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Location Matters: Geospatial Policy Analytics over Time for Household
Hazardous Waste Collection in California
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!'School of Information Systems, Singapore Management University
2W.P. Carey School of Business, Arizona State University

Abstract

By integrating mapping and geospatial data into a county-level dataset for exploratory analysis, we will
demonstrate how to provide useful insights for waste managers and local governments regarding spatial
patterns of household hazardous waste (HHW) collection and how it changes over time. We use map-
based visualization to display patterns of spatial intensity and county locations for HHW collection in
California from 2004 to 2015. We use exploratory spatial data analytics methods to characterize the
spatial distribution of HHW collected per person. When we considered the spatial relationships, we were
able to develop and estimate a geographically-weighted regression to explain how different regional factors
influence the amount of HHW collected. These factors include demographic characteristics, HHW man-
agement policy instruments, and environmental quality enforcement and consideration of these factors

are necessary to create a successful recycling program.
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1 Introduction

The essence of sustainability is human society’s capacity to control and manage the waste that it creates
S0 as to not damage the ecosystems and environment that we exist within and which support us. Household
hazardous waste (HHW) represents leftover household products containing corrosive, ignitable, or reactive
materials that can create adverse impacts on the environment and people’s health if they are not disposed
of properly (U.S. EPA, 2014a).

This research contributes to sustainability science, which “probes the interactions between global,
social, and human systems, the complex mechanisms that lead to the degradation of these systems, and
concomitant risks to human well-being” (Springer, 2016). Geographic information science is essential in the
study of sustainability to develop spatially-oriented models of nature and society. It enables us to bring
geographical and other data together, to make sense of the data, and to communicate the results to relevant
policymakers (Davis et al., 2011). This research aims to support policy-makers in formulating effective
policies, particularly area-oriented environmental policies related to HHW. It also demonstrates the blending
— an analytical fusion — between machine-based data visualization and explanatory empiricism, that in-
creasingly characterizes computational social science (Chang et al., 2014).

We assess and evaluate the spatial patterns of HHW collection activities and the impacts of the
related policies in one state, California, in the U.S. These activities involve state and local governments and
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participating households (U.S. EPA, 2000). State and local governments provide HHW permanent or tem-
porary facilities to collect, transfer, process, recycle and dispose of waste safely (U.S. EPA, 2013). They
perform load-checking for hazardous materials in trash before disposal in landfills and organize HHW col-
lection events, door-to-door HHW collection programs, and HHW-related educational campaigns. The suc-
cess of waste collection activity depends on the participation of households that identify, segregate, store
and transfer the hazardous waste for collection. If the maximum number participate in waste collection
programs, then most hazardous material can be diverted so it will not enter landfills with trash or mix with
storm water. This will prevent HHW-led contamination.

Studies on recycling and waste management have been mostly done using household survey data,
with cross-sectional data analysis or panel data analysis. Some authors have conducted economic work to
understand the incentives related to the generation of HHW and recycling (Callan and Thomas, 2006;
Morris and Holthausen, 1994; Richardson and Havlicek, 1978; van den Bergh, 2008). Others have examined
its non-economic determinants (Bartelings and Sterner, 1999), and rates at which it accumulates and gets
recycled (Abbott et al., 2011; Sidique, 2010).

Some studies were performed using county-level aggregated data (Lim-Wavde et al., 2016; Saphores,
2006). An exception is the work of Jenkins et al. (2003), who assessed recycling of waste for 20 U.S metro
areas for households. These authors did not consider spatial autocorrelation, nor did they examine other
spatial relationships. If there were differential spatial effects, regression models that only handled time-wise
but not spatial autocorrelation would have produced less-than-best policy inferences (Voss, 2006). We con-
sider spatial relationships.

Analysis using data with a geographical dimension yields useful insights for different localities. But
spatial patterns may change over time as well due to shifts in influential factors or determinants. Thus,
exploratory analysis of data with space-time structure may reveal interesting spatiotemporal patterns. Un-
derstanding them can provide useful input for policy-makers and government officials to evaluate the man-
agement of HHW programs.

We ask: (1) Were there key spatial patterns of HHW collection during the study period? (2) Did
they change over time? (3) Why did the amounts of HHW collected differ spatially across counties and
regions?

The main findings are: (1) There is evidence of spatial patterns in the distribution of HHW collec-
tion density across different California regions. We discovered clusters of counties with high HHW collection
density in the north and spatial outliers for counties with lower density compared with neighboring counties
in Central California. (2) County members of the spatial clusters and outliers changed over the years. (3)
The factors for HHW collection had varied influences in the regions. HHW programs seemed to be more
cost-effective in the northern than southern region. We attribute these findings to commonalities in large
states: a population that is ethnically and economically partitioned into discrete areas in the state, causes
substantive differences in recycling practices.

2  Background

Several studies applied spatial data analysis to examine waste management issues. We use them to trian-
gulate toward methods that answer our research questions and support helpful policy analytics uses.

