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Abstract—Bugs severely hurt blockchain system dependability.
A thorough understanding of blockchain bug characteristics is
required to design effective tools for preventing, detecting and
mitigating bugs. We perform an empirical study on bug charac-
teristics in eight representative open source blockchain systems.
First, we manually examine 1,108 bug reports to understand the
nature of the reported bugs. Second, we leverage card sorting to
label the bug reports, and obtain ten bug categories in blockchain
systems. We further investigate the frequency distribution of bug
categories across projects and programming languages. Finally,
we study the relationship between bug categories and bug fixing
time. The findings include: (1) semantic bugs are the dominant
runtime bug category; (2) frequency distributions of bug types
show similar trends across different projects and programming
languages; (3) security bugs take the longest median time to be
fixed; (4) 35.71% performance bugs are fixed in more than one
year; performance bugs take the longest average time to be fixed.

I. INTRODUCTION

Bitcoin has emerged as the first widely-deployed, decentral-
ized cryptocurrency, which sparks hundreds of cryptocurren-
cies. They have attracted a lot of attention from the financial
and public regulatory sectors. The overall capitalization of
cryptocurrencies reaches 12 billion USD as of October 2016
[1]; the venture capital investment reaches 1 billion USD as of
October 2016 [2]. The core technological innovation powering
cryptocurrencies is a distributed ledger known as blockchain.
Blockchain technology provides an open, decentralized and
fault-tolerant transaction mechanism. It promises to become
the infrastructure for a new generation of Internet interaction,
including anonymous online payment [3], remittance, and
transaction of digital assets [4]. Ongoing work explores smart
digital contracts, enabling anonymous parties to programmat-
ically enforce complex agreements [5, 6].

Bugs severely hurt the dependability of blockchain systems.
For instance, an attacker exploited a bug in the DAO project
- a project that is launched on the Ethereum blockchain'.
Consequently, the attacker succeeded to put approximately 60
million dollars under her control by 18th June 2016, until the
hard-fork of the blockchain discarded the transaction involved
in the attack.

Understanding bug characteristics could help to design
effective tools for preventing, detecting and mitigating bugs.

*Corresponding author.
Uhttp://www.coindesk.com/understanding-dao-hack-journalists/

Previous work performs empirical studies on software bugs to
understand bug characteristics [7—14]. These studies provide
knowledge for guiding design of bug detection tools, triaging
bug reports, locating bug locations, suggesting possible bug
fixes, gauging testing and debugging costs, measuring software
quality, and helping to monitor and manage development
processes.

To the best of our knowledge, bug characteristics of
blockchain systems have not been studied. Thus we would
like to perform an empirical study on bug characteristics of
blockchain systems, and answer new research questions (RQ)
about blockchain systems. We analyze the bug reports of eight
representative open source blockchain systems with large mar-
ket capitalization?, whose public repositories are on GitHub:
(1) bitcoin/bitcoin, a cryptocurrency and a payment system. (2)
ethereum/go-ethereum, an official Go implementation of the
Ethereum protocol3. (3) ethereum/mist, an Ethereum browser,
which offers an overall view of the Ethereum blockchain, and
tools to interact with the blockchain components. (4) doge-
coin/dogecoin, a cryptocurrency. (5) ethereum/cpp-ethereum,
an Ethereum C++ client. (6) ripple/ripple-lib, a JavaScript
API for interacting with Ripple in Node.js. Ripple is a real-
time gross settlement system, currency exchange and remit-
tance network; it is built upon blockchain technology as
consensus ledge. (7) steemit/steem, an experimental proof of
work blockchain with an unproven consensus algorithm; steem
enables the social media platform steemit to pay the contrib-
utors for their posts. (8) AugurProject/augur, a decentralized
prediction market platform built on Ethereum.

To ensure correct results, we only study closed bug reports.
This is because root causes of open bug reports are often
unknown. We first manually examine 1,108 closed bug reports
and identify 946 unique bugs. The number of bugs is smaller
than the number of bug reports, because some bug reports are
invalid and duplicate. We then apply card sorting to classify
bugs and investigate the nature of these bugs in blockchain
systems.

Our study aims to answer a number of research questions:
What categories of bugs appear in blockchain systems? Do the
frequency distributions of bug types show similar trends across

Zhttps://coinmarketcap.com/. We refer to the market capitalization of Oc-
tober 10, 2016
3https://github.com/ethereum/wiki/wiki/White-Paper



different blockchain projects? Do the frequency distributions
of bug types vary substantially across different programming
languages? How long does it take to fix various categories of
bugs? We answer the above questions by performing manual
analysis on bug reports and their corresponding pull request
and commits for bug fixing.

Our contributions are as follows:

1) We are the first to perform a large-scale empirical study
of bugs in blockchain systems.

2) We manually categorize 946 bugs in the eight studied
blockchain systems into various types by using card
sorting.

3) We analyze the frequency distributions of bug types
across different projects and programming languages.

4) We investigate the relationship between bug categories
and bug fixing time.

The rest of the paper is structured as follows. In Section II we
describe our research questions, data collection, dataset and
methodology. Section III, IV, and V present our empirical
study results. Section VI discusses the implications of our
study and the threats to validity. Section VII briefly reviews
the related work. Section VIII draws conclusions and presents
future work.

II. EMPIRICAL STUDY SETUP
A. Research Questions

RQ1. What categories of bugs appear in blockchain systems?
Bug categorization can help to understand the weakness of

blockchain systems. More effort could be put into addressing

the dominant bug category.

RQ2. Are the frequency distributions of bug types similar

across different blockchain projects?

Different blockchain projects are developed under different
requirements and intend to accomplish different tasks. Do
they show similar frequency distribution of bug types? If
the frequency distributions of bug types show similar trends
across projects, we can rank the bug types from most to least
common, and then summarize characteristics of each bug type.
RQ3. Do the frequency distributions of bug types vary sub-
stantially across different programming languages?

Programming languages have specific features classified by
programming paradigm (procedural, scripting or functional),
compilation class (static or dynamic), type class (strong or
weak), and memory class (managed or unmanaged) [15].
For example, C++ is a procedural, static and weakly typed
language with unmanaged memory types. We wonder if d-
ifferent programming languages would affect the frequency
distribution of bug types in blockchain systems.

