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Abstract The number of Android applications has increased rapidly as Android is becoming the dominant

platform in the smartphone market. Security and privacy are key factors for an Android application to be

successful. Android provides a permission mechanism to ensure security and privacy. This permission mech-

anism requires that developers declare the sensitive resources required by their applications. On installation

or during runtime, users are required to agree with the permission request. However, in practice, there are

numerous popular permission misuses, despite Android introducing official documents stating how to use these

permissions properly. Some data mining techniques (e.g., association rule mining) have been proposed to help

better recommend permissions required by an API. In this paper, based on popular techniques used to build

recommendation systems, we propose two novel approaches to improve the effectiveness of the prior work. The

first approach utilizes a collaborative filtering technique, which is inspired by the intuition that apps that have

similar features — inferred from their APIs — usually share similar permissions. The second approach recom-

mends permissions based on a text mining technique that uses a naive Bayes multinomial classification algorithm

to build a prediction model by analyzing descriptions of apps. To evaluate these two approaches, we use 936

Android apps from F-Droid, which is a repository of free and open source Android applications. We find that

our proposed approaches yield a significant improvement in terms of precision, recall, F1-score, and MAP of the

top-k results over the baseline approach.
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1 Introduction

Android is one of the most popular open source mobile platforms. In the second quarter of 2015, it

dominated the smartphone market with a market share of 82.8%1). Thousands of developers are working

to develop Android applications (also referred to as “apps”). It is reported that there were approximately

190000 apps in Google Play in the first quarter of 20162). Meanwhile, an increasing number of malicious

apps, which are usually designed to steal sensitive data (e.g., private credentials and financial information),

are produced by an increasing number of attackers.

*Corresponding author (email: xxia@zju.edu.cn)

1) Smartphone market share. http://www.idc.com/prodserv/smartphone-os-market-share.jspl.
2) Google Play. https://en.wikipedia.org/wiki/Google Play.
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To decrease the threats that Android apps pose to the security and privacy of their users, a unique

permission mechanism is provided by Android to control the access of third party applications to sensitive

resources, e.g., the contact list, camera, and network of users. Android app developers are required to

write the required permissions explicitly into a config file named AndroidManifest.xml. Thus, Android

app developers not only need to know how to use APIs to implement certain features of an application, but

also the corresponding permissions. For instance, if an app wants to access the internet, the app developer

not only needs to understand how to use network APIs such as “android.net.wifi.WifiManager” and

“java.net.URL”, but also needs to know the corresponding permissions, namelyACCESS WIFI STATE

and ACCESS NETWORK STATE, which must be written to the AndroidManifest.xml file.

A better practice for Android developers to reduce the security risk is to minimize the number of

permissions that their apps require; this is recommended by Android official3). However, it is often

difficult for Android app developers to determine which permissions are required. If an app requires a

permission that is not declared, it will not work and will throw an exception. Thus, developers often

require more permissions than the app needs [1]. Moreover, considerably more permissions are usually

required by developers to ensure good user experience. Some researchers find that the official Android

documentation for API classes and permissions is incomplete, which leads to overprivileged apps [1, 2].

Furthermore, more than 4000 classes and 151 system-level permissions exist in the Android library.

Numerous misuses have been reported, even for the most popular permissions [3]. Hence, in this paper,

we aim to investigate whether we can develop a recommendation system to help Android app developers

determine suitable permissions.

Many tools have been proposed by researchers to recommend permissions by tracing APIs to specific

permissions. For example, Stowaway uses static analysis to extract APIs used in apps, and dynamic

analysis of the Android OS/stack to build a permission map [1]. A tool named PScout also uses static

analysis of the Android OS to map permissions to APIs [2]. In a later work, based on PScout’s method-

ology, Androguard4) can output likely APIs to permission mappings for a given app5). However, these

tools are based on program analysis, which makes numerous incorrect recommendations.

Recently, an approach using association rule mining, which is a popular data mining technique, was

proposed by Karim et al. [4] to recommend the required permissions of an app. They conducted an

experiment on 600 apps from F-Droid6) and found that their approach, named APMiner, performs

better in terms of the F1-score than PScout and Androguard [4]. However, the average F1-score of

APMiner is not sufficiently high (only approximately 55%) for it to be used in practice. Moreover, in

the recommendation system field, there exist many other algorithms which may be applied to permission

recommendation for Android apps. Hence, some alternative recommendation algorithms, which have

been used successfully in building recommendation systems, are investigated in this paper. We aim to

investigate whether our proposed approaches can outperform Karim et al.’s approach, which is based on

association rule mining. To be consistent with the names of our proposed approaches, we refer to the

best performing variant of APMiner as APRecRULE.

Our first proposed approach, which we refer to as APRecCF, is based on collaborative filtering, which

has been adopted widely in many recommendation systems [5]. The intuition of using collaborative

filtering is that apps that use similar APIs often support similar features; thus, they often use similar

permissions. Hence, APRecCF measures the similarity of two apps based on the APIs used by the apps.

Given an app, APRecCF first finds a list of the most similar apps to the target app, and then makes

permission recommendations based on the used permissions of these similar apps.

