
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2017

RACK: Code Search in the IDE Using Crowdsourced Knowledge RACK: Code Search in the IDE Using Crowdsourced Knowledge

Mohammad Masudur RAHMAN

Chanchal K. ROY

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
RAHMAN, Mohammad Masudur; ROY, Chanchal K.; and LO, David. RACK: Code Search in the IDE Using
Crowdsourced Knowledge. (2017). Proceedings of 39th IEEE/ACM International Conference on Software
Engineering Companion, ICSE-C 2017; Buenos Aires, Argentina, 2017 May 20-28.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3698

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3698&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/313895274

RACK:	Code	Search	in	the	IDE	using
Crowdsourced	Knowledge

Conference	Paper	·	May	2017

DOI:	10.1109/ICSE-C.2017.11

CITATIONS

0

READS

32

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

RevHelper:	Model	for	Determining	Usefulness	of	Code	Review	Comments	View	project

Plant	Phenotyping	Image	Research	Centre	(P2IRC)	View	project

Mohammad	Masudur	Rahman

University	of	Saskatchewan

20	PUBLICATIONS			77	CITATIONS			

SEE	PROFILE

Chanchal	K.	Roy

University	of	Saskatchewan

113	PUBLICATIONS			1,941	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Mohammad	Masudur	Rahman	on	22	May	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/313895274_RACK_Code_Search_in_the_IDE_using_Crowdsourced_Knowledge?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/313895274_RACK_Code_Search_in_the_IDE_using_Crowdsourced_Knowledge?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/RevHelper-Model-for-Determining-Usefulness-of-Code-Review-Comments?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Plant-Phenotyping-Image-Research-Centre-P2IRC?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Masudur_Rahman?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Masudur_Rahman?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Saskatchewan?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Masudur_Rahman?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chanchal_Roy2?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chanchal_Roy2?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Saskatchewan?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chanchal_Roy2?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Masudur_Rahman?enrichId=rgreq-0c02a9fbb6ea33fa4a41792d16b8a948-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5NTI3NDtBUzo0OTY2OTE1MjQyNDc1NTJAMTQ5NTQzMTg5NTIzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

RACK: Code Search in the IDE using
Crowdsourced Knowledge

Mohammad Masudur Rahman Chanchal K. Roy David Lo†
University of Saskatchewan, Canada, †Singapore Management University, Singapore

{masud.rahman, chanchal.roy}@usask.ca, davidlo@smu.edu.sg

Abstract—Traditional code search engines often do not perform
well with natural language queries since they mostly apply
keyword matching. These engines thus require carefully designed
queries containing information about programming APIs for code
search. Unfortunately, existing studies suggest that preparing an
effective query for code search is both challenging and time
consuming for the developers. In this paper, we propose a novel
code search tool–RACK–that returns relevant source code for a
given code search query written in natural language text. The
tool first translates the query into a list of relevant API classes
by mining keyword-API associations from the crowdsourced
knowledge of Stack Overflow, and then applies the reformulated
query to GitHub code search API for collecting relevant results.
Once a query related to a programming task is submitted, the
tool automatically mines relevant code snippets from thousands
of open-source projects, and displays them as a ranked list within
the context of the developer’s programming environment–the
IDE. Tool page: http://www.usask.ca/∼masud.rahman/rack

Index Terms—Code search, query reformulation, keyword-API
association, crowdsourced knowledge, Stack Overflow

I. INTRODUCTION

Studies show that software developers on average spend

about 19% of their development time in web search where they

mostly look for relevant code snippets for their programming

tasks [1]. Code search engines–Open Hub, Koders, GitHub
search and Krugle–index thousands of open source projects

which are a potential source for such snippets [7]. Unfortu-

nately, preparing an effective query for code search containing

information about relevant APIs is not only a challenging task

but also is time-consuming for the developers [1, 5]. Previous

study also reported that on average, developers performed

poorly in coming up with good search terms regardless of

their experience levels [5]. Thus, a tool that automatically

translates a natural language query from the developer into

a set of relevant API classes or methods (i.e., search-engine

friendly query) and then returns relevant source code snippets,

can greatly assist the developers in their tasks. Our paper

addresses this research problem, and provides automatic tool

support both in preparing search queries and in performing

code search conveniently.