RQ4. How long does it take to fix various types of bugs?

We intend to investigate the relationship between bug type
and bug fixing time. The result may indicate that more
attention should be paid to a specific bug type.

B. Data Collection

Retrieving representative blockchain projects. We initially
investigate top 20 cryptocurrencies by market capitalizations

[1] and top 10 venture capital blockchain companies [2]. For
the cryptocurrencies, we follow the official links provided by
the CoinMarketCap website; for the venture capital com-
panies, we search for the companies, which often publish their
software on code-hosting platforms (e.g., GitHub, Bitbucket,
and Google Code).

We initially find 19 public accessible, open source
blockchain systems whose source code is hosted on GitHub.
Then we exclude those systems: a) that fork from bitcoin
project, b) whose issue repositories have no bug tag, c) that
have no closed issues, and d) whose durations between the
first and last bug reports are less than 2 weeks. Finally, we
get eight blockchain systems as shown in Table I.

Retrieving bug reports and related information. We obtain
bug repositories including the issue title, body and comments
of the eight blockchain systems through GitHub API. A single
bug can be fixed by one pull request or one/multiple commits.
GitHub repositories store the linkages between reported bugs
and pull requests or code commits that fix the bugs. To
facilitate further analysis, we also obtain pull requests and
commits.

Identifying primary languages. Multiple languages are often
used to develop a project. Assigning a single language to
a project is difficult. GitHub uses Linguist [16] library
to measure the language distribution of each GitHub project
repository. Linguist first identifies the languages by the exten-
sion of source files, and then counts the number of source files
with different extensions. The language with the maximum
number of source files is assigned as primary language of
the project. GitHub Archive stores the primary language
information.

Calculating bug fixing duration. By using GitHub API, we
obtain the creation date (created_at) and closing date
(closed_at) of each closed bug report from the issue
repositories. The fixing duration of a bug starts at its creation
date and ends at its closing date.

C. Dataset

bitcoin/bitcoin is an open source software which enables the
use of the cryptocurrency bitcoin. Bitcoin is the most popular
decentralized cryptocurrency. The system under Bitcoin is
peer-to-peer — users can transact without an intermediary.
Blockchain records those transactions as a public distributed
ledger. The repository has been created on GitHub since Dec
2010. Its latest release on 14 Oct 2016 is version 0.13.1.

ethereum/go-ethereum is an official golang implementation
of the Ethereum protocol. Ethereum is a public blockchain-
based distributed computing platform, providing a decentral-
ized virtual machine to execute peer-to-peer smart contracts.
Ethereum uses a cryptocurrency called ether, which is the
second largest cryptocurrency. The repository has been created
on GitHub since Dec 2013. Its latest release on 15 Oct 2016
is version 1.4.18.

ethereum/mist is an Ethereum browser. It offers an overall
view of the Ethereum blockchain and tools to interact with



TABLE I: Blockchain systems studied. Open https://github.com/<GitHub Repository> for details.

GitHub Repository Stargazers SLOC # Closed BR | Duration Contributors | Releases | Language
bitcoin/bitcoin 10356 80,406 401 5.77 years | 402 165 C++
ethereum/go-ethereum 2393 455,464 | 89 2.36 years | 77 100 Go
ethereum/mist 1270 21,640 84 1.14 years | 37 32 JavaScript
dogecoin/dogecoin 1155 66,270 27 2.16 years | 298 32 C++
ethereum/cpp-ethereum | 758 105,624 | 272 2.68 years | 90 227 C++
ripple/ripple-lib 429 10,217 19 1.77 years | 44 117 JavaScript
steemit/steem 207 80,927 19 0.32 years 15 37 C++
AugurProject/augur 157 266,589 | 197 1.27 years | 15 5 JavaScript

the blockchain components. The repository has been created
on GitHub since Jun 2015. Its latest release on 26 Oct 2016
is version 0.8.7.

dogecoin/dogecoin is an open source peer-to-peer crytocur-
rency. The Dogecoin blockchain is a public decentralized
ledger of all Dogecoin transactions. The repository has been
created on GitHub since Dec 2013. Its latest release on 22
Mar 2016 is version 1.10.1-alpha-1.

ethereum/cpp-ethereum is the Ethereum C++ client.
The repository has been created on GitHub since Dec
2013. Its latest release on 7 Aug 2016 is version
untagged-1d50efdb2£43825a1810.

ripple/ripple-1ib is a JavaScript API for interacting with
Ripple in Node.js. Ripple is a real-time gross settlement
system, currency exchange and remittance network. It is built
upon blockchain technology as consensus ledge. Its own cryp-
tocurrency XRP is the third-largest cryptocurrency by market
capitalization.* The repository has been created on GitHub
since Apr 2013. Its latest release on 30 Sep 2016 is version
0.17.3.

steemit/steem is an experimental proof of work blockchain
with an unproven consensus algorithm. Steem enables the
social media platform steemit to pay the contributors for their
posts. The repository has been created on GitHub since Mar
2016. Its latest release on 2 Nov 2016 is version 0.15.0.

AugurProject/augur is an open source and decentralized
prediction market platform built on Ethereum. It leverages
the blockchain’s functionality as well as game theory and
financial incentives to make more accurate predictions about
future events.’ The repository has been created on GitHub
since Feb 2015. Its latest release on 30 Apr 2016 is version
1.0.0.

D. Methodology

We analyze snapshots of GitHub issue repositories of the
eight blockchain systems dated up to 7 Nov 2016. We focus
on closed bug reports from the issue repositories, i.e., closed
issues with tag bug. We exclude open bug reports because they
are not fixed and may not have enough information for our
analysis, or they may not even be bugs. TABLE I shows the
number of closed bug reports for the eight blockchain projects.
The durations between the first and last bugs are shown in
Column “Duration”.

We manually look into the title, body, comments of each
bug report. Such information is often short and ambiguous.

“http://coinmarketcap.com
Shttp://augur.strikingly.com/blog/the-pressing-need-for-augur

TABLE II: Classification scheme.

Category Description Abbreviation
Bugs caused by improper handling of
memory objects.
Synchronization problems among the
Concurrency concurrent taskg in concurrent Con
programs?[19], including data races and
deadlocks.
Bugs that make a system perform
abnormally in terms of responsiveness Perf
and stability under a normal workload.
Vulnerabilities that cause damage to the
software or the inforamtion on them, as Sec
well as the services they provide.

