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Improving Automated Bug Triaging with
Specialized Topic Model

Xin Xia,Member, IEEE, David Lo,Member, IEEE, Ying Ding, Jafar M. Al-Kofahi,

Tien N. Nguyen,Member, IEEE, and Xinyu Wang,Member, IEEE

Abstract—Bug triaging refers to the process of assigning a bug to the most appropriate developer to fix. It becomes more and

more difficult and complicated as the size of software and the number of developers increase. In this paper, we propose a new

framework for bug triaging, which maps the words in the bug reports (i.e., the term space) to their corresponding topics (i.e.,

the topic space). We propose a specialized topic modeling algorithm named multi-feature topic model (MTM) which extends

Latent Dirichlet Allocation (LDA) for bug triaging. MTM considers product and component information of bug reports to map the

term space to the topic space. Finally, we propose an incremental learning method named TopicMiner which considers the topic

distribution of a new bug report to assign an appropriate fixer based on the affinity of the fixer to the topics. We pair TopicMiner

with MTM (TopicMinerMTM ). We have evaluated our solution on 5 large bug report datasets including GCC, OpenOffice, Mozilla,

Netbeans, and Eclipse containing a total of 227,278 bug reports. We show that TopicMinerMTM can achieve top-1 and top-5

prediction accuracies of 0.4831-0.6868, and 0.7686-0.9084, respectively. We also compare TopicMinerMTM with Bugzie, LDA-

KL, SVM-LDA, LDA-Activity, and Yang et al.’s approach. The results show that TopicMinerMTM on average improves top-1 and

top-5 prediction accuracies of Bugzie by 128.48 and 53.22 percent, LDA-KL by 262.91 and 105.97 percent, SVM-LDA by

205.89 and 110.48 percent, LDA-Activity by 377.60 and 176.32 percent, and Yang et al.’s approach by 59.88 and 13.70

percent, respectively.

Index Terms—Developer, bug triaging, feature information, topic model

Ç

1 INTRODUCTION

BUGS appear during software development and mainte-
nance, and bug fixing is a time-consuming and costly

task. Many software projects use bug tracking systems
(e.g., Bugzilla and JIRA) to manage bug reporting, bug reso-
lution, and bug archiving processes [9]. Aside from bug
description and summary information, a typical bug report
records other kinds of useful information, e.g., product and
component. We refer to this information as features of a bug
report. Fig. 1 presents a bug report from Eclipse with
BugID=212000.1 In the figure, we notice that the bug report
belongs to product CDT and component cdt-core.

Once a bug report is received, assigning it to a suit-
able developer within a short time interval can reduce
the time and cost of the bug fixing process. This assign-
ment process is known as bug triaging (e.g., in Fig. 1, the

bug is assigned to Oleg Krasilnikov
2). Bug triaging is

a time-consuming process since often many developers
are involved in software development and maintenance.
For Eclipse and Mozilla, more than 1,800 developers par-
ticipated in the bug fixing process (see Table 2). If all of
the bug reports need to be manually assigned to the
most appropriate developers, the bug triaging tasks
would take a lot of time and effort.

To aid in finding appropriate developers, automatic bug
triaging approaches have been proposed [7], [10], [20], [38].
Many of these approaches use the vector space model
(VSM) to represent a bug report, i.e., a bug report is treated
as a vector of terms (words) and their counts. However,
developers often use various terms to express the same
meaning. The same term can also carry different meanings
depending on the context. These synonymous and polyse-
mous words cannot be captured by VSM.

In the information retrieval community, topic model-
ing [36], which can infer the inherent latent topics of a tex-
tual document, has been used as a way to deal with
synonyms and polysemy problems. A topic model converts
terms in a document to topics. Two terms that are different
can now be deemed similar if they are of the same topic
which addresses the synonym and polysemy problems.
Various topic modeling algorithms are proposed in the liter-
ature including Latent Semantic Indexing/Analysis
(LSA) [16], probabilistic LSA (pLSA) [18], and Latent

1. https://bugs.eclipse.org/bugs/show_bug.cgi?id=212000
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2. We checked the bug assignment history and commit logs to
identify Oleg Krasilnikov as the bug fixer.
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Dirichlet Allocation (LDA) [12]. Among the three, LDA is
the most recently proposed and it addresses the limitations
of LSA and pLSA [12]. LDA considers a document as a ran-
dommixture of latent topics, where a topic is a randommix-
ture of terms.

We extend LDA and propose a new topic model named
multi-feature topic model (MTM) for the bug triaging problem.
Since a bug report has multiple features (e.g., product
affected by the bug, component affected by the bug, etc.),
MTM considers the features of a bug report when it con-
verts terms in the textual description of the report (i.e., texts
in the summary and description fields of the report) to their
corresponding topics in the topic space. Given a bug report
with a particular feature combination (i.e., product-compo-
nent combination), MTM converts a word in the bug report,
to a topic. Similar to standard topic modelling algorithm,
like Latent Dirichlet Allocation [12], the word to topic trans-
formation is done by looking at co-occurrences of words in
documents (in our case: bug reports summaries and
descriptions). However, different from LDA, when convert-
ing words to topics in a bug report with a particular feature
combination, MTM puts a special emphasis on the appear-
ances of words in bug reports with the same feature combi-
nation, without ignoring the word appearances in all other
bug reports. Since the number of bug reports of a particular
feature combination is often limited, to infer better topics,
MTM needs to also consider terms that appear in bug
reports belonging to other feature combinations. MTM con-
siders each combination of features as a random mixture of
latent topics, where a topic is a random mixture of terms.
MTM is an extensible topic model, where one or more fea-
tures can be taken into consideration.

We refer to a feature as a categorical field in a bug report
that a bug reporter can fill when the reporter submits a bug
report. These fields include the product, component,
reporter, priority, severity, OS, version, and platform fields.
We exclude the natural language descriptions in the bug
reports, which includes the contents of the summary and
description fields, as the features since they are not categori-
cal in nature. In this paper, we use the product-component
combination as the input feature combination, since product
and component are two of the most important features that
describe a bug. Given a bug report with a particular feature
combination, MTM converts a term in the bug report to a

topic by putting special emphasis on the appearances of the
word in bug reports with the same feature combination,
without ignoring the word appearances in all other bug
reports.

We propose a new approach for bug triaging which lev-
erages MTM. We take as input a training set of bug reports
(whose fixers are known) and a new bug report whose fixer
is to be predicted. Our approach, named TopicMinerMTM

computes the affinity of a developer to a new bug report,
based on the reports that the developer fixed before. To do
this, we compare the topics that appear in the new bug
report with those in the old reports that the developer has
fixed before.

There are a number of recent studies that are related to
ours [27], [35], [38]. Tamrawi et al. propose Bugzie which rec-
ommends a list of candidate fixers that are the most relevant
to a bug report [38]. Somasundaram andMurphymerge LDA
with Kullback Leibler divergence and Support Vector
Machine (SVM) to form LDA-KL and SVM-LDA respectively
which are then used to recommend a list of components that
are most relevant to a bug report in the topic space [35].
Naguib et al. propose a method which leverages LDA to rec-
ommend bug reports to developers [27]. In their approach,
LDA is used to convert a bug report into topics, and a devel-
oper into topics based on their activities (i.e., based on bug
reports that the developer has assigned, resolved, or reviewed
in the past). A bug report is then compared to various devel-
opers in the topic space. We refer to their approach as LDA-
Activity in this paper. Yang et al. propose an approach which
leverage the advantages of topic modelling and the features
such as product, component, severity, and priority to recom-
mend developers [46]. We use Bugzie, LDA-KL, SVM-LDA,
LDA-Activity, Yang et al.’s approach as baselines that we
compare our approachwith.

We evaluate our approach on 5 datasets: GCC [2], Open-
Office [5], Netbeans [4], Eclipse [1], and Mozilla [3]. In total,
we analyze 227,278 bug reports. We measure the effective-
ness of TopicMinerMTM in terms of top-1 and top-5 predic-
tion accuracies following [10], [20], [38]. For the five

datasets, TopicMinerMTM can achieve top-1 and top-5 predic-
tion accuracies of up to 0.6868, and 0.9084 respectively. We
compare our approach with 5 state-of-the-art approaches
namely Bugzie [38], LDA-KL [35], SVM-LDA [35], LDA-
Activity [27], and Yang et al.’s approach [46]. Top-

icMinerMTM on average improves top-1 and top-5 prediction
accuracies of Bugzie by 128.48 and 53.22 percent, LDA-KL
by 262.91 and 105.97 percent, SVM-LDA by 205.89 and
110.48 percent, LDA-Activity by 377.60 and 176.32 percent,
and Yang et al.’s approach by 59.88 and 13.70 percent,
respectively.

The main contributions of the paper are:

1) We propose multi-feature topic model, which considers
bug report feature information, and we use it to cre-
ate a new bug triaging approach named TopicMiner
that leverages topic model to recommend a list of
candidate fixers that are the most relevant to a bug
report.

2) We experiment on a large dataset containing a total
of 227,278 bug reports to demonstrate the effective-
ness of TopicMinerMTM . We show that TopicMinerMTM

Fig. 1. Bug report #212000 of eclipse.

XIA ET AL.: IMPROVING AUTOMATED BUG TRIAGINGWITH SPECIALIZED TOPIC MODEL 273



can outperform Bugzie [38], LDA-KL [35], SVM-
LDA [35], and LDA-Activity [27] by a substantial
margin.

The remainder of the paper is organized as follows. We
describe a motivating example in Section 2. We outline our
overall framework in Section 3. We present LDA and
our multi-feature topic model in Sections 4 and 5. We present
our topic-based bug triaging approach TopicMiner in Sec-
tion 6. Our experiment results are reported in Section 7. We
describe related work in Section 9. We conclude and men-
tion future work in Section 10.

2 PREMINILARIES

2.1 Motivation Example

Figs. 1, 2 and 3 show three Eclipse’s bug reports; they all
belong to product CDT and component cdt-core, and
are assigned to the same fixer Oleg Krasilnikov. The
bug report in Fig. 1 describes a page insertion error:
when a user derives a wizard from CDTCommonProject-
Wizard and inserts a page to an object instance of this
class, an exception would be thrown if the page is
inserted at the first position. The bug report in Fig. 2
describes a property page error: selected configuration
changes when a user moves from one property page to
another. The bug report in Fig. 3 describes a button dis-
play error: edit and delete buttons are enabled even when
nothing is selected.

Observations and Implications. From the three bug reports,
we can observe the following:

1) These three bug reports share some latent (i.e., hid-
den) commonalities, e.g., they describe user interface
operations and components.

2) The textual descriptions of these three bug reports
are different (i.e., the terms used in the summary
and description fields are different). This makes
prior VSM-based bug triaging methods [7], [38] not
perform well.

3) Terms in these three bug reports could be clustered
into different categories, and each category repre-
sents an aspect (i.e., a topic) of the bug reports. For
example, some terms such as open; create; set; edit,
etc. are user interface operations; some terms such as
page; bar; button, etc. are user interface components.
These two (i.e., user interface operations, and user
interface components) are two common topics that
are shared by the three bug reports.

4) The developer Oleg Krasilnikov seems to have
the expertise to fix user interface bugs in product
CDT and component cdt-core.

The above observations tell us that bug reports could
share some latent commonalities, and these commonalities
could help to decide the right developer to assign the bug
reports to. We use topic model to recover topics which rep-
resent the latent information and use them to recommend
bug fixers. A topic is expressed as a collection of terms.

To compare two bug reports, rather than using the simi-
larities of terms used in the bug reports, we use their latent
commonalities, by comparing their corresponding topic dis-
tributions. This is an effective way to compare bug reports
since many similar bug reports use many different words
but have similar topic distributions.

2.2 Topic Modelling

By making use of a topic model such as LDA [12], we map
the terms in a bug report to their corresponding latent
topics. A topic is a terminology used to describe a cluster of
related words. The users do not need to input topics at all as
topic modeling is unsupervised, i.e., we do not need to
define the name of the topics (aka. clusters) in advance.
Topic modeling does not generate topic names, but the
names (if desired) can be manually inferred by looking at
the words that are part of the topic. Most of these topic are
meaningful to a human based on our observations and pre-
vious works [12]. Topic model assumes that words in a doc-
ument come from some underlying topics. We need to
discover these underlying topics and the topic assignments
of words. Then, we can represent a document with this dis-
covered information instead of only words appearing in
documents.

Notice a term can be assigned to multiple topics. The
topic assignment of a term that appears in a document is
affected by the other words in the same document. Let us
assume that term w is important to both topic A and topic B.
If w appears in a document with many words about A, it is
likely to be assigned to topic A. If it also appears in a docu-
ment with many words related to B, it will be likely to be
assigned to topic B.

Fig. 4 shows an example of topics learned using our
MTM. Under topic one, terms page; bar; symbol; tool; etc.

Fig. 2. Bug report #190823 of eclipse.