Existing studies accept one or more natural language

queries, and return relevant API classes and methods by an-

alyzing feature request history and API documentations [10],

API invocation graphs [2], library usage patterns, code surfing

behaviour of the developers and API invocation chains [7].

Although these techniques perform well in different working

contexts, they share a set of limitations and fall short to

address our research problem. First, each of these techniques

[2, 7, 10] exploits textual similarity measure (e.g., Dice’s

coefficients [2]) for candidate API selection. This warrants that

the search query should be carefully prepared, and it should

contain keywords similar to the API names. In other words,

the developer should possess a certain level of experience on

the target APIs to actually use those techniques. Second, API

names and search queries are generally provided by different

developers who may use different vocabularies to convey the

same concept. Concept/feature/concern location community

have termed it as vocabulary mismatch problem [4]. Textual

similarity based techniques often suffer from this problem.

Hence, the performance of these techniques is not only limited

but also subject to the identifier naming practices adopted in

the codebase under study.
In this paper, we propose a novel code search tool–RACK–

that accepts an unstructured natural language query (i.e., does

not require API information) from a developer as input and

returns relevant code snippets as output from thousands of

open source projects. The tool first captures the developer’s

intent for code search from two working contexts (e.g., code

comments) within the IDE as a query, translates the query

into relevant API classes automatically, and then collects the

relevant code examples from GitHub search API by applying

them. While each question in Stack Overflow Q & A site

summarizes a programming problem/task, the corresponding

answers often suggest appropriate APIs that solve the problem.

We thus mine thousands of questions and corresponding ac-

cepted answers from Stack Overflow, and translate the natural

language query (i.e., programming task) into relevant API

classes by exploiting the keyword-API associations from Stack

Overflow. Thus, the tool works both as a query recommender

and as a code search engine. We package our solution as an

Eclipse IDE plug-in that allows the developers to perform code

search within the IDE, and thus, they can avoid the annoying

context-switching issue. To summarize, our tool provides the

following features to support the developers in code search:

(a) the proposed tool automatically translates an unstructured

natural language query referring to a programming task

into relevant API classes for the task.

(b) determines relevance of the returned API classes based

on keyword-API associations mined from thousands of

programming questions and solutions of Stack Overflow.

(c) mitigates the vocabulary mismatch problem faced by

existing techniques and traditional code search engines.

(d) integrates GitHub search API into the IDE for IDE-based

code search and convenient result display.

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.11

51

Fig. 1. User Interface of RACK

(e) offers meaningful relevance insights for both search

queries and search results unlike any traditional search.

While this paper focuses on tool aspect of our approach, we

refer the readers to the original paper [8] for further details.

II. RACK

Fig. 1 shows the user interface of RACK, where we con-

tribute in (b)–(c) query suggestion panel, (d)–(e) code search

panel, and (f)–(g) result panel of the interface. This section

discusses different technical features provided by our tool.

(1) Automatic Suggestion of Code Search Queries: RACK

automatically suggests relevant keywords (i.e., API classes)

for code search given that preparing an effective query for a

programming task is a significant challenge [5, 6]. Our tool

overcomes this challenge by mining thousands of program-

ming problems and their corresponding solutions from Stack

Overflow Q & A site. It captures a developer’s intent for code

search from various working contexts within the IDE, and

suggests a list of appropriate keywords for code search with

meaningful insights (i.e., relevance scores).

(i) Working Contexts: RACK captures natural language

queries (i.e., developer’s intents) for code search from two

working contexts of a developer– source code comment and

traditional search box. Once the developer intends to accom-

plish a programming task by stating in the header comment of

a method, our tool captures the comment as an initial query

for reformulation (e.g., Fig. 1-(a)). In the second case, the

developer provides an initial query written using unstructured

natural language texts, and RACK captures the query from the

traditional search box (Fig. 1-(b)) for relevant API suggestion.