Errors in dependent libraries, underlying

Memory Mem

Performance

Security

Environment

and operating systems, or non-code that EnvConf
Configuration affects functionality.
GuIl Qraphical user ir}terface erTors, includ%ng GUI
incorrect font, alignment, and button size.
Build Link and compilation errors. Build
A software cannot normally run on a
Compatibility particular CPU architecture, operating Comp
system, or Web browser, etc.
Errors due to radical changes to the
Hard Fork protocol that rr}lakes( pre\{ious valid HardFork
blocks/transactions invalid (or
vice-versa).
Inconsistencies with the requirements or
Semantic the programmers’ intention that do not Sem

belong to the categories above.

So we further exploit related pull request and commit logs,
similar to previous work [14, 17]. We follow the card sorting
approach to label the bug reports [18].

Step 1: Card Sorting. We create one card for each of the
bug reports. The card contains bug information from several
data sources, e.g., bug report title, body and comments, pull
requests, and commits. The first author and one graduate
student from Zhejiang University jointly figure out the labels
for the bug reports. The detailed steps are as below:

Iteration 1. We first randomly pick the ethereum/go-
ethereum project and manually inspect the bug reports. Then
we sort the bug reports into distinct bug sets according to their
root causes. The root causes of some bug reports are unclear
and we omit them from our card sort. Finally, we discuss each
bug set and name it by referring to the categories that were
defined in Tan et al.’s study [14]. The resulting classification
scheme contains 6 categories as shown in TABLE II (except
GUI, build, compatibility and hard fork categories).

Iteration 2. We find that semantic bugs account for a large
proportion in project ethereum/go-ethereum. So we further
classify semantic bugs into 9 subcategories shown in Table III.
The subcategories are based on the semantic bug subcategories
in [14]. In addition, we create two new subcategories input and
output.

Iteration 3. First, we manually inspect bug reports in oth-



TABLE III: Subcategories of semantic bugs.

Category Subcategory Description
Missing Features A feature is supposed to be but is not
implemented.
Missing Cases A case in a functionality is not
implemented.
Semantic c Some boundary cases are considered
orner Cases . :
Bug incorrectly or ignored.
Wrong Control Flow The control flow is incorrectly
implemented.
Exception Handling Does ‘not have proper exception
handling.

Input handling or validation is

I . .
nput incorrect or ignored.
Output Output displays incorrectly.
. Data processing such as evaluation of
Processing L o
expressions and equations is incorrect.
Other Wrong

Any other semantic bug that does not

Functionalit; . .
Y meet the design requirement.

Implementation

TABLE IV: Interpretation of Kappa values.

Kappa Value Interpretation

<0 poor agreement

[0.01, 0.20] slight agreement

[0.21, 0.40] fair agreement

[0.41, 0.60] moderate agreement
[0.61, 0.80] substantial agreement
[0.81, 1.00] almost perfect agreement

er two Ethereum projects, ethereum/mist and ethereum/cpp-
ethereum, and encounter new bug types. Thus we create two
new categories GUI and build as described in TABLE II. Then
we look into the bug reports in the AugurProject/augur and
steemit/steem projects. We further create two new categories
compatibility and hard fork.

Step 2: Labeling. The first author and a graduate student
independently label 1,108 bug reports of the eight blockchain
systems. We use Fleiss Kappa [20] to measure the agreement
between the two labelers. The interpretation of Kappa values
is shown in TABLE IV. The overall Kappa value between
the two labelers on all bug reports is 0.65, which indicates
substantial agreement between the labelers. After completing
the manual labeling process, the two labelers discussed their
disagreements to reach a common decision. While many bug
reports are well-described, some with cannot be sorted into
sets due to insufficient detail or uncertain root causes. We mark
such bug reports as the unknown. Meanwhile, we identify the
bug reports of duplicate, reopen and not-a-bug types. Those
bug reports are excluded from our classification. Note that a
duplicate or reopen bug report is often described by comments
or marked by tags, and referred to the related bug reports.

III. BUG CATEGORIES
A. Overview

This section answers RQ1. We totally identify 946 unique
bugs from the 1,108 bug reports. The overall distribution of
bugs based on the 10 categories is shown in TABLE V.

We find that most of the bugs are labeled as semantic
(67.23%). The number is lower than 70.1% - 87.0% reported
in a previous study [14]. Programmers could easily introduce
semantic bugs due to the lack of a thorough understanding of
the system. Additionally, since semantic bugs are application-
specific, it is hard to automatically detect semantic bugs. In

TABLE V: Bug types.

Type Count | Percentage
Semantic 636 67.23%
Missing Cases 152 16.07%
Processing 133 14.06%
Other Wrong Implementations 80 8.46%
Exception Handling 70 7.40%
Missing Features 58 6.13%
Wrong Control Flow 48 5.07%
Corner Cases 44 4.65%
Qutput 35 3.70%
Input 16 1.69%
Environment and Configuration 108 11.42%
GUI 66 6.98%
Concurrency 42 4.44%
Build 39 4.12%
Security 18 1.90%
Memory 15 1.59%
Performance 14 1.48%
Compatibility 7 0.74%
Hard Fork 1 0.11%

order to understand what causes semantic bugs, we further
break down the semantic bugs into subcategories as shown in
Table III. 23.9% semantic bugs are caused by missing cases.
Processing bugs also account for a large portion of semantic
bugs. The results are consistent with the previous study [21].

Environment and configuration bugs have the second highest
number of occurrence (11.42%). This might be the case that
blockchain systems are often used within various environments
by numerous end users. Different environments may reside on
various hardware and operating systems with various versions
of libraries installed. Even if same versions of libraries are
installed, end users could have customized configurations.
The bugs in libraries, library version mismatching, as well
as incorrect configurations, would lead to environment and
configuration bugs in blockchain systems.

In the following sections, for each bug type, we would also
present representative bug samples. To do so, we first manually
extract keywords from the title, body, and discussion of bug
reports, pull requests, and commit logs. Next, for each bug
type, we group the bug reports with similar keywords together.
Finally we randomly choose a bug report from each group.