Our second proposed approach to make permission recommendations, referred to as APRecTEXT, is

based on text mining. Apps often have associated textual descriptions (e.g., descriptions on Google Play

and readme files on Github) that describe the functionalities and features of the apps. These textual

3) https://developer.android.com/training/articles/security-tips.html#RequestingPermissions.
4) https://github.com/androguard/androguard.
5) Desnos A. Androguard: reverse engineering, malware and goodware analysis of android applications. http://code.

google.com/p/androguard.
6) https://f-droid.org/.
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Table 1 Example of an Android app database

Android app Transaction APIs Permissions

T1 android.location.LocationManager ACCESS FINE LOCATION

T2 android.net.ConnectivityManager ACCESS NETWORK STATE

T3 android.net.wifi.WifiManager ACCESS WIFI STATE

T4
android.bluetooth.BluetoothAdapter,

BLUETOOTH
android.bluetooth.BluetoothDevice

T5 android.app.ActivityManager KILL BACKGROUND PROCESSES

T6 android.media.AudioManager MODIFY AUDIO SETTINGS

T7 android.app.ActivityManager RESTART PACKAGES

A2DP Volume

T8 android.os.PowerManager WAKE LOCK

T9 android.net.ConnectivityManager ACCESS NETWORK STATE

T10 java.net.URL INTERNET

T11 java.lang.Runtime READ LOGS

T12 android.telephony.TelephonyManager READ PHONE STATE

T13 android.media.MediaPlayer,

android.os.PowerManager WAKE LOCK

Alarm Clock

T14 android.provider.Settings WRITE SETTINGS

contents can be used to predict the required permissions. For example, the description of an app named

Android-eye is “this is a simple flashlight app, free and without ads”; this indicates that this app needs

a permission to allow it to access the camera (as it is a flashlight app). We build a text mining model

using the naive Bayes multinomial classification algorithm, which is used to analyze the app descriptions.

To evaluate these three permission recommendation approaches, an experiment is conducted on 936

open source Android apps from F-droid. These apps also have textual description processed by

APRecTEXT (i.e., readme files) in the corresponding Github repositories. We use several metrics, in-

cluding precision, recall, F1-score, and mean average precision (MAP), of the top-k recommendations to

measure the effectiveness of these approaches. We find that APRecTEXT and APRecCF achieve better

performance than APRecRULE, but the performance difference between APRecTEXT and APRecCF in

terms of F1-score@5 and F1-score@10 is very small.

The remainder of the paper is structured as follows. Section 2 describes the intuitions behind the

three recommendation approaches studied in this work. Section 3 presents some preliminary concepts.

Section 4 describes the details of the three permission recommendation approaches. Section 5 presents

the experimental results. Section 6 briefly reviews the related work. Section 7 concludes the study and

outlines potential future directions.

2 Motivation

The permission mechanism of Android requires developers to explicitly declare permission requirements

if their apps require access to certain sensitive resources, e.g., camera, GPS, and Wi-Fi. Meanwhile,

Android provides standard APIs to access these sensitive resources. Hence, developers must know the

permissions required by different APIs. Unfortunately, the API documentation is not always helpful in

determining the specific permissions required for a specific API. Some tools have been developed to help

trace APIs to/from permissions automatically, such as PScout and Androguard. However, these tools

are not accurate and many incorrect traceability links have been found.

Table 1 shows two example Android applications in F-Droid: A2DP Volume, namely a Bluetooth

management app, and Alarm Clock, which is an alarm clock app. The column “Transaction” in the table

indicates the transaction id. These transactions are generated by Androguard. A transaction consists of

a set of APIs and a single permission that are traceable to each other. From Table 1, these two apps

both have permission ACCESS NETWORK STATE and use android.net.ConnectivityManager API. In

addition, both have permission WAKE LOCK and use android.os.PowerManager API. These pieces of
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Figure 1 Example of a readme file of an app.

information could be used to help developers determine the permissions required if an app uses certain

APIs. For instance, we can infer that another app, Podax, which is a podcast downloader and player, also

requires permission ACCESS NETWORK STATE, as android.net.ConnectivityManager API is also used

by this app. According to this observation, Karim et al. [4] used an association rule mining technique to

recommend permissions to a new app, and their approach outperforms both PScout and Androguard.

Intuitively, Android apps with similar features or functionalities often require similar permissions. The

APIs of apps can provide clues as to their features or functionalities. For example, an app in F-Droid,

named wifiwarning, uses the same APIs (i.e., android.net.ConnectivityManager and android.net.wifi.Wifi-

Manager) as wifiwidget and we can infer that they share some features and functionalities. Then,

we can infer that they are likely to require similar permissions, which is indeed the case (i.e., AC-

CESS NETWORK STATE, ACCESS WIFI STATE). This hints at the use of another information

retrieval technique, called collaborative filtering, which has been applied successfully in many real rec-

ommendation systems [6] to make permission recommendations.

Moreover, apps usually have associated textual descriptions that usually indicate what the apps are and

what types of features they support. For example, Figure 1 is the readme file of app AddressToGPS. This

readme file says that the app requires an internet connection, which implies that it needs INTERNET

permission. It is often the case that many keywords that correspond to various resources often occur in

readme files, e.g., “contacts”, “network”, and “SD card”. This textual information could also be utilized

for effective recommendation of permissions.

3 Preliminary

In this section, we describe several techniques used in our study: frequent itemset mining; association

rule mining; collaborative filtering with three different similarity metrics: cosine similarity, Euclidean

similarity, and Pearson correlation; and texting mining (i.e., classification) based on the naive Bayes

multinomial algorithm. Frequent itemset mining is an essential part of association rule mining.

3.1 Frequent itemset mining

Frequent itemset mining [7] is a data mining technique widely used for affinity analysis (e.g., market

basket analysis) to discover co-occurrence relationships among entities. It takes a transaction database

(i.e., a multi-set of transactions) as input, where each transaction is a set of items, and outputs sets of

items (itemsets) that appear frequently (i.e., each frequent itemset is a subset of many transactions) in

the database. Given a set of N transactions, the frequency of an itemset I is defined as the number of

transactions that contain all of the elements of I. The support of an itemset I is defined as

sup(I) =
freq(I)

N
.

