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a b s t r a c t 

Cloud computing offers various services to users by re-arranging storage and computing 

resources. In order to preserve data privacy, cloud users may choose to upload encrypted 

data rather than raw data to the cloud. However, processing and analyzing encrypted data 

are challenging problems, which have received increasing attention in recent years. Ho- 

momorphic Encryption (HE) was proposed to support computation on encrypted data and 

ensure data confidentiality simultaneously. However, a limitation of HE is it is a single 

user system, which means it only allows the party that owns a homomorphic decryption 

key to decrypt processed ciphertexts. Original HE cannot support multiple users to access 

the processed ciphertexts flexibly. In this paper, we propose a Privacy-Preserving Data Pro- 

cessing (PPDP) system with the support of a Homomorphic Re-Encryption Scheme (HRES). 

The HRES extends partial HE from a single-user system to a multi-user one by offering 

ciphertext re-encryption to allow multiple users to access processed ciphertexts. Through 

the cooperation of a Data Service Provider (DSP) and an Access Control Server (ACS), the 

PPDP system can support seven basic operations over ciphertexts, which include Addition, 

Subtraction, Multiplication, Sign Acquisition, Comparison, Equivalent Test , and Variance . To en- 

hance the flexibility and security of our system, we further apply multiple ACSs to take in 

charge of the data from their own users and design computing operations over ciphertexts 

belonging to multiple ACSs. We then prove the security of PPDP, analyze its performance 

and advantages by comparing with some latest work, and demonstrate its efficiency and 

effectiveness through simulations with regard to big data process. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Cloud computing provides various services based on user demands by rearranging resources over the Internet. It releases 

heavy burdens of users for managing information systems by themselves and breaks the bottlenecks of restricted local 

resources. In cloud computing, users outsource their data to a heterogeneous environment for storage and processing. Such 

an environment is often beyond the control of the users. This gives rise to a pressing need to safeguard the security and 

privacy of data in the cloud [34] . 

Meanwhile, with the rapid development of Internet of Things, huge amounts of data about environments, society, health 

and business [4,28] are produced and transmitted over the network. Data process, analytics and mining become significant 
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to help a party gain profits not only from their own data, but also from the data provided by other parties. Due to security 

concerns, many parties may be reluctant to outsource their personal data to the cloud for analysis. However, some resource- 

constrained parties have to depend on the cloud to complete a complicated computation mission, especially for big data 

analytics and mining. Hence, it calls for a privacy-preserving data processing scheme in cloud computing, which can adapt 

to various scenarios. A promising solution to protect data privacy in the cloud is to store and process data in an encrypted 

form [17,31,37] . However, encryption greatly complicates data processing and brings many new challenges and problems. 

First, encryption seriously restricts the access to processed ciphertexts. Homomorphic Encryption (HE) was proposed to 

support computation on encrypted data and ensure data confidentiality simultaneously. However, a limitation of HE is it 

is a single user system, which means it only allows a single party with a corresponding secret key to access processed 

ciphertexts [13,14] and cannot support multiparty access. However, in many situations data are observed and collected all 

the time for potential use without knowing a concrete aggregator or a data access requester. For example, medical and 

clinical research can benefit greatly from the statistics of patients and more than one party could be interested in request- 

ing encrypted processing results after data collection and process. Original HE cannot support multiple users to access the 

processed ciphertexts flexibly. Second, the operations over the ciphertexts are limited. Fully Homomorphic Encryption (FHE) 

[15,29] is designed to support various computations over ciphertexts. But it introduces much computation overhead, thus is 

not yet practical to be employed in real applications [23,27] . Even though many constructions [1,12,14,33] were further de- 

signed to improve the efficiency of FHE, they still cannot be practically used due to large key size and high storage overhead. 

Compared with FHE, Partial Homomorphic Encryption (PHE) has lower computation overhead, but it merely supports lim- 

ited computations [13,24] . Third, it incurs much computation overhead to complete data processing especially when there 

is a huge number of input data. The performance of existing schemes is hard to meet the demands of various application 

scenarios, especially for big data processing. 

In order to achieve secure and privacy-preserving data processing at the cloud, many schemes have been designed with 

various techniques: FHE, PHE, and Secure Multiparty Computation (SMC). However, none of them can overcome the above 

three problems. FHE-based schemes [14,33] do not provide flexible access to ciphertext processing results and have high 

computation overhead. In addition, it has been proved that it is not sufficient to apply cryptography alone if data are 

shared among multiple clients [30] due to the difficulty of secret key transformation between users. Hence, some schemes 

[6,18,21,25] with multiple servers are proposed and designed. But they still suffer from some shortcomings. For example, a 

scheme [25] based on Paillier’s cryptosystem [24] was proposed to achieve computations over ciphertexts outsourced by a 

number of users with their own keys. However, it can only support multiplication and addition. Another PHE-based scheme 

[21] achieves a number of computation operations, but it has high computation overhead, especially in multiplication based 

on a large number of input data. Sharemind [5] , a popular SMC scheme, achieves secure addition and multiplication with 

the support of at least three servers. Some constructions based on Sharemind [6,18] further achieve various computations, 

but increase the difficulty of data management and the multiplication over a big number of data. 

In this paper, we design a Privacy-Preserving Data Processing (PPDP) system aiming to overcome the above three prob- 

lems. It contains a Homomorphic Re-Encryption Scheme (HRES), which extends PHE from a single-user system to a multi- 

user one by offering ciphertext re-encryption to allow multiple users to access processed ciphertexts. With this way, it 

achieves flexible and secure access control over encrypted data processing results. Through the cooperation of a Data Service 

Provider (DSP) and an Access Control Server (ACS), the PPDP system can support seven basic operations over ciphertexts, 

which include Addition, Subtraction, Multiplication, Sign Acquisition, Comparison, Equivalent Test , and Variance . To enhance the 

flexibility and security of our system, we further apply multiple ACSs to take in charge of the data from their own users and 

design computing operations over ciphertexts belonging to multiple ACSs. We then prove the security of PPDP, analyze its 

performance and advantages by comparing with some latest work, and demonstrate its efficiency and effectiveness through 

simulations with regard to big data processing. 

The PPDP system is original and differs from the previous work with regard to the above three unsolved issues. It is 

based on PHE and supports most of basic computation operations with high efficiency in terms of big data processing. 

Specifically, the main contributions of this paper can be summarized as below: 

• In order to support flexible access to ciphertext processing results, we design a new cryptographic primitive: Homo- 

morphic Re-Encryption Scheme (HRES). It employs two service providers to manage encrypted data and flexibly support 

access control on ciphertext processing results with two-level decryption, thus successfully achieves re-encryption over 

the data encrypted with homomorphism. Only authorized users can access the ciphertext processing result in a secure 

way. 

• We construct the PPDP system with the support of HRES to achieve efficient computations over ciphertexts, which sup- 

ports seven basic operations: Addition, Subtraction, Multiplication, Sign Acquisition, Comparison, Equivalent Test , and Vari- 

ance . 

• We extend the PPDP system to support ciphertext computations across multiple ACSs in order to enhance the flexibility 

of data management and system security, as well as the feasibility of system deployment in practice. 

• We prove the security of the PPDP system and evaluate its performance and advantages through analysis and comparison. 

The efficiency is demonstrated through simulations. 

• We show that the PPDP system is suitable for big data processing. It can be applied in various scenarios with either a 

small or large number of data providers. 



W. Ding et al. / Information Sciences 409–410 (2017) 35–55 37 

The rest of this paper is organized as follows. Section 2 gives a brief overview of related work. Section 3 introduces the 

system and attack model of the PPDP, followed by its preliminaries and detailed design in Section 4 . In Section 5 , we further 

introduce the scheme that supports seven operations across multiple ACSs. Security analysis and performance evaluation are 

given in Section 6 . Finally, we conclude the paper in the last section. 

2. Related work 

With the fast development of cloud computing, more and more users choose to outsource their data to the cloud for 

storage and further process. However, the risk of the data being revealed or disclosed makes it urgent to enhance the 

security and privacy of user data. In the literature, we can find many researches with regard to privacy-preserving data 

processing, which is briefly reviewed in this section by classifying them into three categorites. 

2.1. Privacy-preserving aggregation 

Literature has a number of studies on privacy-preserving data aggregation, mainly in the area of Wireless Sensor Net- 

works (WSNs) and smart metering [3,10,11,16,19,20,26] . Some previous work [10,20] on data aggregation assumed a trusted 

aggregator, and hence cannot protect user privacy from a distrusted or semi-trusted aggregator. Castelluccia et al. proposed 

a simple and provably secure encryption scheme that allows efficient additive aggregation of encrypted data [10] , in which 

an aggregator holds the sum of secret shares of all data providers for final decryption. Based on this work, Li et al. employed 

a novel key management scheme to obtain data sum [20] . Low aggregation error can further be achieved by leveraging a 

ring-based interleaved grouping technology [19] . Shi et al. [11,26] also studied encrypted data aggregation in the presence of 

a distrusted aggregator. The aggregator splits a secret key s 0 into additive shares among a set of users (say s 0 = 
∑ 

i s i ), and 

s i is issued to user i . Then each user applies its secret share to blind its private data. Hence, the aggregator can only obtain 

the sum of user data but nothing else through decryption with s 0 . Joye and Libert [16] proposed a practical scheme that 

can accommodate large plaintext spaces. However, the above schemes have a major drawback that they are not tolerant of 

user absence or failure. Thus, they are not applicable for data aggregation where the number of data providers is not fixed 

or the provider is absent sometime. The PPDP system proposed in this paper overcomes this shortcoming and provides high 

flexibility. 

2.2. Secure data processing based on SMC 

SMC enables private data to be computed with a global function without leaking each individual input data. It also pro- 

vides plausible solutions for such problems as privacy-preserving database query, privacy-preserving intrusion detection and 

privacy-preserving data mining [36] . For example, a method for financial analysis [6] based on SMC can obtain important 

data from collected data by deploying three servers. But this method introduces extra complexity and overhead. Kamm and 

Willemson proposed to realize various computations over the shared data, such as addition, multiplication and comparison 

[18] . But it directly employs the basic operations in Sharemind, which leads to the restriction to the number of multiplica- 

tions over provided data. The product of N pieces of data needs 3 N multiplications of 32-bit numbers under the cooperation 

of three servers. In addition, deploying with three servers at least complicates the system. Compared with the above SMC- 

based schemes, the proposed PPDP system can support the computation over hundreds of data. It contains only two servers 

that can be provided by a public cloud, a private cloud or a key department of a company. Thus, it can satisfy with the 

requirements of many real applications in a better way. 