(ii) Mining of Relevant API Classes: In Stack Overflow,

users often submit questions focusing programming tasks (e.g.,

“How can I generate MD5 hash?"), and the corresponding

answers suggest relevant APIs (e.g., MessageDigest) for

accomplishing those tasks. RACK accesses a database of 344K

such questions and answers, learns keyword–API associations,

and then suggests relevant API classes for a given task.

(iii) API Suggestion and Query Reformulation: Once the

natural language query (i.e., initial query) is submitted, RACK

suggests the Top-10 relevant API classes for the task in the

query (Fig. 1-(c)). Not only the suggestions are provided as a

ranked list but also our tool explains why a particular API is

relevant by visualizing three meaningful scores– Keyword–

API Co-occurrence (KAC), Keyword–Keyword Coherence

(KKC), and Overall Relevance [8]. Being equipped with such

ranking and insights, a developer can easily choose appropriate

APIs by marking them checked and initiate the code search.

(2) IDE-Based Code Search: RACK not only provides an

IDE-based code search feature but also assists the developer in

result analysis with a customized view. It provides two flexible

code search options and displays the results with meaningful

insights (i.e., relevance scores) within the IDE.

(i) Code Search Options and Backend: RACK provides

two options–Top-1 search and Top-K search–for performing

code search in the IDE (Fig. 1-(d)). Once the relevant API

classes are suggested (by the tool) and appropriate classes (i.e.,

search keywords) are chosen by the developer, the tool returns

the topmost relevant code snippet from thousands of open

source projects of four large organizations–Apache, Eclipse,
Google and Facebook. We integrate GitHub code search API

in the backend for collecting the relevant source code files

from which the most relevant method body is extracted using

Abstract Syntax Tree (AST) parsing and textual similarity

analysis with the query. In the second case, RACK returns the

Top-K (e.g., K = 10) code snippets based on their relevance

for further analysis by the developer. One can also reset the

whole process by checking the check box provided by the tool.

52525252525252525252

TABLE I
SUGGESTED API CLASSES FOR THE USE CASE

API KAC KKC Relevance API KAC KKC Relevance
File 0.60 1.00 1.00 Element 0.60 0.46 0.66

Document 1.00 0.46 0.91 Jsoup 0.40 0.00 0.25

List 0.90 0.22 0.70 Elements 0.20 0.00 0.19

(ii) Mitigation of Vocabulary Mismatch Issue: Textual

similarity based search techniques (e.g., Vector Space Model)

generally suffer from this issue when unstructured natural

language queries are used for code search [3, 4]. Since RACK

translates the initial search query into relevant API classes

that come from standard libraries or development toolkits (i.e.,

from a single vocabulary), such issue is mitigated.

(iii) Result Display and Insights: RACK not only shows

the code search results as a meaningful ranked list (i.e., with

relevance insights) but also adds an in-line source code viewer

for detailed analysis of the results (Fig. 1-(e)–(g)). Each result

from the list is annotated using the matched keywords from the

query which provides additional intuition about its relevance.

The code viewer is enabled with syntax highlighting which

ensures a convenient analysis of the code by the developer.

(3) Performance Optimization: While the query reformu-

lation step requires relational database access, the code search

step involves GitHub API access and significant static analysis

of the source code. In both steps, RACK applies Java multi-

threading for optimized computation and response time. To

date, our reformulation takes ≤10 seconds and the search takes

≤2 seconds on average which are close to real time.

(4) Seamless Integration and Dynamic Corpus: RACK

adopts a client-server architecture where the Eclipse IDE

plug-in is the client module, and the server module (i.e.,

query reformulation engine) is hosted as a web service. That

is, any tool capable of making HTTP calls can consume

our query reformulation service, which demonstrates RACK’s

modularity. On the other hand, the use of GitHub API ensures

that RACK always returns relevant code from an automatically

evolving and carefully indexed large source code corpus.

III. A USE CASE SCENARIO

By means of a use case scenario, we attempt to explain

how RACK can help a software developer in accomplishing a

programming task within the IDE.