An itemset is frequent if its support is no less than minsup, where minsup is a user-defined minimum

support threshold.

Example 1. Consider the transaction database in Table 1 as an example. If minsup is 0.1, then

L = {android.net.ConnectivityManager, ACCESS NETWORK STAT} is a frequent itemset in these

transactions. L appears in two transactions (i.e., T2, T9); thus, freq(L) is 2. As the number of transac-

tions in the database (N) is 14, sup(L) is 0.14, which is greater than minsup.
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3.2 Association rule mining

In addition to frequent itemsets, another type of pattern, termed the association rule, can be extracted

from a transaction database. For instance, from the database in Table 1, we can infer that “if an Android

app uses API android.net.ConnectivityManager, the app is highly likely to require permission AC-

CESS NETWORK STAT” because all the transactions that contain API android.net.Connectivity-

Manager also contain permission ACCESS NETWORK STAT.

Frequent itemset mining is the first step of association rule mining. We can form association rules

by enumerating all possible pairs of frequent itemsets, where one is a subset of another. Consider two

frequent itemsets A and B, where A is a subset of B; then, the generated association rule R is of the

form

A ⇒ B\A.

Then, we use a metric referred to as support to measure the number of transactions to which the

association rules can be applied. Obviously, the support of the association rule R is equal to the support

of B, i.e.,

sup(R) = sup(B).

In addition, we use another metric confidence to measure the likelihood that a rule is true, and it can be

computed as follows:

conf(R) =
sup(B)

sup(A)
.

Example 2. In Table 1, if minsup is 0.1, itemsets A ={android.net.ConnectivityManager} and B =

{android.net.ConnectivityManager, ACCESS NETWORK STAT} are frequent itemsets with support

values of 0.14. Then, we can form an association rule R = android.net.ConnectivityManager ⇒ AC-

CESS NETWORK STAT, where the support of R is the same as sup(B), which is 0.14, and the confidence

of R is 1.0 as sup(A) = 0.14.

3.3 Collaborative filtering

As one of the most successful approaches to building recommender systems, collaborative filtering utilizes

information of a group of entities to make recommendations or predictions of a new entity. Collaborative

filtering has been applied successfully in many real systems, such as environmental sensing, financial

services, and electronic commerce [6].

A basic method to perform collaborative filtering is by finding the nearest neighbors of a target entity.

The target entity is compared with all other entities and a list of the most similar entities is produced

based on a distance metric. The similarities among the entities are used as a basis for making predictions

about the entity.

In this study, collaborative filtering is chosen because, intuitively, apps with similar behaviors typically

require similar permissions. In our setting, an entity of an Android app, which is represented by the set

of APIs it uses, and the recommendation task is the recommendation of permissions that are likely to be

required by the app.

3.4 Text mining based on naive Bayes multinomial

The intuition of the text mining model is that Android apps which have similar features and functionalities

are often described in a similar way. The similar features and functionalities usually require the same

permission. To build a text mining model that can recommend permissions for Android apps, we make

use of a text classification technique. In this study, we leverage the naive Bayes multinomial [8], which

is a fast and effective algorithm for text classification, to build a text mining model. Many other text

mining algorithms, e.g., decision tree and SVM [9], have a long run-time on a raw text dataset, which

has many features (every processed word is a feature).
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Naive Bayes multinomial is a probabilistic learning method. The probability of a document D being

in class C is computed as

P (C|D) ∝ P (C)×
v
∏

j=0

P (tj |C),

where P (C) is the prior probability computed as the ratio of the number of documents belonging to class

C and the total number of documents, and P (tj |C) is the conditional probability of term tk occurring in

a document of class C. The conditional probability P (tj |C) is computed as

P (tj |C) =
TC,tj

∑

t∈v TC,t

,

where TC,tj denotes the number of times term tj appears in documents that belong to class C.

4 Approach

In this section, we first briefly describe the procedure of data collection and processing. Then, we introduce

the details of three proposed permission recommendation approaches, i.e., APRecRULE, APRecCF, and

APRecTEXT.

4.1 Data collection and processing

The Android apps used in this study are sourced from F-Droid, which lists a number of free and open

source Android applications. At the time of this study, there are 1993 apps on F-Droid7). The Android

applications on F-Droid use different platforms to store their code and resource, e.g., Github, Bitbucket,

and Google Code. This study only considers the applications whose source code is hosted on Github.

This is because the majority of applications on Github have a readme file, and Github provides very

convenient REST APIs for access to the readme files. Finally, we locate 936 Android apps with source

code in Github and have readme files.

The permissions of an Android app are configured in the manifest file, i.e., AndroidManifest.xml,

which is located at the root level of the app. Meanwhile, we can find the APIs of an app from its Java

source code files, which are declared in import statements. First, we use a tool named srcML, which is a

lightweight static analysis tool [10], to transform the source code into a single xml file. Then, it is very

easy to extract permissions and APIs using an XML processing tool. Only the API class names in the

Android software stack and Java standard libraries are considered (e.g., android.net.ConnectivityManager

and java.lang.Runtime), and user-defined classes are ignored.

We use Androguard to obtain the likely mapping of permissions and each API class. We obtain the

transactions that are used by APRecRULE from the output mappings. We transform the list of APIs that

are used by an app into a feature vector, which is input to APRecCF. We use the readme files as the

input data of APRecTEXT.

4.2 APRecRULE approach

The baseline approach used in this study refers to APRecRULE, which is an implementation of the best

performing variant of APMiner referred to as FilteredMiner in the original paper [4]. Figure 2 shows

the process of APRecRULE, which is based on an association rule mining technique, and achieves better

performance than two prior state-of-the-art approaches: Androguard and PScout. APRecRULE use the

transactions output from Androguard as the input. Each transaction contains a single permission and

several APIs that are traceable to the permission.