Zhang et al. (2015) analyzed the spatial patterns of municipal solid waste (MSW) generation and
its determinants in the island city of Xiamen in China. They mapped and analyzed MSW generation quan-
tities and densities using spatial autocorrelation tools in ArcGIS. They found global spatial autocorrelation
for MSW generation quantities and densities, and detected MSW hotspots concentrated in industrial zones
and downtown areas. They showed that commercial and vacant land areas influenced seasonal and MSW
quantities and densities.

There has been other research that has focused on foreign direct investment, international trade,
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and the concentration of pollution and hazardous waste in places that are most advantageous for such
production to occur and the related effluents and waste to be produced. This phenomenon is called the
pollution haven hypothesis (Cole, 2004), and is associated with changes in the global spatial patterns of
manufacturing production (Janicke et al., 1997). The interest in macro-spatial issues related to hazardous
waste and the potential for environmental damage is also connected to free trade and the growth of global
commerce (Antweiler et al., 2001; Cole, 2000).

Waste mitigation includes reducing the adverse impacts of environmental waste by separating,
collecting, processing, and recycling waste, particularly recyclable and hazardous waste. Agovino et al.
(2015) analyzed spatiotemporal data in Italy on differentiated kinds of waste that were separated and
collected for recycling (organic, packaging, bulky, electronic, and textile waste). They studied pro-environ-
mental behavior characterized by a higher rate of differentiated waste to total waste collected. Using ex-
ploratory spatial data analysis, they observed an uneven distribution of annual average differentiated waste
collection rates, specifically, a cluster of provinces with high rates in northern Italy and another cluster of
provinces with low rates in the central and southern parts. They also modeled the spatial and time dynamics
of spatial spillover effects between contiguous provinces using a spatial Markov transition analysis model,
with one region’s performance influencing another’s. Provinces with best or less-than-best observed pro-
environmental behavior influenced those nearby.

Tong and Wang (2005) examined the different spatial patterns of recycling for electronic waste in
the rural areas of China. They selected rural districts that were especially influenced by the creation of new
infrastructure and manufacturing capabilities to produce electronic products for export in global trade.
They noted that the issues with electronic waste are not isolated to China, but are a by-product of the
global flows of international trade, and the different kinds of waste associated with them.

Others focused on different forms of hazardous waste in different municipal and geographic settings.
Abbott et al. (2011) found that there was substantial variation in household-level recycling of waste in
different geographical regions in the U.K. They discovered how different recycling collection policies affected
waste recycling rates in 2006 to 2008 in 434 municipal management areas. Another example is the causal
and explanatory work of Lasaridi et al. (2009) on regional and municipal differences in waste management
costs in Greece in the 2000s. The authors had difficulty capturing accurate data on the economic geography
of waste production.

3 Context and Data

For this research, we collected spatial data and public data from government agencies and websites. The
study period covers 2004 to 2015 based on California’s Department of Resources Recycling and Recovery
records (CalRecycle, 2015a, 2015b). It handles hazardous waste collection and recycling program-related
data across the state’s 58 counties.

3.1 Context: California

California is the third largest state in the U.S., and it has highly diverse urban and rural counties, with
varied demographics, income and wealth levels. The Northern California region is comprised of 48 counties
and the Southern California region has just 10. Central California includes Fresno, Kings, Madera, Mari-
posa, Merced, Monterey, San Benito, Stanislaus, Tulare and Tuolumne counties. The level of environmental
awareness of its people for recycling practices with solid and hazardous waste is quite advanced.

Many have argued, however, that California is most appropriately seen as a collection of sub-states
rather than as a single state. Indeed, a ballot initiative was proposed for a November 2016 vote to divide
California into six different states ranging from Jefferson (the northern part of what is currently California)
down to Southern California which borders Mexico (Chausee, 2014). Sponsored and funded by venture
capitalist, Tim Draper, the argument is that California is simply too diverse and too large to be efficiently
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governed as a single state. This is not the first effort to subdivide California into smaller states: rather this
is simply the latest in over 220 proposals to divide California since its admission to the U.S. in 1850, and
at least 27 of the proposals were seen as serious ones (Wood, 2011). In short, California is an excellent
natural laboratory to examine the differential effects of recycling decisions on demographically and econom-
ically diverse populations.

Public and county-level agencies each year submit data to CalRecycle covering HHW collection
and recycling for the period July 1 to June 30. They do this via “Form 303” (CalRecycle, 2015). It captures
the HHW collection and recycling quantities for various material categories, collection program types, and
disposal methods. We aggregated the data by summing the county collected waste weights, by report year.
We also used direct HHW collection costs from fiscal years 2007/2008 to 2012/2013 with county aggregation.

