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a b s t r a c t 

As a special type of fault injection attacks, Related-Key Attacks (RKAs) allow an adversary 

to manipulate a cryptographic key and subsequently observe the outcomes of the crypto- 

graphic scheme under these modified keys. In the real life, related-key attacks are already 

practical enough to be implemented on cryptographic devices. To avoid cryptographic de- 

vices suffering from related-key attacks, it is necessary to design a cryptographic scheme 

that resists against such attacks. This paper proposes an efficient RKA-secure Key Encap- 

sulation Mechanism (KEM), in which the adversary can modify the secret key sk to any 

value f ( sk ), as long as, f is a polynomial function of a bounded degree d . Especially, the 

polynomial-RKA security can be reduced to a hard search problem, namely d -extended 

computational Bilinear Diffie-Hellman (BDH) problem, in the standard model. Our con- 

struction essentially refines the security of Haralambiev et al.’s BDH-based KEM scheme 

from chosen-ciphertext security to related-key security. The main technique applied in our 

scheme is the re-computation of the public key in the decryption algorithm so that any 

(non-trivial) modification to the secret key can be detected. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

To characterize security for a cryptographic scheme, we generally set up a security model to formalize the attacks from 

adversaries, and define security notions for the scheme. Most of security models assume that any adversary has only a 

black-box access to the algorithms of the scheme. In other words, the adversary has no information about the internal 

states of the algorithms, hence is not able to modify the secret key. While this assumption might be reasonable for some 

settings, there still exists a gap between the idealized assumption and practices. For instance, in the context of side-channel 

attacks on a hardware device, an adversary can obtain partial information about the secret key, by means of timing [34] , 

“cold-boot” [25] and fault injection [9,11] , etc. Relate-Key Attacks (RKAs) are just a type of fault injection attacks. By 

implementing RKAs on a device, an adversary is not only capable of modifying the original secret key, but also able to 

observe the output of the device under these modified keys. Biham [8] and Knudsen [33] gave the first security analysis for 

some block-ciphers in the scenario of related-key attacks. At the same time, RKAs also impose great threats on public key 
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cryptosystems. For example, the well-known CRT-based RSA signature scheme [11] can be completely broken, even if only 

one bit of the signing key is tampered by the adversary. However, it seems difficult to define a formal security model to 

capture related-key attacks, as it is hard to precisely depict the adversary’s tampering capacity. Recently, Bellare and Kohno 

made an effort on modelling RKAs. They defined a set of functions � to capture the adversary’s tampering ability to the 

secret key. Informally, a �-RKA adversary is able to choose any function φ ∈ � to modify the secret key s in a device to a 

new key s ′ = φ(s ) , then observe the input/output of the device under the new key s ′ . In other words, the adversary knows 

the relationship between the original key and the modified key, though it may not know their real values. For concrete 

cryptographic primitives, the �-RKA adversary may also have other abilities, e.g., access to a decryption oracle in the 

setting of public-key encryption, or access to a signing oracle in the setting of digital signature. In this paper, we focus on 

Key-Encapsulation Mechanism (KEM), and review KEM with its RKA security [5,41] . 

1.1. RKA security 

Normally, a KEM scheme consists of a system parameter generation algorithm, a public key/secret key generation 

algorithm, a session key encryption algorithm and a decryption algorithm. The RKA security model assumes that the system 

parameter and those algorithms (program code) cannot be manipulated by the adversary, as they are fixed beforehand and 

independent of users. However, the adversary is able to tamper with the secret key (decryption key). The power of an RKA 

adversary is parameterized by a class � of functions, also called Related-Key Derivation (RKD) functions, which is used 

by the adversary to modify the secret key sk ∗. Informally, a KEM scheme is �-RKA secure if the challenge ciphertext C ∗

remains secure even if the adversary obtains the decryption of any ciphertext C under any modified secret key φ( sk ∗) as 

long as φ ∈ �, and ( φ( sk ∗), C ) does not match the pair of challenge secret key and ciphertext ( sk ∗, C ∗). 

The main line of research in RKA security is to construct cryptographic primitives that are provably secure against larger 

classes of RKD functions. Many practical constructions have been proposed with respect to linear functions [4,5,18,19,41] , 

affine functions [2,31,32,35] , polynomials [2,7,35] and even any invertible functions [21,40] . However, to achieve larger 

classes of RKD functions, these schemes usually rely on much stronger assumptions, such as the d -Extended Decisional 

Bilinear Diffie–Hellman ( d -EDBDH) used in [7] . In general, the harder a problem is, the stronger the assumption associated 

with the problem is, and the adversary will take more time to break it. It is believed that computational assumptions 

from search problems are a much weaker class of assumptions than the corresponding decisional versions. For example, 

in bilinear pairing groups, the Decisional Diffie–Hellman (DDH) assumption does not hold anymore, but its computational 

version, namely Computational Diffie–Hellman (CDH) problem, appears to be hard. So it is prefer to design a scheme based 

on much weaker assumptions associated with hard search problems. By this observation, recent development on security 

of PKE against chosen-ciphertext attack (CCA) sees many practical constructions from various search problems, such as 

factoring [29] and CDH problems [14] . However, there are still very few RKA-secure schemes from hard search problems, 

especially for large class of RKD functions. In 2012, Wee [41] gave the first RKA-secure PKE scheme from factoring. But the 

security was only proved for linear RKD functions. It seems that RKA security from search problems is very hard to obtain 

especially for non-linear RKD functions. 

1.2. Our contribution 

Our main contribution is a non-linear RKA secure KEM scheme from a hard search problem, namely d -Extended 

computational Bilinear Diffie-Hellman ( d -EBDH), in the standard model. The d -EBDH problem states that 

Given (g, g α, g α
2 
, . . . , g α

d 
, g β, g γ ) , to compute T = e (g, g) αβγ . 

This is a computational version of the d -EDBDH problem used by Bellare, Paterson and Thomson for constructing RKA 

secure IBE and KEM. The d -EDBDH problem is hard in the generic group model [39] . Obviously, the d -EBDH problem is at 

least as hard as the d -EDBDH problem and might be even harder. 

