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a b s t r a c t 

Context: State-of-the-art works on automated detection of Android malware have leveraged app descrip- 

tions to spot anomalies w.r.t the functionality implemented, or have used data flow information as a 

feature to discriminate malicious from benign apps. Although these works have yielded promising perfor- 

mance, we hypothesize that these performances can be improved by a better understanding of malicious 

behavior. 

Objective: To characterize malicious apps, we take into account both information on app descriptions, 

which are indicative of apps’ topics, and information on sensitive data flow, which can be relevant to 

discriminate malware from benign apps. 

Method: In this paper, we propose a topic-specific approach to malware comprehension based on app 

descriptions and data-flow information. First, we use an advanced topic model, adaptive LDA with GA, to 

cluster apps according to their descriptions. Then, we use information gain ratio of sensitive data flow 

information to build so-called “topic-specific data flow signatures”. 

Results: We conduct an empirical study on 3691 benign and 1612 malicious apps. We group them into 

118 topics and generate topic-specific data flow signature. We verify the effectiveness of the topic-specific 

data flow signatures by comparing them with the overall data flow signature. In addition, we perform a 

deeper analysis on 25 representative topic-specific signatures and yield several implications. 

Conclusion: Topic-specific data flow signatures are efficient in highlighting the malicious behavior, and 

thus can help in characterizing malware. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The momentum of smart mobile devices carries along an im- 

pressive number of malicious apps which pose serious threats to 

users. Indeed, malware can lead to damages of varying severity, 

ranging from spurious app crashes to financial losses with mal- 

ware sending premium-rate SMS, as well as to private data leaks. 

To devise tools and techniques that are efficient in detecting mal- 

ware, researchers and practitioners require, more than ever, exten- 

sive knowledge of malicious behavior and how they can be char- 

acterized [1] . 

∗ Corresponding author. 

E-mail addresses: zdyxl@zju.edu.cn (X. Yang), davidlo@smu.edu.sg (D. Lo), 
li.li@uni.lu (L. Li), xxia@zju.edu.cn (X. Xia), tegawende.bissyande@uni.lu (T.F. Bis- 
syandé), jacques.klein@uni.lu (J. Klein). 

Research on automated detection of malware in the Android 

ecosystem has produced numerous approaches [2–4] in the last 

years. Among those approaches, Gorla et al. have proposed to clus- 

ter apps according to their description, and then to use anomaly 

analysis techniques on the functionality implemented to identify 

malicious apps within each cluster [5] . More recently, Avdiienko 

et al. have devised an approach to identify malware by using pat- 

terns of sensitive data flows to discriminate malicious from be- 

nign apps [6] . While both approaches have shown promising re- 

sults, they do not exploit any understanding of malicious behavior 

in their detection schemes. 

In this work, we consider a related but different problem than 

those studies about malware detection. We aim at understanding 

malware traits. Although malware detection is a very meaningful 

task since it can help automatically detect malware for users, mal- 

ware characterization goes further since it can also help people 

aware of why an app is malware. To achieve the target, we raise 
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two questions. What may cause an app being malicious? Does the 

apps of different topics have different causes for being malicious? 

To answer the above two questions, we focus on associating 

description information of apps with their data flow information 

to characterize malicious behavior. we propose a topic-specific ap- 

proach which combines description and sensitive data flow infor- 

mation. In a first step, we group different apps into several top- 

ics according to their descriptions. To that end, we leverage an 

adaptive Latent Dirichlet Allocation (LDA) with Genetic Algorithm 

(GA) [7] which allows to select the appropriate number of topics to 

optimally group apps. In a second step, for each topic, we collect 

the sensitive data flow information from the associated apps. Each 

piece of sensitive data flow information is weighted according to 

the number of times it appears in benign apps and in malicious 

apps, to yield an information gain ratio [8] value. 

With this approach, we generate a so-called “topic-specific data 

flow signature”. This signature is a list of data flow patterns along 

with their importance, represented by the information gain ratio, 

to discriminate malicious apps from benign apps. Building topic- 

specific data flow signatures presents three advantages compared 

to a generic (overall) data flow signature: (1) each topic-specific 

signature will include fewer, specific, data flow patterns; (2) each 

data-flow signature contains more discriminative information to 

identify malicious apps in a specific topic; (3) each data flow signa- 

ture characterizes more fine-grained behavior of malicious apps in 

this topic by highlighting the specific data-flow patterns that they 

are prone to exhibit. 