3.2 Context: Data and Variables

The mapping and geospatial data of California and its county boundaries were acquired from GADM (2015)
Version 2.8. This dataset covers 58 counties. For the map projections, we used North American Datum of
1983 (NADS83) that was officially adopted by California (Erickson, 1994).

The counties varied by wealth, geographic area, and the extent to which they were mostly urban
or rural (USDA, 2013). Our dataset for the present spatiotemporal research covers only 39 counties, which
was dictated by the sufficiency of demographic data during the study period on HHW output. To supple-
ment the data from CalRecycle, we collected county and demographic data from the U.S. Census Bureau’s
(2012). They include population, household rental rate, household income, and high school graduation rate,
among other variables. We collected HHW grant awards data from CalRecycle’s (2016) Grants Database.
We obtained the number of Resource Conservation and Recovery Act (RCRA)! penalties from the Envi-
ronmental Protection Agency (U.S. EPA, 2016) Enforcement and Compliance History Online (ECHO)? and
aggregated the data by county and year. (See Tables 1 and 2.)

VARIABLES DEFINITIONS

Pop Population in county (millions of people)
MeanHHInc Mean household income in county (US$ 0,000s)
EduHS% % population over 25 with high school diploma
Rental% % of household who rented a house

MCLViol# # contaminant-level violations in drinking water
Penalty# # Resource Conservation Recovery Act penalties
HHWGrant$ ~ HHW grant(s) awarded (US$ millions) /person
HHWPro- HHW collection costs (US$ / person)

gram$

HHWCollD Quantity HHW collected (in lbs/person)

Table 1. Variables for counties and HHW-related observations

VARIABLES \ MEAN STDDEV MEDIAN
Pop 982,072 1,716,439 432,637
EduHS% 83% 8% 86%
Rental% 42% % 43%
HHInc $85,750 $26,094 $81,995
HHWGrant$ $0.04 /person $0.16 /person $0/person
HHWDProgram$ $0.54/ person $0.91 /person $0.04 /person
MCLViol 95.28 121.83 41
Penalty 0.18 0.56 0
HHWColID 5.28 1bs./person 5.07 1bs./person 3.12 1bs./person
Notes. #0bs: 468, 39 counties, 2004-2015. HHWProgram$ only includes data from 2007-2012.
Some variables computed via multiple sources.

Table 2. Description of the county-level variables

' RCRA governs disposal of solid and hazardous waste. The Environmental Protection Agency (EPA) controls hazardous waste
g;oncmtion, transport treatment, storage, and disposal.
We use RCRA’s last penalty date for penalties in a county in a year.
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4 Analysis

We next discuss the two main methods employed in this research: spatial autocorrelation analysis and
geographically-weighted regression. They constitute the explanatory empiricism portion of this research.

4.1 Spatial Autocorrelation
We use the global Moran (1950) measure for the characteristics of the overall spatial distribution of HHW
collection density in California. It is a spatial autocorrelation index:
N YiXjwij(vi-¥);—¥)

I =
XiXjwij 2iyi—¥)?

(1)

where N is the number of spatial analysis units (in our case, the number of counties), y; (or y;) is the HHW
collection density in county i (or j), ¥ is the mean of all observed HHW densities, and wy is the spatial
weight matrix. The value of the index ranges from -1 to 1. Its interpretation is: (1) I > 0 indicates a
clustering pattern; and (2) I < 0 suggests a dispersion pattern. Also (3), if I =0, then a random spatial
pattern is indicated.

To identify clusters of HHW collection density, we calculated the local Moran index for each county:

Iy = y;? Mijeiwij;—¥) and SE= W -y? (2)

As in Eq. 1, N is the number of spatial analysis units (in our case, the number of counties), y; (or y;) again
is the HHW collection density in county i (j), ¥ is the mean of all observed HHW densities, and wy is the
spatial weight matrix. The interpretation of this index is: (1) if I is significant and positive, county i is
associated with the surrounding counties with high densities of HHW, but if (2) I is significant and negative,
then county i is associated with surrounding counties with low densities of HHW.

The spatial weight matrix (wy) is a matrix that defines the relationships among the features in the
dataset.® California has diverse geography and land areas. Northern California consists of counties with
smaller land areas, while the south has counties with larger land areas. If we use contiguity-based weighting,
then some counties will have many neighbors and some others will have very few. We decided to use an
adaptive distance-based weight matrix. This is calculated using a bi-square distance function with an adap-
tive distance limit but a fixed number of neighboring counties. This ensures the same number of neighboring
counties when calculating the spatial weight of a pair of counties. The function is discontinuous and excludes
observations beyond distance b; the weights decrease as the distance between observed points (dy) increase.?