Suppose a developer, Alice, is attempting to develop a Java

application that parses an HTML page (e.g., Yahoo! finance

page), and extracts certain items of her interest (e.g., stock

price). However, she lacks necessary experience and thus is

looking for a working code example that performs the same or

similar task. She formulates a query–“parsing html in Java",

and submits to a web search engine (e.g., Google). The search

engine leads her to a list of programming Q & A pages and

API documentations. Now, she needs to go through the pages

carefully containing a large body of texts. While these pages

might be useful for improving her knowledge on parsing,

choosing relevant code examples from them is not only a

time consuming but also a non-trivial job. She also submits

the same natural language query to a code search engine (e.g.,

GitHub), but the returned results were not promising. In short,

Fig. 2. Top-10 code search results for the use case

she (1) fails to collect a succinct and working code example

comfortably from the web search results due to the noise in the

content, (2) does not get a relevant result from the code search

engine due to its inherent limitation–vocabulary mismatch

issue between the query and source code, (3) finds the display

of neither web search results nor code search results helpful

for post-search analysis (i.e., trying out examples).

Now, let us assume that Alice has installed RACK in her

IDE, and she encounters the same programming challenge.

Our tool captures her natural language query from the code

comment (e.g., Fig. 1-(a)), and automatically suggests a ranked

list of relevant API classes along with three relevance insights

(i.e., KAC, KKC and Relevance) for the task. Table I shows the

Top-6 APIs suggested by RACK. Among them four (i.e., 67%)

classes–Document, Element, Jsoup and Elements–

are related to HTML parsing. She can play along with the top

API classes, reformulate the initial query, and instantly try

out the working code examples returned by the reformulated

query. Existing study reported that developers frequently ex-

periment with and learn from working code examples [1]. Fig.

2 shows the Top-10 relevant code snippets returned by RACK

for this use case which are mined from thousands of open

source projects using GitHub code search API. Not only our

tool provides the relevance estimate for each result but also

it annotates them with matched keywords and adds an in-line

source code viewer. Such information and feature are likely

to assist one in analyzing the code results more conveniently.

Thus, RACK (1) provides Alice one or more succinct and

relevant code example(s) without much effort or time spent

(i.e., 10-15 seconds), (2) overcomes the vocabulary mismatch

issue of a traditional code search engine through effective

query reformulation (i.e., relevant API classes), and (3) dis-

plays the results with meaningful insights and convenient

viewing panel. In short, our tool does all the heavy lifting

on behalf of Alice and provides a better alternative than the

traditional means for code search and her problem solving.

IV. WORKING METHODOLOGY

Fig. 3 shows the schematic diagram of our proposed tool.

This section discusses the internal structures and working

methodologies of the tool in brief, while we refer the readers

to the original paper [8] for details.

Construction of Keyword-API Mapping Database: We

first construct our keyword-API mapping database by carefully

analyzing 344K programming questions and corresponding

accepted answers (i.e., solutions) from Stack Overflow Q & A

53535353535353535353

Fig. 3. Schematic diagram of RACK – (a) Construction of keyword-API mapping
database, (a) Reformulation of a natural language query, and (c) Code snippet search

site. The keywords are collected from the question titles using

natural language preprocessing whereas the API classes are

extracted from the answers through island parsing (i.e., Steps

1–3, Fig. 3-(a)). Then we capture the inherent associations

between the keywords and the API classes from each question-

answer pair, and construct the keyword-API mapping database

(Steps 4-5, Fig. 3-(a)). RACK accesses this database for

reformulating a natural language query.

Query Reformulation: Once an initial query written in

unstructured natural language is submitted to RACK, the query

is sanitized through natural language preprocessing (i.e., stop

word removal, token splitting, stemming) and converted into a

vector of keywords. Then those keywords are used to collect

the candidate API classes from the mapping database using

two heuristics–KAC and KKC (i.e., Steps 1–3, Fig. 3-(b)).

Then the candidates are ranked based on their likelihood

(i.e., derived from KAC) and coherence (i.e., derived from

KKC) with the keywords. Finally, the tool returns a ranked

list of relevant API classes (with relevance estimates) as a

reformulation of the initial query (i.e., Steps 4, 5, Fig. 3-(b)).