Fig. 3. Bug report #226562 of eclipse.
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represent user interface components. Under topic two,
terms open; create; set; edit; etc. represent user interface
operations. After we cluster terms into different topics,
based on the proportion of terms in a bug report that
belongs to different topics, we represent the bug report as a
topic distribution. Fig. 5 presents an example topic distribu-
tion for the bug report shown in Fig. 3.

3 OVERALL FRAMEWORK

Fig. 6 presents our overall bug triaging framework that lev-
erages topic modeling. The framework contains three
phases: model construction phase, recommendation phase,
and model update phase. In the model construction phase,
a model is built from historical bug reports with known
fixers. In the recommendation phase, the model is used to
recommend a set of developers for a new unassigned bug
report. In the model update phase, the model is updated by
using additional bug reports with known fixers. To simulate
real-life usage of our tool, we allow the model to be
updated. In practice, new bug reports would be reported
and assigned to fixers periodically; these new reports can be
used to update the model.

Our framework first collects various information from a
set of training bug reports with known fixers (Steps 1 and
2). It collects two important features from bug reports which
are the components and products of the reports (Step 1).3

Next, it extracts the description and summary texts from
the reports (Step 2). We ignore any developer discussion
since it is not available at the time an assignment is made.
Moreover, previous studies also only use description and
summary texts from the reports to recommend bug
fixers [7], [10], [20], [27], [35], [38]. For each description and
summary text, our framework tokenizes the text, removes
stop words, stems them by using Porter stemmer [31] (i.e.,
reduces them to their root forms, e.g., “reads” and
“reading” are reduced to “read”), and represents them in
the form of a “bag of words” [25] (Step 2). These terms are
in the same order as in the original bug report. Notice that
the term order does not influence our model as we treat a
document as a bag of words. Then, the processed text and
feature information are inputted into a topic model which
outputs a topic distribution for each bug report in our

training data (Steps 3 and 4).4 Next, the topic distributions
and feature information are fed to TopicMiner.5

In the recommendation phase, TopicMiner is used to rec-
ommend a ranked list of developers to a new unassigned
bug report. Our framework first extracts the features along
with the summary and description text from the new bug
report (Steps 6 and 7). Then, these are inputted into a topic
model which outputs the topic distribution of the new
report (Steps 8 and 9). Next, the topic distribution and fea-
ture information are inputted into TopicMiner to produce a
list of top-k candidate fixers (Steps 10 and 11). In practice, a
bug triager will check the list of potential fixers, and eventu-
ally assign the new bug report to a fixer. In the model
update phase, we update TopicMiner by using the newly
assigned bug report (Step 12).

4 TOPIC EXTRACTION WITH LDA

Here, we describe how we use LDA to extract topics from
bug reports.

4.1 Modeling a Bug Report

Using LDA, all unique terms (i.e., words) in bug reports are
collected into a common vocabulary Voc of size V . A topic k is
expressed as a collection of terms from Voc. LDA uses a
topic-word vector fk of size V to represent a topic k. Each ele-
ment of the vector fk represents the probability of the corre-
sponding term in Voc to describe the topic.

For a bug report m containing Lm terms, LDA considers
it as a textual document with K technical aspects (i.e.,
topics). LDA would infer the values of the following two
key parameters/variables form:

1. Topic Assignment Vector zm. Each term in m belongs to
one topic. Thus, a topic assignment vector zm is of length
Lm, and each element of zm is an index to one topic
(i.e., 1 to K).

2. Topic Distribution Vector um. A bug reportm could have
multiple topics, and different topics have different weights
in describing m. Thus, LDA assigns a bug report m a topic

Fig. 4. Topic-word vectors.

Fig. 5. Topic distribution of the bug report in Fig. 3.

3. In this paper, by default, we use product and component as the
features. Other bug report fields (e.g., severity, priority, reporter, etc.)
could potentially be included as features, but it is unclear if they could
improve the performance further. We leave investigations of these
other features as future work. Product and component are different but
related fields in a bug report, thus we combine these features as a fea-
ture combination.

4. More description is available in Section 5.
5. More description is available in Section 6.
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distribution vector um to represent the weights of the K
topics. um is of length K, and each element of um represents
the weight of the corresponding topic. We denote the
weight of topic k in um as um½k�, and the higher um½k� is, the
more terms in the bug reportm are assigned to topic k.

Notice a term can be assigned to multiple topics. The
topic assignment of a term is affected by the other terms in
the same document. Assume that word w is important to
both topic UI and interface operation. If w appears in
a document which is more about UI, it is more likely to be
assigned to UI topic. If it appears in a document which is
more about interface operation, it will be more likely
to be assigned to interface operation topic.

4.2 Graphical Model and Generative Process

LDA can be represented as a graphical model, which is
shown in Fig. 7. A circle represents a variable in the graphi-
cal model and a rectangle represents a variable that repeats
a certain number of times. The arrows represent dependen-
cies between variables. K refers to the number of topics
which needs to be input by end users. M refers to the num-
ber of documents in the corpus. Lm refers to the number of
words in the mth document. The shaded circles are
observed variables, which are the words in a bug report.
The other circles refer to latent variables. wm½n� refers to the
nth word in the mth document. zm½n� refers to the topic of
the nth word in the mth document. fk refers to topic-word
vector for each topic k – there are in total K such fk. um is
the topic distribution vector – there are in totalM such um. a
and b are the parameters of the Dirichlet prior for the topic
distribution vector, and topic-word vector, respectively [12].

LDA is a generative probabilistic model of a textual cor-
pus. A generative probabilistic model assumes that the
words (i.e., bug reports) are generated based on a certain
statistical process or model with the aforementioned sets of
variables: um, zm, and fk, for each report m and each topic k.
Given a bug report m of size Lm, LDA first generates its
topic distribution vector um according to a specific

distribution (i.e., Dirichlet distribution [17]). Next, LDA
randomly generates a topic for each position in m based
on um, i.e., it generates the topic assignment vector zm to
capture the topic of each of the Lm positions in m. Finally,
for each position, a topic is randomly chosen honoring the
topic distribution vector um. Next, after the topic is chosen,
a term (word) is chosen honoring the relevant entry in the
topic-word vector fk for the chosen topic. In this way, a
bug report is generated following the generative process of
LDA. If one performs an experiment of generating a bag of
words lots of times using the above process, on average,
one would produce a bag of words where the probability
of each word matches the probability of the word in the
bug report.

LDA works in two phases: training and inference. In the
training phase, the terms in the training bug reports are
used to learn the values of the sets of variables, um, zm, and
fk, which best fit the training bug reports. In the inference
phase, given a new bug report new, based on the values of
the sets of variables that have been learned from training
bug reports, LDA infers the topics that are assigned to terms
in new (i.e., znew), and the topic distribution vector of new
(i.e., unew). In our framework, during the model construction
phase, we employ the training step of LDA; during the rec-
ommendation phase, we employ the inference step of LDA.

4.3 Algorithms

Here we describe the training phase and prediction phase of
LDA in detail.

Training Phase: In the training phase, we estimate
the values of the variables: zm (topic assignment vector),

Fig. 6. Proposed bug triaging framework.

Fig. 7. The graphical model of LDA.
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fk (topic-word vector), and um (topic distribution vector),
for each bug report m and each topic k, that best fit the
bug reports in the training data. Notice that LDA only
observes the words in the bug reports; thus, the optimal
estimated values of these variables will be the ones that
have the largest posterior probability, conditioned on the
observed data (i.e., words in bug reports). Gibbs sampling
is one of the solutions to estimate zm, f and um [17]. Gibbs
sampling is a generic procedure used to infer values of
variables of a statistical model. It consists of many itera-
tions where the estimated values of the variables are
refined progressively. In each iteration, the value of each
variable is estimated, one at a time, conditioned on the val-
ues of the other variables. We describe how the values of
LDA’s sets of variables are inferred using Gibbs sampling
in the following paragraphs.

Step 1. Estimating the topic assignment vector zm for each bug
reportm in the training data.

Initially, each vector zm of a bug report m, is assigned
random values. Next, the algorithm iterates many times. In
each iteration, it estimates every element of zm based on the
current values of the other elements of zm and other vectors
of other bug reports in the training data. The iteration pro-
cess would terminate after a large number of iterations. In
this work, following [12], we set the number of iterations to
500. The number needs to be large enough so that the topic
distributions are likely to converge. Similar to prior work
(e.g., [12]), we do not use convergence as the stopping crite-
ria, since the runtime may be too long if we wait for the
topic distributions to fully converge (i.e., they change no
further with additional iterations). We also find that there
are little difference when we set the number of iterations to
be more than 500 (See Section 8.7).

For each iteration, for each bug reportm and each topic k,
LDA estimates the probability of k being assigned to the ith
position of m (i.e., zm½i�). This probability (i.e., pðzm½i� ¼ kÞ)
is computed as follows:

pðzm½i� ¼ kÞ ¼ ðNM
m ½�i; k� þ aÞ

ðNM
m � 1þKaÞ �

ðNV
k ½�i; wi� þ bÞ

ðNV
k � 1þ V bÞ (1)

In the above equation, NM
m ½�i; k� is the number of words

(excluding the ith word) in bug report m that are assigned

to topic k; NM
m is the number of words in bug report m; wi

is the ith word of bug report m; NV
k ½�i; wi� is the number

of times the word wi (excluding its appearance in the ith
position of m) being assigned to topic k in all bug reports;

NV
k is the number of words assigned to topic k in all bug

reports.
After the probability of each topic k is estimated using

the above equation, the algorithm randomly chooses a topic,
from the K topics, based on the estimated probabilities. The
chosen topic is assigned as the topic of the ith position of m.
This assignment is refined in the subsequent iterations. At
the end of this step, we have a topic assignment vector zm
for every bug reportm in the training data.

Step 2. Estimating the topic distribution vector um for each bug
reportm in the training data.

Once the topic assignment vector zm of bug report m has
been computed, considering K topics, we compute its topic

distribution vector um based on the topics assigned to its
constituent words as:

um ¼ht1; . . . ; tKi; where

ti ¼# words assigned the ith topic in m

# words in m

(2)

In this way, we map the words in the original bug reports
into topics.

Step 3. Estimating topic-word vector fk for allK topics.
In the final step, the topic-word vector fk would be esti-

mated for each topic k. We denote fk½i� as the probability of
the term in the position i of Voc to represent topic k. fk½i� is
estimated by computing the ratio between the number of
times the ith term of Voc is assigned to topic k, and the total
number of times terms in Voc are assigned to topic k.

Prediction Phase: To infer the topic distribution of a new
bug report new, we input its terms, make use of the values
of the sets of variables (i.e., zm, fk, and um, for each bug
report m and each topic k) estimated in the training phase,
and employ Gibbs sampling to iterate through the terms in
the new bug report enough number of times to infer their
corresponding topics. At the end of prediction phase, we
get the topic distribution vector unew of the new bug report
which would be processed by TopicMiner (see Section 6). In
the next paragraphs, we first describe how znew is estimated
for a new bug report. Next, we describe how unew is
estimated.

Step 1. Estimating the topic assignment vector znew for a new
bug report new.

Initially, our approach randomly assigns topics to znew.
Our approach then performs many (i.e., 500) iterations to
refine the topics in znew. For each iteration and each position
i in znew, given the topic assignments of bug reports in the
training set and the current assignments of topics to words
in the new bug reports, except for the ith word, we can com-
pute the probability of assigning topic k to the ith word of
the new bug report new as follows:

pðznew½i� ¼ kÞ ¼ ðNnew½�i; k� þ aÞ
ðNnew � 1þKaÞ �

ðNV
k ½�i; wi� þ bÞ

ðNV
k � 1þ V bÞ (3)

In the above equation, Nnew½�i; k� is the number of words
(excluding the current position i) in the new bug report new
that are assigned to topic k; Nnew is the number of words in
the new bug report; wi is the word at position i in bug report

m; NV
k ½�i; wi� is the number of times the word wi (excluding

its appearance in the ith position of m) is being assigned to

topic k in all bug reports; NV
k is the number of words in all

bug reports which are assigned to topic k.
After the probability of each topic k is estimated using

the above equation, the algorithm randomly chooses a topic,
from the K topics, based on the estimated probabilities. The
chosen topic is assigned as the topic of the ith position of
new. This assignment is refined in the subsequent iterations.
At the end of this step, we have a topic assignment vector
znew for new.

Step 2. Estimating the topic distribution vector unew for the
new bug report new.
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To infer the topic distribution vector unew, we use Equa-
tion (2) to calculate unew, and the detailed step is the same as
step 2 of the training phase.

5 TOPIC EXTRACTION WITH MTM

Here, we describe our proposed topic model, named Multi-
feature Topic Model, and how we use it to extract topics
from bug reports. Notice LDA is a general topic model,
which does not consider the characteristics of bug reports.
Our MTM leverages multiple features of bug reports (i.e.,
product and component) to better generate the topics from
the bug reports.