4.2 Geographically-Weighted Regression

When spatial autocorrelation exists in a dataset, modeling the data using an ordinary least squares regres-
sion model will not capture the spatial variation across the different areas of study. For better policy
inferences with data on the geography dimension for our explanatory empirical approach, geographically-
weighted regression (GWR) is used to capture spatially-varying relationships between the dependent and
independent variables (Brunsdon et al. 1996):

# Generally, there are three different types of weights: contiguity-based, distance-based, and kernel weights. Contiguity-based weights
only consider the other counties that share the same boundary as their neighbors. Distance-based weights are specified using a function
of the distance separating the counties; the neighbors can be determined using the k-nearest neighbor criterion or distance bands (or
thresholds). Kernel weights combine the distance based thresholds together with continuously-valued weight functions, such as bi-
square, tri-cube, exponential, or Gaussian functions. We performed sensitivity analysis by calculating the weight matrices using these
functions, and we found that bi-square function allowed us to detect more counties in the spatial clusters compared to the other
functions.

2
L 4)?\" ) . _ .
! The function is: w; ;= [1(1 - (T) if |dij| < b, and 0 otherwise. For a fixed number of neighbors, we needed a large enough sample size
to calculate the spatial attocorrelation. We tested the results using 20, 25, 30, and 35 neighbors. Finally, we sclected 30 because this enabled
us to detect the highest number of counties in the spatial clusters. Distance between counties is by population centroid coordinates.
Compared with the geographic county centers, centroids capture spatial autocorrelation and uneven distributions of population in
counties of household waste collection better.
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Vi = Bio + Lk=1 BuxXix + € (3)

The dependent variable y; is for location or county i, xy is the value of independent variable k at county i,
m is the number of independent variables, and €; is the error for county i. We estimate the fs for each
variable k for county i using a weighted least squares approach. The parameter estimate is:

Bi = X"W (u;, v)X) " XTW (uy, vy

X is the independent variables matrix with a column of 1s for intercepts; y is the dependent variable vector;
Bi = Big - Bim)T is the vector of m + 1 regression coefficients; and W is the diagonal matrix for geograph-
ically weighting the observed data for county i at location (u;, vi), which is the county seat coordinate. The
weighting is via a kernel weighting function. We use equal spatial weights for all counties for the global
regression, and then we apply the weight matrix computed using an adaptive bi-square distance function
(as in spatial autocorrelation analysis).

We model HHW collection density as linear in HHW-related policy, policy enforcement, and de-
mographics. We include county demographic factors: the percentage of high school graduates (EduHS%),
household income (HHInc), and the percentage of rental households (Rental%) as independent variables.
Households with higher incomes have more time to participate in HHW programs. More educated people
should be more knowledgeable about HHW risks and can obtain information related to HHW programs.
Rental household percentage represents community attachment. Renters will be less attached than owners.
More renters imply less HHW collection.

An effective HHW-related policy maximizes household participation in collection programs. We
identified two factors that are crucial in the operation of HHW collection programs: HHW collection costs
and HHW grant awards. HHW collection costs cover costs required for collection programs from permanent,
temporary, and recycle-only facilities, door-to-door collection and curbside programs, load checking, and
collection events. The costs are financed by waste parcel and garbage fees, grants from CalRecycle, shared
cost with retail partners, hazardous waste surcharges, and sales of recyclable waste. These costs, HHWPro-
gram$, should have a positive association with HHW collected per person.

HHW grant awards, HHWGrant$ per person, are from CalRecycle to help local governments, cities,
counties, and local waste agencies responsible for HHW management to establish and expand programs
(CalRecycle, 2016). They provide permanent collection facilities with effective HHW public educational
programs and campaigns. This funding targets new programs for rural and under-served areas, and expan-
sion of programs in small cities and regions. These grant awards should have a positive association with
HHW collected per person.

Policy enforcement influences people’s environmental awareness and their actions. In some countries
and regions, HHW is banned from the trash. Enforcement influences household behavior in managing their
HHW. We could not obtain data to directly measure HHW ban enforcement. So we used proxies for en-
forcement that may influence household waste management: contaminant level violations in drinking water
(MCLViol#); and Resource Conservation and Recovery Act (RCRA) penalties (Penalty#). More of these
represent more enforcement effort. When households perceive policies are enforced, they are more likely to
dispose of HHW properly.

For waste generation in system-wide materials management, we must consider consumer product
purchases with hazardous content as determining HHW collection. However, it was difficult to obtain this
data from public sources. So we rely on the demographic characteristics instead.

5 Results

We next present our spatial visualization and geographically-weighted regression results. These methods
demonstrate how machine-based identification of spatial clusters plus explanatory empiricism deliver policy
analytics. Note that we used data collected from 58 counties for the global and local Moran’s I statistics
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estimates. This is because we don’t need to use demographic data in this analysis. For the geographically-
weighted regression analysis, we used data from 39 counties, as described in Table 1 and 2.

5.1 Spatial Visualization

In 2007, the amount of HHW collected in California was about 97 million pounds, the highest from 2004 to
2012. The choropleth map in Fig. 1 shows the HHW density distribution. This was created by normalizing
HHW quantity in pounds relative to the size of the population in the county. The shaded color class
intervals were calculated using the natural breaks classification method (Jenks and Capsall, 1971) with R
classInt (Bivand, 2015).