We implemented our approach and conducted an experimen- 

tal assessments based on 5303 apps (3691 benign and 1612 mali- 

cious). We have crawled descriptions of apps from Google Play Store 

and Best Apps Market 1 for benign and malicious apps respectively, 

and leveraged MUDFLOW [6] to collect data flow information from 

all the apps. We group all the apps into 118 topics and generate 

topic-specif ic data flow signatures. We verify the effectiveness of 

the topic-specific data flow signatures by comparing them with the 

overall data flow signature. Moreover, we perform a deeper anal- 

ysis on several representative topic-specific signatures and yield 

several implications. In conclusion, topic-specific data flow signa- 

tures can help better characterize malware. 

The main contributions of this paper are: 

1. We propose a topic-specific approach to generate data flow sig- 

natures. The topic-specific data flow signatures is much better 

than the overall data flow signatures to characterize malware. 

2. We conduct an empirical study to demonstrate the benefits of 

topic-specific data flow signatures and perform a deeper analy- 

sis on several representative topic-specific signatures. 

In the remainder of the paper, we provide background informa- 

tion (cf. Section 2 ), present our approach (cf. Section 3 ) and exper- 

iments (cf. Section 4 ) before discussing related work (cf. Section 5 ) 

and giving concluding remarks (cf. Section 6 ). 

2. Background 

We introduce Android malware and overview some details on 

data flow information in Section 2.1 . Section 2.2 provides back- 

ground details on the working of Latent Dirichlet Allocation (LDA) 

which we leverage in our work. At last we present the motivation 

of our work. 

2.1. Malicious apps and data flow information 

Malicious apps (or malwares) are apps that implement func- 

tionalities which contradict with app user interests. Generally, mal- 

1 http://www.bestappsmarket.com/. 

Fig. 1. The graphical model of LDA. 

wares, which include viruses, worms, trojans and spyware, are 

harmful at diverse severity scales. 

Nowadays, there are more and more malicious apps that leak 

user’s sensitive data without user’s permission. These sensitive 

data include for example user’s location, text message records, 

and even contact information. Usually, such malicious apps can be 

identified by manually checking their implementation code. In a 

previous work, Avdiienko et al. have identified malware by ana- 

lyzing sensitive data flows between source and sink API calls [6] . 

A source is a method that accesses personal data such as ac- 

count, unique device ID, and location. A sink is a method that can 

transmit local data to an external entity such as network, file and 

log. They demonstrated that it is possible to identify malware by 

simply inspecting whether a sensitive user data (e.g., account) is 

leaked from its source to an unsafe sink (e.g., network). To simplify 

the detection of leaks between sources and sinks, Adviienko et al. 

have regrouped the large number of sensitive Android APIs into a 

set of 34 semantic categories detailed in Table 1 . Following Advi- 

ienko et al., we leverage the 34 provided categories in our work to 

simplify and record data flow information. 

2.2. Latent Dirichlet allocation 

Latent Dirichlet Allocation (LDA) [9] is a well-known topic 

model used for various tasks of software engineering re- 

search [7,10,11] . In particular, many studies about malware detec- 

tion leverage LDA [5,12,13] . In the graphical model of LDA repre- 

sented in Fig. 1 , a circle represents a variable, an arrow represents 

a dependency between two variables and a rectangle represents a 

process which is repeated a number of times. 

K denotes the number of topics, D denotes the number of docu- 

ments and N the number of terms in a document. Generally, D and 

N are fixed by the problem, while K needs to be specified manu- 

ally. Two other parameters must also be tuned carefully: 

1. alpha , which affects the topic distribution of the documents 

(i.e., descriptions). A higher alpha leads to more uniform dis- 

tribution of the topics per document. By default, alpha is set to 

0.1. 

2. Beta , which affects the term distribution of the topics. A higher 

beta leads to more uniform distribution of the terms per topic. 

By default, beta is set to 0.01. 

In theory, LDA is a generative probabilistic model, which as- 

sumes that the data (a collection of documents) is generated based 

on a certain statistical process for each document d and each topic 

k . Specifically, LDA contains three steps: 

1. Step 1: LDA generates a topic distribution vector theta and a 

term distribution vector phi based on two Dirichlet distribu- 

tions [14] defined by the parameters alpha and beta , respec- 

tively. 

http://www.bestappsmarket.com/
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Table 1 
Sensitive API categories. 