5.1 Modeling a Bug Report

All unique terms (i.e., words) in bug reports are collected
into a common vocabulary Voc of size V . In addition to a tex-
tual description, a typical bug report contains many differ-
ent fields (e.g., product and component). We refer to them
as features of a bug report, and denote the features of a bug
report m as Fm, i.e., Fm ¼ ðfm1; . . . ; fmeÞ. In this work, we
use an instance of MTM with two features: product and
component – we set fm1 to be the product, and fm2 to be the
component.

The reason we choose these two features is that develop-
ers often specialize in some products and components.
Moreover, bug reporters have to assign values to these two
features when they submit a bug report (i.e., the values of
these two fields are not null). Furthermore, our previous
study shows that the values of these two features are stable
(i.e., only a small proportion of bug reports have the values
of their product and component fields reassigned before the
final bug fixer is assigned) [44]. In our collected bug report
dataset, we do not observe any missing values for product
and component fields. In the uncommon cases where the
values of the product and component fields get updated,
developers can simply rerun our approach with the
updated values of these fields.

A topic k is expressed as a collection of terms from Voc.
MTM uses a topic-word vector fk of size V to represent a topic
k. Each element of the vector fk represents the probability of
the corresponding term in Voc to describe the topic. For
example, in Fig. 4, for topic one, f1 ¼ ½0:22; 0:13; 0:12 . . .�,
i.e., the probability of the term page to describe topic one is
22 percent while that for bar is 13 percent.

For a bug report m containing Lm terms, MTM considers
it as a textual document with K technical aspects (i.e.,
topics). MTM will infer a topic assignment vector zm corre-
sponding to bug report m, i.e., for each term in m, MTM
will infer its topic. Thus, a topic assignment vector zm is of
length Lm (i.e., the number of words in m), and each ele-
ment of zm is an index to one topic (i.e., 1 to K). Given a doc-
ument, for each pair of term and topic, our model would
output a probability that the term is related to a topic. Fol-
lowing [12], [17], we then assign the term to the topic which
has the highest probability.

Assume that the set of all possible feature combinations
together form set F ¼ fF 1; F 2; . . . ; F Ig, where each entry in it
is a feature combination and I is the total number of feature
combinations. In MTM, a specific feature combination Fi

(e.g., Fi1 = CDT and Fi2 = cdt-core) is associated to one or

more topics, and each of the topics could be assigned aweight
to describe the strength of its relationship with Fi. MTM
assigns to a specific feature combination Fi a feature-topic vec-
tor uFi

to represent the weights of all of the K topics. uFi
has

the length ofK, and each element of uFi
represents theweight

of the corresponding topic at the element’s position. We
denote the value of topic k in uFi

as uFi
½k�, and the higher

uFi
½k� is, the more terms in bug reports, whose feature combi-

nation is Fi, are assigned topic k. For example, considering
the 3 bug reports in Figs. 1, 2 and 3, if the feature-topic vector
is uFi¼fCDT;cdt�coreg ¼ ½0:4; 0:3; . . . 0:1�, it means that among the

3 bug reports, which have the same product and component,
40 percent of the terms are assigned to the first topic, and
30 percent of the terms are assigned to the second topic, etc.

5.2 Graphical Model and Generative Process

MTM can be represented as a graphical model, which is
shown in Fig. 8. A circle represents a variable in the graphi-
cal model and a rectangle represents a variable that repeats
a certain number of times. The arrows represent dependen-
cies between variables. K refers to the number of topics
which needs to be input by end users. M refers to the num-
ber of documents in the corpus. I refers to the number of
different feature combinations. Feature combination refers
to the combination of multiple features. In this paper, by
default, we use the product and component features, and
combine them as the feature combination. The shaded
circles are observed variables, which are the words and fea-
tures of a bug report. The other circles refer to latent varia-
bles. wm½n� refers to the nth word in the mth document.
zm½n� refers to the topic of the nth word in the mth docu-
ment. fk refers to topic-word vector for each topic k – there
are in total K such fk. uFi

is the feature-topic vector – there

are in total I such uFi
. a and b are the hyperparameters for

the feature-topic vector, and topic-word vector, respec-
tively. Table 1 presents the symbols associated with MTM.
We use the notation of u, f, and K as the feature-topic vec-
tor, topic-word vector, and number of topics since they are
conventionally used in NLP and IR literature [12].

MTM is a generative probabilistic model of a textual cor-
pus. A generative probabilistic model assumes that the data
(i.e., bug reports) is generated based on a certain process/
model with the aforementioned sets of variables: uFi

, zm,
and fk. For each feature combination Fi, MTM first gener-
ates its feature-topic vector uFi

according to the Dirichlet

distribution [17]. Then for each bug report m, MTM gener-
ates the topic assignment vector zm to describe the topic of
each position in m according to its feature combination.
This is done by first finding the feature combination in F

Fig. 8. The graphical model of multi-feature topic model (MTM).
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that is equal to Fm. Assume this combination is Fj, then the
corresponding feature-topic vector uFj

, where Fj ¼ Fm, is

used to sample topics to fill topic assignment vector zm.
Finally, in each position of the bug report, MTM generates a
term (word) according to the topic k assigned to this posi-
tion, and the topic-word vector uk corresponding to topic k.
In this way, a bug report is generated by leveraging MTM.

The above paragraph describes the generative process of
MTM, i.e., how to generate a bug report by leveraging
MTM. This generation process is simulated to infer a topic
distribution vector from a bug report.

In our MTM model, we have the u and f matrices. The
vector uFi corresponds to the topic distribution for a feature

combination Fi. Traditional LDA does not compute such
topic distribution, rather it computes a topic distribution for
each document (in our case: bug report). The vector fk of
MTM contains the same information as the corresponding
vector in LDAs graphical model, that is, the word distribu-
tion for the kth topic.

Our model can be regarded as a simulation of how a
developer writes a bug report. For example, suppose a
developer finds a bug in the user interface component
of the product firefox. To create a report to describe the
bug, he first picks some topics according to the component
user interface and the product firefox. These topics can be
composed of a topic about user interface (with words page,
bar, symbol, etc.), a topic about interface operation (with
words click, open, close, etc.), a topic about browser with
words (Internet, website, connect, etc.), and some other
topics. To write down a word, the developer needs to first
determine which topic he is describing using the word, then
he picks a word from this determined topic and writes it
down. This process continues until he finishes the report.

These topics are what we intend to learn by using our
model. Instead of assuming that each topic contains only a
group of words, we assume that each topic is a distribution

over words. Those words with high probabilities can repre-
sent a topic better than others. Our model tries to learn these
topics automatically. Intuitively, they can also be regarded
as clusters of words.

In reality, the way a developer writes a bug report differs
from what we assume. However, previous works on topic
models have shown that they can learn meaningful group-
ing of words that correspond to inherent topics in docu-
ments. So, in our paper, we design a model under the
context of bug triaging and apply it to real bug report data-
set. Both its performance (for bug triaging) and the learned
topics show that it is useful.

Fig. 9 presents the relationships of variables in our model
and how our model works. For each bug reportm, it is asso-
ciated with a feature combination Fm and a list of words
wm. A set of bug reports is input into the Multi-feature Topic
Model. There are two sets of parameters in MTM, which are
topic-word vectors ff1;f2; . . . ;fKg and feature-topic vec-
tors fuF1

; uF2
; . . . ; uFM

g. They are all unknown and will be

learned by MTM based on the input bug reports. After
learning these variables, MTM is then able to assign a topic
to each word, this assignment vector for bug report m is
denoted as zm.

5.3 Algorithms

MTM follows a two phase process: training phase and infer-
ence phase. The training phase and inference phase corre-
spond to the model construction phase and recommendation
phase in Fig. 6. In the training phase, the terms in the training
bug reports are used to learn the values of the sets of variables,
zm, fk, and uFi

, which best fit the training bug reports. In the

inference phase, given a new bug report new, based on the
values of the sets of variables that have been learned from
training bug reports, MTM infers the topics that are assigned
to terms in new (i.e., znew). In our framework, during the
model construction phase, we employ the training step of
MTM; during the recommendation phase, we employ the
inference step ofMTM.

Given a new bug report, our approach infers its topic dis-
tribution by using the topic model trained in the model con-
struction phase. Admittedly, this strategy cannot cope with
new topics that emerge over time, and we assume that the
topics do not change much over time. If developers are
making major changes (by implementing totally new

TABLE 1
Symbols Associated with Multi-Feature Topic Model

Nota. Type Description

M scalar Numbers of documents (i.e., bug reports)
in the document collection.

K scalar Numbers of topics.
V scalar Number of unique terms in the bug reports.
N scalar Number of bug reports.
I scalar Number of different feature combinations.
a scalar Dirichlet prior, hyperparameter for the

topic distribution for each feature
combination.

b scalar Dirichlet prior, hyperparameter for the
word distribution for each topic.

Fm vector Vector representation of a feature
combination for themth bug report.

W vector All words in the bug reports in the
document collection.

wm½n� scalar nth word in themth bug report.
Z vector Topic assignment of all words.
zm½n� scalar Topic assignment of the nth word in

themth bug report.
fk vector Word distribution for topic k.
uFi vector Topic distribution for feature

combination Fi.

Fig. 9. Relationships among the variables in MTM.
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requirements) or the accuracy of our approach is not good,
the topic model can be retrained from scratch. By doing so,
the newly emerging topics would be learned. Here, we
describe the training phase and prediction phase of MTM in
detail.

TopicMiner takes as input a topic distribution vector. To
obtain this vector um, given a new bug reportm, we first run
MTM on m and obtain zm by assigning the most probable
topic to each word inm by using Equation (4). Similarly, we
use LDA to infer zm by assigning the most probable topic to
each word in m by using Equation (1). Next, we derive um
from zm and inputs it to TopicMiner. A topic distribution
vector for a bug report m um is of length K, and each ele-
ment of um is the proportion of words in m of the corre-
sponding topic. We denote the weight of topic k (i.e., the
proportion of terms in the bug report m that are assigned to
topic k) in um as um½k�. For example, in Fig. 5, if
um ¼ ½0:3; 0:2; � � � 0:15�, it means that 30 percent of all terms
in m are about user interface components, 20 percent are
about user interface operations, etc.topic assignment vector

Training Phase: In the training phase, we aim to estimate
the values of the sets of variables: zm, fk, and uFi

for each
bug report m, each topic k and each feature combination Fi,
that best fit bug reports in a training set. The optimal esti-
mated values of these variables are the ones that have the
largest posterior probabilities conditioned on the observed
data (i.e., words and features of bug reports). We use Gibbs
sampling [17] to estimate zm, fk and uFi

. Gibbs sampling is

a generic procedure used to infer values of variables of a sta-
tistical model. It consists of many iterations where the esti-
mated values of the variables are refined progressively. In
each iteration, the value of each variable is estimated, one at
a time, conditioned on the values of the other variables. We
describe how the values of MTM’s sets of variables are
inferred using Gibbs sampling in the following paragraphs.

Since the detailed derivation steps are long and compli-
cated, they appear in a technical report [42]. In this paper,
we simply present how the resultant formulas are used in
the Gibbs sampling iterations.

Step 1. Estimating the topic assignment vector zm for each bug
reportm with feature combination f in the training data.

Initially, the variable zm for each bug report m and fk for
each topic k, and uFi

for each feature combination Fi are all

assigned with random values. Next, the algorithm iterates
many times. In each iteration, it estimates every element of
zm based on the current values of the other elements of zm
and other vectors of other bug reports in the training data.
The iteration process will terminate after many iterations. In
this work, following [12], to ensure the convergence of topic
distributions, we set the number of iterations to 500. We also
find that there are little difference whenwe set the number of
iterationsmore than 500 (See Section 8.7).

MTMestimates the probability of topic k being assigned to
the ith position of bug reportm (i.e., zm½i�) with feature com-
bination f , in each iteration, using the following equation:

pðzm½i� ¼ kÞ ¼ ðNF
f ½�i; k� þ aÞ

ðNF
f � 1þKaÞ �

ðNV
k ½�i; wi� þ bÞ

ðNV
k � 1þ V bÞ (4)

In the above equation, NF
f ½�i; k� is the number of words that

are assigned to topic k in bug reports with feature

combination f (excluding the ith word of m); NF
f is the

number of words in bug reports with feature combination

f ; wi is the ith word of m; NV
k ½�i; wi� is the number of times

the word wi (excluding its appearance in the ith position of

m) is assigned to topic k; NV
k is the number of words

assigned to topic k.
After the probability of each topic k is estimated using

the above equation, the algorithm randomly chooses a topic,
from the K topics, based on the estimated probabilities. The
chosen topic is assigned as the topic of the ith position of m.
This assignment is refined in the subsequent iterations. At
the end of this step, we have a topic assignment vector zm
for every bug reportm in the training data.

Step 2. Estimating the feature-topic vector uFi
for each feature

combination Fi.
Our approach first separates bug reports into different

groups according to their feature combinations. Bug reports
are in the same group if their feature combinations are the
same. Under each group corresponding to a feature combina-
tion Fi, for a topic k, we denote uFi

½k� as the probability that
topic k represents fi. uFi

½k� is approximately computed by

computing the ratio between the number of terms which are
assigned to topic k in bug reports with feature combination
Fi, and the total number of terms in bug reports with feature
combinationFi (i.e., themaximum likelihood estimate).