From the choropleth maps of HHW collection density from 2004 to 2015, we observed that medium
to high densities (8-28+ 1bs./person) of HHW collected occurred in Northern California and parts of Central
California, particularly the Sierra and Coastal Mountains Regions (Sierra, Nevada, Yuba, Placer, Trinity,
Lassen, Inyo). Some counties in the North and Central Coast Regions (Mendocino, Marin, Sonoma, Santa
Barbara) collected moderate HHW amounts (4-13 1bs./person). Counties that collected less than 2 1bs/per-
son were in Central and Southern California (Alameda, Butte, Fresno, Humboldt, Imperial, LA, Madera,
Modoc, Mono, Riverside, San Diego, Stanislaus, Tulare). Collection density varied dramatically across areas.
In 2014, Alpine County, which did not report any HHW collection before then, collected about 538 1bs./per-
son. This was a very high density of HHW amount compared to other counties.

lbs/person

25

20

o

1 0

Fig. 1. Choropleth map of HHW collected, 2007

The global Moran statistics confirmed that there were clustering patterns in HHW collection density in
California from 2004 to 2015. Table 3 suggests that Moran’s I was > 0 for all of our study years. A larger
value of the statistic represents a larger clustering pattern, and I was largest in 2011. The size of clusters
decreased from 2004-2005, increased in 2005-2006, decreased in 2006-2009, increased in 2009-2011, and then
decreased again from 2011-2015.

YEA MORAN’S I
R
2004 0.068***
2005 0.044%*
2006 0.179%**
2007 0.176%+*
2008 0.155%+*
2009 (0.129%**
2010 0.178%*+*
2011 0.216+*+*
2012 0.131%+*
2013 0.098***
2014 0.107***
2015 0.108%**
Note. Signif..*** p < 0.01, ** p < 0.05

Table 3. Global Moran’s I test results for HHW collection density, 2004-2015
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The local Moran’s I statistic allows us to calculate the index for each county. After calculating them, we
created a local indicator of spatial association (LISA) cluster map (Anselin, 1995). We did so to visualize
and identify the locations of spatial patterns and hotspots based on the magnitude of spatial correlation.
Fig. 2 gives the LISA clusters for HHW collection density in 2011. We only mapped local Moran’s Is if they
were at the 5% significance level.

Yuba
Lassen Sierra
Nevada
‘\ Placer

El Dorado
Madera ———=¥ Calaveras
Fresno —*
Kings "7 0 Insignificant
Tulare B Low-Low
O Low-High
0 High-Low
B High-High

Fig. 2. Indicators of spatial association, 2011

The cluster map is divided into 4 quadrants: High-High (H-H), High-Low, Low-High (H-L), and Low-Low.
We observed only H-H and L-H clusters in California. The H-H quadrant represents spatial clusters of
counties that had high HHW collection density and most neighboring counties had this too. The L-H
quadrant represents spatial outliers that had low HHW collection density, with most neighboring counties
showing higher HHW collection density. The county members of the spatial clusters and outliers changed
over the years. Table 4 summarizes the counties in these quadrants.
We observed that Sierra County was the hotspot of HHW collection in 2004 and later. Nevada,
Yuba, Placer and a few other neighboring counties also were in the H-H quadrant since 2006. From the
choropleth maps, these counties collected at least 8 lbs./person a year. These hotspots were located in the
north with a few were in the Central region. However, Fresno, Madera, Tulare, and Kings were outliers.
They had lower HHW collection amounts, but their neighboring counties collected somewhat larger amounts
per person.
Y;A HiGH-HIGH Low-HicH

200! Sierra, Nevada

2005 Sicrra

2006 Sierra, Nevada, Yuba, Placer,
Del Norte, Glenn, Mendocino, Trinity

2007 Sierra, Nevada, Yuba, Placer,
Amador, Calaveras, Trinity

Fresno, Madera

Fresno, Tulare

Sierra, Nevada, Yuba, Placer, .

2008 El Dorado, Amador, Del Norte Tulare

2009 Sierra, Nevada, Yuba, El Dorado, Calaveras,
Del Norte

2010 Sierra, Nevada, Yuba, Placer, Fresno, Madera,
El Dorado, Amador, Lasscn, Calaveras Tularc

2011 Sierra, Nevada, Yuba, Placer, Fresno, Madera,
El Dorado, Lassen, Calaveras Tulare, Kings

2012 Sicrra, Nevada, Lassen, Calaveras, Amador, Mono  Tulare
2013 Sicrra, Nevada, Lassen, Mono, Yuba

2014 Sierra, Alpine

2015 Alpine, Mono

Table 4. Summary: counties in LISA cluster maps of California’s HHW collection density, 2004-2015

5.2  GWR Results

We estimated the GWR model for each year from 2004-2015. Before obtaining the estimates, we calibrated
the model based on the datasets in that year because some independent variables in Eq. 3 were unavailable
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in specific years. For example, HHW grants were not awarded in 2011; program cost reporting was only
available in 2007-2012; and there was not much variation in the number of MCL violations in some years.
In this way, we were able to assess the effects of all of the influential factors, though not for all years in the
sample.