2.3. Secure data processing based on homomorphic encryption 

Some studies tried to improve the existing homomorphic encryption in order to support computations over encrypted 

data. Many FHE schemes [8,14,29] have been designed to support arbitrary computations over ciphertexts. But they have 

high computation overhead and are still impractical. Cheon et al. designed an extension of FHE [12] to support the encryp- 

tion and processing over a vector of plaintext bits rather than a single plaintext bit to generate a ciphertext. Wang et al. 

[33] tried to improve the efficiency of FHE. However, the storage consumption overhead and computation cost of the above 

two studies are still not satisfactory, which makes them inapplicable to resource-constrained devices. 

As one of the most popular PHE schemes, Paillier’s cryptosystem has been widely employed and revised for various 

applications. Wang et al. [32] revised it to realize arithmetic functions over the ciphertexts of multiple users for addition 

and multiplication without learning the function inputs or intermediate results. But this scheme needs to solve the problem 

of discrete logarithm, which seriously restricts the length of input data. Therefore, it is not suitable to be applied into the 

scenarios where there are many data providers and the size of provided data is big. Ayday et al. [3] revised the Paillier’s 

cryptosystem and achieved privacy-preserving data aggregation by dividing its decryption key into two parts and sharing 

them with a proxy and a medical center. But this scheme cannot support multiparty access to encrypted data processing 

results. The scheme in [35] can support multiparty access to evidence aggregation, but it is only applicable for addition and 

cannot support other computation operations. Peter et al. [25] proposed an efficient outsourcing multiparty computation 

framework under multiple keys based on additive homomorphic encryption [24] . However, this scheme can only support 
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Fig. 1. System Model. 

addition and multiplication, but no other operations. Moreover, it follows the idea proposed in [18] , which results in the 

same weakness as [18] – unable to support the multiplication of a large number of data. Another PHE-based work [21] was 

constructed for efficient outsourced data calculation, which can deal with several types of operations, such as addition, 

multiplication, and division. Based on the same cryptosystem design as applied in [21] by splitting the secret keys of PHE 

into different shares, Liu et al. [22] proposed multiple calculations over outsourced data under different keys. However, 

similar to the work in [25] , the schemes in [21,22] can only support the multiplication over a small number of input data. 

In addition, the single secret key of Paillier cryptosystem is splitted and distributed to specific servers, thus they do not 

support the computations over arbitrary servers flexibly. However, our scheme shows great superiority with regard to system 

flexibility, which can support the cooperation of DSP with arbitrary ACSs. The cloud users can choose an ACS optionally for 

data processing and get the processing result over the encrypted data managed by multiple ACSs. 

More advanced than the above work related to the secure data processing based on HE, the PPDP system proposed in 

this paper supports seven basic computation operations and realizes flexible data access control over the encrypted data 

processing result for multiple authorized parties. 

3. Problem statements 

3.1. System Model 

The PPDP system comprises four types of entities, as shown in Fig. 1 : 

(1) Data Service Provider (DSP) is served by a cloud service provider, which stores user data and provides some compu- 

tation service. 

(2) Access Control Server (ACS) is mainly in charge of secure data computation with data access control for its users, 

which can be served by a private cloud. In the PPDP system, there could exist several ACSs that are operated by 

different or ganizations, such as medical institutions and banks. Hence, a user can freely choose an ACS it trusts for 

service consumption. This could enhance user security but also bring challenges to the computations across ACSs. 

(3) Data Providers (DPs) are the data collectors or producers that encrypt data for protecting data privacy and store 

the encrypted data in the DSP. The encrypted data can be used for further computation and analysis through the 

cooperation of the DSP and the ACSs. 

(4) Data Requesters (DRs) are the data consumers that acquire the result of data processing and analyzing in a specific 

context. A DR can also be a DP. Since the provided data are encrypted, the data processing result is also in an en- 

crypted form. This raises the issue of data access control with regard to encrypted data processing results or ciphertext 

processing results. 

The DSP collects and/or stores the encrypted data outsourced by the DPs. After getting the request from the DR, the DSP 

cooperates with the ACS to process the stored data according to DR demands. Finally, the ciphertext processing results are 

returned to the eligible DR that can obtain the plain processing results. 

3.2. Attack model 

In the above system, all entities are assumed to be curious-but-honest. That is, they are curious about others’ data but 

act honestly by following the system protocols strictly. In addition, the DSP and the ACSs would never collude with each 

other due to conflict of interests. Moreover, any collusion would decrease user trust in the ACS, which leads to the loss of 

its users. Therefore, we introduce an adversary A ∗ in our model, which aims to decrypt the ciphertext of a challenge sent 

to a cloud user (either a DR or a DP) with the following capabilities: 
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Table 1 
Notations. 

Symbols Description 

g The system generator that is public; 
n The system parameter; 
( sk DSP , pk DSP ) The key pair of DSP; 
( sk ACS , pk ACS ) The key pair of ACS; 

PK = p k DSP 
s k ACS = p k ACS 

s k DSP The public parameter based on keys of DSP and ACS; 
( sk j , pk j ) The key pair of DR j ; 
( sk i , pk i ) The key pair of DP i ; 
m i The raw data provided by DP i ; 
[ m ] The ciphertext of m under PK ; 
[ m ] + The re-encryption result of m by DSP; 
[ m ] p k i The ciphertext of m under public key pk i ; 
r The random number; 
CID The public computation identifier, which specifies an operation type; 
N The number of provided data for processing; 
L ( ∗) The bit length of input data; 
H () The hash function; 

(1) A ∗ may eavesdrop all communication channels to access any encrypted data; 

(2) A ∗ may compromise the DSP to guess the raw data of all ciphertexts outsourced from the DPs, and the raw data of 

all ciphertexts sent to the ACS and the DR; 

(3) A ∗ may compromise the ACS to guess the raw data of all ciphertexts received from the DSP; 

(4) A ∗ may compromise the DSP or the ACS (but not concurrently) together with the DPs to guess the final data process- 

ing result; 

(5) A ∗ may compromise the DSP or the ACS (but not concurrently) together with the DR to guess the raw data from the 

challenger DP. 

The attack model has two restrictions: 1) the adversary A ∗ is unable to compromise the DSP and the ACS concurrently; 2) 

A ∗ cannot compromise the challenger DR or DP. The adversary would like to know the raw data of a provider (by attacking 

the DP) or the encrypted data processing result (by attacking the DR). 

4. Privacy-preserving data processing with access control (PPDP) 

4.1. Preliminaries and notations 

4.1.1. Additive homomorphic encryption 

Paillier’s cryptosystem [24] is one of the most important additive homomorphic encryption. Suppose we have N en- 

crypted data under same key pk , which can be presented as [ m i ] pk ( i = 1 , 2 , . . . , N ) . The additive homomorphic encryption 

satisfies the following equation: 

D sk 

( 
N ∏ 

i =1 

[ m i ] pk 

) 

= 

N ∑ 

i =1 

m i (1) 

where D sk () is the corresponding homomorphic decryption algorithm with secret key sk . 

4.1.2. Basic encryption and decryption algorithms 

For easy presentation, we use EDD to represent the following mechanism proposed by Emmanuel, Dario and David [9] . 

Given two large primes p and q , then n = p ∗q . Let g and h be two elements of maximal order in G , where G is the cyclic 

group of quadratic residues modulo n 2 . Note that, if h is computed as g x mod n 2 , where x ∈ R [1, λ( n 2 )] ( λ( ∗) is the Euler 

function), then x is coprime with ord( G ) with high probability, and thus h is of maximal order. 

Key Generation : The public parameters are n, g and h = g x mod n 2 by randomly choosing a secret value x ∈ [ 1 , ord(G ) ] . 

Encryption ( Enc ): Given a message m ∈ Z n , random number r is chosen in Z ∗n . The ciphertext is computed as [ m ] h = 

( T , T ’ ) = { h r ( 1 + m ∗n ) , g r } ( mod n 2 ) . 

Decryption ( Dec ): Knowing x, m can be obtained as follows: m = L ( T / ( T ′ ) x mod n 2 ) , where L (u ) = ( u − 1 ) /n . 

4.1.3. Notations 

For a better understanding, Table 1 summarizes the notations used throughout this paper. 

4.2. Homomorphic Re-Encryption Scheme (HRES) 

In order to support the PPDP, we revise the EDD and design the HRES that can realize proxy-invisible re-encryption and 

secure data processing. The HRES consists of the following algorithms: 



40 W. Ding et al. / Information Sciences 409–410 (2017) 35–55 

KeyGen : Let k be a security parameter and p, q be two large primes, where L (p) = L (q ) = k . Due to the property of 

safe primes, there exist two primes p ′ and q ′ which satisfy that p = 2 p ′ + 1 , q = 2 q ′ + 1 . We compute n = p ∗q and choose a 

generator g with maximal order (Refer to [2] ). The DSP and the ACS respectively generate key pairs: ( s k DSP = a, p k DSP = g a ) 

and ( s k ACS = b, p k ACS = g b ) , and then negotiate their Diffie–Hellman key P K = p k DSP 
s k ACS = p k ACS 

s k DSP = g a ∗b mod n 2 . To sup- 

port encrypted data processing, PK is public to all involved parties and can be published by ACS to its service users. Cloud 

user i generates its key pair ( s k i , p k i ) = ( k i , g k i ) . The public system parameters include { g, n, PK }. 

The basic encryption ( Enc ) and decryption ( Dec ) algorithms are defined in Section 4.1.2 by applying the key pair 

( s k i , p k i ) = ( k i , g k i ) . Next, we present a Two-Level Decryption scheme that can flexibly support encrypted data process- 

ing as below. 