1.3. Overview of our technique 

Recall that in the traditional CCA-security, one of the technical difficulties in the security proof is how to simulate the 

decryption queries without the target secret key. To solve this problem, except for the approach using hash proof system 

proposed by Cramer and Shoup [16] , most of the CCA-secure PKE/KEM schemes e.g., [13,27,28,37] , used the “all-but-one”

technique, which allows one to set up the system parameter and public key so that one can decrypt all ciphertexts except 

for one single challenge ciphertext. If CCA security is lifted to RKA security, the problem becomes more challenging since 

we need to answer decryption queries under not only the target secret key, but also many related keys. To solve this 

problem, our strategy is the use of a “seed” malleable KEM scheme, together with the “all-but-one” technique. Here, the 

“seed” is a middle value generated during the decryption. But it can be used to correctly recover the final session key. In 

addition, validity of a ciphertext is publicly checkable and hence is independent of the secret key. As a result, we can derive 

a seed from a valid ciphertext under the original key. By the “seed” malleability, we further compute the right seed w.r.t. 

the modified key and hence the final session key. This strategy works well unless an adversary query decryption with the 
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Fig. 1. CCA-secure HJKS-KEM and RKA-secure variant of HJKS-KEM. 

challenge ciphertext under a key that is distinct from the original secret key. To solve this problem, we use a simple trick 

of hashing the public key into the ciphertext. The secret key is bound with the public key. If the secret key is modified, so 

is the public key and hence the ciphertext. This prevents the adversary from reusing the challenge ciphertext. 

A candidate for CCA-secure KEM scheme in our construction is a BDH-based KEM scheme proposed by Haralambiev, 

Jager, Kiltz, and Shoup [26] (denoted by HJKS-KEM). We review it as well as our scheme (a variant HJKS-KEM) in Fig. 1 . 

In Fig. 1 , f gl ( ·, R ) is a Goldreich–Levin hard-core function and TCR is a target collision-resistant hash function. The seed 

used in our proof is a sequence of values Z r 
i . The “seed” malleability is defined as follows: given Z r 

i and (g, g α, . . . , g α
d 
) , for 

any polynomial RKD function φa 0 ,a 1 , ... ,a d (x ) = 
∑ d 

i =0 a i x 
i , it is feasible to derive ˆ e (g 

∑ d 
i =0 a i α

i 
, Z r 

i ) which equals the right “seed”

ˆ e (C 
φa 0 ,a 1 , ... ,a d (α) 
0 , Z i ) w.r.t. RKD function φa 0 ,a 1 , ... ,a d . From these right “seeds”, it is easy to recover the right encapsulated key 

K . In the proof, to derive the “seeds” Z r 
i without the knowledge of α, we employ the “all-but-one” technique, similar to that 

in the proof of CCA security of HJKS-KEM scheme. Note that, the elements (g α
2 
, . . . , g α

d 
) are only used in the proof, and 

hence they do not amplify the key sizes of the original HJKS-KEM scheme. In addition, the variant of HJKS-KEM scheme is 

as efficient as the original HJKS-KEM scheme except for adding one more exponent operation in decryption . 

Discussion. Very recently, Cui et al. [20] studied the relations between robustness (discussed in TCC 2010 by Abdalla 

et al. [1] ) and RKA security under public-key encryption. One of their results [20 , Theorem 4] shows that a completely 

robust PKE scheme is also RKA secure with respect to the restricted RKD functions. Moreover, a CCA-secure PKE can be made 

to completely robust via a commitment scheme. The restricted RKD functions should satisfy the following three properties: 

• Malleability. Given an RKD function φ and a decryption key sk , there should exist an algorithm which outputs a decryp- 

tion key sk’ under φ that is distributed identically to the output of φ( sk ). 

• Compatibility. Given an RKD function φ, an encryption pk , and a decryption sk , there should exist a key generation 

algorithm outputting a key pair ( pk ′ , sk ′ ) � = ( pk, sk ), where sk ′ = φ(sk ) and the corresponding pk ′ can be efficiently 

generated from φ and pk . 

• Collision resistance. Given RKD functions φ1 , φ2 , and a decryption key sk, φ1 ( sk ) should not be equal to φ2 ( sk ) if φ1 � = 

φ2 . 

The collision resistance actually requires the RKD functions be claw-free (introduced by Bellare and Cash at CRYPTO 

2010 [4] ). It seems that the key generation algorithm of the BHJK-KEM scheme meets the above requirements with respect 

to polynomial RKD functions under the d -EBDH assumption. However, the polynomial functions are not claw-free. We 

believe that the concrete instantiation of Cui et al.’s framework for polynomial functions can remove this restriction of 

collision resistance. The reason is as follows. For any bounded-degree polynomial over finite field, there exists efficient 

algorithm to compute all its roots. If φ1 (sk ) = φ2 (sk ) , we may find the target decryption key sk from the roots of the 

polynomial equation f (x ) = φ1 (x ) − φ2 (x )= 0. Under the d -EBDH assumption, the restricted RKD functions may not be 

larger than d -degree polynomials, as the property of compatibility requires the encryption key pk ′ corresponding to φ( sk ) 

be publicly computed from the challenge pk (including the system parameter) and the RKD function φ. 

1.4. Related work 

In 2003, Bellare and Kohno [6] initiated a theoretical investigation of RKA security for PRFs and PRPs. Since then, the 

study of RKA security has been extended to other primitives [3–5,7,22,24,35,36] . Particularly, in 2011, Bellare, Cash and 

Miller [5] showed the relations among RKA primitives of PRFs, IBE, PKE, signature, symmetric encryption and weak PRFs. 

They showed the following results: RKA-PRFs can be used to construct all the other RKA primitives; �-RKA secure IBE 

yields �-RKA secure PKE with the BCHK transformation [10] ; �-RKA signature can be obtained with the IBE-to-Signature 

transformation of Naor (mentioned in [12] ). Though RKA-PRFs play an important role in RKA-secure primitives, it was 

not until 2014 that the problem to construct non-linear RKA-PRFs was solved by Abdalla, Benhamouda, Passelègue and 

Paterson [2] . Concretely, they presented a RKA-secure PRFs under the stronger decisional d -Diffie–Hellman assumption for a 

class of polynomial RKD functions of bounded degree d . In 2012, Bellare, Paterson and Thomson [7] proposed a framework 
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for constructing RKA-secure IBE, including the non-linear (polynomials of bounded degree d ) RKA secure IBE based on the 

d -EDBDH assumption. In the same year, Wee [41] presented a framework for constructing linear-RKA secure PKE schemes 

from standard assumptions, including factoring and DBDH. In addition, the author introduced the notion of weaker RKA 

security, in which the adversary is allowed to make decryption queries that are not equal to the challenge ciphertext. 