Of the 1,108 closed bug reports from the studied systems,
946 unique bugs could be classified into 10 categories.
Semantic bugs are the dominant runtime bug type. 23.9%
semantic bugs are caused by missing cases. Environment
and configuration bugs have the second highest number of
occurrence.

B. Semantic Bugs

Semantic bugs correspond to inconsistencies with the re-
quirements or the programmers’ intention. We find that se-
mantic bugs are the dominant bug types in studied projects.
The finding is in line with previous work [14] in open source
software. The representative semantic bug samples include:

1) Missing Cases:

o ethereum/go-ethereum #2519 Previously it was assumed that when-

even type [ ] interface{} was given that the interface was empty.
The abigen rightfully assumed that interface slices which already
have pre-allocated variable sets to be assigned. This PR fixes that
by checking that the given []interface{} is larger than zero
and assigns each value using the generic set function (this function



has also been moved to abi/reflect.go) and checks whether the
assignment was possible.

ethereum/go-ethereum #2255 After some investigations I found
that SetReadDeadLine is a cause of these errors https://github.
com/ethereum/go-ethereum/blob/develop/rpc/http.go#L 115 it seems
deadline prolonged only for OPTIONS request and GET & POST
requests fall into timeout.

ethereum/cpp-ethereum #2156 The fallback function is not part of
the external gas estimation. Added fallback function to gas estima-
tion and fixed mix gas estimation.

AugurProject/augur #477 Market link doesn’t work. load single
market first if on market/report detail page.

2) Processing:

ethereum/go-ethereum #2194 The default gas price that was being
used for transaction wasn’t properly using the GPO.

bitcoin/bitcoin #6186 The use of x where 8 does not divide x was
broken, due to a bit-order issue The use of e.g. 1.2.3.4/24 where
the netmasked bits in the network are not 0 was broken. Fix this by
explicitly normalizing the network according to the bitmask.
AugurProject/augur #710 Extralnfo field not set for markets creat-
ed through UI. Fixed extralnfo / detailsText field name; updated cur-
rentPeriod and currentPeriodProgress calculations; augur.js@1.8.12.
ripple/ripple-lib #204 When subscribing to orderbooks with *'mod-
el’ event, the last offer created is not pushed correctly to the _offers
array. In particular it misses some fields like: ’quality’, *bboknode’,
"flags’ , "ledgerentrytype’ and others.

3) Exception Handling:

ethereum/go-ethereum #869 cmd/geth, cmd/utils: improve inter-
rupt handling. The new strategy for interrupts is to handle them
explicitly.

bitcoin/bitcoin #6702 GetTempPath has unchecked error conditions.
GetTempPath can fail, but its callers do not (all?) check for this
failure.

steemit/steem #76 Steemd loss sync after a websocket client discon-
nected. Properly catch errors on async connection and release.
AugurProject/augur #718 Transactions Sub-System does properly
fail on generate order book failure response. Market created suc-
cessfully, but during order book generation, an error was returned
(below), which ultimately stalls the generate order book method. The
UI should reflect this error state, but it looks as though an onSuccess
of case.

4) Missing Features:

ethereum/go-ethereum #1037 th_estimateGas requires to: ... to: is
unknown in case you're creating a contract. Would it be possible
to make this optional? I understand the RPC spec has been frozen,
but do you think it can be changed to allow “to:” to be optional at
this stage? Seems like a fairly minor alteration, but would make the
function much more useful.

bitcoin/bitcoin #321 Wallet rescan doesn’t work properly. rescan
seems to work on linux but doesn’t (always) work on windows.
steemit/steem #274 Deleted comments not updated in feeds.
AugurProject/augur #564 The Ul isn’t claiming a user’s winnings
after a market is closed atm. It should, and then should update
realized profit and loss

5) Wrong Control Flow:

ethereum/go-ethereum #1037 There used to be a separate handler
for the CLI and GUI versions of the protocol. Unfortunately it seems
to have been “misplaced”.

bitcoin/bitcoin #2178 Remove IsFromMe() call from bool C-
TxMemPool::accept().

ripple/ripple-lib #73 Seed.get_key method does not use account_id.
Seed should use the account_id to determine which key to return.
AugurProject/augur #177 Update network info on block arrival.

6) Corner Cases:

ethereum/go-ethereum #1549 If a reply timeout fired (even just
nanoseconds) before the deadline of the next pending reply, the timer
was not rescheduled. The timer would’ve been rescheduled anyway
once the next packet was sent, but there were cases where no next
packet could ever be sent due to the locking issue above.
bitcoin/bitcoin #1902 Flood of retarget messages, if internal miner
is used. I’'m guessing this occurs (a) only on testnet, and (b) only at
a difficulty retarget boundary.

AugurProject/augur #677 After some tracing looks to be related to
the lack of trade volume (seems to be a corner case) with all prices
being returned as 0 and thus causing the price percent change to be
shown as 0.00

7) Output:

ethereum/go-ethereum #1438 geth log reports unsigned instead of
signed transaction hash.

ethereum/cpp-ethereum #2217 Alethzero on OS X doesn’t display
new transactions / closed by the submitter.

AugurProject/augur #504 Creation Date sort backwards. Just cre-
ated 2 new markets and they show up at the top of (oldest first).
dogecoin/dogecoin #282 Item ”Show transaction of Dogechain” not
translated at all. missing translation field.

8) Input:

ethereum/go-ethereum #41 Number fields are limited in characters
Changed validators to regexp validators IntValidator limits to 32bit
int (JavaScript limitation) and therefore the input fields are limited in
length.

ethereum/cpp-ethereum #2473 Solidity: Exponential notation for
constants. Literally ”1e20” can’t be converted to cpp_int directly,
that’s why it crashes. If we allow this, we might need to evaluate
to cpp_float first and then convert to cpp_int. Check whether a literal
is a valid literal before using it.

AugurProject/augur #387 Creating markets with negative liquidity.
It allowed me to create a market with -20000 initial liquidity.