Encryption with Two Keys ( EncTK ): To flexibly support ciphertext processing, we propose encrypting original data 

under the keys of two servers ( PK ) rather than pk i . Given message m i ∈ Z n provided by user i , we first select ran- 

dom number r ∈ [ 1 , n 4 ] and then encrypt it with PK . The ciphertext is generated as [ m i ] = [ m i ] PK = { T i , T ′ i } , where T i = 

( 1 + m i ∗ n ) ∗ P K r mod n 2 and T ′ 
i = g r mod n 2 . Note: for ease of presentation, we use [ m i ] to denote the ciphertext of m i 

encrypted with PK , which can only be decrypted under the cooperation of DSP and ACS. 

Partial Decryption with SK DSP ( P Dec1 ): Once [ m i ] is received by the DSP, the algorithm P Dec1 will be run to transfer it 

into another ciphertext that can be decrypted by the ACS as follows: 

[ m i ] p k ACS = 

{ 

T i 
( 1 ) , T ′ i 

( 1 ) 
} 

= 

{ 

T i , 
(
T ′ i 

)s k DSP 
} 

= { ( 1 + m i ∗ n ) P K r , g r∗a } mod n 2 

= 
{
( 1 + m i ∗ n ) p k ACS 

a ∗r 
, g r∗a 

}
mod n 2 . (2) 

Partial Decryption with SK ACS ( P Dec2 ): Once the encrypted data [ m i ] p k ACS 
is received, the ACS can directly decrypt it 

with its own secret key as follows: 

(1) T 
′ (2) 
i = ( T 

′ (1) 
i ) s k ACS = g r ∗a ∗b = P K r mod n 2 ; 

(2) m i = L ( T i 
(1) 

/T 
′ 
i 
(2) 

mod n 2 ) , where L (u ) = ( u − 1 ) /n . 

Note: the two-level decryption can change its decryption order. 

To achieve the proxy-invisible re-encryption, we further propose a Somewhat Re-Encryption scheme: 

Different from the scheme above, it aims to transfer the encrypted data to the ciphertext under the public key of an 

authorized requester. Here, we assume DR j with key pair ( s k j , p k j ) = ( k j , g k j mod n 2 ) requires to obtain m i through out- 

sourced data [ m i ]. In the Somewhat Re-Encryption scheme, the transformation needs the cooperation and recognition of 

both the DSP and the ACS. They together play a role of a proxy. 

First Phase of Re-Encryption ( FPRE ): In order to prevent the PDec 2 by the ACS, the DSP initiates the algorithm FPRE as 

follows: 

(1) Select a public computation identifier CID ; Compute h 1 = H( ( p k j ) 
s k DSP || CID ) ; 

(2) [ m i ] 
+ = { ̂  T , ̂  T ′ } = { T i , ( T ′ i ) 

s k DSP 
g h 1 } . 

Second Phase of Re-Encryption ( SPRE ): Upon receiving the data packet [ m i ] 
+ , the ACS launches the re-encryption algo- 

rithm SPRE as below: 

(1) h 2 = H( ( p k j ) 
s k ACS || CID ) ; 

(2) [ m i ] p k j = { ̄T , T ′ } = { ̂  T , ( ̂  T ′ ) s k ACS ∗g h 2 } . 

Decryption on Re-Encrypted Data ( DPRE ): DR j calls algorithm DPRE to decrypt [ m i ] p k j : 

(1) Based on CID , it computes: h 
′ 
1 = H( ( p k DSP ) 

s k j || CID ) = H( g a ∗s k j || CID ) = h 1 , and h 
′ 
2 = H( ( p k ACS ) 

s k j || CID ) = H( g b ∗s k j 

|| CID ) = h 2 ; 

(2) m i = L ( ̄T ∗p k ACS 
h 
′ 
1 ∗g h 

′ 
2 / T ′ mod n 2 ) . 

Though a distribution of processing result can be achieved by a simple interaction between DSP and ACS via adding to 

and removing a mask from the ciphertext, our re-encryption scheme can avoid these interactions. In addition, the generation 

of two hash values can overcome impersonation attack and further resist the collusion between any servers with DR. 

In addition, the encrypted data has the following properties: 

(1) Additive homomorphism: [ m 1 ] p k i ∗[ m 2 ] p k i = [ m 1 + m 2 ] p k i ; 

(2) ( [ m ] p k i ) 
t = { { ( 1 + m ∗ n ) p k i 

r } t , ( g r ) t } mod n 2 = { ( 1 + m ∗ n ) t p k i 
r∗t 

, g r∗t } mod n 2 

= { ( 1 + t ∗ m ∗ n ) p k i 
r∗t 

, g r∗t } mod n 2 = [ t ∗ m ] p k i ;



W. Ding et al. / Information Sciences 409–410 (2017) 35–55 41 

(3) ( [ m ] p k i ) 
n −1 = { { ( 1 + m ∗n ) p k i 

r } ( n −1 ) 
, ( g r ) ( n −1 ) } mod n 2 

= { ( 1 + m ∗ ( n − 1 ) ∗ n ) p k i 
r( n −1 ) 

, g r( n −1 ) } mod n 2 

= { ( 1 − m ∗ n + m ∗ n 2 ) p k i 
r( n −1 ) 

, g r( n −1 ) } mod n 2 

= { ( 1 − m ∗ n ) p k i 
r( n −1 ) 

, g r( n −1 ) } mod n 2 = [ −m ] p k i . 

Remark. If data outsourced by a user is extremely sensitive and not allowed to be processed or analyzed, the cloud user 

can choose to use the Enc to encrypt them with its own public key. If the data can be analyzed in a privacy-preserving way 

by authorized parties, the user need to store encrypted data by calling the EncTK . 

4.3. Encrypted data processing 

Based on the HRES, we design an encrypted data processing scheme, which supports seven basic operations (indicated 

by different CID): 1) Addition ; 2) Subtraction ; 3) Multiplication ; 4) Sign Acquisition ; 5) Comparison ; 6) Equivalent Test ; and 7) 

Variance . System setup and data collection are the same for the seven operations. Hence, we first present the same process 

below and then introduce the detailed processing steps in sub-sections. 

Step 1 (System Setup @ All Entities) : The system calls the algorithm KeyGen in Section 4.2 to complete the process of 

setup. Note that if multiple ACSs are employed in the system, each ACS can negotiate a Diffie–Hellman key with the DSP 

and publish this key to its users. For simplifying presentation, we only present the detailed operations in the case that there 

is only one ACS interacting with the DSP as below; while the scheme that supports data computations across multiple ACSs 

will be described in Section 5 . 

Step 2 (Data Upload @ DP) : DPs encrypt their personal data m i with PK by calling the algorithm EncTK and then upload 

them to DSP: [ m i ] = ( T i , T 
′ 

i ) = { ( 1 + m i ∗n ) P K r i , g r i } mod n 2 . 

4.3.1. Addition 

This operation aims to obtain the sum of all raw data: m = 
∑ N 

i =1 m i . Note that the number of the data in Addition affects 

the length of the provided data. If we want to get the sum result of N pieces of data, it should guarantee that m i < n / N . 

Step 3 (Data Preparation @ DSP) : Due to additive homomorphism, the DSP can directly multiply encrypted data one by 

one as following: 

[ m ] = 
(
T , T ′ 

)
= 

N ∏ 

i =1 

[ m i ] = 

( 
N ∏ 

i =1 

T i , 

N ∏ 

i =1 

T 
′ 

i 

) 

. (3) 

To transfer it into the ciphertext under DR j ’s public key, the DSP further calls the algorithm FPRE to process the data 

with sk DSP and DR j ’s public key pk j : 

[ m ] 
+ = 

(
ˆ T , ̂  T ′ 

)
= 

{ 

T , 
(
T ′ 

)a ∗g H( ( p k j ) 
a || CID ) 

} 

. (4) 

The DSP finally prepares a data packet ( [ m ] 
+ 
, CID ) and sends it to the ACS. 

Step 4 (Data Process @ ACS) : The ACS calls the second re-encryption algorithm SPRE with sk ACS to finally transfer the 

encrypted data to the ciphertext under DR j ’s public key: 

[ m ] p k j = 
(
T̄ , T ′ 

)
= 

{ 
ˆ T , 

(̂ T ′ 
)b ∗g H( ( p k j ) 

b || CID ) 
} 

. (5) 

Then the ACS sends ( [ m ] p k j , CID ) to the DR. 

Step 5 (Data Access @ DR) : The DR can obtain the aggregated result by calling the algorithm DPRE : 

m = L 

(
T̄ ∗P K ACS 

H( ( p k DSP ) 
s k j || CID ) ∗g H( ( p k ACS ) 

s k j || CID ) / T ′ mod n 2 
)
. (6) 

4.3.2. Subtraction 

This operation aims to obtain the subtraction of some data ( m = 
∑ W 

i =1 m i −
∑ N 

i = W +1 m i ) with encrypted data 

[ m i ] ( i = 1 , . . . , N ) . 

Step 3 (Data Preparation @ DSP) : The DSP first computes [ 
∑ W 

i =1 m i ] = 
∏ W 

i =1 [ m i ] and [ 
∑ N 

i = W m i ] = 
∏ N 

i = W [ m i ] . It further cal- 

culates [ − ∑ N 
i = W m i ] = ( [ 

∑ N 
i =W m i ] ) 

n −1 and multiply them to obtain: [ m ] = [ ( 
∑ W 

i =1 m i −
∑ N 

i =W m i ) ] = [ 
∑ W 

i =1 m i ] ∗ [ −∑ N 
i = W m i ] . 

Then the subsequent process is the same as that in Addition . Due to length and simplicity reasons, we skip its details. 
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4.3.3. Multiplication 

This operation aims to obtain the product of all non-zero raw data ( m = 
∏ N 

i =1 m i ) . For ease of presentation, we describe 

the details with two ciphertexts ([ m 1 ], [ m 2 ]). The DR wants to get the multiplication result m = m 1 ∗ m 2 . Note that the 

available number of the data in Multiplication influences the length of raw data. If we need to get the product of N pieces 

of data, it must be guaranteed that the length of each raw data L ( m i ) < L (n ) / ( 2 N ) , which is different from Addition . 

