware sup-

port for CPU, memory and I/O virtualization. By taking

advantage of having a more privileged bare-metal hypervisor

(a.k.a. virtual machine monitor or VMM) than the OS,

various systems [8], [12], [29] have been proposed in the

literature for diversified security purposes. Despite of the

different designs, the fundamental building block commonly

used by them is the hypervisor’s capability of regulating the

guest VM’s memory accesses by properly setting attribute

bits in relevant page table entries.

Two typical examples of kernel protection are SecVisor

[8] and Lares [12]. The former proposed a mechanism to

use the hypervisor to protect kernel integrity while the latter

monitors and analyzes events in kernel space by inserting

hooks into arbitrary locations of kernel. Both uses the hy-

pervisor to prevent the kernel code from being modified.

TrustPath[29] and Driverguard[5] were proposed to protect

the I/O channel between a peripheral device and an appli-

cation.

Hypervisor-based memory access control also allows for

memory isolation, a technique widely used to set up a secure

execution environment to protect data security and execution

integrity of the sensitive code against an untrusted operating

system. TrustVisor [7] is a tiny hypervisor that builds such

an environment for a self-contained PAL. It further enhanced

the environment with a software-implemented TPM (called

µTPM) in the hypervisor space. µTPM can protect the PAL’s

long term secret and allows for remote attestation. Since

the PAL is required to be self-contained, TrustVisor is not

an ideal solution to protect complex tasks that involve I/O

operations or that depend on libraries with a large code

base. Based on TrustVisor, XMHF [13] provides an open-

source hypervisor framework providing security functional-

ity including memory protection. Also based on TrustVisor,

Minibox [31] combines the hypervisor with Native Client

[32] to provide a two-way sandbox for the cloud. Another

line of research is to protect the entire application. Over-

shadow [2], InkTag [9], and AppShield [10] are exemplary

works in this category which are capable of isolating a whole

application from the untrusted OS. In both Overshadow and

InkTag, the memory regions isolated for the application are

encrypted when the OS takes control. While Overshadow

and AppShield are mainly designed for application data

secrecy and integrity, InkTag is concerned about verifying

the OS behaviors by using the paraverfication technique

which mandates changes on the kernel’s code. A common

challenge for isolating an application is to handle the system

calls. All three scheme requires intensive work on system

call adaption and parameter marshaling. Different from the

coarse-grained cross VM isolation used in Terra [1], these

systems provides fine-grained in-VM isolation. Unfortu-

nately, as we shown later, their security hardly withholds

under a multicore setting.

Isolation With Other Techniques.

Flicker [33] makes use of trusted computing techniques

to set up a secure execution environment at runtime. It

explores AMD’s late launch technology which incorpo-

rates the TPM-based Dynamic Root of Trust Measurement

(DRTM). The late launch technique sets up a secure and

measured environment to protect a piece of code and data.

The drawback is its high latency due to the slow speed of

the TPM chip. Moreover the protected code cannot interact

with the rest of the platform.

The recently announced Intel Software Guard Exten-

sions (SGX) [34] offers a set of instructions for an appli-

cation to set up an enclave to protect its sensitive code and

data. The hardware isolates the memory region and ensures

that data in the region can only be accessed by the code

within. All other accesses are rejected by the hardware.

Nonetheless, it is not able to support secure I/O operations,

e.g., taking a password input from the keyboard.

Trustzone [35] in ARM platforms provides a more

versatile secure execution environment. As shown in TZ-

RKP [36], a security monitor residing in the secure world

established by TrustZone can protect the OS kernel in the

normal world at runtime.

Virtual Ghost [37] uses language level virtual machine

to prevent an untrusted OS from accessing an application’s

sensitive memory regions. It requires compiler support and

source code instrumentation on the kernel code in order to

ensure control-flow integrity at runtime.

PixelVault [38] creates an isolated execution environ-

ment on GPU. Being an isolated device from the CPU

with its own memory, GPU provides a natural ground for

building an isolated execution environment. In the past,

programming on GPU had been hard because of its highly

specialized hardware, however, modern GPU is becoming

ever-increasingly more programmable so that running code

for execution on GPU is easier. Nonetheless, this approach

still requires significant development effort because there is

little support from current systems.