We selected variables in a systematic way using a pseudo-stepwise procedure (Gollini et al., 2015).°
We used the model specification with the lowest AIC, for each year. We then ran another procedure to find
the optimum bandwidth for the selected model for each year.® We estimated the model using equal spatial
weights for all counties to get the global regression results. Then, we applied the weight matrix computed
using the estimated optimum bandwidth and adaptive bi-square distance function. Appendices 1 and 2
show the regression and GWR estimates.

The global regression results estimate the effects of the influential factors on the HHW collection
density without considering the spatial correlations. We found no significant effects for the environmental
policy enforcement factor, except for MCL Viol# at 0.10 (p < 0.05) in 2005. We found a positive association
for HHW-related policies with the amount of HHW collected per person for some of the years. An example
is the estimated effects of HHW grants at 2.33 (p < 0.01) in 2008. The coefficients of HHW collection cost
(HHWProgram$) were 1.35 (p < 0.10) in 2007 and 1.28 (p < 0.10) in 2010. For the demographics, we found
positive effects for education level (EduHS%) in 2004, 2007-2008, and 2012-2013, though. HHInc was posi-
tive and significant in 2005, but was negative and weakly significant in 2007. RentalHH% was negative and
weakly significant in 2006, but more significant in 2009, 2011 and 2014.

The GWR estimation results gave more insights than the global regression results. We included an
F; test that indicated whether the range of estimates for each independent variable were significant (varied
over counties) (Gollini et al., 2015; Leung et al., 2000). We will only discuss the significant coefficients (p
< 0.01) as a result.

Coef.
2.0
1.5
1.0
+ 0.5
- 0.0
-0.5
-1.0
-1.5

-2.0

Fig. 3. HHWPrograms$ effects (2007, 2009, 2010 — left to right)

Fig. 3 shows that HHW program cost effectiveness was better in Northern than Southern California in 2007,
2009 and 2010. Then, they were positive in the north but mostly negative in the south. Fig. 4 shows that
HHWGrant$ in the GWR estimation was positive in 2008 and 2010. The positive influence of HHW grant
awards was stronger in Northern California in 2008, but it was much stronger in the south in 2010. The
changing spatial relationships may have occurred because of the diverse types of projects proposed and
implemented in 2008 and 2010.” More projects were proposed for new facilities in the Northern Region in

® We ran the model.selection.gwr function of the GWmodel package in R. After it finds the best model with the least AIC,, it resets
the independent variables, and introduces a variable for the corrected AIC. values for each possible model. The corrected AIC is
similar to the basic AIC, but is a function of sample size, and dependent on bandwidth (Hurvich et al. 1998).

% We used the bw.gwr function from the GWmodel package in R. The optimum bandwidth in the calibrated model was 37 nearest
neighbors for all the years, except in 2015, which was 27 neighbors.

" In 2008, counties in the north (Butte, Santa Clara, Yuba) and a few counties in the south (Imperial, Los Angeles) proposed new
HHW facilities. More drop-off and curbside sites were proposed in both regions. A program was proposed in rural counties (Butte,
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2008, but more in the Southern Region in 2010. In both years, the positive influence of HHW grant awards
in Central California was relatively low.

Coef.

Fig. 4. HHWGrant$ effects (2008 left, 2010 right)

The influence of environmental policy enforcement, based on the number of RCRA penalties (Penalty#),
had an unexpectedly negative association with HHW collection density in some years. The impact of pen-
alties was negative in 2005, 2006, 2007 and 2013. (Fig. 5 gives the impacts distribution.) The negative as-
sociation between this factor and HHW collection density was stronger in Northern than Southern Cali-

fornia.
Coef.

\
\
2

o ,r

ke

Fig. 5. Penalty# (right) effects, 2005, 2006, 2007 — left to right

For the demographics, the effects of HHInc were negative to zero with slightly stronger negative influence
in the north in 2006. It seems that households with higher income in the north delivered less HHW. Rent-
alHH% was negative or positive for all years, except in 2005, 2009 and 2014, when they were all negative.
In all the years, the coefficients were higher in Southern California than in Northern California. It may be
that the higher percentage of rental households, the lower the HHW collection amount per person in the

north. However, it was interesting that it was the opposite in the South.

6  What We Learned

In this section, we first discuss the spatial analysis results for each year during our study period. We then
extend our discussion to include the implications of our findings for HHW policy.