Step 3 (Data Preparation @ DSP) : First, the DSP chooses two random numbers c 1 and c 2 and sets another one c 3 = 

( c 1 ∗ c 2 ) 
−1 mod n . The number of random numbers is equal to that of provided data. 

To conceal each raw data from the ACS, the DSP first calls P Dec1 to decrypt ciphertexts and then encrypts c 3 with the 

Enc using pk j of DR: 

(1) [ c i ∗m i ] = { T i c i , ( T ′ i ) 
c i } for i = 1 , 2 ; 

(2) [ c i ∗m i ] p k ACS 
= ( T i 

(1) 
, T 

′ 
i 
(1) 

) = { T i c i , ( T ′ i ) 
c i ∗a } = { ( 1 + c i ∗m i ∗n ) P K r i ∗c i , g r i ∗a ∗c i } for i = 1 , 2 ; 

(3) [ c 3 ] p k j = ( T j , T 
′ 
j ) = { ( 1 + c 3 ∗n ) p k j 

r 3 , g r 3 } . 
The data packet sent to the ACS is { [ c 1 ∗m 1 ] p k ACS 

, [ c 2 ∗m 2 ] p k ACS 
, [ c 3 ] p k j }. 

Step 4 (Data Process @ ACS) : Upon receiving the data packet from the DSP, the ACS calls P Dec2 to obtain two values: 

c i ∗ m i = T i 
(1) 

/ ( T ′ 
i 
(1) 

) b ( i = 1 , 2 ). 

It further multiplies the two values and then calls the algorithm Enc to encrypt it as (
T , T ′ 

)
= [ c 1 ∗c 2 ∗m 1 ∗m 2 ] p k j . (7) 

Finally, the ACS forwards ( T, T ′ ) and [ c 3 ] p k j to the DR.‘ 

Step 5 (Data Access @ DR) : the DR can obtain the product by calling Dec to decrypt the two ciphertexts with its secret 

key: 

m = m 1 ∗m 2 = L 

(
T / 

(
T ′ 

)s k j 
mod n 2 

)
∗ L 

(
T j / 

(
T 

′ 
j 

)s k j 
mod n 2 

)
mod n. (8) 

4.3.4. Sign Acquisition 

We assume that L (m ) < L (n ) / 4 and that BIG is the largest raw data of m . Then the raw data is in the scope [ −BI G, BI G ] . 

DR j wants to know the sign of raw data m 1 from [ m 1 ]. 

Step 3 (Data Preparation @ DSP) : The DSP chooses a random number c 1 where L ( c 1 ) < L (n ) / 4 . It first encrypts “1” and 

then computes as follows: 

(1) [1] = { ( 1 + n ) P K r 
′ 
, g r 

′ 
}; 

(2) [ 2 ∗m 1 + 1 ] = ( T , T ′ ) = [ m 1 ] 
2 ∗[1] = { ( 1 + ( 2 ∗m 1 + 1 ) ∗n ) P K r 

′ +2 ∗r 1 , g r 
′ +2 ∗r 1 } ; 

(3) Then it flips a coin s . If s = 0 ; it computes: ( T 1 
(1) 

, T 
′ 
1 
(1) 

) = { T n −c 1 , ( T ′ ) a ∗( n −c 1 ) } = [ −c 1 ∗( 2 ∗m 1 + 1 ) ] ; otherwise, it calls 

the P Dec1 and computes: ( T 1 
(1) 

, T 
′ 
1 
(1) 

) = { T c 1 , T ′ a ∗c 1 } = [ c 1 ∗( 2 ∗m 1 + 1 ) ] ; 

(4) The DSP encrypts s with pk j by calling the Enc : [ s ] p k j = ( T s , T 
′ 

s ) = { ( 1 + s ∗n ) p k j 
r s , g r s } . 

The data packet sent to the ACS is { ( T 1 
(1) 

, T ′ 1 
(1) 

) , [ s ] p k j }. 

Step 4 (Data Process @ ACS) : Upon receiving the data packet from the DSP, the ACS decrypts ( T 1 
(1) 

, T ′ 1 
(1) 

) with the 

P Dec2 to obtain raw data m ′ = ( −1 ) s +1 ∗ c 1 ∗ ( 2 ∗ m 1 + 1 ) mod n. The ACS compares L ( m ′ ) with L (n ) / 2 . If L ( m ′ ) < L (n ) / 2 , it 

sets u = 1 ; otherwise, it sets u = 0 . Then the ACS calls the Enc to encrypt u with pk j as: [ u ] p k j = ( T u , T ′ u ) . It further multiplies 

the two ciphertexts: 

[ u + s ] p k j = 
(
T̄ , T ′ 

)
= 

{
T s ∗T u , T 

′ 
u ∗T 

′ 
s 

}
. Finally , the ACS forwards 

(
T̄ , T ′ 

)
to DR j. 

Step 5 (Data Access @ DR) : DR j calls the Dec to obtain the final result: u + s = L ( ̄T / ( T ′ ) s k j mod n 2 ) . Then DR j needs to 

check it and determine the sign of raw data: if u + s = 1 , the original data is negative (i.e., m 1 < 0); otherwise, it is positive 

or zero (i.e., m 1 ≥ 0). 

Note: 1) s = 1 , m ′ = c 1 ∗( 2 ∗m 1 + 1 ) mod n : As L ( c 1 ) < L (n ) / 4 , m 1 ∈ [0, BIG ) if L ( m ′ ) < L (n ) / 2(u = 1) ; m 1 ∈ ( −BIG, 0 ) 

if L ( m ′ ) > L (n ) / 2 ( u = 0 ) . 2) s = 0 , m ′ = −c 1 ∗( 2 ∗m 1 + 1 ) mod n : As c 1 ∈ [0, n /4], m 1 ∈ [0, BIG ) if L ( m ′ ) > L (n ) / 2 ; m 1 ∈ 

( −BIG, 0 ) if L ( m ′ ) < L (n ) / 2 ( u = 1 ). Hence, if ( s = 1 , u = 0 ) or ( u = 1 , s = 0 ) , m 1 < 0; if ( s = 1 , u = 1 ) or ( u = 0 , s = 0 ) , 

m 1 ≥ 0. 

4.3.5. Comparison 

Similar to the operations above, DR j wants to compare the raw data ( m 1 , m 2 ) based on their encrypted data. For ease 

of presentation, m 1 − m 2 is denoted as m 1 −2 . 

Step 3 (Data Preparation @ DSP) : DSP first computes to get the subtraction of encrypted data: (
T , T ′ 

)
= 

{ 

T 1 ∗( T 2 ) n −1 
, T 

′ 
1 ∗

(
T 

′ 
2 

)n −1 
} 

= [ ( m 1 − m 2 ) ] . (9) 
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The following steps are the same to that in Sign Acquisition , which is skipped for the reason of paper length limitation. 

Through the cooperation of the DSP and the ACS, the DR finally gets the sign of m 1 −2 = m 1 − m 2 . In the end, the DR can 

obtain the comparison result. If m 1 −2 ≥ 0 , m 1 ≥ m 2 ; otherwise, m 1 < m 2 . 

4.3.6. Equivalent test 

DR j wants to know if m 1 is equal to m 2 with encrypted data ([ m 1 ], [ m 2 ]). The DSP and the ACS directly interact with 

each other to perform two parallel computations of Comparison . They compare m 1 and m 2 in two forms: 1) m 1 −2 = m 1 − m 2 ; 

2) m 2 −1 = m 2 − m 1 . Through the operations in Comparison , DSP can get two computation results [ s 1 + u 1 ] p k j and [ s 2 + u 2 ] p k j 
respectively. To conceal the comparing result, [ s 1 + u 1 ] p k j and [ s 2 + u 2 ] p k j are sent to the DR in a random order. If both 

testing result are “ ≥ ”, we can know m 1 = m 2 . 

4.3.7. Variance 

In some scenarios, DR j may want to get the variance of some data according to provided encrypted data. In this 

presentation, we set N be the number of provided data and m = 
∑ N 

i =1 m i . Variance operation can be presented as M = ∑ N 
i =1 ( m i − m̄ ) 2 /N = 

∑ N 
i =1 ( N ∗ m i − m ) 2 / N 3 , where m̄ is the average of m i ( i = 1 , . . . , N ) . For ease of presentation, we as- 

sume there are three pieces of encrypted data (i.e., N = 3 , which is shared with DR j ): [ m 1 ], [ m 2 ] and [ m 3 ]. 

Step 3 (Data Preparation @ DSP) : First, the DSP obtains [ N ∗m i −
∑ N 

i =1 m i ] with following steps: 

(1) [ m ] = ( T , T ′ ) = [ m 1 ] ∗[ m 2 ] ∗[ m 3 ] , [ −m ] = ( T n −1 , ( T ′ ) n −1 
) ;

(2) [ N ∗m i ] = [ m i ] 
N for i = 1 , 2 , 3 ; 

(3) [ N ∗m i − m ] = [ m i ] 
N ∗[ −m ] for i = 1 , 2 , 3 ; 

(4) Partially decrypt the data by calling P Dec1 to obtain: [ N ∗m i − m ] p k ACS 
for i = 1 , 2 , 3 . 

(5) Choose three random numbers c 1 , c 2 , c 3 , and compute to obtain: [ c i ( N ∗m i − m ) ] p k ACS 
= ( [ N ∗m i − m ] p k ACS 

) c i for i = 

1 , 2 , 3 . 

Then the DSP sends the three ciphertexts to the ACS. In addition, the DSP stores c 1 
2 , c 2 

2 , and c 3 
2 . 

Step 4 (Data Process @ ACS) : Upon receiving the data from the DSP, the ACS directly decrypts to obtain raw data and 

then processes the data for DR j as follows: 

(1) Decrypt to obtain: C i = c i ( N ∗m i − m ) for i = 1 , 2 , 3 ; 

(2) Encrypt the processed data with pk j : [ C i 
2 ] p k j = [ c i 

2 ( N ∗m i − m ) 2 ] p k j for i = 1 , 2 , 3 . 

Then the ACS sends them back to the DSP. 