A general approach to RKA security is making use of continuous non-malleable codes [30] or continuous non-malleable 

key derivation [38] . In these two primitives, the real cryptographic key is encoded into a codeword or is derived from 

a seed. If the codeword or the seed is modified to another one, the new recovered cryptographic key is either equal to 

the original key or independent of the original key. Very recently, Chen et al. showed that continuous non-malleable key 

derivation can be obtained from non-malleable functions [15] . 

2. Preliminaries 

2.1. Notation 

Throughout this paper, we denote by κ the security parameter and by negl (κ) a negligible function in κ , that is, for any 

positive integer c , there exists N such that for all κ > N , negl (κ) < 1 /κc . For a finite set S , we use s 
$ ← S to represent the 

operation of sampling s uniformly at random from S . We write with poly( κ) an unspecified polynomial value of κ . “PPT”

and “DPT” stand for probabilistic polynomial-time and deterministic polynomial-time respectively. For a positive integer n , 

we denote by [ n ] the set { 1 , . . . , n } and by [ n �i ] the set { 1 , . . . , i − 1 , i + 1 , . . . , n } . 

2.2. Key-encapsulation mechanism 

Bellare, Paterson and Thomson [7 , Theorem 7.1] showed that the KEM/DEM paradigm of [17] extends to the RKA setting 

in a natural way. Therefore this paper will focus on key-encapsulation mechanism (KEM) schemes rather than public-key 

encryption schemes. 

A key-encapsulation mechanism scheme consists of four (probabilistic) polynomial-time algorithms: ( KEM . Sys , KEM . Gen , 

KEM . Encap , KEM . Decap ) that satisfy the following properties: (1) KEM . Sys (1 κ ) is a PPT parameter generation algorithm. 

It takes as input a security parameter 1 κ and outputs a system parameter sp (which implicitly defines an encapsulated 

key space K and a ciphertext space C); (2) KEM . Gen (sp) is a PPT public key and secret key generation algorithm. It 

takes as input the system parameter sp and outputs a public key pk and a secret key sk ; (3) KEM . Encap (pk ) is a PPT 

encapsulation algorithm. It takes as input the public key pk and outputs a ciphertext C as well as a random symmetric 

key (session key) K ∈ K; (4) KEM . Decap (sk, C) is a DPT decapsulation algorithm. It takes as input a ciphertext C and a 

secret key sk , and outputs a symmetric key K ∈ K or the special reject symbol ⊥ , indicating that C is an invalid ciphertext. 

The consistence requires that for all κ ∈ N , all possible system parameter sp ← KEM . Sys (1 κ ) and public/secret key pair 

(pk, sk ) ← KEM . Gen (sp) , and all (C, K) ← Encap (pk ) , it always has KEM . Decap (sk, C) = K. 

RKD functions. Suppose that S is a finite set. Let F = { f : S → S} denote the set of all efficiently computable functions 

with the same domain and range S . Moreover, their relationships should be efficiently checkable. We say a class of functions 

� is a related-key derivation (RKD) function class, if it is a subset of F . In this paper, S is just the secret key space and the 

RKD functions may depend on the system parameters. Hereafter, we write with �lin , �aff and �poly the concrete classes of 

linear, affine and polynomial RKD functions respectively. 

Following [7] , we define the indistinguishability against adaptive chosen-ciphertext and related-key attacks for RKD 

function class � (abbreviated as �-RKA security) for a KEM scheme. 

Definition 1 ( �-RKA security) . We say that a key-encapsulation mechanism KEM = ( KEM . Sys , KEM . Gen , KEM . Encap , 

KEM . Decap ) is �-RKA secure, if for any stateful PPT adversary A , the following advantage 

Adv �−rka 
KEM , A (κ) := 

∣∣∣∣∣∣∣∣∣
Pr 

⎡ 

⎢ ⎢ ⎢ ⎣ 
b ′ = b : 

sp ∗ ← KEM . Sys (1 κ ) 
(pk ∗, sk ∗) ← KEM . Gen (sp ∗) 
(C ∗, K ∗0 ) ← KEM . Encap (pk ∗) 

K ∗1 
$ ← K, b 

$ ← { 0 , 1 } 
b ′ ← A O 

�
sk ∗ (·, ·) (pk ∗, (C ∗, K ∗

b )) 

⎤ 

⎥ ⎥ ⎥ ⎦ 
− 1 

2 

∣∣∣∣∣∣∣∣∣
is negligible in κ , where the RKA oracle O �

sk ∗ (·, ·) , on input (φ, C) ∈ � × C, returns KEM . Decap (φ(sk ∗) , C) . Naturally, the 

adversary is forbidden to make queries such that (φ(sk ∗) , C) = (sk ∗, C ∗) once the adversary saw the challenge ciphertext C ∗. 

2.3. Target collision-resistant hash function 

Let H = { TCR : R → D} be a family of hash functions from domain D to range R . For simplicity, we denote by TCR ← H
the function sampling algorithm. Actually, this would be a PPT algorithm that takes as input the security parameter and 

outputs a function index. The target collision-resistant hash functions says that given a hash function TCR and a random 

x ∈ D, it is hard to find x ′ � = x such that TCR (x ′ ) = TCR (x ) . 
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Definition 2 (TCR Hash Function) . We say that a hash function family H = { TCR : R → D} is target collision resistant, if for 

any PPT algorithm A , the following advantage 

Adv tcr 
H, A (κ) := Pr 

[
x ′ � = x ∧ TCR (x ′ ) = TCR (x ) : TCR ← H, x 

$ ← D 

x ′ ← A ( TCR , x ) 

]

is negligible in κ . 