Step 3. Estimating topic-word vector fk for allK topics.
In the final step, the topic-word vector fk would be esti-

mated for each topic k. We denote fk½i� as the probability of
the term in position i of a common vocabulary Voc to repre-
sent topic k. fk½i� is estimated by computing the ratio
between the number of times the ith term of Voc is assigned
to topic k, and the total number of times terms in Voc are
assigned to topic k.

Step 4. Estimating the topic distribution vector um for each bug
reportm in the training data.

Once the topic assignment vector zm of bug report m has
been computed, considering K topics, we compute its topic
distribution vector um based on the topics assigned to its con-
stituent words by using Equation (2). In this way, we map the
words in the original bug reports into topics. This topic distri-
bution vector would be processed by TopicMiner – as will be
described in Section 6. Notice since step one of our approach
produces all necessary data for Step 2 and Step 4, it is possible
that these two steps can be done in parallel.

Inference Phase: To infer the topic distribution of a new
bug report, we input its terms and multiple features, make
use of the values of the sets of variables (i.e., zm, fk, and uFi

)
estimated in the training phase, and employ Gibbs sampling
to iterate through the terms in the new bug report enough
number of times to get their corresponding topics. At the
end of the prediction phase, we get the topic distribution
vector unew which would be processed by TopicMiner.

Step 1. Estimating the topic assignment vector znew for a new
bug report new.

Initially, we randomly assign topics to znew. We then per-
form a number of (i.e., 500) iterations to refine the topics in
znew. For each iteration and each position i in znew, given the
topic assignments of bug reports in the training set and the
current assignments of topics to words in the new bug
reports, except for the ith word, we can compute the
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probability of assigning topic k to the ith word of the new
bug report newwith feature combination f as follows:

pðznew½i� ¼ kÞ ¼ ðNFþ
f ½�i; k� þ aÞ

ðNFþ
f � 1þKaÞ �

ðNV
k ½i; wi� þ bÞ

ðNV
k � 1þ V bÞ (5)

In the above equation,NFþ
f ½�i; k� is the number of words that

are assigned to topic k in the new bug report (excluding its ith
word) and bug reports with feature combination f in the

training set; NFþ
f is the number of words in the new bug

report and bug reports with feature combination f in the

training set; wi is the ith word of new; NV
k ½�i; wi� is the num-

ber of times the word wi (excluding its appearance in the ith

position of new) is assigned topic k in all bug reports; NV
k is

the number of words that are assigned topic k in all bug
reports.

Equations (4) and (6) are used to assign a topic to word
according to the topics assignment of all other words in our
dataset. Each of them is a probability of assigning a certain
topic to the target word. Intuitively, the calculation of this
probability is based on how likely this topic appears in the
current document and how likely this topic generates the
current word. Separated by the multiplication sign, there
are two components in the formula. The first component is
the probability of topic k appearing in the current docu-
ment. The second component is the probability that word w
is generated from topic k. The two parts together determine
the probability of assigning topic k to the current word.

Step 2. Estimating the topic distribution vector unew for the
new bug report new.

Our approach infers the topic distribution vector unew
from the topic assignment vector znew using Equation (2).
The detailed step is the same as step 4 of the training phase
of MTM.

5.4 Differences with LDA

LDA can be represented as a graphical model, which is
shown in Fig. 7. Its structure is simpler than the graphical
model of MTM. It has fewer observed variables which
exclude features of bug reports such as the product and
component of the reports. Also, rather than having a topic
distribution per feature combination, it has a topic distribu-
tion per bug report um.

Similar to MTM, LDA is a generative probabilistic model
of a textual corpus. The generative process of MTM uses
three sets of variables: topic distribution um, topic assign-
ment vector zm, and topic-word vector fk, for each report m
and each topic k. Given a bug report m of size Lm, LDA first
generates its topic distribution vector um according to
Dirichlet distribution. Next, LDA generates the topic assign-
ment vector zm to describe the topic of each of the Lm posi-
tions in m according to its topic distribution vector um.
Finally, for each position in m, LDA generates a term
(word) according to the topic k, which is assigned to the
position, and the topic-word vector fk corresponding to
topic k. In this way, a bug report is generated following the
generative process of LDA.

Since the graphical model and generative process of LDA
and MTM are different, to estimate the values of zm, fk, and
uFi of MTM using Gibbs sampling, we need to re-derive a

number of equations that eventually translate to Equa-
tion (4). A comprehensive comparison of LDA and MTM
detailed derivation steps is available in the supplemental
materials, which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2016.2576454.

One major difference between the Gibbs sampling pro-
cess of LDA and MTM is the equation that is used to update
the probability of assigning a topic to a word, that is recom-
puted in each Gibbs sampling iteration. Rather than using
Equation (4), the probability of assigning topic k to the ith
word of a new bug report new is computed as follows:

pðznew½i� ¼ kÞ ¼ ðNnew½�i; k� þ aÞ
ðNnew � 1þKaÞ �

ðNV
k ½�i; wi� þ bÞ

ðNV
k � 1þ V bÞ (6)

In the above equation, Nnew½�i; k� is the number of words
(excluding the current position i) in the new bug report new
that are assigned to topic k; Nnew is the number of words in
the new bug report; wi is the word at position i in bug report

m; NV
k ½�i;wi� is the number of times the word wi (excluding

its appearance in the ith position of m) is being assigned to

topic k in all bug reports; NV
k is the number of words in all

bug reports which are assigned to topic k. Notice that Equa-
tion (1) above is different from Equation (4) (for MTM). For

LDA, NM
m ½�i; k� is used; while for MTM, NF

f ½�i; k� is used.

NF
f ½�i; k� is used to take the feature combination into consid-

erationwhen estimating the probability of a topic assignment.
Also, for a new product-component combination which

is never seen before in the model building phase, our model
will ignore the product-component information and behave
like LDA.

6 TOPICMINER: AN INCREMENTAL LEARNING
METHOD

In this section, we present TopicMiner that takes as input a
set of topic distribution vectors of a set of bug reports and
outputs a list of developers. Before we describe the process
of how TopicMiner produces its outputs, we need to define a
few terms, as follows:

Definition 1 (Affinity Score of a Developer to a Topic
for a Particular Feature Combination). Consider a set of
topic distribution vectors Tf for a set of bug reports B with fea-

ture combination f . Let Tf
d refer to the topic distribution vec-

tors corresponding to bug reports in B that are assigned to a
fixer d. Also, given a topic distribution vector u, let u½t� denote
an entry in the topic distribution vector u corresponding to

topic t. The affinity score mf
t ðdÞ of a fixer d towards a topic t

considering a feature combination f is given by:

m
f
t ðdÞ ¼

P
u2Tf

d

u½t�
P

u02Tf u
0½t� (7)

Definition 2 (Affinity Score of a Developer to a Bug
Report of a Particular Feature Combination). Consider
a bug report b of feature combination f with its topic distribu-
tion vector u, and let u½t� correspond to the entry in u corre-
sponding to topic t. The affinity of developer d to a bug report b
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of feature combination f , denoted as mf
b ðdÞ, is derived from the

affinity of developer d to the various topics that appear in b con-
sidering feature combination f . It is given by the following
equation:

m
f
b ðdÞ ¼ 1�

Y

t2b
ð1� m

f
t ðdÞ � u½t�Þ (8)

Here, t 2 b denotes that topic t is contained in bug report b
(i.e., u½t� > 0). Informally put, the above formula would be
very small if the bug reports that developer d fixed before share
very few topics with the topics contained in bug report b. It
would be large if they share a lot of common topics.

Based on the above definitions, TopicMiner proceeds in
the following steps:

1) In the model construction phase (see Section 3), it
extracts a set of topic distribution vectors of all train-
ing (historical) bug reports by using MTM. Next, it
splits the bug reports into different disjoint sets
according to their feature (i.e., product and compo-
nent) combinations. For each feature combination f ,
each developer d, and each topic t, we use Equa-
tion (7) to compute the affinity score of d towards t

considering feature combination f (i.e., m
f
t ðdÞ). In

this way, we have multiple m
f
t ðdÞ scores for the dif-

ferent combinations.
2) In the recommendation phase, for a new unassigned

bug report b, it extracts its product and component
combination f , and for each developer d, it uses
Equation (8) to compute the affinity score of d
towards b considering feature combination f (i.e.,

m
f
b ðdÞ). Next, it sorts the developers based on their

affinity scores, and recommends a list of top-k devel-
opers with the highest affinity scores.

3) In the model update phase, after a bug report of fea-
ture combination f is assigned to a developer dfixer,
for each topic t, it updates the affinity score of dfixer
towards t considering feature combination f (i.e.,

m
f
t ðdfixerÞ) by using Equation (7).

When using TopicMinerMTM , if the product and compo-
nent features of a bug report changes, we can re-run the
algorithm to get a better estimate of the bug reporter to be
assigned to the bug report.

7 EXPERIMENTS AND RESULTS

7.1 Dataset

We collect five datasets from different open source software
projects: GCC, OpenOffice, Netbeans, Eclipse, and Mozilla.

Table 2 shows the statistics of the five datasets that we col-
lected. The columns correspond to the project name (Project),
the time period of collected bug reports (Time), the number of
collected reports (# Reports), the number of unique bug fixers
(# Fixers), the number of unique terms (i.e., words) in the bug
reports after we remove terms appearing less than 10 times (#
Terms), the percentage of bug reports assigned to fixers with
generic names (e.g., nobody, issue) (percent Generic), the
number of reportswithout generic fixers (# Final), the number
of different products (# Prod.), the number of different com-
ponents (# Comp.), the number of product and component
combination (# Comb.), the average number of bug reports
per product- component combination (# Ave.), and the num-
ber of fixers that fix bugs across multiple product-component
combinations (# Ov.), respectively. All bug reports are down-
loaded from the bug tracking systems of the corresponding
projects. We collected bug reports with status “closed” and
“fixed” following previous studies [7], [10], [20], [38].

Following prior approaches, e.g., [38], we identify bug
fixers by looking at the “assigned to” fields in the bug reports.
However, we notice that for many bug reports the “assigned
to” fields are set to generic names which do not specify partic-
ular developers. In GCC, 51.23 percent of the bug reports are
assigned to “unassigned”; In OpenOffice, 11.66 percent of the
bug reports are assigned to generic names such as “issues”,
“needsconfirm”, and “swneedsconfirm”; In Netbeans, 6.42
percent of the bug reports are assigned to “issues”; In Eclipse,
26.30 percent of the bug reports are assigned to generic names
like “platform-runtime-inbox”, “webmaster”, “platform-text-
inbox”, and “AJDT-inbox”; In Mozilla, 16.51 percent of the
bug reports are assigned to “nobody”. Since these generic
names are not actual developers, we do not recommend
them, and thus they are excluded from our datasets. We
record the percentage of bug reports assigned to generic
names in column percent Generic in Table 2, and in column #
Final Report, we record the final number of bug reports after
we exclude those assigned to fixerswith generic names.

In Table 2, we also list the number of different products
and components in columns # Prod. and # Comp. respec-
tively. In a bug report, the product and component fields store
the product and component that are affected by the reported
bug. A software system contains many products, and each
product may contain many components. Eclipse has 165
products and 721 components in total as shown in Table 2.

7.2 Experiment Setup

For each bug report, we extract its bug ID, bug fixer, sum-
mary text, description text, product and component. We
extract the stemmed non-stop terms (i.e., words) from the
summary and description text. We exclude bug fixers who
appear less than 10 times to reduce noise [7], [20], since the

TABLE 2
Statistics of Collected Bug Reports

Project Time # Reports # Fixers # Terms % Generic # Final # Prod. # Comp. # Comb # Ave. # Ov.

GCC 2001-12-03 – 2013-04-01 27,632 280 12,895 51.23% 13,475 2 49 49 275 13
OpenOffice 2002-05-17 – 2013-04-07 42,243 740 17,598 11.66% 37,318 33 54 173 215 351
Netbeans 2008-01-01 – 2013-03-13 46,346 405 21,564 6.42% 43,371 38 381 459 94 200
Eclipse 2008-01-01 – 2013-03-12 82,978 1,898 32,498 26.30% 61,156 165 721 880 69 422
Mozilla 2009-06-23 – 2012-02-23 86,183 1,813 28,356 16.51% 71,958 69 690 777 92 750
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expertise of these developers is hard to predict. We also
remove terms which appear less than 10 times to reduce
noise, and speed up the bug triaging process. These terms
are put in the vectors in the same order as their appearances
in the original bug report collection. Notice that the term
order does not influence the outcome of our model.