Categories Description 

Source only 

ACCOUNT_INFORMATION APIs to read details of user’s online accounts. 
BLUETOOTH_INFORMATION APIs to read Bluetooth communication settings and state, along with information about connected and connecting devices. 
CONTENT_RESOLVER APIs to read contents of a given URI. 
DATABASE_INFORMATION APIs to read data from database and retrieve database metadata. 
EMAIL_INFORMATION APIs to read emails and email settings. 
FILE_INFORMATION APIs to obtain URI of resources stored in either internal or external storage devices. 
HARDWARE_INFO APIs to read device’s hardware information. 
LOCATION_INFORMATION APIs to read geographical information. 
NETWORK_INFORMATION APIs to read network, telephony and connection settings. 
NO_SENSITIVE_SOURCE Non-sensitive source APIs. 
PHONE_INFORMATION APIs to read other phone related information. 
UNIQUE_IDENTIFIER APIs to read device’s and user’s identifiers, e.g., device id, subscriber id, etc. 
VOIP_INFORMATION APIs to obtain VOIP settings and state. 

Sink only 

ACCOUNT_SETTINGS APIs to modify user’s account settings. 
BLUETOOTH APIs to send information using Bluetooth service. 
EMAIL APIs to send emails. 
EMAIL_SETTINGS APIs to modify email settings. 
FILE APIs to write data to files or other resources. 
INTENT APIs to start, fragment and manage Android’s activity. 
LOG APIs to send data, warnings, and error messages to be logged. 
NETWORK APIs to modify network settings, e.g., WiFi settings, etc. 
NO_SENSITIVE_SINK Non-sensitive sink APIs. 
PHONE_CONNECTION APIs to modify phone connection settings. 
PHONE_STATE APIs to modify phone state. 
SYNCHRONIZATION_DATA APIs to manage synchronization operation. 
VOIP APIs to send data through VOIP. 

Both 

AUDIO APIs to manage volume, ringer, and other audio-related settings. 
BROWSER_INFORMATION APIs to manage browser bookmarks and data. 
CALENDAR_INFORMATION APIs to manage date and time related information. 
CONTACT_INFORMATION APIs to manage device’s central repository containing data about people (e.g., their phone numbers). 
IMAGE APIs to manage metadata of image (e.g., JPEG) files. 
NFC APIs to manage communication to NFC tag. 
SMS_MMS APIs to manage SMS and MMS operations such as reading and sending text, reading and sending multimedia, etc. 
SYSTEM_SETTINGS APIs to manage device and system configurations such as password, performance counters, web settings, etc. 

2. Step 2: LDA generates a topic assignment vector z to assign each 

term in a document a specific topic according to the topic dis- 

tribution vector of the document theta . 

3. Step 3: LDA generates each term in a document with the topic 

distribution vector phi and the topic assignment vector z . 

By repeating step 1 K times, K topics are generated. By repeat- 

ing step 2 and 3 N times, a document having N terms is generated. 

By repeating step 1 to 3 D times, a collection of D documents is 

generated. 

In practice, LDA takes a document-by-term ( D ∗N ) matrix a as 

input, and outputs two matrices b and c , i.e., document-by topic 

( D ∗K ) matrix and topic-by-term ( K ∗N ) matrix. The document-by- 

term matrix a can be a term frequency matrix, in which a ij rep- 

resents the number of times that the j th term appears in the i th 

document. In the document-by-topic matrix b, b ij represents the 

probability of the i th document belongs to the j th topic. Generally 

a document is regarded as belonging to the topic with the highest 

probability. In the topic-by-term matrix c, c ij represents the proba- 

bility that the j th term belongs to the i th topic. Likewise, we assign 

a term to the topic with the highest probability and then we can 

conclude what a topic is about by looking up the terms it contains. 

To some extent, LDA can be seen as a clustering algorithm. By 

assigning a specific topic for each document using document-by- 

topic matrix, a clustering of documents can be completed. 

There are several implementations for LDA in the literature. 

In our work, we use an implementation based on collapsed 

Gibbs sampling. This approach achieves the same accuracy as the 

standard LDA implementation while being faster in each execu- 

tion [15,16] . Besides the three parameters, alpha, beta and K in- 

troduced above, our implementation is tuned with a parameter m 

for the number of Gibbs sampling iterations. m is defaultly set to 

20 0 0. 