2.4. Extended bilinear Diffie–Hellman assumption 

A pairing instance generation algorithm PGen (1 κ ) is a PPT algorithm that on input 1 κ , outputs a description of bilinear 

groups ( ̂  e , G , G T , p) . This paper considers bilinear groups with prime order p and symmetric bilinear map, i.e., there exists 

an efficiently compubable map ˆ e : G × G → G T such that ˆ e (g a , g b ) = ˆ e (g b , g a ) = ˆ e (g, g) ab for any a, b ∈ Z p and g ∈ G . We 

simply denote by g 
$ ← G \ { 1 } a random generator sampling algorithm, where 1 stands for the identity element. 

For any positive integer d = poly (κ) , the d -Extended Bilinear Diffie–Hellman ( d -EBDH) problem over bilinear group G 

states that 

Given (( ̂  e , G , G T , p) , g, g α, g α
2 
, . . . , g α

d 
, g β, g γ ) , to compute T = ˆ e (g, g) αβγ , 

where ( ̂  e , G , G T , p) ← PGen (1 κ ) , g 
$ ← G \ { 1 } and α, β, γ

$ ← Z p . 

Clearly, if d = 1 , this is just the standard computational Bilinear Diffie–Hellman (BDH) problem. 

Definition 3 ( d -EBDH Assumption) . We say that the d -EBDH assumption holds over G , if for any PPT algorithm A , it solves 

the d -EBDH problem with a negligible probability in κ , where the probability is defined as follows 

Adv d −ebdh 
A , G (κ) := Pr 

⎡ 

⎣ T = ˆ e (g, g) αβγ : 

( ̂  e , G , G T , p) ← PGen (1 κ ) 

g 
$ ← G \ { 1 } , α, β, γ

$ ← Z p 

T ← A (g, g α, g α
2 
, . . . , g α

d 
, g β, g γ ) 

⎤ 

⎦ . 

In the following, we denote by f gl : G T × { 0 , 1 } u → { 0 , 1 } ν the Goldreich–Levin hard-core function for d -EBDH problem 

with randomness space {0, 1} u and range {0, 1} ν , where u and ν are suitable positive integers. The Goldreich–Levin 

theorem [23] gives the following lemma. 

Lemma 1. For ( ̂  e , G , G T , p) ← PGen (1 κ ) . Define two distributions 

	real = (g, g α, g α
2 
, . . . , g α

d 
, g β, g γ , K, R ) 

	rand = (g, g α, g α
2 
, . . . , g α

d 
, g β, g γ , U ν, R ) 

where g is a random generator of group G , α, β, γ
$ ← Z p , R 

$ ← { 0 , 1 } u , K = f gl ( ̂  e (g, g) αβγ , R ) and U ν
$ ← { 0 , 1 } ν . For any PPT 

algorithm A , the following advantage 

Adv d−ebdh 
GL, B (κ) := | Pr [ A (	real ) = 1] − Pr [ A (	rand ) = 1] | 

is negligible in κ under the d-EBDH assumption. In other words, if the d-EBDH assumption holds, then no PPT algorithm can 

distinguish the aforementioned two distributions 	real and 	rand . 

3. RKA-secure KEM from the EBDH assumption 

3.1. The construction 

• KEM . Sys (1 κ ) : Run ( ̂  e , G , G T , p) ← PGen (1 κ ) . Choose f gl : G T × { 0 , 1 } u → { 0 , 1 } ν and randomness R 
$ ← { 0 , 1 } u for f gl . 

Choose a function TCR from a target collision-resistant hash function family H = { TCR : G × G → Z p } . Choose a random 

generator g 
$ ← G \ { 1 } and random elements X, X ′ , Z 1 , . . . , Z n 

$ ← G . Return 

sp = 
(
( ̂  e , G , G T , p) , f gl , R, TCR , g, X, X ′ , Z 1 , . . . , Z n 

)
. 

• KEM . Gen (sp) : Given a system parameter sp , choose a random exponent α
$ ← Z p , and compute Y = g α . Set 

pk = Y and sk = α

and return ( pk, sk ). 

• KEM . Encap (pk ) : On input a public key pk = Y, pick r 
$ ← Z p and then compute 

C 0 = g r C 1 = (X t X ′ ) r K = 
(

f gl ( ̂  e (Y r , Z i ) , R ) 
)

i ∈ [ n ] 

where t = TCR (C 0 , Y ) . Return (( C 0 , C 1 ), K ). 
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• KEM . Decap (sk, (C 0 , C 1 )) : On input the secret key sk = α and a ciphertext ( C 0 , C 1 ), compute Y = g α and t = TCR (C 0 , Y ) . If 

ˆ e (C 0 , X 
t X ′ ) � = ˆ e (g, C 1 ) , then return ⊥ . Otherwise, compute, for each i ∈ [ n ], 

K i = f gl ( ̂  e (C α0 , Z i ) , R ) 

and return K = (K 1 , . . . , K n ) ∈ { 0 , 1 } nν . 

The correctness of the above scheme can be checked directly, we omit it here. Its security is established by the following 

theorem. 

Our RKD functions: The related-key derivation function class �poly( d ) used in the following theorem consists of all 

polynomials with bounded degree d over the finite field F p , where p is the prime order of group G . Without loss of 

generality, for any φa 0 ,a 1 , ... ,a d ∈ �poly (d) , the evaluation of polynomial 
∑ d 

i =0 a i x 
i is over the finite field F p . 

Theorem 1. Suppose that f gl is a Goldreich–Levin hard-core function, H is a target collision-resistant hash function family and 

the d-Extended Bilinear Diffie-Hellman assumption holds in G . Then, the above scheme is a �poly( d ) -RKA secure KEM scheme. 

Concretely, for any PPT �poly( d ) -RKA adversary A that makes at most q = poly (κ) RKA queries, there exist adversaries B ′ and B ′′ 
of roughly the same complexity as A , such that 

Adv �
poly (d) −rka 

KEM , A (κ) ≤ Adv tcr 
H, B ′ (κ) + n · Adv d−ebdh 

GL, B ′′ (κ) + 
q 

p 

where p is the order of the underlying bilinear group G . 

3.2. Security proof 

Before to prove Theorem 1 , we briefly discuss the RKA security of the original HJK S-KEM scheme. Though the HJK S-KEM 

scheme is CCA secure under the BDH assumption, it seems to be hard to prove its RKA security (even under the extended 

BDH assumption). Consider a (simple) linear RKD function class, the adversary can modify the challenge decryption key 

sk = α to some related decryption key, such as sk ′ = α + 1 . Given a challenge HJKS-KEM ciphertext (C ∗
0 , C 

∗
1 ) , we know that 

(C ∗0 , C 
∗
1 ) is still a valid ciphertext under the modified key sk ′ (according to the validity checking of the HJKS-KEM scheme). 