C. Environment and Configuration Bugs

Environment and configuration bugs correspond to the bugs
that lie in third-party libraries, underlying operating systems,
or non-code parts (e.g. configuration files). The representative
environment and configuration bug samples include:

ethereum/go-ethereum #1818 Just returning the current path is
working for me. Hope it will be a easy fix. It is definitely the golang
bug as this bug report https://bugzilla.redhat.com/show_bug.cgi?id=
1135152 says.

bitcoin/bitcoin #3274 You didn’t give a —with-boost option to point
to the one you compiled, so it’s finding the ones on your system
(which are presumably borked, which is why you’re building your
own). Use something like ./configure —with-boost=/usr/local, where
/usr/local is the prefix where boost was installed.
dogecoin/dogecoin #277 Closing this for now as it’s likely either a
problem with Berkley DB or caused by a hardware error or similar.
ethereum/cpp-ethereum #1982 We can’t do anything for cards with
less than 1G of memory. Actually cards with 2G of memory is the
absolute minimum. This is how the PoW algorithms works. Closing
this issue.

AugurProject/augur #225 The underlying issue turned out to be a
bug in js-ipfs-api. I made an issue for this on the js-ipfs-api Github
(ipfs/js-ipfs-api#212) and walled off the bug in AugurProject/ram-
ble@27b6cb7 / 09blab3 so that the site will now load on iOS. The
IPFS-based features (comments and metadata) will not work until
this bug is fixed, but in the meantime the rest of the site should work
now.



D. GUI Bugs

GUI bugs correspond to incorrect display of graphic us-
er interface, e.g., incorrect font, text alignment, and button
size. We find no GUI bugs in project ethereum/go-ethereum,
ethereum/cpp-ethereum, and ripple/ripple-lib because they do
not have graphical user interface. The representative GUI bug
samples include:

« bitcoin/bitcoin #243 In several areas, text appears to be too large
to fit into designated areas. I suspect this could be because I have
Windows set to use 120 DPI rather than the default 96.

o dogecoin/dogecoin #511 In the 1.7 Qt client splashscreen text over-
laps the logo.

o ethereum/mist #3828 Make new window loader screen frameless.
Remove the buttons from the loading new window screen.

E. Concurrency Bugs

Concurrency bugs are synchronization issues among the
concurrent threads or processes in concurrent programs [19],
including race conditions and deadlocks. The representative
concurrency bug samples include:

o ethereum/cpp-ethereum #1159 Address returned by eth_transact
on contract creation is not guaranteed to be the address that the
contract will actually get, if multiple clients are creating transactions
at the same time, making this value useless. eth_setDefault can not
be used reliably, because it can be changed any time by any client.

o bitcoin/bitcoin #453 Deadlock in key generation due to CCryp-
toKeyStore. I'll be commiting lock order inconsistency detection
code tomorrow.

o AugurProject/augur #340 This is actually intentional. What’s hap-
pening is that if 2 transactions are created by the UI at roughly
the same time, they can be assigned identical nonces. Added a
mutual exclusion lock to the ethrpc rawTxs object in AugurProjec-
t/augur.js@ae577f4, which should force nonces to always be unique.

FE. Build Bugs

Build bugs occur in build processes, e.g., compilation and
link errors. We find no build bugs in project ethereum/go-
ethereum, ripple/ripple-lib, steemit/steem, and ethereum/mist.
The representative build bug samples include:

o ethereum/cpp-ethereum #1591 TARGET_PLATFORM is linux

even on windows. fixed #1591, cmake TARGET_PLATFORM.

o bitcoin/bitcoin #879 bitcoin-qt FTBFES : undefined reference to sym-
bol ’shm_unlink@ @GLIBC_2.2.5’. We must link to -Irt on Linux,
as previously we were using it indirectly through some other lib and
that’s no longer allowed.

o ethereum/mist #798 Unable to build wallet for all platforms. Build-
ing —platform all on linux will result in broken OSX package.
Running —platform darwin seperately will build successfully.

o AugurProject/augur #713 Running tests when AURC is npm linked
fails. Import straight from AURC/src (quick fix).

G. Security Bugs

Security bugs correspond to vulnerabilities that allow at-
tackers to reduce a system’s information assurance. The rep-
resentative security bug samples include:

o ethereum/go-ethereum #1352 SEC-52 block header timestamp in-
t64 overflow. A malicious miner can set a timestamp value that will
overflow a int64 into a value that is valid according to consensus
rules. This breaks consensus as two different block headers (hashes)
would be considered the same by the Go consensus validations.

o bitcoin/bitcoin #2838 Timing leak in RPC authentication. Mit-
igate Timing Attacks On Basic RPC Authorization Eliminates

the possibility of timing attacks by changing the way the t-
wo passwords are compared. See http://rdist.root.org/2010/01/07/
timing-independent-array-comparison/ for reference.

o dogecoin/dogecoin #280 As requested from the poolop channel im
pasting the trace of 1.5 dying with a buffer overflow.

o AugurProject/augur #649 Multiple vulns found by security audit
performed by Rapid7. Security / TLS/SSL Server is enabling the
BEAST attack ==> ssl-cve-2011-3389-beast.

H. Memory Bugs

Memory bugs usually occur in systems written in memory-
unsafe programming languages (e.g. C and C++). Because
those programming languages support unsafe pointer opera-
tions such as arbitrary pointer arithmetic, casting, and deallo-
cation. The representative memory bug samples include:

o ethereum/cpp-ethereum #888 Crash on exit. Session no longer
holds a shared ptr to Node. Please reopen if similar crash (deallo-
cating deallocated Peer) occurs.

o bitcoin/bitcoin #6963 Hard crash when validateaddress RPC end-
point is requested. Fix a null pointer dereference in validateaddress
with -disablewallet.

o ethereum/go-ethereum #/2605 [SWARM] crash due to out of bound
string index. panic: runtime error: slice bounds out of range.

1. Performance Bugs

Performance bugs correspond to the bugs that make system
perform its operations slowly or inefficiently. The representa-
tive performance bug samples include:

o ethereum/go-ethereum #1334 High disk I/O during statedb
write/read.

o bitcoin/bitcoin #889 Bitcoin-qt using 100% cpu on Mac.
boost::interprocess is busy-waiting (at low priority), because it is
emulating Posix functionality.

o ethereum/mist #265 I'm running Mist on Windows 10. I have been
trying to download the blockchain since two days ago and the process
is too slow and cumbersome.

o AugurProject/augur #630 There are 3 calls to the toLocaleString
method in formatNumber (src/utils/format-number.js). This method
is (weirdly) a notorious resource sink and should not be used. I
recorded a CPU profile in Chrome (loaded 1100 markets, then
stopped 1it), which revealed that 73.16% of CPU time used by
formatNumber.