To simulate the usage of our approach in practice, we use
the same longitudinal data setup described in [10], [38].
The bug reports extracted from each bug repository in Table 2
are first sorted in chronological order of creation time, and
then divided into 11 non-overlapping windows of equal
sizes. The process proceeds as follows: First, in fold 0, we
train using bug reports in frame 0, and test the trainedmodel
using the first bug report in frame 1, then we update the bug
triaging model by using the first bug report, and then test
using the second bug report, and update the model using the
second bug report, and so on for all bug reports in frame 1.
Then, in fold 1, we train using bug reports in frame 0 and
frame 1, and proceed in a similar way (like frame 1) to test
using bug reports in frame 2, and so on. In the final fold (fold
9), we train using bug reports in frame 0-9, and test using
bug reports in frame 10. We then compute the average accu-
racy, which is defined as the ratio between the total number
of predicted hits and the total number of test cases (i.e., the
number of bug reports from frame 1-10). Following [38], we
consider two criteria for a prediction hit: the fixer is identified
in the top-1 list of developers (top-1 accuracy), and the fixer is
identified in the top-5 list of developers (top-5 accuracy).

We use the fixers recorded in the bug repositories as the
ground truth. For the training phase ofMTM, following a pre-
vious study [12], we set the maximum number of iterations to
500, and the parameters a and b to 50/T (where T is the num-
ber of topics) and 0.1, respectively. Bydefault,we set the num-
ber of topics T to 11 percent of the number of distinct terms
in the training data, since we empirically find that

TopicMinerMTM achieves the best performance under this set-
ting (see Section 7.4.2).We use percentages rather than a fixed
number as the amount of training data varies for different
datasets and different test frames (following the longitudinal
study setup [10], [38] described above). If there are more dis-
tinct terms, there are more topics. Moreover, since both MTM
and LDA use Gibbs Sampling to generate the topics which
introduces randomness, we runMTM and LDA 10 times, and
we compute the average performance across the 10 times.

We compare TopicMinerMTM with a number of baseline
approaches, i.e., Bugzie [38], LDA-KL [35], LDA-SVM [35],
LDA-Activity [27], and Yang et al.’s approach [46]. For Bug-
zie, there are two parameters: the developer cache size and
the number of descriptive terms. We use 100 percent devel-
oper cache size and set the number of descriptive terms to 10.
These have been shown to result in the best performance [38].
For LDA-KL [35], SVM-LDA [35], LDA-Activity [27], and
Yang et al.’s approach [46], we use JGibbsLDA (a popular
implementation of LDA), and use the same settings for
weights a and b, and number of topics T as MTM. The set-
tings of theweights follow the settings described in the papers
that introduce LDA-KL, SVM-LDA, and LDA-Activity

7.3 Research Questions

In this paper, we are interested in the following research
questions:

RQ1: How accurate is TopicMinerMTM as compared with other
baselines?

Bugzie and LDA-Activity have been used to recommend
fixers to bug reports in prior studies. LDA-KL and SVM-
LDA can also be used to recommend fixers to bug reports.
Yang et al. propose a approach which leverage the advan-
tages of topic modelling and the features such as product,
component, severity, and priority to recommend develop-
ers [46]. In this research question, we investigate the extent
our approach (TopicMinerMTM) outperforms these baselines.
To answer this research question, we compare the top-1 and

top-5 accuracies of TopicMinerMTM with those of Bugzie,
LDA-KL, SVM-LDA, LDA-Activity, and Yang et al.’s
approach for the five datasets.

RQ2: What is the effect of varying the number of topics to the
performance of TopicMinerMTM?

MTM generates topics from a bug report collection; the
number of topics needs to be manually specified. A previ-
ous study by Panichella et al. shows that different numbers
of topics might affect the performance of topic models in
several software engineering tasks [30]. In this research
question, we investigate whether the performance of

TopicMinerMTM varies for various numbers of topics. For the
other research questions, by default, the number of topics is
set to be 11 percent of the number of distinct terms in a
training dataset (i.e., a bug report collection).

Moreover, for other LDA-based approaches (i.e., LDA-
KL, SVM-KL, LDA-Activity, and Yang et al.’s approach), by
default, we also set the number of topics as 11 percent of the
number of distinct terms in a training dataset. Since the
number of topics may also affect the performance of these
approaches, we also experiment with other numbers of
topics. We vary the number of topics to be 1–15 percent of
the number of distinct terms in a training dataset, and com-
pare the performance of TopicMinerMTM with LDA-KL,
SVM-KL, LDA-Activity, and Yang et al.’s approach.

RQ3: What is the effect of varying the amount of training data
to the performance of TopicMinerMTM?

To evaluate the performance of TopicMinerMTM , we use
the longitudinal data setup. With the number of folds
increase, the amount of the training data increase. In this
research question, we investigate whether the performance

of TopicMinerMTM increases with the amount of training
data increase. To answer this research question, we present
the top-1 and top-5 accuracies for the 10 folds as shown in
the experiment setup section.

RQ4: How much time does it take for TopicMinerMTM to run?
The efficiency of TopicMinerMTM would affect its usabil-

ity. In this question, we investigate whether the runtime of

TopicMinerMTM is reasonable. To answer this research ques-
tion, we investigate the average amount of time that is

needed by TopicMinerMTM and the baseline approaches to
process a bug report during the model construction phase,
and the average time they need to process a bug report dur-
ing the recommendation and model update phases.

7.4 Results

7.4.1 RQ1: Accuracy of TopicMinerMTM

Table 3 compares the performance of TopicMinerMTM with
the baselines in terms of top-1 and top-5 accuracies,
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respectively. From the table, we notice the improvement of
our method over Bugzie, LDA-KL, SVM-LDA, LDA-Activity,
and Yang et al.’s approach are substantial. Across the five

projects, TopicMinerMTM on average improves top-1 and top-
5 prediction accuracies of Bugzie by 128.48 and 53.22 percent,
LDA-KL by 262.91 and 105.97 percent, SVM-LDA by 205.89
and 110.48 percent, LDA-Activity by 377.60 and 176.32 per-
cent, and Yang et al.’s approach by 59.88 and 13.70 percent,
respectively. Notice Bugzie’s result shown in Table 3 is differ-
ent from the result presented in [38] sincewe drop bug reports
assigned to generic names, e.g., nobody, issues, unassigned,
etc. These generic names do not identify particular developers
andmust be removed tomeasure the effectiveness of an auto-
mated bug triaging solution.

To check if the differences in the performance of Top-
icMinerMTM and the baseline approaches are statistically
significant, for the each dataset, we apply Wilcoxon Rank
Sum test [40] on the top-1 and top-5 accuracies of each pair
of competing approaches. Since we run the test multiple
times (twice for each dataset), we also use Bonferroni cor-
rection [6] to counteract the results of multiple comparisons.
Moreover, we also compute Cliffs delta [14],6 which is a
non-parametric effect size measure that quantifies the
amount of difference between the results of a pair of com-
peting approaches. We find that in terms of top-1 and top-5

accuracies, the improvements of TopicMinerMTM over the
baseline approaches are all statistically significant for all of
the five projects at the confidence level of 99 percent (i.e.,
the p-values are less than 0.001), and the effect sizes are
large for all of the five projects. Thus, the improvements of

TopicMinerMTM over the baseline approaches are statisti-
cally significant and substantial.

We notice that the performance of TopicMinerMTM is
worse for the OpenOffice and Mozilla datasets than for
GCC, Netbeans, and Eclipse datasets. We manually check
the datasets, and find that for OpenOffice and Mozilla,

more developers leave and join the communities over the
period of time considered, which increases the difficulty to
recommend fixers to bug reports for those datasets.

Compared with Bugzie, our TopicMinerMTM recommends
bug fixers by using topic distributions of bug reports instead
of term (i.e., word) distribution of bug reports. Techniques
that rely on term distributions suffer from synonym and poly-
semy problems C many words may share the same meaning,
and the samewordmay have different meanings. Techniques
that rely on topic distributions address these problems by
clustering similar terms into topics, andmany topics can share

the sameword. Thus, our TopicMinerMTM can achieve a better
performance than some baseline approaches, e.g., Bugzie.

Some of the baseline approaches (i.e., LDA-KL, LDA-
SVM, LDA-Activity, and Yang et al.s approach) leverage
LDA which is a general purpose topic modelling technique.
However, bug reports are semi-structured, and they contain
not only the natural language description of the bugs, but
also some additional structured features such as the product
and component information. By leveraging the features, one
can better capture the topic distributions for bug reports by
capturing both global (learned from all bug reports) and
local information (learned from bug reports that share a par-
ticular product and component combination). Thus, our
TopicMinerMTM can achieve a better performance than the
bug triaging approaches which use LDA.

Furthermore, our TopicMiner is an incremental learning
approach. We update the model whenever a new bug report
is assigned to developers. In this way, our model can adapt
to the real-time changes from the open source community,
and further improve the performance of bug trigaing.

We notice LDA-Activity does not work as well as other
baseline approaches. LDA-Activity creates an activity profile
for each developer, and the activity profile includesmany dif-
ferent kinds of activities, e.g., bug reviewing, bug assignment,
and bug resolution. Since our task is specific to one of these
activities, considering more activities introduces noise by
unnecessarily increasing the size of candidate bug fixers.

Figs. 10 and 11 present two bug reports from OpenOffice.
Both of these two bug reports are in the product porting

TABLE 3
Top-1 and Top-5 Accuracies for TopicMinerMTM (TM ) versus Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM),

LDA-Activity (AC), and Yang et al.’s Approach (Yang), Respectively (Mean�Standard Deviation)

Projects
Top-1 Accuracy

TM BZ KL SVM AC Yang

GCC 0.5048�0.0056 0.2454�0.0000 0.1334�0.0078 0.1939�0.0055 0.1585�0.0087 0.3012�0.0087
OpenOffice 0.5161�0.0023 0.2706�0.0000 0.1811�0.0039 0.2514�0.0055 0.1248�0.0102 0.3514�0.0121
Netbeans 0.6868�0.0034 0.2819�0.0000 0.1882�0.0056 0.2213�0.0013 0.1583�0.0029 0.4128�0.0045
Eclipse 0.6127�0.0051 0.2352�0.0000 0.1320�0.0012 0.1136�0.0256 0.0602�0.0210 0.4065�0.0045
Mozilla 0.4831�0.0078 0.1940�0.0000 0.1376�0.0048 0.1365�0.0033 0.0852�0.0120 0.2817�0.0145
Average. 0.5607 0.2454 0.1545 0.1833 0.1174 0.3507

Projects
Top-5 Accuracy

TM BZ KL SVM AC Yang

GCC 0.7864�0.0049 0.5713�0.0000 0.4071�0.0023 0.4647�0.0056 0.3947�0.0056 0.6824�0.0045
OpenOffice 0.7757�0.0072 0.5723�0.0000 0.4651�0.0038 0.4762�0.0045 0.3558�0.0125 0.6438�0.0015
Netbeans 0.9084�0.0039 0.5861�0.0000 0.4478�0.0044 0.4594�0.0035 0.3613�0.0078 0.8456�0.0231
Eclipse 0.8865�0.0043 0.5072�0.0000 0.3385�0.0018 0.2633�0.0016 0.1798�0.0023 0.8039�0.0038
Mozilla 0.7686�0.0078 0.4555�0.0000 0.3443�0.0089 0.2964�0.0056 0.2013�0.0210 0.6528�0.0067
Average. 0.8251 0.5385 0.4006 0.3920 0.2986 0.7257

6. Cliff defines a delta of less than 0.147, between 0.147 to 0.33,
between 0.33 and 0.474, and above 0.474 as negligible, small, medium,
and large effect size respectively.
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and component code, and assigned to foskey. Although
the terms in these two bug reports are different, they both
describe a configuration bug. A topic modeling based
approach such as TopicMinerMTM achieves a better perfor-
mance than a term based approach such as Bugzie. More-
over, since LDA does not consider the specific topic
distribution under different product-component combina-
tions, these LDA based approaches do not work well for
these two bug reports. We manually checked the topic
distribution for these bug reports and find that their proba-
bilities for a topic, which we manually label as configura-
tion, are small. For our MTM, we consider the topic
distribution for different product-component combinations.
And for these two bug reports, we find the probabilities of
these two bug reports for the configuration topic are the

largest compared to other topics. Thus, our TopicMinerMTM

can recommend bug fixers better by leveraging product-
component combinations.

We also notice that our TopicMinerMTM does not work as
well as other baseline approaches for bug reports whose
product-component combinations appear fewer than five
times. For example, in the fold 0 of Mozilla, there is only
one bug report with product Directory and component

LDAP C SDK. Our TopicMinerMTM cannot recommend a suit-
able bug fixer for this bug report, while other approaches
such as Bugzilla and LDA-SVM can recommend the fixer.
Thus, we recommend users to use a general model when
the number of bug reports in a specific product-component
combination is small.

7.4.2 RQ2: Varying the Number of Topics.

Figs. 12, 13, 14, 15, and 16 present the top-1 and top-5 accu-
racies of TopicMinerMTM compared with LDA-KL (KL),
SVM-KL (SVM), LDA-Activity (AC), and Yang et al.’s
approach (Yang) with various numbers of topics for the five

datasets. We notice our TopicMinerMTM shows the best

performance for each number of topics. Furthermore, the
performance of the best setting of each baseline approach

does not outperform the best setting of TopicMinerMTM .
In general, up to a certain point, the performance of

TopicMinerMTM increases as the number of topics increases,
after that point, the performance then either remains stable
or decreases. In our experiment, the number of topics

Fig. 10. Bug report #8108 of OpenOffice.