There are two phases in APRecRULE: model construction and recommendation phase. In the model

construction phase, when given a training set of apps with known permissions, APRecRULE uses a set

of transactions generated by Androguard as an input. To mine API-permission rules (i.e., APIs =⇒

7) https://f-droid.org/wiki/page/Repository Maintenance.
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Figure 2 The framework of APRecRULE. Figure 3 The framework of APRecCF.

Permission), referred to as APRules, association rule mining is applied to the input transactions by a sub-

component of APRecRULE named RuleExtractor. In the recommendation phase, given a new app with a

set of APIs, currentAPIs, if a rule’s precondition is a subset of currentAPIs, this rule matches currentAPIs.

Based on the post-conditions of the matching rules, APRecRULE then recommends permissions.

A score is assigned by APRecRULE to assess the probability of a permission required by an app. The

rule-based recommendation score for a permission P is the sum of confidence of any matching rule with

as post-condition of P . This score is computed by the following formula:

RecScoreRULE(P ) =
∑

R∈RMatched(P )

conf(R).

In this equation, RMatched(P ) is the set of rules of which the pre-condition is a superset of currentAPIs,

and the post-condition is a permission P . If the set RMatched(P ) is empty, the recommendation score

of P is zero. Next, we normalize RecScoreRULE to make the value range from 0 to 1. The permissions

with the highest recommendation scores are deemed to be the most appropriate permissions based on

the mined association rules.

4.3 APRecCF approach

Figure 3 presents the process of APRecCF. APRecCF uses a collaborative filtering technique to make

permission recommendations for Android apps. We use three metrics to calculate the similarity between

two apps, i.e., cosine similarity, Euclidean distance, and Pearson correlation. Thus, we obtain three

variants of APRecCF, referred to as APRecCFcosine , APRecCFEuclidean , and APRecCFcorrelation , respectively.

Given an Android app, APRecCF transforms the APIs used into a feature vector, and then uses the most

similar apps from the training dataset to recommend permissions for the app.

APRecCF also works in two phases: model construction and recommendation phase. In the model con-

struction phase, a sub-component named FeatureVectorExtractor transforms the APIs used in the apps

into feature vectors. In the recommendation phase, a sub-component named NearestNeighborProcessor

uses a nearest-neighbor-based collaborative filtering approach to recommend permissions for Android

apps.

4.3.1 FeatureVectorExtractor

This sub-component transforms the APIs used by each app in a training set into a feature vector. Fea-

tureVectorExtractor first finds all APIs used in the training set, denoted allAPIs. The APIs in allAPIs

are sorted in alphabetical order of their names. Then, FeatureVectorExtractor assigns a unique index for

each API, which is referred to as allAPIs[i]. The feature vector V (A) of an app is defined as follows:

V (A) = (ind(allAPIs[0], A), . . . , ind(allAPIs[|allAPIs|], A)),

where ind(I, A) = 1 if A uses API I, and ind(I, A) = 0, otherwise.
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4.3.2 NearestNeighborProcessor

Given a new app, NearestNeighborProcessor first uses the same method as FeatureVectorExtractor to

transform the APIs used in the app into a feature vector. Then, the similarities are calculated using the

distance between this feature vector and the feature vectors of apps in the training set. In this study,

three different metrics, i.e., cosine similarity, Euclidean similarity, and Pearson correlation similarity, are

used to compute the distance.

The cosine similarity score of a new app A and an existing app B in the training set is calculated as

follows:

Scosine(A,B) =
V (A) · V (B)

|V (A)||V (B)|
.

Here, |V (i)| denotes the size of a vector V (i) and · denotes the dot product, which is defined as the square

root of the sum of the squares of its constituent elements. Since the term frequencies cannot be negative,

cosine similarity ranges from 0 to 1.

The Euclidean similarity is calculated as follows:

SEuclidean(A,B) = 1

/

√

√

√

√

n
∑

i=1

(Ai −Bi)2 .

Here, n is the size of vector. The Euclidean similarity score is the inverse of the Euclidean distance.

The Pearson correlation is calculated as follows:

Correlation(A,B) =
COV(A,B)

σAσB

.

Here, COV(A,B) is the covariance between A and B, whereas σA and σB are the standard deviations

of A and B, respectively. The value of COV(A,B) ranges from −1 to 1. Then, the correlation similarity

score is calculated as

Scorrelation(A,B) =
Correlation(A,B) + 1

2
.

Thus, the correlation similarity score is a normalized value in the range of [0, 1].

For all three similarity scores, the higher the similarity score, the more similar the app in the training set

is to the new app. APRecCF ranks apps in the training data based on their similarity scores. Then, top-n

apps with the highest similarity score as the nearest neighbors of the new app are selected from the training

set. Next, given a permission P , APRecCF computes a collaborative filtering-based recommendation score

for a permission P as follows:

RecScoreCF(P ) =
∑

Bi∈Nearest

Sx(A,Bi), if P ∈ Bi.

Here, Nearest is the nearest neighbor, P ∈ Bi means that app Bi has permission P , and Sx is one of

three similarity scores. Then, we normalize the recommendation score to force it into the range from

0 to 1. Finally, based on the collaborative filtering, the recommended permissions for the app are the

permissions with the highest recommendation scores.