Glen, Colusa) for 33 new sites for sharps collection, and a partnership for 11 new Universal Waste collection, HHW facility improve-
ments, mobile collection and public outreach programs. In 2010, some counties in the north (Calaveras, El Dorado, Santa Clara)
proposed to expand existing HHW facilities. Some other northern counties (Alameda, Shasta, Yuba) proposed partnerships with retail
sites to obtain fluorescent lamps and batteries, improve collection, and expand reuse, door-to-door HHW, and sharps programs.
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6.1 Results and Implications

Our visual and spatial analysis results showed that some Northern California counties had more HHW
collected per person. For example, Sierra County exhibited high HHW collection density. The clusters of
high-density HHW collection changed over time though, both increasing and decreasing. We found a number
of high-density clusters in some counties in the north and a few counties in Central California (Nevada,
Placer, Yuba, El Dorado, Lassen, Trinity, Calaveras, Del Norte, Glenn, Mendocino, Inyo).

Consistent with the discovery of clusters of counties with high HHW collection density in Northern
California, we found that HHW program cost had a stronger positive influence in the north in 2007, 2009
and 2010 for the GWR results. In contrast, HHW program cost had a negative influence in most counties
in the south. So it seems high HHW collection density in the counties in the north was related to more cost-
effective HHW programs.

The GWR results also showed HHW grant awards had a positive association with HHW collection
density. However, the effects varied across the counties depending on the type of projects were implemented
using the grants. RCRA penalties may have discouraged households from participating in HHW collection
programs, in contrast to what our intuition suggested. Perhaps enforcement efforts in the form of RCRA
penalties were not effective tools to maximize household participation in HHW collection programs. Other-
wise, we may need to find other proxies to represent policy enforcement-related HHW collection.

The spatial outlier counties (of relatively low density HHW collection compared to the surrounding
neighboring counties), which we discovered in Central California, changed during the study period; earlier
it was Fresno and Madera in 2006, then Fresno and Tulare in 2007, and Kings County joined these spatial
outliers in 2011. This finding indicates that these counties were different from the neighboring counties.
Governments in these counties would have had to make more effort to increase participation in HHW
collection programs. They could have initiated waste agency officer exchanges with nearby counties that
had high density HHW collection, for example.

6.2  Policy Implications

HHW programs in Northern California counties were more successful in encouraging households to deliver
their HHW than in the south. There are several explanations for the cost-effectiveness levels of programs
in the regions.

First, people in Northern California may have been more willing to separate, sort and deliver waste
to HHW collection programs and facilities than the people in Southern California. Perhaps they had higher
environmental awareness and more opportunities to participate in HHW collection programs. Second, the
counties in the Southern Region experienced higher population density. So it may have been more difficult
for the local governments in the south to enforce an HHW ban. Third, the HHW programs and facilities in
Northern California may have had better technologies to collect and process HHW; this requires further
investigation.

These findings indicate differences between the counties in Northern and Southern California in
terms of program effectiveness, environmental policy enforcement, and household behavior. State-level
policy-makers should consider these differences when developing new HHW-related policies. The influential
factors also seem to be differentially stronger or weaker in region-specific ways and this neatly aligns with
the concept of multiple sub-states existing within the single state of California. Because of differences that
exist across California, our findings are useful for regional governments to evaluate local impacts of their
policies and approaches to HHW collection to promote sustainability and better waste management.

7  Conclusion

Our study is the first that attempts to analyze spatial patterns of HHW collection density in a state across
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multiple years. We discovered spatial patterns of HHW collection density that changed over time in Cali-
fornia from 2004 to 2015. Our analysis results indicated some clusters of counties in Northern California
with high HHW collection density. We found a few outlier counties in Central California; their amount of
HHW collected per person was lower compared with nearby counties in the north.

We assessed the impact of HHW-related policies, policy actions and demographic factors on the
HHW collection density across the counties in California using a geographically weighted regression model.
These factors had stronger or weaker associations with HHW collection density in the north or south regions.
Environmental policy enforcement had a stronger negative influence in the north, while HHW program
costs had more positive influence in the north. HHW grant awards had stronger positive influence, but
depended on project type.

One limitation is the aggregated HHW collection data so we could not consider the variability in
the HHW categories. Studying the spatial patterns of the HHW collection densities by material type may
suggest different spatial clusters or county outliers for each category. We didn’t investigate the influences
of production, consumption of products with high hazardous content, trading activities, or product sales on
HHW recycled. Another limitation is that we have not modeled the lags and local transitions for different
levels of HHW collection densities over time. We can extend the GWR model to represent spatial and
temporal simultaneity too. We also have considered the possibility of a hidden Markov model (machine
learning) for spatial patterns, and predict collection density patterns.

We demonstrated how computational social science fusion analytics methods that are specialized
for geographic information science, such as spatial clustering and geographical weighted regression, allowed
us to assess the spatial-varying effects environmental policies and demographic factors in sustainability
practices, such as HHW collection. Even in a state as advanced in HHW collection and recycling as Cali-
fornia, we were able to find low, medium and high levels of HHW collection density spread across the
regions. This shows county location matters.