Fig. 12. Top-1 (top) and top-5 (bottom) accuracy for different numbers of
topics in GCC (5 percent to 15 percent of the number of distinct terms in
the training data).

Fig. 11. Bug report #27021 of OpenOffice.

Fig. 13. Top-1 (top) and top-5 (bottom) accuracy for different numbers of
topics in OpenOffice (5 percent to 15 percent of the number of distinct
terms in the training data).
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corresponding to 11 percent of the number of distinct terms
achieves the best performance. LDA-KL, SVM-KL, LDA-
Activity, and Yang et al.’s approach show similar trends as

TopicMinerMTM when we increase the number of topics,
and several of these baseline approaches achieve the best
performance when the number of topics is around 11 per-
cent of the number of distinct terms.

7.4.3 RQ3: Amount of Training Data

Figs. 17, 18, 19, 20, and 21 present the top-1 and top-5 accu-
racies for TopicMinerMTM with different amounts of train-
ing data (fold 0 -fold 9). Note that in our longitudinal data

Fig. 14. Top-1 (top) and top-5 (bottom) accuracy for different numbers of
topics in Netbeans (5 percent to 15 percent of the number of distinct
terms in the training data).

Fig. 15. Top-1 (top) and top-5 (bottom) accuracy for different numbers of
topics in Eclipse (5 percent to 15 percent of the number of distinct terms
in the training data).

Fig. 16. Top-1 (top) and top-5 (bottom) accuracy for different numbers of
topics in Mozilla (5 percent to 15 percent of the number of distinct terms
in the training data).

Fig. 17. Top-1 (top) and top-5 (bottom) accuracy for different folds in
GCC.
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Fig. 18. Top-1 (top) and top-5 (bottom) accuracy for different folds in
OpenOffice.

Fig. 19. Top-1 (top) and top-5 (bottom) accuracy for different folds in
Netbeans.

Fig. 20. Top-1 (top) and top-5 (bottom) accuracy for different folds in
Eclipse.

Fig. 21. Top-1 (top) and top-5 (bottom) accuracy for different folds in
Mozilla.
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setup, we divide our data into 11 non-overlapping frames,
thus one frame corresponds to 9.09 percent (1/11) of the
total number of bug reports. In fold 0, the amount of train-
ing data is 9.09 percent of the total number of bug reports,
and in fold 9, the amount of training data is 90.09 percent of
the total number of bug reports.

From the five figures, we notice for GCC and Netbeans,
in general, the performance of TopicMinerMTM increases as
the amount of training data increases. For OpenOffice,
Eclipse and Mozilla, in general, the performance of

TopicMinerMTM decreases as the amount of training data
increases. Also, we notice for all of the folds, the top-1 and

top-5 accuracies of TopicMinerMTM are much better than
those of the baseline approaches.

Our collected Eclipse and Mozilla datasets are much
larger than the other three datasets, which contain 82,978
and 86,183 bug reports, and 1,898 and 1,813 candidate fixers,
respectively. As the amount of training data increases, the
number of the candidate fixers also increases, and some
fixers may leave the community, thus, the performance of
TopicMinerMTM decreases as the amount of training data
increases for Eclipse and Mozilla. Still, the performance of

TopicMinerMTM are acceptable, the top-5 accuracy is above
0.7 for Eclipse and Mozilla in the 10 folds.

For OpenOffice, we notice that for several folds (such as
folds 2, 5, and 9), the performance of TopicMinerMTM

decreases as compared with the previous folds. We manually
checked the dataset, and find that in these folds, a number of
new feature combinations are introduced. For example, the
product-component combination “TestProduct-other” are
introduced in the frame 3 (fold 2), which makes Top-

icMinerMTM wrongly recommend fixers to bug reports
belonging to this new product-component combination.

Moreover, from the two tables, we notice that the number
of features (i.e product-component combinations) do not
have direct impact to the performance of TopicMinerMTM .
For example, in Mozilla, the number of product-component
combination is 777, but it achieves the lowest top-1 and top-
5 accuracies compared with the other 4 datasets. And in
GCC, the number of product-component combination is

only 49, but its top-1 accuracy is ranked 4th and its top-5
accuracy is ranked 3rd among the 5 datasets.

7.4.4 RQ4: Time Efficiency of TopicMinerMTM

Tables 4, 5, 6, 7, and 8 present the total time it takes for the
6 algorithms, i.e., TopicMinerMTM , Bugzie, LDA-KL, SVM-
LDA, LDA-Activity, and Yang et al.’s approach to com-
plete the model construction phase, and the recommenda-
tion and model update phase in each of the 10 folds. We
notice that the model construction time, and the prediction

and model update time of TopicMinerMTM are more expen-
sive than those of the baseline approaches. However, they
are still reasonable. On average for a fold, we need about
47.57 minutes and 10.26 minutes to process 18,596 bug
reports during the model construction phase, and 4,132
bug reports during the prediction and model update
phase, respectively. Note that the training phase can be
done offline (e.g., overnight). Also, a learned model can be
used to recommend fixers to many new bug reports, and
updated incrementally.

8 DISCUSSION

8.1 Stableness of TopicMinerMTM

Notice our TopicMinerMTM is run 10 times, and the average
top-1 and top-5 accuracy scores are computed across the 10
times. Here, we would like to investigate whether the per-

formance of TopicMinerMTM would be substantially differ-
ent when we run it a fewer number of times.
Figs. 22, 23, 24, 25, and 26 present the top-1 and top-5 accu-

racies for TopicMinerMTM with different number of runs for
GCC, OpenOffice, Netbeans, Eclipse, and Mozilla dataset,
respectively. We notice that across the five figures, the per-

formance of TopicMinerMTM is stable, and for various num-
ber of runs, the difference in performance is small. Thus, we

believe that our TopicMinerMTM is a stable approach, and
the randomness introduced due to Gibbs Sampling has little
impact to its performance.

We also manually investigate why the performance of
TopicMinerMTM slightly varies (i.e., by at most 3 percent

TABLE 4
Model Construction Time, and Recommendation and Model Update Time, Across the 10 Folds, for TopicMinerMTM (TM ),
Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s Approach (Yang) in GCC (in Minutes)

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 2.39 4.78 7.17 9.56 11.94 14.33 16.72 19.11 21.50 23.89 131.38
BZ 0.03 0.07 0.10 0.13 0.16 0.20 0.23 0.26 0.29 0.33 1.80
KL 1.35 2.71 4.06 5.41 6.77 8.12 9.48 10.83 12.18 13.54 74.45
SVM 1.81 3.62 5.43 7.24 9.04 10.85 12.66 14.47 16.28 18.09 99.49
AC 1.35 2.70 4.05 5.40 6.75 8.10 9.45 10.80 12.15 13.50 74.22
Yang 1.63 3.27 4.90 6.53 8.17 9.80 11.43 13.07 14.70 16.33 89.83

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 2.44 2.46 2.46 2.45 2.43 2.48 2.48 2.46 2.44 2.48 24.58
BZ 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.90
KL 0.35 0.33 0.33 0.33 0.32 0.37 0.37 0.37 0.33 0.38 3.48
SVM 0.39 0.38 0.39 0.41 0.39 0.39 0.41 0.39 0.39 0.39 3.93
AC 0.31 0.30 0.32 0.30 0.31 0.30 0.32 0.30 0.30 0.38 3.14
Yang 0.33 0.32 0.35 0.34 0.33 0.33 0.33 0.33 0.37 0.37 3.40
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from the mean) when we run it multiple times with random
selections of the initial seed. We find that the topics inferred
using MTM are slightly different for the multiple runs,

which causes the performance of TopicMinerMTM to slightly
fluctuate. The topics slightly fluctuate with different seeds
because of the random process involved in Gibbs sampling.
To reduce the fluctuation further, it is possible to either
increase the number of iterations in Gibbs sampling or to
consider the generation of multiple topic models which are
used to vote on the recommendation (cf., [11]). We leave the
exploration of these options as future work.

Moreover, we notice that the top-5 accuracies of Top-
icMinerMTM are higher than the corresponding top-1
accuracies; this is the case since top-1 accuracy (i.e., the
proportion of bug reports for which the first recom-
mended fixer is the actual fixer) is a stricter evaluation
metric, than top-5 accuracy (i.e., the proportion of bug
reports for which one of the first five recommended fixers
is the actual fixer).

8.2 Effect of Training Using the Last Frame

In our previous section, we use the same longitudinal data
setup described in Section 7.2. Shokripour et al. find that
training a prediction model by using the whole history of a
software system may cause a loss of performance [34].
Here, we would like to investigate whether it is the same
case for bug triaging. To perform such investigation, we
adapt the experiment setting described in Section 7.2, such
that in each fold, we reduce the training set to include only
the last frame. For example, in fold 9, we only use the bug
reports in frame 9 to build the prediction model, and test
using bug reports in frame 10.

Table 9 compares the performance of TopicMinerMTM with
the baselines in terms of top-1 and top-5 accuracies, respec-

tively. We notice still our TopicMinerMTM shows substantial
improvement over the baseline approaches. Moreover, we

notice that TopicMinerMTM using only the last frame achieves

a slightly better performance than TopicMinerMTM using all
of the historical bug reports. On average across the 5 projects,

TABLE 5
Model Construction Time, and Recommendation and Model Update Time, Across the 10 Folds, for TopicMinerMTM (TM ),

Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s Approach (Yang) in OpenOffice (in Minutes)

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 4.18 8.37 12.55 16.74 20.92 25.10 29.29 33.47 37.66 41.84 230.13
BZ 0.10 0.19 0.29 0.38 0.48 0.58 0.67 0.77 0.87 0.96 5.29
KL 2.43 4.85 7.28 9.70 12.13 14.55 16.98 19.41 21.83 24.26 133.41
SVM 3.43 6.86 10.30 13.73 17.16 20.59 24.02 27.46 30.89 34.32 188.77
AC 2.36 4.73 7.09 9.45 11.82 14.18 16.54 18.91 21.27 23.63 129.99
Yang 2.83 5.65 8.48 11.31 14.14 16.96 19.79 22.62 25.44 28.27 155.49

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 4.83 4.84 4.83 4.85 4.85 4.86 4.88 4.89 4.89 4.89 48.61
BZ 0.36 0.38 0.37 0.36 0.38 0.36 0.38 0.37 0.37 0.38 3.71
KL 0.71 0.7 0.71 0.71 0.72 0.72 0.71 0.73 0.73 0.73 7.17
SVM 1.04 1.04 1.04 1.06 1.05 1.06 1.06 1.06 1.08 1.08 10.57
AC 0.58 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.62 0.63 6.07
Yang 0.82 0.82 0.84 0.85 0.85 0.85 0.86 0.86 0.85 0.88 8.45

TABLE 6
Model Construction Time, and Recommendation and Model Update Time, Across the 10 Folds, for TopicMinerMTM (TM ),

Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s Approach (Yang) in Netbeans (in Minutes)

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 7.01 14.01 21.02 28.02 35.03 42.03 49.04 56.04 63.05 70.05 385.28
BZ 0.10 0.20 0.30 0.39 0.49 0.59 0.69 0.79 0.89 0.99 5.42
KL 3.73 7.45 11.18 14.90 18.63 22.36 26.08 29.81 33.53 37.26 204.93
SVM 4.63 9.25 13.88 18.50 23.13 27.76 32.38 37.01 41.64 46.26 254.44
AC 3.87 7.74 11.61 15.48 19.35 23.22 27.09 30.96 34.83 38.71 212.88
Yang 4.27 8.54 12.81 17.09 21.36 25.63 29.90 34.17 38.44 42.71 234.93

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 7.20 7.20 7.20 7.21 7.21 7.20 7.22 7.22 7.22 7.22 72.10
BZ 0.69 0.69 0.70 0.70 0.70 0.70 0.71 0.71 0.71 0.71 7.02
KL 0.89 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.91 0.91 8.98
SVM 1.09 1.09 1.10 1.10 1.10 1.10 1.11 1.11 1.11 1.12 11.03
AC 0.82 0.82 0.82 0.82 0.84 0.84 0.84 0.84 0.84 0.84 8.32
Yang 0.99 1.00 1.00 1.00 1.02 1.02 1.02 1.02 1.02 1.02 10.11
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the top-1 and top-5 accuracies for TopicMinerMTM trained
using only the last frame are 0.5864 and 0.8313, while these

scores for TopicMinerMTM using all of the historical bug
reports are 0.5607 and 0.8251, respectively.