SICE [39] isolates a program that ranges from an in-

strumented application to a complete VM from the guest

OS using System Management Mode (SMM). Compared

to microhypervisor appraoch, it consists of a smaller TCB

since the TCB only consists of the hardware, BIOS and

SMM. However, compared to virtualization, SMM is less

standardized, which makes it hard to apply SICE’s approach

on certain platforms. For example, SICE’s multiple proces-

sor support relies on hardware features only available on

AMD processors.

8. Conclusion

In this paper, we have undertaken an in-depth study

on virtualization based isolation on multicore platforms.

Our results show that the current mainstream approach of

using the page tables to isolate a sensitive memory region

is cumbersome and ineffective. We have demonstrated two

specific attacks on XMHF and BitVisor to show their design

flaws. Furthermore, we propose FIMCE, a stronger and

tidier isolation scheme for multicore systems. FIMCE places

13

the protected task into a fully isolated computing environ-

ment where neither hardware nor software resources are

accessible to any code in the untrusted domain. Our design

is featured with strong security due to its minimal attack

surface and with great nimbleness and versatility due to its

architectural advantages. We have implemented FIMCE and

experimented it with several testing cases which demonstrate

various advantages over alternative techniques.

Acknowledgments

We especially thank Virgil Gligor for his construc-

tive insights into positioning our work. We also appreci-

ate the anonymous reviewers for their helpful comments.

This research effort is supported by the Singapore Na-

tional Research Foundation under the NCR Award Number

NRF2014NCR-NCR001-012.

References

[1] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,

“Terra: a virtual machine-based platform for trusted computing,”

in Proceedings of the 9th ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[2] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-

spurger, D. Boneh, J. Dwoskin, and D. R. K. Ports, “Overshadow: A

virtualization-based approach to retrofitting protection in commodity

operating systems,” in Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2008.

[3] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for

user applications on a per-page basis,” in Proceedings of the 4th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE), 2008.

[4] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,

T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai,

K. Kono, S. Chiba, Y. Shinjo, and K. Kato, “Bitvisor: a

thin hypervisor for enforcing I/O device security,” in Proceedings
of the 5th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), 2009. [Online]. Available:

http://doi.acm.org/10.1145/1508293.1508311

[5] Y. Cheng, X. Ding, and R. H. Deng, “Driverguard: a fine-grained

protection on I/O flows,” in Proceedings of the 16th European Sym-
posium on Research in Computer Security (ESORICS), 2011.

[6] Z. Zhou, M. Yu, and V. D. Gligor, “Dancing with giants: wimpy

kernels for on-demand isolated i/o,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 308–323.

[7] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and

A. Perrig, “Trustvisor: Efficient TCB reduction and attestation,” in

Proceedings of the 2010 IEEE Symposium on Security and Privacy
(S&P), 2010.

[8] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: a tiny hyper-

visor to provide lifetime kernel code integrity for commodity OSes,”

in Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP), 2007.

[9] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,

“Inktag: secure applications on an untrusted operating system,” in

Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 2013.

[10] Y. Cheng, X. Ding, and R. H. Deng, “Efficient virtualization-based

application protection against untrusted operating system,” in Pro-
ceedings of the 10th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2015.

[11] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek,

“Hardware-assisted on-demand hypervisor activation for efficient

security critical code execution on mobile devices,” in 2016
USENIX Annual Technical Conference (USENIX ATC 16).
Denver, CO: USENIX Association, Jun. 2016, pp. 565–578. [On-

line]. Available: https://www.usenix.org/conference/atc16/technical-

sessions/presentation/cho

[12] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architec-

ture for secure active monitoring using virtualization,” in Proceedings
of the 2008 IEEE Symposium on Security and Privacy (S&P), 2008.

[13] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and

A. Datta, “Design, implementation and verification of an extensible

and modular hypervisor framework,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (S&P), 2014.

[14] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,

A. Schuster, and D. Tsafrir, “Eli: Bare-metal performance for i/o

virtualization,” in Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012.

[15] C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh, “A compre-

hensive implementation and evaluation of direct interrupt delivery,”

in Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), 2015.