Hence, submitting (φ = x + 1 , C := (C ∗
0 , C 

∗
1 )) to the RKA decryption oracle, the adversary should obtain a session key K ′ = 

(K ′ 
1 , K ′ 

2 , . . . , K ′ n ) , where K ′ 
i = f gl ( ̂  e ( C ∗

0 
α+1 

, Z i ) , R ) . Note that the real session (challenge) key is (K i ) i ∈ [ n ] = ( f gl ( ̂  e ( C ∗
0 
α
, Z i ) , R )) i ∈ [ n ] . 

It is not clear whether the adversary can derive some useful information about K i from the knowledge of K ′ 
i . To prevent 

this related-key attack, K ′ should be unrelated to the challenge key K . However, the underlying hard-core function does not 

suggest such a property. We do not know how to prove the RKA security of the original HJKS-KEM scheme. Nevertheless, 

our variant HJKS-KEM scheme proposed in this paper can be formally proven to be RKA secure due to the following analysis. 

We proceed through a sequence of games played between a fixed PPT adversary A and a challenger. Let S i denote the 

event that A succeeds (i.e., b ′ = b in Definition 1 ) in Game i . 

Game 0 : This is the original RKA game. By definition we have 

Adv �
poly (d) −rka 

KEM , A (κ) := 

∣∣∣Pr [ S 0 ] − 1 

2 

∣∣∣. 
In the following games, we denote by Y ∗, (C ∗

0 , C 
∗
1 ) and K ∗

b the challenge public key, challenge ciphertext and challenge 

encapsulated key respectively, and denote by (φa 0 ,a 1 , ... ,a d , (C 0 , C 1 )) the RKA queries issued by A . We write with Y φ the 

modified public key corresponding to the modified secret key φa 0 ,a 1 , ... ,a d (α) , i.e., Y φ = g 
φa 0 ,a 1 , ... ,a d (α) 

. 

Game 1 : This game is identical to Game 0 , except that the challenger rejects all RKA queries of the form 

(φa 0 ,a 1 , ... ,a d , (C 0 , C 1 )) such that 
∑ d 

i =0 a i α
i = α and (C 0 , C 1 ) = (C ∗0 , C 

∗
1 ) . Recall that in the original RKA game, the challenger 

only rejects such queries after the adversary seeing the challenge ciphertext (C ∗
0 , C 

∗
1 ) . Since C ∗

0 is chosen uniformly at random 

from G , the probability that the adversary submits an RKA query such that C 0 = C ∗
0 before seeing the challenge ciphertext is 

bounded by q / p where q is the number of RKA queries issued by A . Since q = poly (κ) , we have q / p is negligible in κ . Then 

| Pr [ S 1 ] − Pr [ S 0 ] | ≤ q 

p 
. 

Game 2 : Instead of testing φa 0 ,a 1 , ... ,a d (α) = α ( mod p) , the challenger checks whether Y φ = g 
∑ d 

i =0 a i α
i = Y ∗. That is, 

the challenger returns ⊥ , if A submits an RKA query of the form (φa 0 ,a 1 , ... ,a d , (C 0 , C 1 )) such that g 
∑ d 

i =0 a i α
i = Y ∗ and 

(C 0 , C 1 ) = (C ∗0 , C 
∗
1 ) . Note that g is a generator of G with prime order p , and thus φa 0 ,a 1 , ... ,a d (α) = α holds if and only if 

g 
∑ d 

i =0 a i α
i = Y ∗. This modification is just conceptional and hence 

Pr [ S 2 ] = Pr [ S 1 ] . 

(The purpose of this game is to check the equivalency between the original secret key α and the modified secret key φ( α) 

using the public parameters (g, g α, g α
2 
, . . . , g α

d 
) rather than α.) 
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Game 3 : This game is identical to Game 2 , except the following modification to the computation of Y . In the public/secret 

keys generation algorithm, besides the public key Y ∗ = g α, the challenger also computes Y ∗
i = g α

i 
for 2 ≤ i ≤ n and keeps 

them in hand. In the following, we implicitly set Y ∗0 = g and Y ∗1 = Y ∗. 

To answer A ’s query (φa 0 ,a 1 , ... ,a d , (C 0 , C 1 )) , the challenger computes Y φ via 
d 
i =0 (Y 

∗
i ) 

a i instead of g 
∑ d 

i =0 a i α
i 
. Since 


d 
i =0 (Y 

∗
i ) 

a i = 
d 
i =0 (g α

i 
) a i = g 

∑ d 
i =0 a i α

i 
, we have 

Pr [ S 3 ] = Pr [ S 2 ] . 

Game 4 : This game is identical to Game 3 , except that the challenger returns ⊥ and halts, if (C 0 , Y φ ) = (C ∗
0 , Y 

∗) . Note that, in 

this case, t = TCR (C 0 , Y φ ) = TCR (C ∗0 , Y 
∗) = t ∗. If C 1 � = C ∗1 , then 

ˆ e (C 0 , X t X ′ ) = ˆ e (C ∗0 , X t 
∗
X ′ ) = ˆ e (g, C ∗1 ) � = ˆ e (g, C 1 ) . 

Any RKA query such that (C 0 , Y φ ) = (C ∗0 , Y 
∗) but C 1 � = C ∗1 will be an inconsistent ciphertext and rejected by the decryption 

oracle. However if C 1 = C ∗
1 , it will also be rejected by the definition. Therefore 

Pr [ S 4 ] = Pr [ S 3 ] . 

Game 5 : This game is identical to Game 4 , except that the challenger returns ⊥ and halts, if (C 0 , Y φ ) � = (C ∗
0 , Y 

∗) but 

t = TCR (C 0 , Y φ ) = TCR (C ∗0 , Y 
∗) = t ∗. By the target collision-resistance of TCR , we have the following lemma (which we do 

after the main proof): 

Lemma 2. Let B ′ be a PPT adversary attacking on the target collision-resistance of the hash function TCR . Then, 

| Pr [ S 5 ] − Pr [ S 4 ] | ≤ Adv tcr 
TCR , B ′ (κ) . 