Additional Operation @ DSP : The DSP first computes the reverse of c i 
2 ( i = 1 , 2 , 3 ) respectively: c ′ 

i = ( c 2 
i ) 

−1 mod n 2 for 

i = 1 , 2 , 3 . Then the DSP can prepare the final result for DR j : [
M ′ 

]
p k j 

= 

([
C 2 1 

]
p k j 

)c ′ 1 ∗
([

C 2 
2 
]

p k j 

)c ′ 2 ∗
([

C 3 
2 
]

p k j 

)c ′ 3 

= 

3 ∏ 

i =1 

[
c ′ i ∗ C i 

2 
]

p k j 
= 

3 ∏ 

i =1 

[
c ′ i ∗ c 2 i ( 3 m i − m ) 

2 
]

p k j 

= 

3 ∏ 

i =1 

[
( 3 m i − m ) 

2 
]

p k j 
= 

[
( 3 m 1 − m ) 

2 + ( 3 m 2 − m ) 
2 + ( 3 m 3 − m ) 

2 
]

p k j 

= 

3 ∑ 

i =1 

[
( 3 m i − m ) 

2 
]

p k j 
. (10) 

Finally, [ M ′ ] p k j can be sent to DR j . 

Step 5 (Data Access @ DR) : DR j can obtain M ′ by calling Dec and then get the variance: 

(1) M ′ = 
∑ N 

i =1 ( N ∗m i − m ) 2 ; 

(2) Final variance is: M = M ′ / N 3 = ( ( N ∗m 1 − m ) 2 + ( N ∗m 2 − m ) 2 + ( N ∗m 3 − m ) 2 ) / N 3 . 

5. Cross-ACS computations 

Sometimes computations on data that belong to different ACSs are required. Hence, we propose a number of schemes to 

meet with this special requirement in this section. 

5.1. Data processing over multiple ACSs 

Due to paper length limitation, we only present such basic operations as addition, subtraction, multiplication, and com- 

parison across the ACSs herein. 
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We set an example of two pieces of encrypted data belonging to two ACSs: ACS B and ACS V. Besides the settings above 

(e.g., the DSP with ( s k DSP , p k DSP ) = ( a, g a mod n 2 ) ), we further set the key pairs of B and V as ( s k B , p k B ) = ( b, g b mod n 2 ) 

and ( s k V , p k V ) = ( v , g v mod n 2 ) . Hence, we have P K = p k B 
a = p k DSP 

b 
and P K 

′ = p k V 
a = p k DSP 

v 
. Two messages are encrypted 

as: 

[ m 1 ] PK = 
{

T 1 = ( 1 + m 1 ∗n ) P K r 1 , T 
′ 

1 = g r 1 
}

mod n 2 , (11) 

[ m 2 ] P K ′ = 

{ 

T 2 = ( 1 + m 1 ∗n ) P K 
′ r 2 

, T 
′ 

2 = g r 2 
} 

mod n 2 . (12) 

That is to say, the data provider of m 1 trusts ACS B; while the data provider of m 2 trusts ACS V. Hence, they encrypt 

their data with the corresponding Diffie–Hellman key ( PK or P K 
′ 
). DR j with key pair ( s k j , p k j ) = ( k j , g 

k j mod n 2 ) wants to 

obtain the data processing result across ACSs. We assume DR j is a user of ACS B. The detailed procedure is introduced as 

follows. 

5.1.1. Addition across ACSs 

This computation wants to obtain the sum of data over two servers. 

Setp 3 (Data Preparation @ DSP) : DSP selects a random number o and then operates as follows: 

(1) Encrypt o and −o: [o] PK and [ −o ] 
P K ′ ; 

(2) Compute [ m 1 + o ] PK and [ m 2 − o ] 
P K ′ . 

Then call the algorithm P Dec1 to decrypt the two data to obtain [ m 1 + o ] p k B and [ m 2 − o ] p k V . 

Step 4 (Data Process @ ACSs) : Upon receiving [ m 1 + o ] p k B , ACS B first checks its CID and determines if the requester 

is allowed to access the data; if positive, ACS B calls the algorithm P Dec2 to obtain the fused raw data m 1 + o and then 

encrypt it with DR j ’s public key as [ m 1 + o ] p k j . Similar to the operations of ACS B, ACS V also obtains [ m 2 − o ] p k j . 

Additional Operation @ DSP : DSP multiplies the two ciphertexts to obtain [ m 1 + m 2 ] p k j and then forwards it to DR j . 

Finally, DR j can directly get the sum of data ( m 1 + m 2 ) by calling the algorithm Dec . 

5.1.2. Subtraction across ACSs 

The operation is similar to Addition , but it needs to do one more operation to obtain the negative of subtractor (e.g., m 2 ) 

first by doing exponentiation with the power of ( n − 1 ) to obtain [ −m 2 ] P K ′ first. 

5.1.3. Multiplication across ACSs 

Different from Multiplication in Section 4.3.3 , multiple ACSs are involved in the computation and leads to a little higher 

computation on the ACSs. 

Setp 3 (Data Preparation @ DSP) : The DSP selects two random numbers ( c 1 , c 2 ) to conceal the raw data, and set c 3 = 

( c 1 ∗c 2 ) 
−1 mod n . Then the DSP does the same operations about Multiplication as those described above and obtains: 

(1) [ c 1 ∗m 1 ] p k B = ( ̂  T 1 , ̂
 

T 
′ 

1 ) = { T 1 c 1 , ( T ′ 1 ) 
a ∗c 1 } = { ( 1 + c 1 ∗m 1 ∗n ) ∗P K r 1 ∗c 1 , g r 1 ∗a ∗c 1 } ; 

(2) [ c 2 ∗m 2 ] p k V = ( ̂  T 2 , ̂
 

T 
′ 

2 ) = { T 2 c 2 , ( T ′ 2 ) 
a ∗c 2 } = { ( 1 + c 2 ∗m 2 ∗n ) ∗P K ′ ( r 2 ∗c 2 ) , g r 2 ∗a ∗c 2 } ; 

(3) [ c 3 ] p k j = ( T j , T 
′ 
j ) = { ( 1 + c 3 ∗n ) ∗p k j 

r 3 , g r 3 } . 
The data packet sent to ACS B is { [ c 1 ∗m 1 ] p k B , [ c 3 ] p k j }; while the data [ c 2 ∗m 2 ] p k V is sent to ACS V. 

Step 4 (Data Process @ ACSs) : Upon receiving the data package, the ACS first checks the legality and its access policy, 

and then calls the P Dec2 if it is positive. Concretely, ACS V obtains the value of c 2 ∗ m 2 , encrypts it with pk B and then sends 

[ c 2 ∗ m 2 ] p k B to ACS B. ACS B obtains the two plaintexts and multiplies them to get c 1 ∗ c 2 ∗ m 1 ∗ m 2 . Finally, ACS B encrypts 

c 1 ∗ c 2 ∗ m 1 ∗ m 2 with the DR j ’s public key and sends it together with [ c 3 ] p k j to DR j . 

Step 5 (Data Access @ DR) : Upon obtaining the data form ACS B, the DR can directly calls the Dec to get c 1 ∗ c 2 ∗ m 1 ∗ m 2 
and c 3 . Finally, it can get: 

m = m 1 ∗m 2 = c 1 ∗c 2 ∗m 1 ∗m 2 ∗c 3 mod n. (13) 

5.1.4. Comparison across ACSs 

Different from the Comparison over one ACS, the initial operation is executed by the ACSs rather than the DSP. First, the 

DSP directly sends the data [ m 1 ] PK and [ m 2 ] P K ′ to ACS B and ACS V respectively. 

Step 3 (Data Preparation @ ACSs) : Owing to the ability of changing decryption order in Two-level, ACS V calls the P Dec1 

to obtain [ m 2 ] P K DSP and then sends it to ACS B through a secure way. 

ACS B first decrypts [ m 1 ] PK to obtain [ m 1 ] p k DSP by calling the P Dec1 and then computes as follows: 

(1) [ m 1 −2 ] P K DSP = [ m 1 ] p k DSP ∗( [ m 2 ] p k DSP ) 
n −1 ; 

(2) { T , T ′ } = [ 2 ∗m 1 −2 + 1 ] p k DSP = { [ m 1 −2 ] p k DSP 
} 2 ∗[1] p k DSP ; 
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(3) Then it flips a coin s . If s = 0 ; it computes ( ̂  T 1 , ̂
 

T 
′ 

1 ) = { T n −c 1 , ( T ′ ) a ∗( n −c 1 ) } ; otherwise, it computes ( ̂  T 1 , ̂
 

T 
′ 

1 ) = { T c 1 , T ′ a ∗c 1 } . 
(4) Finally, it encrypts s with pk j : [ s ] p k j = ( T s , T 

′ 
s ) , and then sends ( ̂  T 1 , ̂

 
T 

′ 
1 ) and [ s ] p k j to the DSP. 

Step 4 (Data Process @ DSP): The DSP decrypts ( ̂  T 1 , ̂
 T ′ 

1 ) to obtain raw data m ′ = ( −1 ) s +1 ∗c 1 ∗ [ 2 ∗ ( m 1 − m 2 ) + 1 ] mod n 2 , 

and then compares its length with L (n) / 2 . If L ( m ′ ) < L (n) / 2 , it sets u = 1 ; otherwise, it sets u = 0 . Then it encrypts u with 

pk j as [ u ] p k j = ( T u , T ′ u ) , and further multiplies the two ciphertexts to obtain [ s + u ] p k j = ( ̄T , T ′ ) = { T s ∗ T u , T 
′ 

s ∗ T ′ u } . 
Step 5 (Data Access @ DR) : DR j can call the Dec to obtain the final result: u + s = L ( ̄T / ( T ′ ) s k j mod n 2 ) . Then DR j deter- 

mines the sign of m 1 −2 . If u + s = 1 , the original data is negative (i.e., m 1 < m 2 ); otherwise, it is positive or zero (i.e., m 1 ≥
m 2 ). 

Comparing with the scheme described in Section 4.3 , we observe that the cross-ACS computation does not introduce too 

much overhead. For example, in Addition , the DSP needs to do some encryptions on random numbers, but it calls P Dec1 

rather than SPRE , which is more efficient. The ACS only needs to perform P Dec2 and Enc one more time. The computation 

cost of DR is low due to the high efficiency of Dec . 