These findings are applicable to other states or regions with differences across their geographies.
By focusing on regional impacts, policy-makers can more effectively target the programs and incentives to
the specific dimensions of the area rather than by applying a one-size-fits-all approach. The outcome from
this targeted examination should lead to better management of HHW and environmental sustainability.
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Appendix. Regression Results

VARIABLES

SE , (SE) i) :
TIntercept -9.39 -5.80 13.01F%* .52 -5.05 .
ereep (9.75) (9.20) (4.70) (8.63) (3.93) (6.04) (6.96)
VICLViol4 -0.01 0.00
- (0.03) (0.01)
Penalty# -0.08 0.01 -0.18 -0.03 -0.22 -0.15
alty (0.21) (0.27) (0.27) (0.30) (0.47) (0.28)
@ 0.67 2.33*%** -1.27 1.10 -1.08 -2.73
HHWGrant§ (1.66) (0.70) (3.82) (0.94) (3.21) (2.09)
TPro gy G 1.35% -0.37 0.74 1.28* 1.40%
HHWPrograms$ (0.75) (0.65) (072) (0.68) (0.81)
; o 11.92%* 28.95%** 19.44%* 8.71 13.70°* 21.67+*
PEdul8% (4.61) (10.26) (8.34) (8.87) (5.52) (9.21)
HHInc 0.61+* -0.79* 0.09 -0.03 0.00
: (0.21) (0.40) (0.36) (0.39) (0.00)
RentalHH% -1.73 -7.06 -10.83 -15.83 -25. 82FF* -13.69 -21.52%* -6.24 -20.37%*
4 (5.39) (5.30) (10.46) (10.25) (9.20) (9.98) (9.23) (6.23) (5.88)
Adj. R* (%) 16.8 23.2 27.1 33.2 14.8 224 17.0 16.6 13.9 30.3
Notes. Model: GWR with global weight; obs. = 39 each year. Dep. var.. HHWColID. Coefficients with p < 0.10 are highlighted in gray; coefficients
with p < 0.05 are in bold and italics. Estimates for 2006 and 2015 are not included due to low adj. R% Signif.: * p < 0.10, ** p < 0.05, *** p < 0.01.

VARIABLES

Table Al. Global regression results

2005

MIN MAX MIN

2006

MAX

VARTABLIES

Intercept

-15.31

-10.99

Intercept -0.56%** 16.80***
MCLViol# -0.45 0.10 0.11

Penalty# -0.56 -0.85%** -0.10%** -1.46%* -0.07%*
HHWGrant$ 0.62 1.35
PEduHS% 8.95 11.55

HHInc 0.57 1.00 -0.42%** 0.00***
RentalHH% -5.26%* 6.56* -16.96* -5.86%* -21.67%*%* 0.76%**
Adj. R? 13.0%

-3.75

17.64

-0.05

Pcnalty# -1.44%* -0.97 -0.74 -0.15
HHWGrant$ 0.25*** 2.71%%* -3.36 -0.14
HHWProgram$ -0.58*** 1.93%** -0.59 0.47 -1.13*** 1.16***
PEduHS% 14.89 35.96 10.75 19.30

HHInc -1.09 0.00 0.08 1.00
RentalHHY% -19.81*** 7.06%** -26.43*** 8.76*** -11.93***

-37.02*%**

Adj. R?
VARIABLES
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Adj. R?

-1.99*

37.99

14.98***

Intercept -10.98** L =5 17%** -12.54**

MCLViol# -0.02 -0.01

Pcnalty -1.15 -0.07 -2.13 -0.13

HHWGrant$ 0.94%** 7.67FF* -1.38 6.16
HHWProgram$ -0.64*%* 1.55%* 0.30 1.70

PEduHS% 1.05 22.48 10.84 16.10
HHInc -0.49 0.00

RentalHHY% -19.79%** 6.58*%** -43.02%** 17.73%%* -11.96%** 7.54***

6.13*%*

MCLViol# -0.01%** 0.00*** -0.01 -0.01 -0.02 0.00
Penaliy# -1.06* -0.09*

HHWGrant$ -3.51%%* 9.02*** -2.16%* 26.15**
HHWProgram$

PEduHS% 9.71 25.37

HHInc 0.00 0.00

RentalHH% -23.72%** -5.06%**

Adj. R? 17.8% 33.3% 15.8%

in

Notes. Model: GWR with weight matrix computed using an adaptive bi-square distance function; obs. = 39
each year. The optimum bandwidth in the calibrated model was 37 nearest neighbors for all years, except

2015, which was 27 neighbors. Dep. var.: HHWColID. Coef. with Fs test p < 0.10 highlighted in gray; coef.
with Fs test p < 0.05 are in bold, italics. Signif.: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A2. GWR results
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