Game 6 : This game is identical to Game 5 , except that the challenger samples K ∗0 
$ ← { 0 , 1 } nν instead of computing 

K ∗
0 = 

(
f gl ( ̂  e ( C ∗

0 
α
, Z i ) , R ) 

)
i ∈ [ n ] . Note that, in this game both K ∗

0 and K ∗
1 are chosen uniformly at random and thereby we have 

Pr [ S 6 ] = 1 
2 . 

We claim that 

| Pr [ S 6 ] − Pr [ S 5 ] | ≤ n · Adv d−ebdh 
GL, B ′′ (κ) . 

We prove the above claim through defining a sequence of hybrid games H 0 , . . . , H n such that H 0 equals Game 5 . For i ∈ [ n ], 

H i is the same as H i −1 , except that the first i ν bits of K ∗
0 are chosen randomly and independently. Clearly, H n equals Game 6 . 

We prove that hybrid H i is indistinguishable from hybrid H i −1 in the successive games. 

Let E i denote the event that A succeeds in hybrid game H i . We fix any index i ∗ ∈ [ n ]. Suppose that there 

exists a PPT adversary A that has a non-negligible advantage to distinguish games H i ∗ and H i ∗−1 . Then, we 

show that there exists an algorithm B i ∗ distinguishing the distributions 	real and 	rand . Given a challenge tuple 

δ = (( ̂  e , G , G T , p) , g, g α, g α
2 
, . . . , g α

d 
, g β , g γ , L, R ) , the algorithm B i ∗ proceeds as follows: 

Setting up the system parameter. B i ∗ chooses random exponents ω 1 , ω 2 ∈ Z p , and sets X = (g β ) ω 1 , X ′ = (g β ) −ω 1 t 
∗
g ω 2 , 

and Z i ∗ = g β , where t ∗ = TCR (g γ , g α) . For i ∈ [ n �i ∗], B i ∗ picks random exponents z i ∈ Z p and sets Z i = g z i . Finally, B i ∗
returns the following system parameter to A 

sp = (( ̂  e , G , G T , p) , f gl , R, TCR , g, X, X ′ , Z 1 , . . . , Z n ) . 
Clearly, the simulated system parameter has the same distribution as in that the original game. Note that B i ∗ knows 

the discrete logarithms of all Z i ’s to the base g , except Z i ∗ . 

Setting up the public key. B i ∗ sets pk := Y ∗ = g α and implicitly sets Y ∗
i = g α

i 
for 0 ≤ i ≤ d . 

Setting up the challenge ciphertext. B i ∗ sets C ∗0 = g γ and C ∗1 = (g γ ) ω 2 . So, TCR (C ∗0 , Y 
∗) = TCR (g γ , g α) = t ∗. According to 

the set-up of X and X ′ , it follows that 

(X t 
∗
X ′ ) γ = (((g β ) ω 1 ) t 

∗ · (g β ) −ω 1 t ∗ g ω 2 ) γ = (g γ ) ω 2 . 

So, (C ∗
0 , C 

∗
1 ) is a consistent ciphertext and has the same distribution as in Game 0 . 

Then B i ∗ randomly chooses the first i ∗ − 1 keys K ∗0 , 1 , . . . , K ∗
0 ,i ∗−1 , sets K ∗

0 ,i ∗ := L, and computes K ∗
0 , j = f gl ( ̂  e (C ∗0 , Y 

∗) z j , R ) 

for i ∗ + 1 ≤ j ≤ n . After that, B i ∗ lets K ∗
0 = (K ∗

0 , 1 , . . . , K ∗
0 ,n ) , and samples K ∗

1 = (K ∗
1 , 1 , . . . , K ∗

1 ,n ) 
$ ← { 0 , 1 } nν as in the origi- 

nal RKA game. Finally, B i ∗ picks a random coin b 
$ ← { 0 , 1 } and returns the challenge ciphertext (C ∗0 , C 

∗
1 ) together with 

the key K ∗
b to A . 

Handling RKA queries. Suppose that (φa 0 ,a 1 , ... ,a d , (C 0 , C 1 )) is an RKA query issued by A and suppose that C 0 = g r for some 

unknown exponent r ∈ Z p . B i ∗ computes Y φ = 
d 
i =0 (Y 

∗
i ) 

a i . If (C 0 , Y φ ) = (C ∗
0 , Y 

∗) or t = TCR (C 0 , Y φ ) = t ∗, B i ∗ returns ⊥ 

and halts. Otherwise, B i ∗ tests the consistency of the ciphertext by verifying ˆ e (C 0 , X 
t X ′ ) = ˆ e (g, C 1 ) . If the equality does 

not hold, B returns ⊥ and halts. Otherwise, B sets K = (K 1 , . . . , K n ) as 

K i = 

{
f gl ( ̂  e (C z i 

0 , 

d 
i =0 (Y 

∗
i ) 

a i ) , R ) if i ∈ [ n \ i ∗] 

f gl ( ̂  e ( ̄X , 
d 
i =0 (Y 

∗
i ) 

a i ) , R ) if i = i ∗
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where X̄ = (C 1 /C 
ω 2 
0 ) 1 / (ω 1 (t −t ∗)) (note that t � = t ∗). 

Next, we discuss the correctness of all K i . 

Recall that Y ∗
i = g α

i 
(0 ≤ i ≤ n ) for some unknown α ∈ Z p . For i ∈ [ n �i ∗], we have 

K i = f gl ( ̂  e (C z i 
0 , 


d 
i =0 (Y 

∗
i ) 

a i ) , R ) 

= f gl ( ̂  e (C z i 
0 , g 

∑ d 
i =0 a i α

i 
) , R ) 

= f gl ( ̂  e (C 
∑ d 

i =0 a i α
i 

0 , Z i ) , R ) . 

For i = i ∗, since 

X̄ = (C 1 /C ω 2 
0 ) 1 / (ω 1 (t −t ∗)) 

= 

(
(X t X ′ ) r 

g rω 2 

) 1 
ω 1 (t −t ∗ ) 

= 

(
((g β ) ω 1 t (g β ) −ω 1 t ∗ g ω 2 ) r 

g rω 2 

) 1 
ω 1 (t −t ∗ ) 

= (g β ) r , 

we have 

K i ∗ = f gl ( ̂  e ((g β ) r , 
d 
i =0 (Y 

∗
i ) 

a i ) , R ) 

= f gl ( ̂  e ((g β ) r , g 
∑ d 

i =0 a i α
i 
) , R ) 

= f gl ( ̂  e (C 
∑ d 

i =0 a i α
i 

0 , Z i ∗ ) , R ) . 