6. Security analysis and performance evaluation 

6.1. Security analysis 

In this section, we analyze the security of the HRES and the PPDP as described in Section 4 . We first introduce assump- 

tions on the computational difficulty of several problems, based on which we prove the security of our proposed schemes. 

6.1.1. Assumptions 

Definition 5.1. Decisional Diffie–Hellman (DDH) [7] Problem over Z ∗
n 2 

For every probabilistic polynomial time algorithm A , there exists a negligible function negl () such that for sufficiently 

large � : 

Pr 

⎡ ⎢ ⎢ ⎣ 
A ( n, X, Y, Z b ) = b 

∣∣∣∣∣∣∣∣
p, q ← SP 

(
� 
2 

)
; n = pq ; g ← G ;

x, y, z ← [ 1 , ord ( G ) ] ; X = g x mod n 2 ;
Y = g y mod n 2 ; Z 0 = g z mod n 2 ;
Z 1 = g xy mod n 2 ; b ← { 0 , 1 } ;

⎤ ⎥ ⎥ ⎦ 
− 1 

2 
= negl ( � ) . (14) 

6.1.2. Semantic security of HRES 

In this section, we prove that the HRES is semantically secure against malicious DSP or ACS. We recall our assumption 

that the DSP would never collude with the ACS. 

The basic encryption ( Enc ) and decryption ( Dec ) algorithms are directly obtained from [9] , which has been proved to be 

semantically secure with the assumption of DDH problem. Hence, we omit its security proof. In the following section, we 

prove the security of the Two-Level Decryption and the Somewhat Re-Encryption in the HRES. 

Theorem 1. If the semantic security of EDD [ 9 ] holds, the proposed Two-Level Decryption in the HRES is semantically secure . 

Proof. We prove the theorem by contradiction. For this purpose, we assume that the HRES is not semantically secure. This 

means that there is a polynomial time distinguisher A that can break its semantic security. Our goal then is to use an 

adversary A to construct an algorithm S to break the semantic security of EDD. 

Given the challenge public parameters ( n, g, h = p k 2 = g s k 2 mod n 2 ) of EDD, the adversary can construct public key in the 

HERS p k 1 = h s k 1 . Then once the adversary has chosen two messages of the same length m 0 and m 1 , we flip the coin d and 

we encrypt m d as follows: E( m d ) = ( T , T ′ ) , where T = h r ( 1 + m d n ) mod n 2 and T ′ = g r mod n 2 . 

The adversary can simply compute ( ̃  T , ̃  T ′ ) as follows: 

(1) ˜ T = (T ) s k 1 = ( h s k 1 ) r ( 1 + s k 1 ∗m d n ) mod n 2 = ( g s k 1 ∗s k 2 ) r ( 1 + s k 1 ∗m d n ) mod n 2 , 

(2) ˜ T ′ = T ′ = g r . 

We can observe that ( ̃  T , ̃  T ′ ) is one HRES ciphertext of sk 1 ∗ m d . The adversary can compute to obtain two raw data 

m 
′ 
0 = s k 1 ∗m 0 and m 

′ 
1 = s k 1 ∗m 1 . We set m d ′ = s k 1 ∗m d . If the HRES is not semantically secure, the adversary can correctly 

guess the bit d ′ . Finally, it of course guesses the bit d and breaks the semantic security of EDD. 

Theorem 2. If the semantic security of EDD holds, then the proposed Somewhat Re-Encryption scheme in the HRES is semantically 

secure . 

Proof. Similar to the proof above, we assume an adversary A can break the semantic security of our scheme. For the sake 

of contradiction, our goal is to construct an algorithm S to break the semantic security of EDD. 
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Given challenge public parameters ( n, g, h = p k 2 = g s k 2 mod n 2 ) of EDD, the public key of authorized requester p k j = 

g k j mod n 2 and CID , the adversary can construct public key p k 1 = h s k 1 . Then once the adversary has chosen two mes- 

sages of the same length m 0 and m 1 , we flip the coin d and we encrypt m d as follows: E( m d ) = ( T , T ′ ) , where T = 

h r ( 1 + m d n ) mod n 2 and T ′ = g r mod n 2 . 

Adversary A can simply compute ( ̃  T , ̃  T ′ ) as follows: 

(1) ˜ T = (T ) s k 1 = ( h s k 1 ) r ( 1 + s k 1 ∗m d n ) mod n 2 = ( g s k 1 ∗s k 2 ) r ( 1 + s k 1 ∗m d n ) mod n 2 , 

(2) ˜ T ′ = T ′ = g r . 

Based on ( ̃  T , ̃  T ′ ) , A can further construct a re-encryption ciphertext as follows: 

(1) T̄ = ˜ T ∗ g h 1 = ( g s k 1 ∗ s k 2 ) r ( 1 + s k 1 ∗ m d n ) ∗g h 1 mod n 2 , 

(2) T ′ = ˜ T ′ , where h 1 = H( ( p k j ) 
s k 2 || CID ) . 

We can observe that ( ̄T , T ′ ) is one ciphertext of the HRES. Adversary A can compute to obtain two raw data m 
′ 
0 = 

s k 1 ∗ m 0 and m 
′ 
1 = s k 1 ∗m 1 . We set m d ′ = s k 1 ∗m d . If the HRES is not semantically secure, A can correctly guess the bit d ′ . 

Finally, it of course guesses the bit d and breaks the semantic security of EDD. 

6.1.3. Security of PPDP 

Here, we adopt the security model for securely realizing an ideal functionality in the presence of semi-honest (non- 

colluding) adversaries. For simplicity, we do it for the specific scenarios of our functionality, which involves four types of 

parties: DSP, ACS, DP and DR. First, we construct four simulators Sim = ( Si m DP , Si m DSP , Si m ACS , Si m DR ) to against four kinds 

of adversaries ( A DP , A DSP , A ACS , A DR ) that corrupt DP, DSP, ACS and DR , respectively. 

Theorem 3. The Addition scheme described in Section 4.3.1 can securely obtain the plaintext of addition via computations on 

ciphertexts in the presence of semi-honest (non-colluding) adversaries A = ( A DR , A DSP , A ACS , A DP ). 

Proof. We present the construction of four independent simulators ( Sim DP , Sim DSP , Sim ACS , Sim DR ). Here, we prove the secu- 

rity of the case with two inputs (i.e., N = 2). 

Sim DP receives the input of m 1 and m 2 , then it simulates A DP as follows: it encrypts data m 1 as [ m 1 ] = EncT K( m 1 ) , and 

encrypts data m 2 as [ m 2 ] = EncT K( m 2 ) . Finally, it returns [ m 1 ] and [ m 2 ] to A DP , and outputs A DP ’s entire view. The view of 

A DP is the encrypted data. The views of A DP in the real and the ideal executions are indistinguishable due to the security 

of the HRES mentioned above. 

Sim DSP simulates A DSP as follows: it runs the EncTK on two randomly chosen numbers ˜ m 1 and ˜ m 2 ; then it multiplies 

[ ̃  m 1 ] by [ ̃  m 2 ] ; further it runs the FPRE to obtains [ ̃  m ] + . Sim DSP sends [ ̃  m ] + to A DSP . If A DSP replies with ⊥ , Sim DSP returns ⊥ . 

The view of A DSP consists of the encrypted data it creates. Owing to the honest of challenge cloud users and the security of 

the HRES, A DSP receives the same outputs both in real and ideal executions. Its views are distinguishable. 

Sim ACS simulates A ACS as follows: it randomly chooses data [ m ] + and re-encrypts it with its secret key by calling the SPRE 

to obtain [ m ] p k j , and then sends it to A ACS . If A ACS replies with ⊥ , Sim ACS returns ⊥ . The view of A ACS is also the encrypted 

data. In both the real and the ideal executions, A ACS receives the output of encrypted data [ m ] p k j . The security in real world 

can be guaranteed by the security of the HRES. The views of A ACS in the real and ideal executions are indistinguishable. 

Sim DR simulates A DR as follows: (it cannot enquire for the challenge data) it randomly chooses data [ m ′ ] p k j , and decrypts 

it to obtain m ′ , and then sends it to A DP . If A DP replies with ⊥ , Sim DR returns ⊥ . The view of A DR is the decrypted result. But 

in both the real and ideal executions, it is guaranteed by the semantic security of the HRES. The views are indistinguishable 

in both executions. No matter how many times the adversary accesses the simulator A DR , it is still difficult to obtain the 

original real data for the irrelevance between ciphertexts and the hardness of exhaustion attack. 

The security proofs of Multiplication, Sign Acquisition, Comparison , and Equivalent Test are similar to that of the Addition 

under the semi-honest (non-colluding) adversaries A = ( A DR , A DSP , A ACS , A DP ) . 

Theorem 4. The Variance scheme described in Section 4.3.7 can securely obtains the variance of plaintext over outsourced en- 

crypted data in the presence of semi-honest adversaries A = ( A DR , A DSP , A ACS , A DP ) . 

Proof. The four independent simulators Sim DP , Sim DSP , Sim ACS , and Sim DR are constructed as follows: 

Sim DP receives the input of m 1 , m 2 and m 3 , then it simulates A DP as follows: it encrypts data m 1 as [ m 1 ] = EncT K( m 1 ) , 

data m 2 as [ m 2 ] = EncT K( m 2 ) and data m 3 as [ m 3 ] = EncT K( m 3 ) . Finally, it returns [ m 1 ], [ m 2 ] and [ m 3 ] to A DP , and out- 

puts A DP ’s entire view. The view of A DP is the encrypted data. The views of A DP in the real and the ideal executions are 

indistinguishable due to the security of the HRES mentioned above. 