4.4 APRecTEXT approach

Figure 4 presents the process of APRecTEXT. APRecTEXT leverages the naive Bayes multinomial, which is

a fast and effective algorithm for text classification to build a text mining model. The textual descriptions

of Android apps used in this study are their readme files in Github, which usually contain the apps’

descriptions, features, functions, and licenses. We train a text classifier for each permission, and then

combine all classifiers to recommend permissions for a new app.
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Figure 4 The framework of APRecTEXT.

The approach APRecTEXT recommends permissions using readme files of apps in the training set to

build a text mining model using the naive Bayes multinomial classification technique. In the model

construction phase, we consider all n potential permissions for an app and denote the jth permission as

P j . APRecTEXT first duplicates the training dataset into a n binary dataset, one for each permission.

Each app (Ai) in the jth training dataset contains two parts: the textual content in the readme file

(Texti) and a binary value R
j
i that indicates whether the app Ai has the permission P j (Rj

i = 1) or not

(Rj
i = 0). Following vector space modeling [11], we represent the text of the readme file of the ith app as

a vector of term weights denoted Texti = 〈w1, w2, . . . , w3〉. The weight wj denotes the number of times

the jth term tj appears in the textual content of the readme file of the ith app. Next, we construct n

prediction models based on the n binary datasets by leveraging the naive Bayes multinomial technique.

Further detail regarding the naive Bayes multinomial technique is given in Subsection 3.4.

In the recommendation phase, given a new app Anew, we first input its readme file into the n prediction

models, and each prediction model outputs a recommendation score RecScoreTEXT(Anew, P
i) that indi-

cates the likelihood that Anew has permission P i. The recommendation score RecScoreTEXT(Anew, P
i)

is computed as follows:

RecScoreTEXT(Anew, P
i) = P (P i = 1)×

v
∏

j=0

P (tj |P
i = 1).

Here, P (P i = 1) represents the prior probability that Anew has permission P i, and P (tj |P
i = 1) represents

the conditional probability that term tj occurs in the readme file of Anew, which has permission P i. Next,

we rank the permissions based on these recommendation scores, and output the permissions with the

highest scores.

5 Results

In this section, we first briefly describe the experimental setup and our evaluation metrics. Then, we

present the three research questions of our study, and the corresponding experiment results. Finally,

some threats to the validity are discussed.

5.1 Experiment setup

We use 936 Android apps from F-Droid as the dataset in this study. The average and standard deviation

of the permissions and APIs of the apps in the dataset are 4.45± 2.57 and 104.01± 83.59, respectively.

Then, the APIs that are not traceable to used permissions are excluded using Androguard. Thus, the

apps have 8.31± 5.35 traceable APIs on average.

To provide a baseline model, we first implement the approach of Karim et al. We use a fast Apriori [12]

algorithm implementation [13] for association rule mining. The minimum confidence value in association

rule mining is set to 0.4, because Karim et al.’s approach achieves the best performance when the minimum

confidence threshold is set to 0.4. The default numbers of the nearest neighbors for all three collaborative

filtering approaches are set to 10.

The experimental environment is a 64-bit, Intel(R) Core(TM) i7-6500 2.50 GHz computer with 8 GB

RAM running Windows 10.
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5.2 Evaluation metrics

We use some evaluation metrics: precision@k, recall@k, F1-score@k and the mean average precision

(MAP), which have been used in many studies (e.g., [14–16]), to evaluate the three permission recom-

mendation approaches in this study. Consider that there are m Android apps in the testing dataset

that require permission recommendation. For each app Ai, let the actual set of permissions of Ai be

P t
i , and Nk

i be the number of permissions that are correctly recommended in the top-k permissions P k
i

recommended by a permission recommendation system. Precision@k is the ratio of Nk
i to k, i.e.,

(precision@k)i =
Nk

i

k
,

whereas recall@k is the ratio of Nk
i to the actual number of permissions, i.e.,

(recall@k)i =
Nk

i

|P t
i |
.

Then, F1-score@k is a summary measure that combines both precision@k and recall@k, i.e.,

(F1-score@k)i = 2×
(precision@k)i × (recall@k)i
(precision@k)i + (recall@k)i

.

Finally, for m apps in a testing dataset, we calculate the average precision@k, recall@k, and F1-score@k.

As a permission recommendation system returns a ranked list of permissions, it is desirable to also

consider the order in which the returned permissions are presented. Hence, we also use MAP, which is

one of the most popular measures to evaluate ranked retrieval results as an evaluation metric. MAP is

known to be a stable [17] and highly informative [18] measure. In this study, average precision (AP) is

the average of the precisions computed at the point of each of the permissions that are recommended

correctly in the ranked permission list. It is computed as follows:

AP =

∑n

k=1(P (k)× rel(k))

the number of actual permissions
,

where, k is the rank in the sequence of recommended permissions, n is the number of recommended

permissions, P (k) is the precision at cut-off k in the list, and rel(k) is an indicator function that is equal

to one if the item at rank k is a permission used by the target app, and zero otherwise. Then, for the m

apps in the testing dataset, MAP is calculated as follows:

MAP =

∑m

i=1 APi

m
.

5.3 Research questions

RQ1: How effective are the two permission recommendation systems based on text mining and collabo-

rative filtering? How much improvement can these two approaches achieve over the baseline approach?

Motivation. The better the performance of APRecTEXT and APRecCF, the greater the benefit to

their users. Thus, in this research question, we aim to investigate whether our proposed approaches of

APRecTEXT and APRecCF can outperform the baseline approach APRecRULE.

Approach. To answer RQ1, we use 10-fold cross validation to estimate the results of these three

permission recommendation approaches. To evaluate their performance, we compute the top-k precision,

recall, F1-score (k = (1, 2, . . . , 10)), and MAP.