Thus, B i ∗ correctly answers all RKA queries issued by A . 

Summary. As shown in the above discussion, the distributions of the system parameter, the public key and the RKA 

queries are identical to that in H i ∗ (and H i ∗−1 ). For the challenge key K ∗
0 , if δ is an instance of distribution 	real , then 

we have L = f gl ( ̂  e (g, g) αβγ , R ) . Thus the distribution of K ∗
0 is identical to that in H i ∗−1 . If δ is an instance of distribution 

	rand , then L is a random ν bits string and the distribution of K ∗0 is identical to that in H i ∗ . Therefore, B i ∗ can use A 

to distinguish δ ∈ 	real from δ ∈ 	rand . This holds for all i ∗ ∈ [ n ]. Particularly, 

| Pr [ E i ∗ ] − Pr [ E i ∗−1 ] | ≤ Adv d−ebdh 
GL, B i ∗ (κ) . 

We conclude that 

| Pr [ S 6 ] − Pr [ S 5 ] | = | Pr [ E n ] − Pr [ E 0 ] | 
≤

n ∑ 

i =1 

| Pr [ E i ] − Pr [ E i −1 ] | 

≤ n · Adv d−ebdh 
GL, B ′′ (κ) . 

for some PPT adversary B ′′ attacking on the Goldreich–Levin hard-core function. 

Taking all things together, this completes the proof of Theorem 1 . 

Proof of Lemma 2. To prove this lemma, we introduce two hybrid games. 

• Game 4 . 1 : This game is the same as Game 4 , except the following changes: (i) We keep the discrete logarithms of X and 

X ′ to the base g , i.e., we first sample random x, x ′ ∈ Z p , and then set X = g x and X ′ = g x 
′ 
; (ii) We compute the challenge 

ciphertext C ∗
1 using (C ∗

0 ) 
x ·t ∗+ x ′ instead of (X t X ′ ) r ∗ where r ∗ = log g C 

∗
0 ; (iii) We compute the challenge encapsulated key 

K ∗
0 using the secret key sk ∗ = α instead of the witness r ∗ of C ∗

0 . That is, for each i , K ∗
0 ,i is computed via f gl ( ̂  e ( C ∗

0 
α
, Z i ) , R ) 

rather than f gl ( ̂  e ( Y ∗r ∗
, Z i ) , R ) . Clearly, all these modifications are just conceptional, and hence 

Pr [ S 4 . 1 ] = Pr [ S 4 ] . 

• Game 4 . 2 : This game is identical to Game 4 . 2 , except that the challenger returns ⊥ and halts, if (C 0 , Y φ ) � = (C ∗
0 , Y 

∗) but 

t = TCR (C 0 , Y φ ) = TCR (C ∗
0 , Y 

∗) = t ∗. We show that 

| Pr [ S 4 . 2 ] − Pr [ S 4 . 1 ] | ≤ Adv tcr 
TCR , B ′ (κ) 

for a PPT adversary B ′ attacking on TCR. 

Given a challenge TCR instance (A ∗, B ∗) ∈ G × G , we construct an efficient algorithm S to simulate Game 4 . 1 . Without lossy 

of generality, we assume that the group G comes from some bilinear group ( ̂  e , G , G T , p) generated by PGen (1 κ ) . The 
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simulator first chooses random elements α, x, x ′ ∈ Z p , and sets g = B ∗
1 
α , sk ∗ = α, X = g x and X ′ = g x 

′ 
. So, the challenge 

public key is pk ∗ = Y ∗ = g α = B ∗. The simulator then generates the other elements of the system parameter as in Game 4 . 1 . 

Next, the simulator sets C ∗0 = A ∗, and computes {
C ∗1 = (A ∗) x ·t 

∗+ x ′ , where t ∗ = TCR (C ∗0 , Y 
∗) 

K ∗
0 ,i = f gl ( ̂  e ( A ∗α

, Z i ) , R ) , for i ∈ [ n ] 
. 

Observe that the simulated challenge ciphertext (C ∗0 , C 
∗
1 ) and K ∗0 have the same distributions as that in Game 4 . 1 . For any 

RKA queries ( φ, ( C 0 , C 1 )), the simulator can also answer the adversary’s query using α and keep the tuple ( C 0 , Y φ), where 

Y φ = g φ(α) . Finally, the simulator checks whether there exists same tuple ( C 0 , Y φ) satisfying TCR (C 0 , Y φ ) = TCR (C ∗
0 , Y 

∗) 
but (C 0 , Y φ ) � = (C ∗

0 , Y 
∗) . If so, the simulator outputs such tuple to its own TCR challenger. By the TCR assumption, such 

event occurs with probability at most Adv tcr 
TCR , B ′ (κ) . Since Game 4 . 2 is identical to Game 4 . 1 unless this event occurs, we 

have | Pr [ S 4 . 2 ] − Pr [ S 4 . 1 ] | ≤ Adv tcr 
TCR , B ′ (κ) . 

Recall that Game 5 is identical to Game 4 . 2 , except that the challenge ciphertext is again computed using the witness r ∗ of 

C ∗0 . So, the difference between these two games is conceptional. This finishes the proof of Lemma 2 . �

3.3. Reducing pairings in encapsulation 

One drawback of the above scheme is that the encapsulation algorithm requires too many pairings. In general, computing 

the pairing is much slower than an exponentiation. To alleviate this problem, we introduce a simple way to reduce the num- 

ber of pairings in the encryption algorithm. The idea is to precompute the pairings ˆ Z i = ˆ e (Y, Z i ) for i ∈ [ n ], and add these val- 

ues into the public key. Concretely, the variant scheme KEM ′ = ( KEM ′ . Sys , KEM ′ . Gen , KEM ′ . Encap , KEM ′ . Decap ) is the same 

as our original KEM scheme described in Section 3.1 , except the following two differences in KEM ′ . Sys and KEM ′ . Encap : 

1. In KEM ′ . Sys , the system parameter is modified to 

pk = (Y, ̂  Z 1 , . . . , ̂  Z n ) , 

where Y = g α for some secret key sk = α, and ˆ Z i = ˆ e (Y, Z i ) . 