8.3 Impact of Different Product-Component
Combinations

Considering some product-component combinations have
more bug reports, while some product-component combi-
nations have less, we also check whether there is any fall off
in performance for product-component combinations with
fewer bug reports. Tables 10 and 11 present the first 5 prod-
uct-component combinations which appear at least 10
times, and the top 5 product-component combinations
which appear the most in OpenOffice and Netbeans data-
sets, respectively. The columns correspond to the name of
the product (Product), name of the component (Compo-
nent), number of the times that the product-component
combination appears in our collected data (# Comb.), top-1

accuracy for TopicMinerMTM for bug reports that fall under
the product-component combination (Top-1), and top-5

accuracy for TopicMinerMTM (Top-5).
From Tables 10 and 11, we notice in general, as the num-

ber of bugs in the product-component combination
increases, the top-1 and top-5 accuracies also increase. For
example, for NetBeans dataset, the top-1 and top-5 accura-
cies for the product-component combination “serverplugin-
Code” are 0.20 and 0.50, while the top-1 and top-5 accura-
cies for the product-component combination “projects-
maven” are 0.73 and 0.98.

8.4 TopicMinerMTM versus TopicMinerLDA

TopicMiner can be paired with various topic models. To fur-
ther validate the benefit of our new topic model MTM, we
pair TopicMiner with LDA (TopicMinerLDA) and compare

its performance with TopicMinerMTM . To pair TopicMiner
with LDA, we simply modify the first step of TopicMiner,
described in Section 6, to use LDA instead of MTM. Notice

TABLE 7
Model Construction Time, and Recommendation and Model Update Time, Across the 10 Folds, for TopicMinerMTM (TM ),
Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s Approach (Yang) in Eclipse (in Minutes)

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 18.53 37.06 55.60 74.13 92.66 111.19 129.72 148.26 166.79 185.32 1,019.27
BZ 0.21 0.43 0.64 0.85 1.07 1.28 1.49 1.70 1.92 2.13 11.72
KL 9.65 19.29 28.94 38.58 48.23 57.88 67.52 77.17 86.81 96.46 530.53
SVM 14.70 29.39 44.09 58.78 73.48 88.18 102.87 117.57 132.26 146.96 808.28
AC 9.40 18.79 28.19 37.58 46.98 56.37 65.77 75.17 84.56 93.96 516.77
Yang 11.58 23.17 34.75 46.33 57.91 69.50 81.08 92.66 104.24 115.83 637.04

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 21.78 21.78 21.78 21.81 21.81 21.81 21.81 21.81 21.82 21.82 218.03
BZ 2.87 2.87 2.87 2.87 2.87 2.90 2.90 2.90 2.90 2.90 28.85
KL 2.58 2.58 2.58 2.58 2.58 2.60 2.60 2.60 2.60 2.60 25.90
SVM 3.02 3.02 3.02 3.03 3.03 3.03 3.03 3.04 3.04 3.04 30.30
AC 2.37 2.37 2.37 2.37 2.39 2.39 2.39 2.39 2.41 2.41 23.86
Yang 2.78 2.78 2.78 2.80 2.80 2.80 2.80 2.80 2.83 2.83 28.00

TABLE 8
Model Construction Time, and Recommendation and Model Update Time, Across the 10 Folds, for TopicMinerMTM (TM ),
Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s Approach (Yang) in Mozilla (in Minutes)

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 11.30 22.59 33.89 45.18 56.48 67.77 79.07 90.36 101.66 112.95 621.24
BZ 0.24 0.48 0.72 0.96 1.20 1.44 1.68 1.92 2.16 2.40 13.19
KL 6.33 12.67 19.00 25.34 31.67 38.01 44.34 50.68 57.01 63.34 348.40
SVM 8.55 17.10 25.64 34.19 42.74 51.29 59.83 68.38 76.93 85.48 470.13
AC 6.06 12.12 18.19 24.25 30.31 36.37 42.43 48.50 54.56 60.62 333.41
Yang 7.41 14.83 22.24 29.66 37.07 44.48 51.90 59.31 66.72 74.14 407.76

Approach
Model Construction Time

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total Time

TM 14.94 14.94 14.94 14.97 14.97 14.97 14.97 14.99 14.99 14.99 149.67
BZ 2.66 2.66 2.67 2.67 2.67 2.69 2.69 2.69 2.69 2.69 26.78
KL 1.92 1.92 1.92 1.94 1.94 1.94 1.94 1.94 1.94 1.94 19.34
SVM 2.34 2.34 2.34 2.35 2.35 2.35 2.35 2.38 2.38 2.38 23.56
AC 1.56 1.56 1.56 1.58 1.58 1.58 1.58 1.58 1.58 1.58 15.74
Yang 1.96 1.96 1.96 1.96 1.97 1.97 1.97 1.99 1.99 1.99 19.72
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LDA does not use the product-component combination
information, so we leave them out when training and using
LDA. After we get the topic distributions by leveraging
LDA, we then input the topic distributions with the prod-
uct-component combination information into TopicMiner.
TopicMiner considers both the topic distributions and prod-
uct-component combination to recommend developers.

Table 12 presents the top-1 and top-5 accuracies for
TopicMinerMTM and TopicMinerLDA. We notice that

TopicMinerMTM achieves better performance than

TopicMinerLDA. Across the five projects, TopicMinerMTM on
average improves top-1 and top-5 prediction accuracies of

TopicMinerLDA by 62.43 and 21.46 percent, respectively.

8.5 TopicMinerMTM versus TopicMinerLDA
Local

Here, we create a new baseline named TopicMinerLDA
Local. This

baseline first groups bug reports according to their product-
component combination. Next, for each group, we use LDA
to extract the topic distributions for the bug reports, and
build a TopicMiner model. For a new bug report, we first
get its product-component combination, and use the corre-
sponding TopicMiner model for the particular feature com-
bination to recommend fixers.

Table 13 presents the top-1 and top-5 accuracies for
TopicMinerMTM , and TopicMinerLDA

Local. We notice that

TopicMinerMTM achieves better performance than

TopicMinerLDA
Local. Across the five projects, TopicMinerMTM on

average improves top-1 and top-5 prediction accuracies of

TopicMinerLDA
Local by 53.87 and 19.67 percent, respectively.

Notice TopicMinerMTM uses both global (i.e., from all fea-
ture combinations) and local information (i.e., from a spe-
cific feature combination) to identify the topics of a bug

report, while TopicMinerLDA
Local only uses local information.

8.6 Adding Product and Component Information
to the Baselines

Here, we also incorporate product and component infor-
mation into the 4 baseline approaches (Bugzie, LDA-KL,
SVM-LDA, and LDA-Activity).7 We first divide the data-
sets into many small datasets, one for each feature

Fig. 22. Average top-1 and top-5 accuracies for TopicMinerMTM with dif-
ferent number of runs applied to GCC dataset.

Fig. 23. Average top-1 and top-5 accuracies for TopicMinerMTM with dif-
ferent number of runs applied to OpenOffice dataset.

Fig. 24. Average top-1 and top-5 accuracies for TopicMinerMTM with dif-
ferent number of runs applied to Netbeans dataset.

Fig. 25. Average top-1 and top-5 accuracies for TopicMinerMTM with
different number of runs applied to Eclipse dataset.

Fig. 26. Average top-1 and top-5 accuracies for TopicMinerMTM with
different number of runs applied to Mozilla dataset.

7. Notice Yang et al.’s approach incorporate the product and compo-
nent information into their recommendation model.
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combination (i.e., product-component combination). Next,
we train a model for each feature combination, and use the
model to recommend fixers for bug reports of the same fea-
ture combination. The goal is to check whether the baseline
approaches work better than TopicMinerMTM if they also con-
sider product and component information. Table 14 presents
the top-1 and top-5 accuracies. From the table, we notice the

improvement of our method over Bugzie, LDA-KL, SVM-
LDA, and LDA-Activity are substantial. Across the 5 projects,

TopicMinerMTM on average improves top-1 and top-5 predic-
tion accuracies of Bugzie by 60.34 and 12.46 percent, LDA-KL
by 99.68 and 32.33 percent, SVM-LDA by 80.87 and 26.14 per-
cent, LDA-Activity by 290.46 and 72.00 percent, respectively.

8.7 Impact on Different Number of Iterations

By default, we set the number of iterations for MTM as 500.
In this section, we also investigate the performance of
TopicMinerMTM with different number of iterations. We set
the number of iterations as 100-1,000, and every time
increase it by 100. Figs. 27, 28, 29, 30, and 31 present the top-

1 and top-5 accuracies for TopicMinerMTM with different

TABLE 9
TopicMinerMTM (TM ) versus Bugzie (BZ), LDA-KL (KL),
SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s

Approach (Yang), Respectively

Projects
Top-1 Accuracy

TM BZ KL SVM AC Yang

GCC 0.5117 0.2654 0.1546 0.2138 0.1765 0.3234
OpenOffice 0.5339 0.2945 0.2011 0.2765 0.1468 0.3814
Netbeans 0.7196 0.3119 0.2234 0.2432 0.1728 0.4321
Eclipse 0.6423 0.2552 0.1541 0.1325 0.0865 0.4214
Mozilla 0.5247 0.2134 0.1543 0.1537 0.1014 0.3009
Average. 0.5864 0.2681 0.1775 0.2039 0.1368 0.3718

Projects
Top-5 Accuracy

TM BZ KL SVM AC Yang

GCC 0.8041 0.5934 0.4270 0.4867 0.4123 0.7076
OpenOffice 0.7811 0.6006 0.5015 0.5062 0.3786 0.6542
Netbeans 0.8912 0.6012 0.4676 0.4812 0.3815 0.8614
Eclipse 0.9052 0.5372 0.3543 0.2865 0.1890 0.8234
Mozilla 0.7751 0.4756 0.3543 0.3156 0.2236 0.6785
Average. 0.8313 0.5616 0.4209 0.4152 0.3170 0.7450

TABLE 10
The First Five Product-Component Combinations Which Appear

at Least 10 Times, and the Top Five Product-Component
Combinations Which Appear the Most in OpenOffice Dataset

Product Component # Comb. Top-1 Top-5

performance code 10 0.00 0.00
udk documentation 12 0.08 0.17
Infrastructure documentation 12 0.25 0.58
App Dev vba 12 0.50 0.50
Base MySQL Conn 12 0.33 0.33
General ui 1334 0.43 0.68
gsl code 1634 0.43 0.73
Writer code 1668 0.55 0.83
Base code 2464 0.68 0.92
General code 2509 0.40 0.69

TABLE 11
The First 5 Product-Component Combinations Which Appear at
Least 10 Times, and the Top Five Product-Component Combi-

nations Which Appear the Most in NetBeans Dataset

Product Component # Comb. Top-1 Top-5

serverplugins Code 10 0.20 0.50
cnd ClassView 10 0.60 0.60
webservices Editor 10 0.40 0.70
ide Commit Validation 10 0.30 0.40
javascript JSON 10 0.50 0.60
Java Source 689 0.67 0.94
cnd Code Model 783 0.61 0.97
debugger Java 806 0.88 0.99
php Editor 1087 0.66 0.97
projects Maven 1132 0.73 0.98

TABLE 12
TopicMinerMTM (TM ) versus TopicMinerLDA (TL)

Projects
Top-1 Accuracy Top-5 Accuracy

TM TL TM TL

GCC 0.5048 0.2888 0.7864 0.6443
OpenOffice 0.5161 0.1573 0.7757 0.3687
Netbeans 0.6868 0.5383 0.9084 0.8881
Eclipse 0.6127 0.4278 0.8865 0.8265
Mozilla 0.4831 0.3136 0.7686 0.6690
Average. 0.5607 0.3452 0.8251 0.6793

TABLE 13
TopicMinerMTM (TM ) versus TopicMinerLDA

Local (T
L
Lo)

Projects
Top-1 Accuracy Top-5 Accuracy

TM TL
Lo TM TL

Lo

GCC 0.5048 0.3043 0.7864 0.6649
OpenOffice 0.5161 0.1854 0.7757 0.4032
Netbeans 0.6868 0.5621 0.9084 0.8654
Eclipse 0.6127 0.4456 0.8865 0.8321
Mozilla 0.4831 0.3245 0.7686 0.6821
Average. 0.5607 0.3644 0.8251 0.6895

TABLE 14
TopicMinerMTM (TM ) versus Bugzie (BZ*), LDA-KL (KL*),
SVM-LDA (SVM*), and LDA-Activity (AC*), Respectively

Projects Top-1 Accuracy

TM BZ* KL* SVM* AC*

GCC 0.5048 0.2808 0.1780 0.2470 0.0531
OpenOffice 0.5161 0.3314 0.1461 0.1602 0.0546
Netbeans 0.6868 0.4333 0.4356 0.4594 0.2362
Eclipse 0.6127 0.4186 0.3891 0.3915 0.2605
Mozilla 0.4831 0.2842 0.2552 0.2920 0.1137
Average. 0.5607 0.3497 0.2808 0.3100 0.1436

Projects Top-5 Accuracy

TM BZ* KL* SVM* AC*

GCC 0.7864 0.6638 0.5380 0.6021 0.2542
OpenOffice 0.7757 0.6739 0.3529 0.3519 0.2156
Netbeans 0.9084 0.8392 0.8422 0.8553 0.7638
Eclipse 0.8865 0.8230 0.7852 0.8131 0.7342
Mozilla 0.7686 0.6684 0.5992 0.6482 0.4309
Average. 0.8251 0.7337 0.6235 0.6541 0.4797
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number of iterations for GCC, OpenOffice, Netbeans,
Eclipse, and Mozilla datasets, respectively. We notice that
when we increase the number of iterations from 100 to 500,

the performance of TopicMinerMTM is increased. However,
when we increase the number of iterations from 500 to

1,000, the performance of TopicMinerMTM remains more or
less the same. In practice, we will need more time to run
MTM if we set a high number of iterations. Thus, we recom-
mend MTM users to set the number of iterations as 500.