To check whether the differences between the results of our proposed approaches and the baseline

APRecRULE are significant, we apply the Wilcoxon signed-rang test [19] at 95% significance level on

10-fold metrics.

In addition, we compute Cliff’s delta (δ) [20], which is a non-parametric effect size measure that

quantifies the differences between the results of our proposed approaches and the baseline APRecRULE.

Table 2 defines the different Cliff’s delta values and their corresponding interpretations.
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Table 2 Cliff’s delta and the effectiveness level [20]

Cliff’s delta (|δ|) Effectiveness level

|δ| < 0.147 Negligible

0.147 6 |δ| < 0.33 Small

0.33 6 |δ| < 0.474 Medium

0.474 6 |δ| Large

(a)
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Figure 5 (Color online) The results of (a) top (1–10) precision, (b) recall, and (c) F1-score.

Table 3 Results of precision@k, recall@k, F1-score@k (k=5, 10) and MAP

Precision@5 Recall@5 F1-score@5 Precision@10 Recall@10 F1-score@10 MAP

APRecRULE 0.5739 0.6322 0.5671 0.2869 0.6322 0.3759 0.6275

APRecTEXT 0.6322 0.7487 0.6371 0.3881 0.8925 0.5070 0.7474

APRecCFcosine 0.6064 0.7487 0.6183 0.3960 0.9172 0.5176 0.7651

APRecCFEuclidean 0.6265 0.7560 0.6336 0.3870 0.8916 0.5054 0.7439

APRecCFcorrelation 0.6121 0.7540 0.6233 0.3976 0.9215 0.5198 0.7693

Results. Figure 5(a)–(c) presents the results of top-k precision, recall, and F1-score. In these figures,

‘Rule’, ‘NBM’, ‘Cosine’, ‘Euclidean’ and ‘Correlation’ represent APRecRULE, APRecTEXT, APRecCFcosine ,

APRecCFEuclidean , and APRecCFcorrelation , respectively. We find that as the number of recommended per-

missions (i.e., top-k) increases, the precisions of all approaches decrease, but the recalls increase. This

might be because when k is small, the permissions with high recommendation scores are more likely to

be correct, which leads to high precision. However, more permissions will be wrongly recommended as

k increases. In contrast, for recall, the greater the number of permissions recommended, the higher the

recall.

Further, we find that the precision of baseline APRecRULE is higher than that of other approaches

when k is small (from 1 to 4), but the differences are very small. Moreover, Figure 5(b) and (c) shows

that when k is small, the recalls and F1-scores of APRecRULE are almost the same as those of other

approaches. However, the precisions, recalls, and F1-scores of APRecRULE are all smaller than those of

other approaches when k is greater than five. The precisions of APRecRULE decrease much faster than

those of the others, but its recalls show almost no increase when k is greater than five. Its F1-score,

which is a harmonic mean of precision and recall, also decreases very rapidly. However, the differences in

the precision results, recalls, and F1-scores for the other approaches are very small when k varies from

one to ten. In summary, we find that our proposed recommendation approaches, i.e., APRecTEXT and

APRecCF, achieve better performance than the baseline approach APRecRULE.

Table 3 presents the detailed top-k (k=5, 10) precision, recall, F1-score, and MAP for all approaches.

We find that all metrics of APRecRULE are smaller than those of other approaches. The precision@5

and F1-score@5 of APRecTEXT are the largest and they outperform those of APRecRULE by ∼6% and

7%, respectively. The recall@5 of APRecCFEuclidean is the largest, which is an improvement of ∼12% over

that of APRecRULE. The improvements of all newly proposed approaches over APRecRULE of the top-10

metrics are larger than those of the top-5 metrics. These improvements in precision@10, recall@10, and

F1-score@10 are greater than 10%, 25%, and 13%, respectively. The MAP of APRecCFcorrelation is the
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Table 4 P-value and Cliff delta (δ) for APRecTEXT and APRecCF with the baseline APRecRULE

Precision@5 Recall@5 F1-score@5 Precision@10 Recall@10 F1-score@10 MAP

p-value δ p-value δ p-value δ p-value δ p-value δ p-value δ p-value δ

APRecTEXT < 0.0001 0.78 < 0.0001 0.89 < 0.0001 0.85 < 0.0001 0.9 < 0.0001 0.9 < 0.0001 0.9 < 0.0001 0.9

APRecCFcosine 6.43E−03 0.49 < 0.0001 0.89 < 0.0001 0.8 < 0.0001 0.9 < 0.0001 0.9 < 0.0001 0.9 < 0.0001 0.9

APRecCFEuclidean 2.95E−03 0.73 < 0.0001 0.9 < 0.0001 0.85 < 0.0001 0.9 < 0.0001 0.9 < 0.0001 0.89 < 0.0001 0.89

APRecCFcorrelation < 0.0001 0.6 < 0.0001 0.89 < 0.0001 0.76 2.95E−03 0.9 < 0.0001 0.9 < 0.0001 0.9 < 0.0001 0.9
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Figure 6 (Color online) (a) F1-score@5, (b) F1-score@10, and (c) MAP for N-Fold cross-validation.

largest, which is an improvement of ∼14% over that of APRecRULE. Moreover, the differences between

the results of the four newly proposed approaches are minor.

Table 4 presents the p-values and Cliff’s delta values for APRecTEXT, APRecCFcosie , APRecCFEuclidean ,

and APRecCFcorrelation with the baseline APRecRULE in terms of precision@k, recall@k, F1-score@k (k=5,

10), and MAP. We find that all the p-values are less than 0.05 and all the Cliff’s delta values are at a large

effectiveness level. This indicates that the improvement of each approach over the baseline APRecRULE

is significant.