2.3. Motivation 

We envision our work can give a deeper insight into mal- 

ware compared with the studies which generate signatures with- 

out taking into account the specificities of different topics of mal- 

ware [17–19] . Indeed, since different apps provide different func- 

tionality, building a generic (overall) signature of malware across 

the various topics of apps may not be optimal. For example, most 

apps which track user’s real-time location are likely malicious. Tak- 

ing this information to build an overall signature may lead to false 

positives in the case of navigation apps which benignly, and on 

purpose, must track user’s location and may even save this sensi- 

tive information outside the app (e.g., in a log file). 

Topic-specific data flow signatures can benefit security experts 

who may use them to characterize malicious apps and build 

signature-based approaches to malware detection. Users, when 

provided with such information, can also understand the risk that 

they take in installing a given app. Finally, app developers, based 

on such signatures, can learn to avoid unorthodox implementations 

which may make their apps easily assimilable to malware. 
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Table 2 
An example of how a data flow pattern is generated. 

Source API Uri.getQueryParameter() 

Source API category NETWORK_INFORMATION 
Sink API Log.e() 
Sink API category LOG 
Data flow pattern NETWORK_INFORMATION → LOG 

3. Case study setup 

In this section, we describe the details of the setup of our em- 

pirical experiments. We first detail the data collection and prepro- 

cessing step in Section 3.1 , and then we present our experimental 

approach in Section 3.2 . 

3.1. Data collection 

As we introduced earlier, our topic-specific approach is per- 

formed on top of two basic artifacts: the sensitive data flow in- 

formation and the descriptions of Android apps. We collect them 

based on static analysis. To collect the sensitive data flow informa- 

tion of Android apps, we leverage in our work an existing dataset, 

which is previously published by Adviienko et al. [6] , containing a 

set of Android apps and their sensitive data flow patterns. Those 

sensitive data flow patterns are extracted through a well-known 

state-of-the-art tool called FlowDroid [20] . Table 2 shows an ex- 

ample of how a data flow pattern is generated. As previously intro- 

duced in Section 2 , the source and sink APIs in the data flow pat- 

tern (showed in the first and third rows) are represented through 

their corresponding semantic categories (showed in the second 

and fourth rows). Operator → indicates data flow direction. There- 

fore, the data flow pattern means that the app calls a source API 

in the NETWORK_INFORMATION category to generate data and this 

data is passed to a sink API in the LOG category (which means the 

data is logged somewhere). 

The second artifact we need to collect is the descriptions of An- 

droid apps that are going to be investigated. However, it is not 

trivial to collect the descriptions of a given set of Android apps, 

especially for malicious apps as they are unlikely to be available 

on popular app markets, such as the Google Play store, from which 

we are only able to collect descriptions of benign apps. To this end, 

we first manually searched descriptions for a set of Android apps 

then come to a semi-automatic approach based on the knowledge 

learned from the manual process. The semi-automatic approach at- 

tempts to crawl as much descriptions as possible from a set of pre- 

defined app markets, such as Best Apps Market . 2 

Actually, Adviienko et al. [6] have only made available the MD5 

names of their Android apps. It is nearly impossible to search 

descriptions of a given app through its MD5 information. Thus, 

there is a need to obtain the unique name of a given Android app 

through its MD5 information. Again, this is not trivial as well. We 

thus come to a work around approach: at first, we collect a big 

data set of malicious Android apps from VirusShare, 3 and then we 

consider only such apps that exist in both Adviienko’s dataset and 

our downloaded dataset. The unique app name is further retrieved 

from the downloaded apps. 

Totally, we collect 5303 apps, including 3691 benign and 1612 

malicious apps, for which we could get both their descriptions 

and sensitive data flow patterns. And there are totally 128 differ- 

ent data flow patterns appearing in these apps. Note that the ra- 

tio of benign apps over malicious ones is about 2.3, which mim- 

2 http://www.bestappsmarket.com/. 
3 https://virusshare.com/. 

Table 3 
The data flow information of one benign app 
(com.phoneapps99.unblockyoutube) and one malicious app 
(VirusShare_57e868d46163387793fd3e260ed56ac4). 