8.8 Impact on the Preprocessing of Terms and
Fixers

In the preprocessing of our datasets, we exclude bug fixers
who appear less than 10 times to reduce noise (follow-
ing [10], [38]), and we also remove terms which appear less

than 10 times to reduce noise and speed up the bug triaging
process (following [10], [38]). In this section, we also investi-
gate the performance of TopicMinerMTM with all of the
terms and fixers in the five datasets. Table 15 presents the

top-1 and top-5 accuracies of TopicMinerMTM compared
with the baseline approaches in this noisy setting. On

average, TopicMinerMTM achieves top-1 and top-5 accura-
cies of 0.5321 and 0.7736 respectively. We notice that

TopicMinerMTM achieves a better performance in the default
setting than the noisy setting – which is expected. The same

Fig. 27. Top-1 and top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the GCC dataset.

Fig. 28. Top-1 and top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the OpenOffice dataset.

Fig. 29. Top-1 and top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the Netbeans dataset.

Fig. 30. Top-1 and top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the Eclipse dataset.

Fig. 31. Top-1 and top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the Mozilla dataset.

TABLE 15
Top-1 and Top-5 Accuracies of TopicMinerMTM Compared with

the Baseline Approaches in the Noisy Setting

Projects
Top-1 Accuracy

TM BZ KL SVM AC Yang

GCC 0.5068 0.2250 0.1290 0.1739 0.1345 0.2654
OpenOffice 0.5077 0.2509 0.1727 0.2315 0.1189 0.3348
NetBeans 0.6432 0.2913 0.1789 0.2123 0.1456 0.4212
Eclipse 0.6220 0.2234 0.1123 0.1036 0.0712 0.3945
Mozilla 0.4724 0.1894 0.1432 0.1345 0.0783 0.2714
Average. 0.5504 0.2360 0.1472 0.1711 0.1097 0.3375

Projects
Top-5 Accuracy

TM BZ KL SVM AC Yang

GCC 0.7923 0.5513 0.3812 0.4432 0.3723 0.6645
OpenOffice 0.7623 0.5514 0.4652 0.4532 0.3334 0.6512
NetBeans 0.8543 0.5543 0.4234 0.4313 0.3323 0.8213
Eclipse 0.8923 0.4832 0.3234 0.2513 0.1704 0.7945
Mozilla 0.7603 0.4344 0.3234 0.2789 0.1923 0.6345
Average. 0.8123 0.5149 0.3833 0.3716 0.2801 0.7132
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reduction in performance applies to all baselines. Further-

more, TopicMinerMTM still outperforms the baseline
approaches by substantial margins even in the noisy setting.

8.9 Threats to Validity

Threats to internal validity relates to errors and bias in our
experiments. We have double checked our experiments and
datasets. Still there could be errors that we did not notice.
For the ground truth selection, to ensure the fixers in the
bug reports are the true bug fixers, we follow the previous
approaches such as [38]. We first collected the bug reports
which have status of “closed” and “fixed” to ensure these
bugs are real bugs and have been fixed. Next, we extracted
the fixers in the “assigned to” field. The final fixer who fixed
the bug would be recorded into the “assigned to” field. To
further reduce the threats due to ground truth identifica-
tion, we also remove the bug reports with the “assigned to”
fields set to generic names.

Our settings for the parameters of LDA and MTM might
not be optimal; to minimize this threat we have investigated
various numbers of topics and used the same settings for
LDA and MTM. Also, even with the suboptimal settings,
our approach has outperformed Bugzie, which is one of the
state-of-the-art approaches.

In the paper, we use the value of the product and compo-
nent fields as inputs to MTM. Values of product and compo-
nent fields have been used by a number of previous studies
on bug report management [29], [37], [39], [43]. In the bug
triaging process, the appropriate fixer is typically deter-
mined after the values of the product and component fields
are determined. For example, in Mozilla8 and Eclipse9,
when users report a bug, they are required to fill the prod-
uct and component fields, and then the bug triager would
find the appropriate fixer. The values of the product and
component fields can be changed during the life time of a
bug report. In this work, we use the final values of the prod-
uct and component fields. Thus, we are also interested to
check whether the final values of these fields are typically
determined before the final bug fixer is determined. We ana-
lyze the bug reports of GCC, OpenOffice, Netbeans,
Mozilla, and Eclipse, and we find that for 86.52, 85.22, 38.03,
79.83, and 85.33 percent of the bug reports of the respective
software projects the product and component fields are
finalized first before the final bug fixers are assigned. Notice
that for Netbeans, the percentage is low; we asked some
developers in the Netbeans development community and
they told us that this is due to the community maintenance
process – i.e., many products and components are renamed
and the values of the product and component fields of older
bug reports are changed to reflect the new names. Despite
the difference between Netbeans and the other datasets, we
include it for diversity purpose. Reclassifications of old
products and components happen in practice, and we need
to investigate if our approach works well for such situation.
For the other four software projects, most of the bug reports
have their product and component fields finalized before
the fixer is determined. Thus, we believe the usage of the

product and component fields is realistic and the values of
these fields can be used to help find a suitable fixer in
practice.

Threats to external validity relates to the generalizability of
our results. We have analyzed 227,278 bug reports from five
software systems. In the future, we plan to reduce this
threat further by analyzing more bug reports from more
software systems.

Threats to construct validity refers to the suitability of our
evaluation measures. We use top-1 and top-5 accuracies
which are also used by past bug triaging studies [10], [20],
[38]. Thus, we believe there is little threat to construct
validity.

9 RELATED WORK

9.1 Automated Bug Triaging

There are a number of machine learning and information
retrieval approaches for automatic bug triaging [7], [8], [15],
[20], [22], [26], [27], [35], [38]. Anvik et al. and Cubranic
et al. propose the bug triaging problem, and use machine
learning methods such as Naive Bayes, SVM, and C4.8 to
solve it [7], [15]. Jeong et al. propose to use a bug tossing
graph to improve bug triaging prediction accuracy [20].
Bhattacharya et al. improve the accuracy of the approach by
Jeong et al. further by proposing a multi-feature tossing
graph [10]. Tamrawi et al. [38] propose a method called
Bugzie, which uses a fuzzy set and cache-based approach to
increase the accuracy of bug triaging. Naguib et al. propose
a method that compares a bug report to developers in topic
space by leveraging LDA [27]. They first categorize bug
reports into topics by using LDA, and then create activity
profiles for developers in a bug tracking system. A profile
contains two parts: developer’s role and topic associations.
These profiles are then used to recommend developers for
new bug reports. TopicMinerMTM and LDA-Activity use dif-
ferent topic models and the formulas used to compute the
suitability of a developer to a bug report also differ. To
assign topics to words in bug reports, we build a specialized
topic model, i.e., MTM, that takes special characteristics/
features of bug reports into consideration. Also, to compute

developer topic associations (i.e., m
f
b ðdÞ, the similarity

between a developer and a topic), different from LDA-

Activity, TopicMinerMTM considers feature combination and
the rarity of a topic (i.e., the denumerator of Equation (8)).
To predict bug fixers, LDA-Activity considers developer
historical contributions not only as fixers but also in other

roles (i.e., reviewers and assigners). TopicMinerMTM focuses
on developer contributions as fixers; it ignores developer
contributions in other roles which might introduce noise.

We have shown that TopicMinerMTM outperforms LDA-
Activity by a substantial margin.

Yang et al. also use LDA to extract topics from bug
reports, and find bug reports related to each topic [46]. For
a new bug report, their approach first decides the topics of
the bug report. Then they utilize multiple features (i.e., com-
ponent, product, priority and severity) to identify similar
reports that have the same set of features as the new bug
report, and recommend developers based on the similar
reports. Our approach is different from Yang et al.’s
approach. First, we design a specific topic model named

8. https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_
writing_guidelines

9. https://bugs.eclipse.org/bugs/page.cgi?id=bug-writing.html
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MTM which incorporates the multi-feature information into
the topic model while Yang et al. only use LDA. Second,
Yang et al. use severity and priority fields in the bug reports;
however, in practice, most of the bug reports set their sever-
ity and priority values as the default value [44].

There have been a number of automatic bug triaging
methods that use other information sources aside from bug
reports, e.g., commits and source code comments. A num-
ber of approaches use feature location techniques to find
program units (e.g., files or classes) that are related to a
change request (i.e., bug report or feature request) and then
mine commits in version control repositories or comments
in source code files to recommend appropriate develop-
ers [21], [24], [33]. The success of these approaches depends
on the accuracy of feature location techniques which are
often still low [32]. Also, the quality of the code comments
and commits information can be poor due to outdated com-
ments [19], unavailability of authorship information for
authors without commit rights in CVS and SVN reposito-
ries [23], etc. In this work, we focus on analyzing textual
information available in bug reports to recommend appro-
priate fixers.

9.2 Other Studies on Bug Report Management

Somasundaram and Murphy propose LDA-KL and SVM-
LDA to recommend appropriate components to a bug
report [35]. They first extract topic distributions of bug
reports by using LDA, and then use KL-divergence and
support vector machine to recommend appropriate compo-
nents. LDA-KL computes the similarity between the topic
distribution of a new bug report with the average topic dis-
tribution of a collection of bug reports belonging to the
same unit (i.e., component). The units with the least diver-
gence are recommended. SVM-LDA works by inputting
topic distributions of training (historical) bug reports and
their labels (i.e., components they belong to) to a SVM to
create a classifier. This classifier is then used to predict
labels of a new bug report. In this work, we adapt LDA-KL
and SVM-LDA for bug fixer recommendation; we do so by
considering bug reports fixed by the same developer as a
unit (for LDA-KL) and by considering bug fixers as labels
(for SVM-LDA). We have compared TopicMinerMTM with

LDA-KL and SVM-LDA, and shown that TopicMinerMTM

outperforms these baselines.
Bortis and van der Hoek propose Porchlight which

allows developers to tag bug reports and search bug reports
of interest using a query language [13]. Our work, similar to
past automated bug triaging solutions [7], [8], [15], [20],
[26], [27], [35], [38] is complementary to Porchlight. Porch-
light can be used along with automated bug triaging solu-
tions to navigate through a large number of bug reports and
assign appropriate developers to each one of them.

Related to bug triaging studies, a few studies recommend
people that would participate in a bug resolution pro-
cess [41], [43], [45]. These people include triagers, fixers,
and other people that post one or more comments in a dis-
cussion thread, corresponding to a bug report, in a bug
tracking system. For example, Xia et al. use LDA and multi-
label learning to recommend participants in a bug resolu-
tion process [43]. Different from these studies, in this work,
we focus on the bug fixers. For a bug report, since there is

only one fixer but there are many participants to the bug
resolution process, we address a more difficult problem.
Different from the approach in [43], we propose a new topic
model, named MTM, and show that it can outperform LDA
for bug triaging.

9.3 Specialized Topic Model

Nguyen et al. propose a specialized topic model to find
buggy source code files [28]. Nguyen et al. propose another
topic model to detect duplicate bug reports [29]. Our work
is orthogonal to the above studies and our topic model is
also different from the models used in the above studies.
MTM assigns topics to words in a bug report from the topic
distribution of the corresponding feature combination of
that report. We need to consider feature combination for
bug triaging as many developers are more familiar with a
particular set of product and component combinations than
other combinations. However, for bug triaging, there is no
need to consider the topic distribution of buggy source code
files (considered in [28]) or the topic distribution of buggy
concepts shared by bug reports that are duplicate of one
another (considered in [29]).

10 CONCLUSION AND FUTURE WORK

We propose a new topic model based bug triaging
approach, named TopicMiner, and a new topic model,
named multi-feature topic model, which takes into consid-
eration the features of a bug report when assigning topics to
words in the report. We have evaluated our solution on
227,278 bug reports from five software systems and demon-
strate that TopicMinerMTM outperforms Bugzie, LDA-KL,
SVM-LDA, LDA-Activity, and Yang et al.’s approach by
substantial margins.

In the future, we plan to improve the effectiveness of our
approach further, and investigate additional bug reports.
Also, in this work, we merge the two features (i.e., product
and component) as one composite feature (i.e., by creating a
feature combination). Other ways of using the multiple fea-
tures exist and we plan to explore them in a future work.
We also plan to design a better topic model to predict fixers
when the number of bug reports in a specific product-com-
ponent combination is small (e.g., by using a mixture of
models which includes a general model that the approach
can back off to when the number of bug reports in a specific
product-component combination is small).
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