Sim DSP simulates A DSP as follows: it generates encryptions of the ˜ m 1 , ˜ m 2 and ˜ m 3 by running the EncTK on ran- 

domly chosen numbers ˜ m 1 , ˜ m 2 and ˜ m 3 ; then it computes to obtain [ − ˜ m ] where ˜ m = ˜ m 1 + ˜ m 2 + ˜ m 3 ; further it computes 

[ N ∗˜ m i − ˜ m ] ( i = 1 , 2 , 3 ) , and calls the P Dec1 to obtain [ c i ( N ∗˜ m i − ˜ m ) ] p k ACS 
( i = 1 , 2 , 3 ) by choosing three random numbers 

c i ( i = 1 , 2 , 3 ) . By accessing the simulator Sim ACS , it receives the data [ c i 
2 ( N ∗˜ m i − ˜ m ) 2 ] p k j ( i = 1 , 2 , 3 ) ; finally, it obtains 
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the encrypted data [ M] p k j , where M = 
∑ N 

i =1 ( N ∗m i − m ) 2 . The encrypted data [ c i ( N ∗˜ m i − ˜ m ) ] p k ACS 
( i = 1 , 2 , 3 ) and [ M] p k j are 

sent to A DSP . If A DSP replies with ⊥ , Sim DSP returns ⊥ . The view of A DSP consists of the encrypted data. Owing to the security 

of the HRES, A DSP receives the same outputs both in real and ideal executions. Its views are distinguishable. 

Sim CP simulates A ACS as follows: it generates encryptions [ r i 
2 ] P K j ( i = 1 , 2 , 3 ) by running the Enc on randomly chosen 

r i ( i = 1 , 2 , 3 ) , and then sends the encrypted data and r i ( i = 1 , 2 , 3 ) to A ACS . If A ACS replies with ⊥ , Sim ACS returns ⊥ . The 

view of A ACS is the encrypted data. In both the real and the ideal executions, A ACS receives the output of encrypted data 

[ r i 
2 ] p k j . The security in real world can be guaranteed by the security of the HRES and the randomness of c i ( i = 1 , 2 , 3 ) in 

ciphertexts. The views of A ACS in the real and ideal executions are indistinguishable. 

Sim DR simulates A DP as follows: (it cannot enquire for the challenging data) it randomly chooses data [ m ′ ] p k j , decrypts it 

to obtain m ′ , and then sends it to A DP . If A DP replies with ⊥ , Sim DR returns ⊥ . The view of A DP is the decrypted result. But in 

both the real and the ideal executions, it is guaranteed by the semantic security of the HRES. The views are indistinguishable 

in both executions. 

No matter how many times the adversary accesses the simulator A DR , it is still difficult to obtain the original real data 

due to the irrelevance between ciphertexts and the hardness of exhaustion attack. 

6.2. Performance evaluations 

In this section, we analyze the computation complexity and the communication overhead of our proposed schemes, 

including the HRES and the seven computing operation schemes. Further, we implemented them and tested their perfor- 

mances through simulations. 

6.2.1. Computation complexity analysis 

Herein, we analyze the computation complexity of our proposed HRES and the seven operations in the PPDP. As exponen- 

tiation operation is significantly more time-consuming than the addition and multiplication, we ignore the fixed numbers 

of additions and multiplications in our analysis. We regard the modular multiplication as the basic computing unit. As we 

choose r ∈ [1, n /4], the modular exponentiation g r needs at most n modular multiplications. Hence we set the computa- 

tion complexity of modular exponentiation to be O(n ) for a better presentation, where n is the basic public parameter for 

modular computations. 

First, we concentrate on the computations of algorithms in the HRES, which lays the foundation of the proposed schemes. 

The algorithm Enc involves two parts in its ciphertext. Each part needs a modular exponentiation. The EncTK has the 

same operation as the Enc . The algorithm Dec simply does one exponentiation and one multiplication to obtain a plaintext. 

The algorithm PDec 1 needs one exponentiation; while the P Dec2 needs one more multiplication. The algorithm FPRE needs 

three exponentiations and one hash computation; so does the SPRE ; while the DPRE has to do two hash functions and four 

exponentiations, two of which operate the power of a number with fixed length (because a hash output has only 160 bits). 

Based on the analysis on the HRES, we further analyze the computation complexity of computing operation schemes. We 

hold the assumption that there are N pieces of provided data in Addition, Subtraction, Multiplication , and Variance . 

6.2.1.1. Computation complexity of DSP. In Addition , the DSP needs to multiply a number of N ciphertexts one by one and then 

re-encrypts the above result with the algorithm FPRE . Thus, its computation complexity is O(N) where N is the number of 

provided data. The operation in Subtraction is similar to that in Addition , but it has two more modular exponentiations to 

obtain the negative of subtractor with computation complexity O(n ) . Thus it has the computation complexity of O( N + n ) . 

In Multiplication , the DSP needs to partially decrypt all data and do a corresponding number of exponentiations. More- 

over, it encrypts one random number. Hence, it has to do 2 N + 2 modular exponentiations. Its computation complexity 

achieves O( N ∗n ) . 

In Sign Acquisition , the DSP has to conceal the ciphertext with an exponentiation using a random number, and then 

partially decrypts it. It performs three modular exponentiations in total. In Comparison , the DSP first obtains the ciphertext 

of the difference of original data and then operates as Sign Acquisition , which needs altogether four modular exponentiations 

and one modular Multiplication . While in Equivalent Test , the DSP should execute Comparison twice. Hence, the computation 

complexities of the DSP are all O(n ) in the above three schemes. 

In Variance , it first multiplies the input data and then obtains its negative with two exponentiations. It totally needs 

2 N + 2 exponentiations, and N partial decryptions in Step 3. In the last step, it should do additional N exponentiations. Its 

computation complexity results in O( N ∗n ) . 

6.2.1.2. Computation complexity of ACS. In Addition , the ACS directly re-encrypts the data with the algorithm SPRE . The oper- 

ation in Subtraction is the same as that in Addition . Both Addition and Subtraction have the computation complexity of O(n ) 

at the ACS. 

In Multiplication , the ACS needs to partially decrypt all data to multiply the results and then encrypt it. Hence, it has to 

do ( N + 2 ) modular exponentiations. It results in the computation complexity of O( N ∗n ) . 

In Sign Acquisition , the ACS has to obtain the plaintext with an exponentiation, and then encrypts it. It has three mod- 

ular exponentiations in total. In Comparison , the ACS does the same operation. While in Equivalent Test , it should execute 
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Table 2 
Computation complexity of entities in each scheme. 

Roles Schemes Computations Computation complexity 

DSP Addition 3 ∗ Exp + 1 ∗ Hash + N ∗ Mul O ( N + n ) 
Subtraction 5 ∗ Exp + 1 ∗ Hash + N ∗ Mul O ( N + n ) 
Multiplication ( 2 N + 2 ) ∗ Exp O ( N ∗ n ) 
Sign Acquisition 3 ∗ Exp O ( n ) 
Comparison 4 ∗ Exp O ( n ) 
Equivalent Test 8 ∗ Exp O ( n ) 
Variance ( 4 N + 2 ) ∗ Exp O ( N ∗ n ) 

ACS Addition 3 ∗ Exp + 1 ∗ Hash O ( n ) 
Subtraction 3 ∗ Exp + 1 ∗ Hash O ( n ) 
Multiplication ( N + 2 ) ∗ Exp O ( N ∗ n ) 
Sign Acquisition 3 ∗ Exp O ( n ) 
Comparison 3 ∗ Exp O ( n ) 
Equivalent Test 6 ∗ Exp O ( n ) 
Variance 2 N ∗ Exp O ( N ∗ n ) 

DR Addition 4 ∗ Exp + 2 ∗ Hash O ( n ) 
Subtraction 4 ∗ Exp + 2 ∗ Hash O ( n ) 
Multiplication 2 ∗ Exp O ( n ) 
Sign Acquisition 1 ∗ Exp O ( n ) 
Comparison 1 ∗ Exp O ( n ) 
Equivalent Test 2 ∗ Exp O ( n ) 
Variance 1 ∗ Exp O ( n ) 

Notes: N is the number of provided data; n is the public parameter; Exp stands for 
the modular exponentiation; Mul refers to the modular multiplication; Hash is the hash 
function. 

Table 3 
Communication overhead of each scheme. 

Schemes Communication overhead 

Addition 2 ∗ 4 L (n ) 
Subtraction 2 ∗ 4 L (n ) 
Multiplication ( N + 3 ) ∗ 4 L (n ) 
Sign Acquisition 3 ∗ 4 L (n ) 
Comparison 3 ∗ 4 L (n ) 
Equivalent Test 6 ∗ 4 L (n ) 
Variance ( 2 N + 1 ) ∗ 4 L (n ) 

Comparison twice. That is, it has six exponentiations. Hence, the computation complexity of the ACS is O(n ) in all the above 

three schemes. 

In Variance , the ACS needs to do N exponentiations to decrypt the data first and then encrypt them with the public key 

of DR. It totally has 2 N exponentiations. Its computation complexity is O( N ∗n ) . 

6.2.1.3. Computation complexity of DR. In both Addition and Subtraction , the DR can directly call the algorithm DPRE to ob- 

tain the final result, which needs four exponentiations. Its computation complexity is O(n ) . In other five schemes, the DR 

calls the Dec to decrypt the final result, which needs one exponentiation. A little difference is that the DR should do two 

decryptions in Multiplication and Equivalent Test . Its computation complexity is still O(n ) . 

The computation complexity is summarized in Table 2 . 

6.2.2. Communication overhead 

Each ciphertext is composed of two parts: [ m i ] = { T i , T ′ i } . It is highly related to the length of n 2 , which has 2 L (n ) bits. 

Hence, it has to transmit 4 L (n ) bits for each ciphertext. 

Further, we summarize the communication overhead of each scheme in Table 3 with the assumption of N pieces of 

provided data. Notably, our analysis excludes the communication cost of data provision by DPs as it cannot be circumvented 

in all schemes and can be amortized over various data analyses. We can observe that the communication overhead in 

Addition and Subtraction does not rely on the number of data providers. But it takes much higher communication overhead 

to run Multiplication and Variance , which is linearly related to the number of providers and will affect their applications in 

a scenario with big data. In addition, the communication overhead in other schemes does not vary much as it has only one 

or two data inputs. In general, the communication cost is reasonable and our schemes are suitable for various applications. 

6.2.3. Experiment analysis 

We further implemented the proposed seven computing operation schemes and tested their performances to check with 

our theoretic analysis. The evaluations are performed on a laptop with Intel Core i5-3337U CPU 1.8 GHz and 4GB RAM. To 
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Table 4 
Parameter Settings. 