App Data flow information 

Unblockyoutube NETWORK_INFORMATION → LOG 
(Benign) NETWORK_INFORMATION → NO_SENSITIVE_SINK 

DATABASE_INFORMATION → NO_SENSITIVE_SINK 
NO_SENSITIVE_SOURCE → INTENT 
NO_SENSITIVE_SOURCE → LOG 
NO_SENSITIVE_SOURCE → FILE 
NO_SENSITIVE_SOURCE → SYSTEM_SETTINGS 

VirusShare NETWORK_INFORMATION → SMS_MMS 

(Malicious) NETWORK_INFORMATION → INTENT 
NETWORK_INFORMATION → LOG 
NETWORK_INFORMATION → NO_SENSITIVE_SINK 
NO_SENSITIVE_SOURCE → LOG 
NO_SENSITIVE_SOURCE → INTENT 

Fig. 2. The overall framework of our approach. 

ics the ratio of benign and malicious apps in the real world. 4 Also 

note that a given app can have several sensitive data flow patterns, 

while different apps may exhibit a same data flow pattern. As an 

example, Table 3 illustrates the sensitive data flow patterns col- 

lected from a benign and a malicious apps, where a sensitive data 

flow pattern, named NETWORK_INFORMATION → LOG , is actu- 

ally shared by both of these two apps. 

3.2. Data analysis 

We now detail our topic-specific approach. In particular, we 

first present an overview of our data analysis framework. Then, we 

depict in detail the implementation of each important step of our 

framework. 

3.2.1. Overall framework 

Fig. 2 presents the overall framework of our proposed two- 

phase topic-specific approach. During the app clustering phase, 

apps are clustered according to the topics inferred from their de- 

scriptions using LDA. During the data flow signature generation 

4 We estimate the ratio of benign and malicious apps using the AndroZoo project 
( https://androzoo.uni.lu/markets ) [21] , in which there are currently over 5 million 
Android apps and the goodware/malware ratio is 2.36. 

http://www.bestappsmarket.com/
https://virusshare.com/
https://androzoo.uni.lu/markets
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phase, we build a topic-specific signature of apps using the sen- 

sitive data flow information which differentiates benign from ma- 

licious apps in that topic. 

In Step 1, we first extract a number of features from app de- 

scriptions. These features are selected as representative terms that 

are useful in building a good topic model. In our work, we extract 

the representative terms and use their term frequency as features 

(cf. Section 3.2.2 ). Next, in Step 2, we build a topic model with 

the extracted features using adaptive LDA with Genetic Algorithm 

(GA). GA is used to determine the optimal number of topics (cf. 

Section 3.2.3 ). At the end of this step, LDA clusters the different 

apps into their corresponding topics. 

Once all apps have been grouped in different topics, we gen- 

erate, in Step 3, a topic-specific data flow signature per topic by 

computing information gain ratio of each piece of data flow in- 

formation. For each piece of data flow information in a topic, we 

first count the number of times it appears in benign apps with this 

topic and the number of times it appears in malicious apps with 

this topic. We then compute the information gain ratio of the piece 

of data flow information accordingly (cf. Section 3.2.4 ). In the end, 

each topic-specific data flow signature consists of data flow pat- 

terns along with their likelihood to appear in benign and malicious 

apps estimated through the information gain ratio . 

3.2.2. Feature extraction – text preprocessing 

In general, an app description provides raw information for its 

use and functionality. To cluster apps with LDA, we preprocess 

the descriptions as many prior work did [9,22,23] . To the pur- 

pose, we use the python package NLTK. 5 NLTK is a leading platform 

for building Python programs to work with natural language data. 

With the help of NLTK, we first tokenize all the terms (i.e., words) 

from the descriptions. We then remove the stop words, numbers, 

punctuation marks and other non-alphabetic characters since they 

add little value to the topic. To further reduce the noises and fea- 

ture dimensions, we also remove the terms that do not exist in the 

English vocabulary of NLTK. 6 Subsequently, we use the Snowball 

stemmer [24] to transform the remaining terms to their root forms 

(e.g., reading and reads are reduced to) to unify similar words into 

a common representation. Finally, we compute the term frequency- 

inverse document frequency (tf-idf) value for each stemmed term. 

At the end of these steps, an app description d is represented 

as a term frequency vector, i.e., d = (w 1 , w 2 , . . . , w n ) , where w i de- 

notes tf-idf value of the i th term (i.e., the number of times the i th 

term appears in the description d divided by the number of de- 

scriptions in which such a term appears). In total, there are 8832 

different stemmed terms extracted from all the app descriptions. 