RQ2: How does the size of training data affect the results of the permission recommendation ap-

proaches?

Motivation. We aim to investigate whether different sizes of training data affect the performance of

the permission recommendation approaches investigated in this study.

Approach. We run a n-fold cross-validation to evaluate the performance of each approach, where n

ranges from 2 to 10. As we reduce the value of n, we reduce the amount of training data. We evaluate

the results in terms of F1-score@5, F1-score@10, and MAP.

Results. Figure 6(a)–(c) presents the F1-score@5, F1-score@10, and MAP of these permission recom-

mendation approaches for different n-fold cross-validations, respectively. We find that, for all approaches,

the F1-score@5, F1-score@10, and MAP change very little when the size of the training dataset is varied.

Hence, the permission recommendation approaches proposed in our study perform very well across a wide

range of training data sizes.

RQ3: How does the number of the nearest neighbors affect the results of the permission recommenda-

tion approaches using collaborative filtering?

Motivation. By default, the number of the nearest neighbors used in our collaborate filtering based

approaches is ten. In this research question, we aim to investigate whether different numbers of the

nearest neighbors could affect the performance of these approaches.

Approach. To answer this research question, the number of the nearest neighbors is varied (1, 5, 10,

15, and 20). For each collaborative filtering approach, we run a 10-fold cross-validation and evaluate the

results in terms of F1-score@5, F1-score@10, and MAP.

Results. Figure 7(a)–(c) presents the F1-score@5, F1-score@10, and MAP, respectively, of the permis-

sion recommendation approaches based on collaborative filtering using different numbers of the nearest

neighbors. We notice that when the number of the nearest neighbors increases from 1 to 5, the im-

provement in F1-score@5, F1-score@10, and MAP is relatively high for all three approaches; however,

when the number of the nearest neighbors continues to increase, the improvement is not substantial.
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Figure 7 (Color online) (a) F1-score@5, (b) F1-score@10, and (c) MAP results for different numbers of the nearest

neighbors.

Table 5 Average time of one round in the 10-fold cross-validation for all approaches

Approach Time (s)

APRecRULE 12.4

APRecTEXT 210.1

APRecCFcosine 208.5

APRecCFEuclidean 202.3

APRecCFcorrelation 283.6

We can see that, even if the number of the nearest neighbors is set to one, the results of F1-score@5,

F1-score@10, and MAP are similar to those of the baseline APRecRULE. Meanwhile, the number of the

nearest neighbors does not affect the performance of collaborative filtering approaches considerably when

it varies from 5 to 20. Thus, it is acceptable to set the default value to ten in RQ1.

RQ4: How much time does it take for each permission recommendation approach to run?

Motivation. The permission recommendation systems evaluated in this work require substantial

computational time to build models and recommend permissions for an app. For the association rule

approach, extracting rules from training data is the most time-consuming step. For the collaborative

filtering approaches, considerable time is required to determine the nearest neighbors. For the text mining

approach, multiple naive Bayes classifiers take a considerable time to be built. Thus, in this research

question, we aim to investigate the time efficiency of these permission recommendation approaches.

Approach. For each approach, we run a 10-fold cross-validation and report the average time of each

round.

Results. Table 5 gives the average time of one round of the 10-fold cross-validation for all permission

recommendation approaches investigated in this study. We can see that APRecRULE runs considerably

faster than other approaches, and only requires 12 s/round. This is because there are not many items

in the transactions in our dataset. The slowest approach is APRecCFcorrelation ; this takes approximately

one minute longer than the other three approaches. Although the duration of these proposed approaches

is longer than that of the baseline APRecRULE, we believe it is acceptable. For APRecTEXT, the naive

Bayes classifiers need to be built only once, and it takes much less time to recommend permissions in

the recommendation phase. Moreover, for APRecCF, it can recommend permissions to an app within

seconds – nearly 100 apps are tested in each round of the 10-fold cross-validation in our dataset.

5.4 Discussion

In this paper, we propose two approaches: APRecCF and APRecTEXT, to recommend permissions to

developers. Our experiment shows that both achieve good performance. However, there exist several

limitations for these two approaches.

For APRecCF, we recommend permissions based on the training data. As the amount of training data

increases, an app will require more time to find similar apps and recommend permissions based on the

similar apps. Furthermore, the quality of recommendation is dependent on the training data.

APRecTEXT might not detect some permissions for a given app as its text description may not explain

the hidden internal workings of the app and only provides a high-level overview of the functionalities

performed. Besides, certain permissions might not be directly related to app functionality. For ex-
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ample, it is quite difficult to capture the following permissions based on the app’s textual description:

BROADCAST STICKY, which allows an app to broadcast sticky intents, and READ SYNC STATS,

which allows apps to read the sync stats. These two permissions are not related directly to the app func-

tionalities, which are difficult to infer from the textual descriptions of the app. To mitigate this, given an

app, APRecTEXT finds other apps with similar text descriptions and recommends permissions based on

those used in the similar apps. For example, Physics Drop8) and Flow Free9) are two puzzle game apps

with similar text descriptions. They require WAKE LOCK permission, which is not apparent from their

descriptions. Based on the similarity between these two apps, APRecTEXT regards them as similar apps

and recommend one’s permissions to the other. However, not all apps with similar textual descriptions

use the same permissions. Thus, APRecTEXT might make an inaccurate permission recommendation.

To improve APRecTEXT further, it will be interesting to investigate new approaches that can better

understand the semantics of text descriptions of apps. Related to this research direction, recently, Qu et

al. [21] found text patterns of 11 Android permissions by using NLP techniques. Qu et al.’s text patterns

can potentially be combined with APRecTEXT to help improve the accuracy of its recommendations.