Parameter Value 

L ( m i ) 100 bits 
L ( s k i ) = L ( s k j ) 500 bits 
L ( s k DSP ) = L ( s k ACS ) 500 bits 
L ( CID ) 100 bits 
L (n ) 1024 bits 
Length of random numbers expressed with r 500 bits 
Length of random numbers expressed with c 200 bits 

Fig. 2. Influence of the length of secret key on the HRES. 

achieve better accuracy, we tested each algorithm 10 0 0 times and reported the average value of all testing results. Unless 

particularly specified, the parameters in our tests are set as the default values listed in Table 4 . 

1) HRES Performance 

Test 1: Influence of the length of secret key on the HRES 

In this experiment, we tested the influence of the length of secret key on the algorithms of HRES. We set the bit length 

of all secret keys as 10 0 bits, 20 0 bits, 30 0 bits, 40 0 bits, 50 0 bits, 60 0 bits, 70 0 bits, and 80 0 bits. The performance of each 

algorithm in HRES is shown in Fig. 2 . 

We can observe that the secret key almost has no influence on the algorithms Enc and EncTK . The computation costs of 

Enc and EncTK are similar, which conforms to the above computation analysis. Other algorithms need to do the modular 

exponentiations with the power of secret key. Therefore, their computation time grows up with the length of secret key 

size. 

Moreover, we can get to know that the length of exponent affects efficiency. Hence, we fix the length of random numbers 

in the Enc and EncTK in the following tests in order to test the impact of other parameters on computation costs. 

Test 2: Influence of the length of n on the HRES 

In this experiment, we tested the operation time of each algorithm in the HRES (including Enc, Dec, EncTK, PDec 1, PDec 2, 

FPRE, SPRE and DPRE ) by adopting different module sizes ( L (n ) : 256 bits, 512 bits, 768 bits, 1024 bits, 1280 bits, 1536 bits, 

1792 bits, and 2048 bits). The simulation results are shown in Fig. 3 . 

We can observe that the length of n influences the efficiency seriously. The computation time of each algorithm increases 

as n increases, but on the other side bigger module guarantees higher security. We observe that the computation time of 

each algorithm is less than 20 milliseconds (ms) when n is 1024 bits that means the module is 2048 bits. In particular, the 

decryption is much more efficient than other operations, which is suitable for DRs with limited resources. It implies that the 

algorithm is efficient to be applied into a mobile domain where DRs are played by mobile devices with limited resources. 

In addition, we can further prove the correctness of our implementation and analysis by comparing the simulation results 

with performance analysis. We can observe that the computation cost of the DPRE is the highest, which conforms to the 

analysis that it needs four exponentiations. Moreover, we can find that the DPRE does not consume much longer time than 

both the FPRE and the SPRE do. It is because the DPRE only needs to do one more exponentiation of 160-bit operator, 

which is very efficient. In addition, it can be observed that the two-level decryptions need one exponentiation and are the 

most efficient. In general, the simulation results conform to the theoretic analysis. 

Test 3: Influence of the length of input data on the HRES 
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Fig. 3. Computation time of each algorithm in the HRES with various n . 

Fig. 4. Computation time of each algorithm in the HRES with various length of data. 

We further tested the flexibility of the HRES with different length of original input data m i , which is set to ten different 

values: 50 bits, 100 bits, 150 bits, 200 bits, 250 bits, 300 bits, 350 bits, 400 bits, 450 bits, and 500 bits. 

We can observe from Fig. 4 that the computation time of each algorithm does not vary too much with the length of 

original input data. Therefore, the HRES can easily deal with various data. 

The simulation results above present the practical potential of the HRES to support privacy-preserving data processing. 

2) Efficiency 

Test 4: Influence of length of n 

Besides the tests on the HRES, we further tested the efficiency of the following schemes: Addition (Add), Subtraction 

(Subt.), Multiplication (Multi.), Sign Acquisition (Sign), Comparison (Comp.), Equivalent Test (Equal), and Variance (Vari.). 

As DPs only need to provide their data using PK, its computation efficiency is only affected by the length of n , shown in 

Fig. 3 . Hence, our further analyses focus on the other three parties: DSP, ACS and DR. 

The computation costs of the DSP in the seven computing operation schemes are shown in Fig. 5 . As the DSP needs to 

process data twice in Variance , we mark it as Vari. (1) and Vari. (2). We can see that the Equivalent Test and Variance are 

time-consuming, while this is acceptable for a cloud server with sufficient resources. From Fig. 6 that shows the computation 

cost of the ACS, we can observe that the most time-consuming operations are also Equivalent Test and Variance . 

By comparing Fig. 6 with Fig. 5 , we find that the computation cost in the ACS is much lower than that in the DSP, which 

makes the ACS suitable to be run by a company or an institute. Further, Fig. 7 shows the computation time of the DR. 

Obviously, most computation overhead has been transferred to DSP and ACS, which fits the requirement of low computation 

cost for cloud users. It only takes less than 10 ms in the following schemes: Sign Acquisition, Comparison , and Variance . 

In general, the above tests prove that our schemes have transferred the most time-consuming operations from the DR to 

the DSP and the ACS, which further proves the practical potential of the proposed schemes in mobile environments. 

3) Flexibility of Addition, Subtraction and Multiplication 
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Fig. 5. Computation time of DSP in each algorithm with various n . 

Fig. 6. Computation time of ACS in each algorithm with various n . 

Test 5: Performance of Addition and Subtraction with a large number of provided data 

In this test, we tested the performance of three kinds of system entities (i.e., DSP, ACS and DR) in Addition with different 

numbers of provided data ( N = 10 , 10 2 , 10 3 , 10 4 , 10 5 ). The computation costs are shown in Fig. 8 . Apparently, the compu- 

tation cost of the DSP increases with the number of provided data, while it does not influence the DR and the ACS. Even 

though the number of provided data reaches 10 4 , the DSP still takes less than 10 0 0 ms for executing its operations. This fact 

implies that our schemes can deal with a great number of data for addition operation efficiently. 

In the test of Subtraction , we assume the computation formula is ( 
∑ W 

i =1 m i −
∑ N 

i = W +1 m i ) with = [ N/ 2] , that is, half of the 

provided data is subtracted from the sum of another half of data. The simulation result is shown in Fig. 9 . The performance 

is similar to that of Addition . 

Test 6: Performance of Multiplication with a large number of provided data 

Multiplication is time-consuming. We only tested it with various numbers of provided data ( N = 

10 0 , 20 0 , 30 0 , 40 0 , 50 0 , 60 0 , 70 0 , 80 0 ). 

We can observe from Fig. 10 that it costs about 5 s to finish the computation in the DSP when the number of data is 

about 500. However, the computation time of the DR keeps unchanged. Multiplication does not introduce extra overhead 

to the DR. The above result implies that our scheme is practically suitable for cloud users that hold mobile devices with 

limited resources. 

6.3. Comparison with existing work 

We further compare the proposed PPDP system with some latest work based on different techniques: SMC [18] , FHE [32] , 

and PHE [21] , in terms of the requested number of servers, their support on big data processing, flexible data access control, 

and flexible data management, and resistance to eversdropping. The comparison result is shown in Table 5 . 
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Fig. 7. Computation time of DR in each algorithm with various n . 

Fig. 8. Computation time of each entity in Addition with different number of DPs. 

Fig. 9. Computation time of each entity in Subtraction with different number of DPs. 

We can see that the SMC-based scheme [18] needs three servers to achieve secret sharing, while the PHE-based scheme 

[21] depends on two servers to realize ciphertext operation. The FHE-based scheme [33] can complete the arbitrary com- 

putations with only one server. With respect to the requested number of servers, the PPDP system that needs two servers 

sits in the middle level of system complexity. But the FHE-based scheme cannot support flexible data access control over 

multiple data requesters because all data are provided by encrypting them with an indicated public key, while other three 

schemes support this feature. The SMC-based scheme achieves flexible access control to the processing result by getting all 
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Fig. 10. Computation time of each entity in Multiplication with different number of DPs. 

Table 5. 
Comparison with existing work. 

Schemes SMC-based scheme [18] FHE-based scheme [33] PHE-based scheme [21] PPDP 

Number of servers 3 1 2 2 
Flexible data access control � × � �

Flexible data management × × × �

Resistance to eavesdropping × � � �

Big data processing × × × �

Notes: ×- not supported; � - supported. 

shared and pre-processed values from its servers. But the SMC-based scheme weakens data management flexibility because 

it highly depends on the cooperation of three servers. The PHE-based scheme and the FHE-based scheme cannot support 

data management flexibility either because they cannot manage data that are controlled by different parties with different 

levels of trust evaluated by different users. The SMC-based scheme also suffers from eavesdropping since the processing re- 

sult can be re-constructed from transmitted data. However, other schemes based on FHE and PHE can prevent unauthorized 

access. Although the PHE-based scheme [21] claimed to support multiparty access, it closely depends on the two claimed 

servers. Its multiplication operation is similar to Sharemind, which is achieved with 3 N multiplications of shared secrets. 

Thus, this scheme cannot support big data processing, which is not considered either in the SMC-based scheme. FHE-based 

schemes can theoretically support big data processing, but this cannot be practically implemented at present due to ex- 

tremely high computation and storage costs. 

Our PPDP system supports the cross-ACS computation over ciphertexts. Each user can choose a service according to its 

own willingness and decision. Thus, it can support flexible data management, meet the security demands of users and satisfy 

the design requirements of many real applications. Moreover, two non-colluding servers cooperate to support the flexible 

data access. The adoption of PHE guarantees the resistance to multiple attacks, such as eavesdropping. In particular, our 

design also satisfies the demand of big data processing, as demonstrated in performance evaluation. In general, the PPDP 

system has superiority that surpasses other existing work, thus it is more feasible to be applied in practice. 

7. Conclusion 

In this paper, we proposed the PPDP system to achieve seven basic operations over ciphertexts and flexibly control 

access to ciphertext processing results by employing the HRES. Moreover, we extended the system to support ciphertext 

computations across multiple ACSs. We implemented the proposed schemes and evaluated their security and performance. 

The results showed that the PPDP system is secure, efficient and effective with regard to big data processing. 

In the future, we aim to make the PPDP system support more operations and realize group access control to processed 

ciphertexts. 
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