Note that we do not do any word filtering since LDA itself is a fea- 

ture reduction algorithm which has been proved to be better than 

traditional information retrieval algorithm tf-idf. 

3.2.3. App clustering – adaptive LDA with genetic Aagorithm 

As mentioned in Section 2 , we use LDA to cluster apps into dif- 

ferent topics. In LDA, the number of topics k is an undetermined 

but important parameter. An overly large or overly small value of 

k may influence the performance of our approach severely. There- 

fore, we use an adaptive LDA technique, leveraging Genetic Algo- 

rithm (GA), to optimize the value of k . 

Genetic algorithms simulate evolutions by natural selec- 

tion [25] . In GA, the parameters waited to be searched are encoded 

as an individual “chromosome” and a so-called fitness function is 

pre-defined. The fitness function is used to evaluate the different 

parameter configurations by generating different fitness values. As 

5 http://www.nltk.org/. 
6 http://www.nltk.org/ . 

a start, a population of randomly-generated chromosomes are initi- 

ated, where each of them represents a random parameter configu- 

ration. Then, the population will evolve a number of generations to 

search for an optimal parameter configuration. For each generation, 

the population goes through three phrases: selection, crossover 

and mutation. In the selection phrase, the different chromosomes 

are selected by a selection probability, which is transformed from 

their corresponding fitness values. The higher the fitness value is, 

the higher the selection probability is. In the crossover phrase, the 

selected chromosomes are paired in a random way and each pair 

of chromosomes are crossed over to generate a new pair of chro- 

mosomes by a crossover function and crossover rate. In the mu- 

tation phrase, the new generated chromosomes are mutated ran- 

domly by a mutation function and a mutation rate. After the afore- 

mentioned three phrases, the whole population is updated and be- 

comes a new generation. With the generations evolving, better and 

better individuals (with higher fitness values) will emerge. There- 

fore, with the help of GA, we can obtain a proper value of k . 

Algorithm 1 The GA Process in Adaptive LDA. 

1: Input: The population size, p; 

The number of generations, n ; 

The search scope of the number of topics k , [ min, max ] ; 

2: Output: The number of topics, k _ best; 

3: Pick p random values of number of topics, from the range 

[ min, max ] , using an initialization function. Denote them as k ; 

4: For each value k i , compute the Silhouette coefficient as its fit- 

ness value; 

5: According to the fitness value, use a selection function to select 

better values in k ; 

6: Cross over selected values using a crossover function to gener- 

ate new values. Denote them as k _ new ; 

7: Mutate some values in k _ new using a mutation function, and 

replace k with these values; 

8: Repeat Steps 4 to 7 n times and output the value k _ best with 

the best fitness value; 

Algorithm 1 presents the GA process in adaptive LDA. In our 

work, our LDA–GA approach is implemented on top of Pyevolve, 7 

an evolutionary computation framework. For the encoding scheme, 

we use the classical chromosome representation: 1D Binary String. 

That is, we represent k in the binary system (i.e., “10 0 0 01” rep- 

resents 33 as the value of k ). We set the length of each bi- 

nary string as 7 since 7 bits is likely to be sufficient for the 

maximum number of topics (“1111111” can reach 127). We use 

the default function G1DBinaryStringInitializator , which is the only 

initialization function for binary strings and can randomly gen- 

erate binary strings. For the selection phase, we use the func- 

tion GRankSelector , which is a rank-based selector. We choose it 

since it behaves in a more robust manner than proportional se- 

lector, c.f., [26,27] ). For the crossover phase, we use the function 

G1DBinaryStringXUniform and use the default crossover rate (i.e., 

0.9). G1DBinaryStringXUniform performs crossover uniformly, and it 

is proposed by Syswerda [28] . We choose it since it helps to re- 

duce the bias associated with the length of the binary representa- 

tion used [28] . For the mutation phase, we use the default func- 

tion G1DBinaryStringMutatorFlip and use the default mutation rate 

(i.e., 0.02). G1DBinaryStringMutatorFlip is the classical flip mutator, 

which randomly perform bit inversion (0 to 1 or 1 to 0) in a bi- 

nary string. Finally, we set p as 20, which results from the tradeoff

of good results and execution time needed. We set n as 10 since 

we find the fitness value becomes stable within 10 generations. 