2. On input a public key pk = (Y, ̂  Z 1 , . . . , ̂  Z n ) , the encapsulation algorithm KEM ′ . Encap picks a random r ∈ Z p and then 

computes 

C 0 = g r C 1 = (X t X ′ ) r K = 
(

f gl ( ̂  Z r i , R ) 
)

i ∈ [ n ] 

where t = TCR (C 0 , Y ) . Return (( C 0 , C 1 ), K ). 

We claim that the RKA-security of the variant KEM scheme is the same as that of the original KEM scheme, i.e., we have 

the following theorem. 

Theorem 2. For any PPT �poly( d ) -RKA adversary A that makes at most q = poly (κ) RKA queries, there exist adversaries B ′ and 

B ′′ of roughly the same complexity as A , such that 

Adv �
poly (d) −rka 

KEM ′ , A (κ) ≤ Adv tcr 
H, B ′ (κ) + n · Adv d−ebdh 

GL, B ′′ (κ) + 
q 

p 

where p is the order of the underlying bilinear group G . 

The proof of the above theorem is almost identical to that of Theorem 1 , except that we need to simulate the elements 
ˆ Z i of the challenge public key pk in Game 6 . Observe that the simulator can compute ˆ Z i from the values Y ∗ and Z i using 

pairing ˆ e (Y ∗, Z i ) , where Y ∗ comes from the challenge d -EBDH instance and Z i are chosen by the simulator itself. In this way, 

the challenge public key pk = (Y ∗, ̂  Z 1 , . . . , ̂  Z n ) can be simulated by the simulator. We omit the formal security proof. 

4. Comparison 

In this section, we compare our result with previous known RKA-secure public key primitives, including public-key 

encryption (PKE), identity-based encryption (IBE) and key-encapsulation mechanism (KEM), in terms of RKD function 

classes and assumptions. Note that, the later two primitives imply RKA-secure PKE schemes in a modular and efficient way. 

According to the framework proposed by Bellare, Cash and Miller [5] , RKA-secure pseudo-random functions (PRFs) can be 

used to construct other primitives for the same set of RKD functions. We omit the comparison with the results obtained 

from the RKA-PRFs, as the best result from RKA-PRFs does not surpass the best result from RKA-PKE or RKA-KEM. 

It has been shown in Table 1 that our result achieves non-linear RKA security from search problem while the others rely 

on decisional assumptions with the exception of Wee’s factoring-based construction and Cui et al.’s work. Note that Cui 

et al.’s method requires extra operations of computing a commitment and verifying the commitment, while our method 

only involves an extra operation of computing one exponentiation in the decryption. Our polynomial RKA security is 

obtained from a slightly less standard search problem, i.e., the d -extended BDH problem. This limitation exists in Cui et al.’s 
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Table 1 
Summary of existing RKA-secure PKE, IBE and KEM schemes. The KEM schemes also rely on a TCR function. We do not write it explicitly in the figure, as 
TCR function can be constructed under discrete logarithm assumption, which is weaker than the other assumptions. In the table, “HR”, “QR” and “DCR”

stand for “Higher Residuosity assumption”, “Quadratic Residuosity assumption” and “Decisional Composite Residuosity assumption” respectively. 

Scheme Primitive Assumption RKD functions Search problem 

[41] PKE DBDH Linear ✗ 
[7] IBE DBDH Affine ✗ 
[7] IBE d -EDBDH Polynomial ✗ 
[7] KEM DBDH Affine ✗ 
[32] PKE DDH/HR Affine ✗ 
[31] PKE DCR/QR Affine ✗ 
[21] KEM DBDH Invertible ✗ 
[21] IBE DBDH Invertible ✗ 
[41] PKE Factoring Linear � 
[20] a PKE d -EBDH Restricted functions � 
Sections 3.1 and 3.3 KEM BDH Affine � 
Sections 3.1 and 3.3 KEM d -EBDH Polynomial � 

a Obtained via applying their framework to the HJKS-KEM scheme under the d -EBDH assumption. 

Table 2 
Efficiency comparison. 

Scheme Param. pk sk CT Encap. Decap. RKA 
# G [# G , # G T ] # Z p # G [# Exp . , # Pairing ] 

[26] n + 1 [1, 0] 1 2 [ n + 3 , n ] [ n + 1 , n + 2] unknow 
Scheme 3.1 n + 1 [1, 0] 1 2 [ n + 3 , n ] [ n + 2 , n + 2] Yes 
Scheme 3.3 n + 1 [1, n ] 1 2 [ n + 3 , 0] [ n + 2 , n + 2] Yes 

method too. We leave it as a further work to construct RKA-secure primitives from standard search problems, such as BDH 

and factoring, for polynomial and even invertible RKD functions. 

In Table 2 , we also compare our schemes with the original CCA-secure HJKS-KEM scheme, in terms of key and cipher- 

text sizes, encapsulation and decapsulation computations. For the system parameter size, we do not consider the size of 

the group description, TCR functions and the hard-core function. In encapsulation and decapsulation, we only consider the 

dominating computations, including exponentiation ( Exp. ) and pairing ( Pairing ), omitting the computations of TCR function 

and some constant number of multiplications. Table 2 shows that, to achieve RKA security, our two schemes only add an 

extra exponentiation in the decapsulation of the original HJKS-KEM scheme. Moreover, the second scheme even eliminates 

the n pairings in the encapsulation with the price of a pre-computation of n pairings in the public key. 

5. Conclusion 

In this paper, we presented an efficient key-encapsulation mechanism that is secure against polynomial related-key 

attacks in the standard model. Different from previous polynomial-RKA secure encryption schemes, the construction is 

based on a hard search problem, namely, d -extended BDH, rather than decisional problems. It is also the first affine-RKA 

secure encryption scheme under the BDH assumption. However, like in previous RKA-secure primitives, to protect against 

polynomial RKD functions, we rely on a less standard assumption. It remains an open problem to construct RKA-secure 

primitives, such as KEM/PKE for larger classes of RKD functions from standard search assumptions. 
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