J. Compatibility Bugs

Compatibility bugs correspond to the bugs that make a
system fail to run on a particular CPU architecture, operating
system, or Web browser. We find that all of the 7 compatibility
bugs exist in the AugurProject/augur project.The representa-
tive compatibility bug samples include:

o AugurProject/augur #491 Gray screen / browser issues. Also got
someone saying it didn’t work in IE. Should probably just use the UI
on one of those sites that tests dozens of browsers / versions and then
see what’s going wrong.

o AugurProject/augur #117 UI doesn’t load on the best web browser
of all time (Internet Explorer). I only have access to Windows 10 and
Edge 20.1 currently and it work splendidly. Can you do a run through
on any version of IE you have again? If you do have an issue, please
note the platform and browser version.

o AugurProject/augur #98 On the Javascript console in Firefox
(Iceweasel 38.1.0) I get a vast number of “too much recursion”
messages.



Votes shouldn't be removed on cashout

[CREtl bytemaster opened this issue on 24 May - 2 comments
3 bytemaster commented on 24 May Collaborator Projects

The history of who has voted for a post is useful information that shouldi't get lost just because we make a
payout

Now that we are allowing people to change their vote, a payout should just reset the current rshares voting
for the post to O rather than remove it. This way users can vote again but they cannot get curation rewards a
second time.

HARDFORK

Fig. 1: Example of hard fork bug.

K. Hard Fork Bugs

Hard fork bugs are peculiar bug types in blockchain sys-
tems. A hard fork is a change to the blockchain protocol
that makes previously invalid blocks/transactions valid, or vice
versa. Hard fork bugs have the least occurrence in our studied
systems. Only one hard fork bug appears in the steemit/steem
project as shown in Fig. 1. The old behavior is that “users
can vote again and can get curation rewards again after paid
out”; the new behavior is that “users can vote again but cannot
get curation rewards again”. The change of system behavior
causes a change to the consensus in blockchain protocol.

IV. BUG DISTRIBUTION

A. Across Projects

In order to answer RQ2, we analyze the frequency distri-
butions of bug types of the eight blockchain projects. The
frequency distribution over distinct categories of each project
is shown in Fig. 2. We can observe similar frequency distribu-
tions of bug types across the eight projects. For instance, se-
mantic bugs account for the majority in most studied projects.

To check if the differences in the frequency distribution of
bug types are statistically significant, we further employ the
Wilcoxon signed-rank test [22] at 95% significance level on 10
paired categories. In the 28 Wilcoxon signed-rank tests of the
eight projects, all the p-values are greater than 0.05 (min: 0.12,
max: 1.00, median: 0.70). This means that the differences in
the frequency distribution of bug types across projects are not
significant.

The frequency distributions of bug types share similar trends
across studied projects.

B. Across Programming languages

In order to answer RQ3, we aggregate eight blockchain
systems based on their primary languages. We analyze the
frequency distributions of bug types of the three primary
languages, i.e., C++, Go, and JavaScript. The bug distribution
over distinct categories of each language is shown in Fig. 3.
We can observe similar distributions of bug types across the
three languages.

To check if the differences in the frequency distributions of
bug types of the three languages are statistically significant,
we further employ the Wilcoxon signed-rank test [22] at 95%
significance level on 10 paired categories. In the 3 Wilcoxon
signed-rank tests of the eight projects, all the p-values are
greater than 0.05 (min: 0.6356, max: 0.9219, median: 0.9057).

TABLE VI: Bug fixing durations in terms of days.

Type Min Max Mean Median
Semantic 0.0111 1902.3743 109.8578 16.1337
Env and Conf 0.0167 925.2250 75.4209 20.3125
GUI 0.0188 796.0917 123.6400 46.7799
Concurrency 0.0083 958.1396 154.4956 36.5653
Build 0.0007 782.8500 99.4609 21.8403
Security 0.0361 623.7465 128.3290 117.1035
Memory 1.7438 664.0861 90.3282 28.5625
Performance 0.3410 1049.3361 280.7240 89.8604
Compatibility 1.1563 83.2861 32.8864 29.4236
Hard Fork 2.7597 2.7597 2.7597 2.7597

This means the differences in the distributions of bug type
frequency across programming languages are not significant.

The frequency distributions of bug types share similar trends
across programming languages.

V. BUG FIXING DURATION

In order to answer RQ4, we investigate the relationship
between bug categories and bug fixing time. We measure bug
fixing time by the number of days that passed until a bug
report is closed and not re-opened (at least until the time we
crawled the repository in Nov 2016). TABLE VI shows the
minimum, maximum, mean, and median numbers of days that
have elapsed before bugs of various categories are fixed.

We notice that the minimum period for all bug categories
is just a few minutes between create time when a bug is
submitted and close time when a bug is fixed. Most of
these bugs are submitted by project developers. In some cases,
the developers may have noticed the bugs earlier; they just
submit these bugs right after finding solutions to fix the bugs;
they promptly commit related code changes to close the bugs.
This finding is in line with the observation in previous work
[13, 23]. In other cases, the developers may collect fixed bug
reports from external data sources; they just submit and close
the bug reports promptly.

The maximum bug fixing time can take a few months
or years. Four bug categories with the highest maximum
bug fixing time are semantic, performance, concurrency, and
environment and configuration bugs, whose maximum bug
fixing time is more than 900 days. In terms of mean bug fixing
time, performance, concurrency, security and GUI bugs take
the longest time to be closed (more than 120 days).

TABLE VII gives further breakdowns of durations into a
month, a year, and more than a year for distinct bug categories.
We find that 55.39% bugs are fixed within a month, 34.78%
bugs are fixed within a year, and 9.83% bugs are fixed after one
year. We manually investigate the bugs that were fixed after
many years. Most of those bugs are of semantic category. Due
to the small sample sizes of bugs of distinct categories, our
results may not be statistically significant. It would be future
work to collect more relevant bug samples for further analysis.