5.5 Threats to validity

Threats to internal validity refer to errors in our code and experiment bias. We double-check our

code; however, some errors may not have been noticed. Another threat to internal validity is that the

declared permissions in the apps may be incorrect. We randomly choose 20 apps in our dataset and find

that the declared permissions in these apps are indeed required. Thus, we believe the usage of permissions

for most of apps in our dataset is correct.

Threats to external validity refers to the generalizability of the dataset used in our study. In our

study, we use 936 open source Android apps from F-Droid. In the future, more open source Android

apps, even closed source apps, will be considered to reduce this threat to validity. To extract the API

usage of closed source apps (e.g., those distributed on Google Play), we require some existing tools (e.g.,

Androguard) to reverse engineer them. Another threat to external validity is that we do not cover all

permissions. Only 45 of the 151 system-defined permissions in Android are used in our dataset. Besides,

the customized permissions are not considered.

Threats to construct validity refer to the suitability of our evaluation measures. We use top-k

precision, recall, and F1-score, and MAP, which have also been used in prior studies, to evaluate the

effectiveness of various software engineering studies [14–16]. Thus, we believe there is little threat to

construct validity.

6 Related work

The work of Karim et al. [4], which uses the association rule mining technique to recommend permissions,

gives us hint to use other algorithms to make permission recommendation. Karim et al. extract rules

based on the co-occurrence of Android APIs and permissions. To the best of our knowledge, there are

no other works that utilize recommendation system algorithms to predict the required permissions for an

app. In this study, we use two other recommendation system algorithms: collaborative filtering and text

mining, to make permission recommendation. We use the approach based on the association rule as the

baseline, and find that our approaches outperform the baseline approach.

There are many different approaches proposed by researchers to identify the mapping between APIs

and permissions. Vidas et al. [22] propose an approach that scans the Android documentation to extract

a permission specification. However, the incompleteness of the Android documentation affects the usage

of their work in practice. Several tools extract the mappings between APIs and permissions by static

analysis, such as Stowaway [1], PScout [2], and Androguard. Of these tools, PScout has performs better

than Stowaway. It has been applied on four versions of Android and helps to determine that ∼22%

8) https://play.google.com/store/apps/details?id=com.dreamed.physicsdrop.
9) https://play.google.com/store/apps/details?id=com.bigduckgames.flow.
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of the non-system permissions are unnecessary. Androguard, a reverse engineering tool, embeds the

methodology of PScout and enables API to make permission recommendations for Android apps. In this

study, we use Androguard to extract the mappings between APIs and permissions. Notice that a lot

of mappings recovered by these program analysis approaches are not correct. We do not compare our

proposed approaches with these tools in this study; this is because the study of Karim et al. has shown that

their approach based on association rule mining outperforms these program analysis tools. Qu et al. [21]

investigated the relationships between app descriptions and permissions (referred to as description-to-

permission fidelity) by leveraging natural language processing (NLP) techniques. Their study investigated

11 permissions and highlighted text patterns that correspond to each of these permissions. Their text

patterns can be used to aid permission recommendations, but the number of permissions investigated in

their study is too small. Our proposed approach APRecTEXT leverages text classification techniques to

recommend permissions for apps. Thus, the number of permissions, which is based on the training data,

can be considerably larger than that of the approach of Qu et al. However, as APRecTEXT does not

understand the semantic of app descriptions, it might make an inaccurate permission recommendation.

In the future, to improve the performance of APRecTEXT, we plan to use NLP techniques to better

understand app textual descriptions.

Many researchers have investigated the misuse of permissions in Android. An internet survey with

308 Android users and a laboratory study with 25 users were conducted by Felt et al. [23] to understand

whether Android users pay attention to, understand, and act on permission information during instal-

lation. Only 3% of internet survey respondents answered all three permission comprehension questions

correctly, and very few users (17%) care about permission information during installation. Stevens et

al. [3] found that the popularity of a permission is strongly associated with its misuse through a study

conducted on the apps from the Android market and questions regarding security permission use on

StackOverflow. The above work provides the motivation for our work. If we can recommend permissions

for both developers and users effectively, the phenomenon of permission misuse might decrease.

As permission misuse could be indicative of stealthy and malicious behavior in Android apps, we

could also use the permission recommendation approaches in this study to detect malicious behavior.

Researchers have proposed many approaches to identify malicious behavior for Android apps [24–29].

For instance, Bläsing et al. [26] use static and dynamic analysis to detect suspicious Android apps.

Zhou et al. [27] propose a permission-based behavioral footprinting scheme to detect Android malware.

AsDroid [24] analyze user interface and program behavior contradiction to identify stealthy behavior.

7 Conclusion and future work

In this paper, we propose two permission recommendation approaches, inspired by the work of Karim et

al. [4]. Karim et al. propose an approach based on association rule mining to recommend permissions for

Android apps. Our two proposed approaches are based on the collaborative filtering technique and text

mining (in particular, text classification). For the collaborative filtering approach, we also investigate

three different similarity metrics (i.e., cosine similarity, Euclidean similarity, and Pearson similarity).

To evaluate the effectiveness of these approaches, we conduct an experiment on 936 Android apps from

F-Droid and compare our proposed approaches with the association rule approach proposed by Karim et

al. The experimental results show that our two proposed approaches perform better than the baseline

approach in terms of top-k precision, recall, F1-score, and MAP.

In the future, we will consider the use of more Android apps, including closed source apps (e.g., apps

in Google Play,) to evaluate our proposed permission recommendation approaches. In addition, we aim

to improve the effectiveness of the proposed approach by using more sophisticated machine-learning

techniques, such as learning to rank and deep learning.
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