Code Search in the IDE: Once a reformulated query con-

taining appropriate/relevant API classes is submitted to RACK,

it uses GitHub search API and collects relevant source code

files from thousands of open source projects hosted by four

large organizations–Apache, Eclipse, Google and Facebook.

Given that developers are often interested in trying out the

code snippets performing a particular task, we parse all the

methods from each source file using AST-based parsing (e.g.,

Javaparser library) (i.e., Steps 1–3, Fig. 3-(c)). GitHub API

returns a relevance score for each result file which we combine

with the textual similarity scores (with the search query) of

all the methods extracted from that file. This combination

provides a combined relevance for each code snippet (i.e.,

method), and RACK finally returns a ranked list of relevant

code snippets within the IDE (i.e., Steps 4, 5, Fig. 3-(c)).

V. PERFORMANCE

Since our original paper [8] claims main contributions in

the API recommendation for query reformulation, that part of

RACK was rigorously evaluated and validated. To evaluate the

API suggestion performance, we conduct experiments using

150 code search queries randomly chosen from three pro-

gramming tutorial sites–KodeJava, Java2s and JavaDB. The

evaluation shows that RACK was able to suggest at least one

relevant API class for 79% of the queries within the Top-10

API suggestions, which is highly promising according to the

literature. Comparison with the state-of-the-art–Thung et al.

[10]–not only validated our performance but also confirmed

the superiority of RACK in relevant API suggestion. Since

our reformulated queries contain gold set API classes and we

exploit GitHub API for code search, our queries are also likely

to return relevant code snippets given that GitHub applies

keyword matching in source code search.

VI. CONCLUSION & FUTURE WORK

To summarize, we propose a novel IDE-based code search

tool–RACK–that returns relevant code snippets for natural

language queries unlike the traditional code search engines.

It exploits crowdsourced knowledge from Stack Overflow for

query reformulation (details in the original paper [8]), and then

applies the reformulated queries to collecting relevant code

from GitHub search API. In future, we plan to conduct an

exhausted user study with the tool involving prospective par-

ticipants. We also plan to apply the inherent mapping between

keywords and API classes mined from Stack Overflow posts to

several other software maintenance activities such as concept

location, bug localization and source code re-documentation.

ACKNOWLEDGEMENT

This research was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC) and

the Singapore Ministry of Education (MOE) Academic Re-

search Fund (AcRF) Tier 1 grant.

REFERENCES

[1] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S.R. Klemmer. Two Studies
of Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing
Code. In Proc. SIGCHI, pages 1589–1598, 2009.

[2] W. Chan, H. Cheng, and D. Lo. Searching Connected API Subgraph via Text
Phrases. In Proc. FSE, pages 10:1–10:11, 2012.

[3] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The Vocabulary
Problem in Human-system Communication. Commun. ACM, 30(11):964–971,
1987.

[4] S. Haiduc and A. Marcus. On the Effect of the Query in IR-based Concept Location.
In Proc. ICPC, pages 234–237, June 2011.

[5] K. Kevic and T. Fritz. Automatic Search Term Identification for Change Tasks. In
Proc. ICSE, pages 468–471, 2014.

[6] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature Location via
Information Retrieval Based Filtering of a Single Scenario Execution Trace. In
Proc. ASE, pages 234–243, 2007.

[7] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio: Finding
Relevant Functions and their Usage. In Proc. ICSE, pages 111–120, 2011.

[8] M. M. Rahman, C. K. Roy, and D. Lo. RACK: Automatic API Recommendation
using Crowdsourced Knowledge. In Proc. SANER, pages 349–359, 2016.

[9] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes. How Well Do Search
Engines Support Code Retrieval on the Web? TOSEM, 21(1):4:1–4:25, 2011.

[10] F. Thung, S. Wang, D. Lo, and J. Lawall. Automatic Recommendation of API
Methods from Feature Requests. In Proc. ASE, pages 290–300, 2013.

54545454545454545454

View publication statsView publication stats

https://www.researchgate.net/publication/313895274

	RACK: Code Search in the IDE Using Crowdsourced Knowledge
	Citation

	RACK: Code Search in the IDE Using Crowdsourced Knowledge