In terms of median bug fixing time, security bugs take the
longest time to be fixed. 35.71% performance bugs are fixed
in more than one year; in terms of average bug fixing time,
performance bugs take the longest time to be fixed.
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VI. DISCUSSION
A. Implications

Semantic bugs are the dominant runtime bugs. TABLE
V shows that semantic bugs represent the majority of the
studied bugs, accounting for 67.23% in the studied systems.
This number is lower than the 70.1% - 87% reported in Tan et
al.’s work [14]. This is because our investigated bugs include
non-runtime bug type, i.e., build bugs, and non-code bug type,
i.e., configuration and environment bugs. Specifications could
help with preventing and detecting semantic bugs. Various
approaches have been proposed to mine specifications from
program executions [24, 25], and individual versions [26-30]
or version histories [31] of source code. Unfortunately, specifi-
cation mining approaches suffer from high false positive rates.
Future studies could be conducted to reduce false positive
rates of specification mining approaches. In addition, there
is no proof that existing specification mining approaches are
practical for blockchain systems. Thus it would be beneficial
to understand if existing specification mining tools are capable
of detecting semantic bugs in blockchain systems.

Among semantic bugs, missing cases bugs account for
23.9%, which is higher than 7.1% - 23.3% reported in the
previous study [14]. Missing cases bugs, also known as
neglected condition bugs, have long been known but hard-

to-find software defects [32]. Some missing cases bugs can be
prevented by the use of requirement elicitation and analysis
techniques. Some other missing cases bugs involve design
or implementation issues that do not correspond directly to
requirements. Previous studies discover those bugs by either
careful code inspection [33] or specification-based testing
[34]. Thus improving design and specification would make
a significant difference on the studied blockchain systems.

However, if missing cases are neglected in the requirement
specification and design documents of a system, those bugs
will be difficult to detect. Engler et al. [26] have shown that
many software bugs, including aforementioned missing cases
bugs, can use compiler extensions to match rule templates
against a code base. Those rule templates are derived from
knowledge of typical programming bugs. Various approaches
have been developed to mine programming rules [32, 35] to
identify missing cases bugs. Chang et al. [32] apply frequent
subgraph mining on C code to mine condition rules. The
scalability of their approach may be limited by the underlying
graph mining algorithm. Thummalapenta and Xie [35] use
alternative pattern mining on Java code and detect neglected
conditions. Their approach may not be precise and cannot
identify equivalent conditions (e.g., considering the conditions
a > 0 and a > 1 as different). To effectively detect missing



cases bugs in blockchain systems, future work could be
developing rule mining tools for Go and JavaScript languages,
leveraging more precise static analysis, and designing scalable
graph mining algorithms.

Exception handling bugs comprise around 11% of the

semantic bugs. Exception handling code is crucial for a robust
system. Incorrect or missing exception handling in security-
sensitive code often causes severe security vulnerabilities (e.g.,
CVE-2014-0092, CVE-2015-0208, CVE-2015-0288, CVE-
2015-0285, and CVE-2015-0292) [36]. In addition, systems
are expected to handle exception conditions and take necessary
recovery actions such as releasing resources. Failing to release
resource may cause performance degradation and lead to
other critical issues [37]. Thus automated detection and fixing
tools for exception handling bugs would significantly improve
robustness of blockchain systems.
Environment and configuration bugs are one of the major
types. TABLE V shows that environment and configuration
bugs account for 11.42% of the reported bugs in the studied
systems. Configuration bugs are one of the major causes for
the downtime of large-scale enterprise systems [38]. Previous
studies have proposed ideas to predict, detect, diagnose, and
fix configuration bugs [39—43]. In our studied systems, many
configuration bugs are due to wrong compiler options or
wrong configuration of external libraries. The aforementioned
research directions could benefit from our bug characteristics
study of blockchain systems. Moreover, understanding the
characteristics of configuration bugs in blockchain systems
may help developers to better design configuration logic and
requirements, and could thereby reduce the likelihood of
configuration mistakes by users.

On the other hand, many environment bugs are caused
by issues in external libraries. For example, bug #1818 in
the ethereum/go-ethereum project is caused by a bug in Go
language. Libraries have a significant impact on the stabil-
ity of studied systems. Therefore, software engineering of
blockchain systems should not neglect this important factor.
Further studies could be conducted on usage analysis, archi-
tecture analysis and software quality assessment [44] of third-
party libraries.

Memory bugs only account for a small portion. TABLE V
shows that memory bugs account for a small fraction (1.59%)
of studied bugs. This percentage is much lower than the 11.8%
- 16.3% reported in previous work [14]. One possible reason
for this reduction could be the adoption of programming
languages with managed memory type (i.e., JavaScript and
Go) [15], as well as the use of more advanced debugging
tools during the development process in recent years [14].
The causes include NULL pointer dereference, use-after-free,
memory allocation, memory corruption, heap overflow, and
double deallocation. Most of memory bugs result in a crash.
Therefore, future studies could be conducted to understand if
existing memory bug detection tools are capable of addressing
issues in blockchain systems (e.g., improving the capability
of memory bug detection tools, designing memory bug detec-
tion tools for Go programming language, and reducing false

TABLE VII: Numbers of bugs fixed within various durations.

Type Duration Count Proportion
within a month 373 58.65%
Semantic winthin a year 199 31.29%
more than a year 64 10.06%
within a month 59 54.63%
Env and Conf winthin a year 44 40.74%
more than a year 5 4.63%
within a month 28 42.42%
GUIL winthin a year 32 48.48%
more than a year 6 9.09%
within a month 19 45.24%
Concurrency winthin a year 16 38.10%
more than a year 7 16.67%
within a month 23 58.97%
Build winthin a year 12 30.77%
more than a year 4 10.26%
within a month 5 27.78%
Security winthin a year 12 66.67%
more than a year 1 5.56%
within a month 9 60.00%
Memory winthin a year 5 33.33%
more than a year 1 6.67%
within a month 3 21.43%
Performance winthin a year 6 42.86%
more than a year 5 35.71%
within a month 4 57.14%
Compatibility winthin a year 3 42.86%
more than a year 0 0.00%
within a month 1 100.00%
Hard Fork winthin a year 0 0.00%
more than a year 0 0.00%
positives).