[16] S. Rostedt, “The x86 NMI iret problem,”

https://lwn.net/Articles/484932/, accessed: 2015-11-10.

[17] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting

memory disclosure attacks using destructive code reads,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 256–267.

[18] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program

instrumentation and debugging via hardware virtualization,” in Pro-
ceedings of the 29th Annual Computer Security Applications Confer-
ence. ACM, 2013, pp. 289–298.

[19] A. Srivastava and J. Giffin, “Efficient protection of kernel data

structures via object partitioning,” in Proceedings of the 28th annual
computer security applications conference. ACM, 2012, pp. 429–

438.

[20] S. Checkoway and H. Shacham, “Iago attacks: why the system call

api is a bad untrusted rpc interface,” in Proceedings of the 18th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[21] Y. Cheng and X. Ding, “Guardian: Hypervisor as security foothold

for personal computers,” in International Conference on Trust and
Trustworthy Computing. Springer, 2013, pp. 19–36.

[22] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig, “Lock-

down: A safe and practical environment for security applications,”

CMU-CyLab-09-011, vol. 14, 2009.

[23] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and im-

plementation of a TCG-based integrity measurement architecture,” in

Proceedings of the 13th conference on USENIX Security Symposium,

2004, pp. 16–16.

[24] T. Jaeger, R. Sailer, and U. Shankar, “Prima: policy-reduced integrity

measurement architecture,” in Proceedings of the eleventh ACM sym-
posium on Access control models and technologies. ACM, 2006,

pp. 19–28.

[25] S. Suneja, C. Isci, E. de Lara, and V. Bala, “Exploring vm introspec-

tion: Techniques and trade-offs,” in Proceedings of the 11th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. ACM, 2015, pp. 133–146.

[26] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtu-

oso: Narrowing the semantic gap in virtual machine introspection,” in

Security and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011,

pp. 297–312.

14

[27] H. Inoue, F. Adelstein, M. Donovan, and S. Brueckner, “Automati-

cally bridging the semantic gap using c interpreter,” in Proc. of the
2011 Annual Symposium on Information Assurance, 2011, pp. 51–58.

[28] Y. Fu and Z. Lin, “Space traveling across vm: Automatically bridging

the semantic gap in virtual machine introspection via online kernel

data redirection,” in Security and Privacy (SP), 2012 IEEE Sympo-
sium on. IEEE, 2012, pp. 586–600.

[29] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building

Verifiable Trusted Path on Commodity x86 Computers,” in Proceed-
ings of the 33rd IEEE Symposium on Security and Privacy, ser. S&P,

May 2012.

[30] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: making trust

between applications and operating systems configurable,” in Pro-
ceedings of the 3rd USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2006.

[31] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,

“Minibox: A two-way sandbox for x86 native code,” in 2014 USENIX
Annual Technical Conference, 2014.

[32] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,

S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for

portable, untrusted x86 native code,” in Security and Privacy, 2009
30th IEEE Symposium on. IEEE, 2009, pp. 79–93.

[33] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,

“Flicker: An execution infrastructure for TCB minimization,” in

Proceedings of the ACM European Conference in Computer Systems
(EuroSys), Apr. 2008.

[34] I. Corporation, “Innovative instructions and software

model for isolated execution,” http://privatecore.com/wp-

content/uploads/2013/06/HASP-instruction-presentation-release.pdf.

[35] A. Limited, “Arm security technology - build-

ing a secure system using trustzone technology,”

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

009492c/PRD29-GENC-009492C trustzone security whitepaper.pdf.

[36] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,

and W. Shen, “Hypervison across worlds: Real-time kernel protection

from the arm trustzone secure world,” in Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS), 2014.

[37] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting

applications from hostile operating systems,” in Proceedings of the
19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2014.

[38] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis,

“Pixelvault: Using gpus for securing cryptographic operations,” in

Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1131–1142.

[39] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly

isolated computing environment for x86 multi-core platforms,” in

Proceedings of the 18th ACM conference on Computer and com-
munications security. ACM, 2011, pp. 375–388.

15

	On the effectiveness of virtualization based memory isolation on multicore platforms
	Citation

	tmp.1504688814.pdf.sxqJ5