Security bugs take the longest median time to be fixed. We
notice that security bugs get fixed slower than non-security
bugs. The finding is similar to that of Bhattacharya et al.’s
study [45]. Some security bugs are generic and cross-projects,
i.e., buffer overflow vulnerabilities. We believe blockchain
systems would benefit from adopting automatic vulnerability
detection tools for buffer overflow vulnerabilities [46, 47].
In addition, application-specific security bugs exist in stud-
ied blockchain systems, e.g., timing attacks, application-layer
denial of service, and missing security checks. Those security
bugs receive little attention [48]. Further research could be
conducted to design detection tools for application-specific
security bugs in blockchain systems.

35.71% performance bugs are fixed in more than one year;
performance bugs take the longest average time to be fixed.
Note that 35.71% of performance bugs take more than one
year to fix (see TABLE VII). The percentage is much higher
than that of non-performance bugs. The average time necessary
to fix performance bugs is about 280 days (see TABLE VI),
which is longer than that of non-performance bugs. These
numbers indicate that performance bugs are probably more
difficult to fix than non-performance bugs. The finding is
consistent with the previous study [49]. Current effort on
helping developers fix bugs focuses on non-performance bugs
[50-53]. Thus more research is needed on automatic repair
tools of performance bugs.

B. Threats to Validity

Construct validity. We rely on the tag “bug” from the GitHub
issue repositories to identify closed bug reports. Thus we may
miss some bug reports that are not tagged with “bug” due to
ignorance of project contributors. In addition, some “closed”



bugs cannot be sorted into sets due to insufficient detail or
uncertain root causes. We omit such bug reports and do not
categorize them.

Internal validity. Our card sorting of bug reports is subjected
to interpreter’s bias. We minimize the subjectivity in manual
inspection through double verification: each bug report is
examined at least twice by two different people independently.
If they disagree, they would discuss and reach a consensus.
External validity. Similar to any characteristics study, our
findings should be considered together with our methodology.
The eight studied systems are open-source projects written in
C++, Go, and JavaScript. Thus our results may not generalize
to commercial blockchain systems or systems written in other
programming languages.

VII. RELATED WORK

In this section, we briefly review related studies. We first
review some previous empirical studies on bugs. Next, we
describe studies on bug categorization.

Empirical Study on Bugs. Prior work on bug empirical
studies has examined the bug reports of both open source
and proprietary software [8, 11, 13, 17, 54-58]. Chou et al.
investigate bugs in Linux and OpenBSD kernels [8]. A similar
study is performed a decade later by Palix et al. [57]. Maji
et al. study defects in mobile operating systems, including
Android and Symbian [11]. Sahoo et al. examine reported
bugs in server software to facilitate bug diagnosis [58]. Li
et al. analyze bugs in Mozilla and Apache Web server [17].
They categorize bugs in three dimensions - root cause, impact,
and software component. Seaman et al. investigate bugs in
NASA projects and categorize bugs depending on where these
defects occur [55]. Thung et al. analyze bugs in three machine
learning systems - Apache Mahout, Lucene, and OpenNLP
[13]. Different from these studies, we analyze the bugs that
appear in open source blockchain systems.

Other work focuses on specific bug categories. Zaman et
al. analyze security and performance bugs in Firefox [12]
and understand the difference between the two bug categories.
They answer questions such as how fast bugs are fixed, who fix
bugs, and what characteristics the bug fixes have. Ozment and
Schechter [59] measure the rate at which code is introduced
and the rate at which security vulnerabilities are reported in the
code base of OpenBSD operating system. Then they determine
whether OpenBSD’s security increases over time. Massacci et
al. [60] study reported security vulnerabilities in six major
versions of Mozilla Firefox. Neuhaus and Zimmermann [61]
study the security vulnerability reports in Common Vulner-
ability and Exposures (CVE) to find the trend of security
vulnerabilities. Lu et al. conduct a detailed empirical study on
concurrency bugs in MySQL, Apache Web server, Mozilla,
and OpenOffice [62]. They analyze the root causes and types
of concurrency bugs, and the number of threads and variables
involved in the bugs. Tan et al. [14] study the concurrency
bugs in the Linux kernel, Mozilla and Apache. They find that
the Linux kernel has more concurrency bugs than the other
two non-OS software. In contrast to these studies, we analyze

a wide variety of bugs in blockchain systems and analyze how
these bugs affect blockchain systems.

Bug Categorization. Previous studies have developed various
bug taxonomies for different objectives [7, 10, 14, 21, 55, 63—
76]. Some of the classifications are system-specific, the others
are generic thus can become the basis for a more specif-
ic classification. Vijayaraghavan and Kaner summarize bug
taxonomies and their objectives in [74]. Chillarege et al.
[21] analyze the symptoms and causes of the defects, and
categorize the defects into 5 types in terms of their causes.
Later Chillarege et al. [7] present the most widely used
classification Orthogonal Defect Classification (ODC). They
extend the 5 types in their previous work to 8 types. A number
of researchers use ODC as a starting point and develop new
taxonomies for specific purposes. For instance, based on ODC
framework, Leszak et al. [76] analyze root causes and classify
defects by relating them with their underlying causes; Freimut
et al. [75] build and validate a defect categorization scheme.
In addition, Ma et al. [10, 72, 73] conduct a series of studies
on categorization of Web applications faults. Nikora et al. [71]
develop a new fault classification, which differs from others
in that “it does not seek to identify the root cause of the
fault. Rather, it is based on the types of changes made to the
software to repair the faults” [70]. A number of taxonomies
have been developed specifically for security concerns [67—
69]). Seaman et al. [55] aggregate historical defect data using
different categorization schemes to guide future development.
We use card sorting to identify bug groups in blockchain
systems, and give each group a name by referring to [14].

VIII. CONCLUSION AND FUTURE WORK

This paper studies the bug characteristics in eight open
source blockchain systems. We manually examine 1,108 bug
reports in blockchain systems and leverage card sorting to cat-
egorize bugs. We further investigate the frequency distribution
of bug types across projects and programming languages, and
relationship between types and bug fixing time.

In order to reduce the manual effort in categorizing bugs, we
plan to use text mining and machine learning techniques to au-
tomatically classify hundreds of thousands of bugs. We would
like to investigate more blockchain systems and bugs. We also
plan to investigate the approaches that could help developers to
avoid semantic bugs, and the effectiveness of existing tools on
environment and configuration bugs. Furthermore, we would
like to investigate how the distribution of bug types evolves
over time as the projects become more stable, and examine
bug characteristics by considering bug severity levels.
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