7 http://pyevolve.sourceforge.net/. 

http://www.nltk.org/
http://www.nltk.org/
http://pyevolve.sourceforge.net/
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For the fitness function, we follow Panichella et al.’s work on 

LDA–GA [7] and use the Silhouette coefficient as the fitness value. 

The Silhouette coefficient is first proposed by Kogan [29] and is a 

common evaluation metric for clustering [30–32] . The computation 

of the Silhouette coefficient consists of three steps: 

1. Step 1: For a document d i , we calculate the maximum Eu- 

clidean distance from d i to the other documents in the same 

cluster, which is denoted as a( d i ). And we calculate the mini- 

mum Euclidean distance from d i to the centroids of the other 

clusters (i.e., the clusters that do not contain d i ), which is de- 

noted as b( d i ). 

2. Step 2: Given a( d i ) and b( d i ), we can calculate the Silhouette 

coefficient S( d i ) for the document d i according to the following 

formula: 

S(d i ) = 
b(d i ) − a (d i ) 

ma x ( a ( d i ) , b( d i )) 

3. Step 3: We compute the mean value of all S( d i ) as the overall 

Silhouette coefficient. 

The scope of the Silhouette coefficient is in [ −1,1]. A bigger 

value of the Silhouette coefficient indicates a better clustering. 

When a value of number of topics achieves a high Silhouette coef- 

ficient, it means that the value leads to a good result for LDA. The 

higher Silhouette coefficient a value achieves, the more likely it is 

to be kept in the evolution process. Therefore, by using the adap- 

tive LDA with GA, we can find a proper number of app topics and 

we assign each app a specific topic according to its description. 

3.2.4. Data flow signature generation – information gain ratio 

Information gain ratio is a ratio of information gain to the in- 

trinsic information, in which the “intrinsic information” represents 

the initial information entropy. It has been used in many malware 

detection studies [33–36] . In our work, information gain ratio can 

indicate what percentage of information a data flow pattern can 

gain from the intrinsic information. Therefore, we use information 

gain ratio to evaluate each data flow pattern and generate a topic- 

specific data flow signature per topic. A topic-specific data flow 

signature is a list of data flow patterns that appear in apps of the 

corresponding topic, where each pattern is associated with an in- 

formation gain ratio value indicating its power to discriminate ma- 

licious from benign apps. 

To compute information gain ratio, we first calculate informa- 

tion gain IG . For each topic, we denote the number of malicious 

apps of the topic as P , and that of benign apps of the topic as 

N . For each data flow pattern in a topic, we denote the number 

of times it appears in the malicious apps of the topic as pos and 

that in the benign apps of the topic as neg , respectively. We also 

denote total , which is equal to pos + neg, as the number of times 

it appears in all the apps of the topic. Then, the information gain 

IG ( d ) of a data flow pattern d can be calculated as follows: 

IG (d) = E(P, N) − (total/ (P + N)) × E(pos, neg) 

− (1 − total/ (P + N)) × E(P − pos, N − neg) , 

where 

E(x, y ) = −(x/x + y ) × log(x/x + y ) − (y/x + y ) × log(y/x + y ) . 

In the above formula, E denotes the information entropy and log 

is on the base of 2. When x equals to y, E will achieve the maxi- 

mum value (i.e., 1). When either neg or pos equals to zero, E will 

achieve the minimum value (i.e., 0). The information gain IG ( d ) is 

the difference of three information entropies (i.e., the intrinsic in- 

formation entropy E ( P, N ) and two information entropies generated 

by splitting an attribute), and thus its value is above 0 and below 

E ( P, N ). 

Since different topics have different intrinsic information en- 

tropy E ( P, N ), directly comparing IG ( d ) of different topics is unrea- 

sonable. Therefore, we divide them by E ( P, N ) to normalize them, 

which leads to information gain ratio Ratio : 

Ratio(d) = 
IG (d) 

E(P, N) 
. 

The value range of Ratio is in [0, 1], with which each data flow 

pattern can be well investigated. If Ratio is 0, it means that the 

data flow pattern cannot differentiate malicious apps from benign 

apps, since the pattern cannot decrease the information entropy. If 

Ratio is 1, it means that the data flow pattern is a excellent indica- 

tor which can completely discriminate malicious apps from benign 

apps, since the pattern gains all the intrinsic information. More- 

over, the bigger the Ratio is, the better is the data flow pattern to 

be an indicator. 

4. Case study 

We first enumerate research questions in Section 4.1 to as- 

sess the suitability of our approach. We then present experimen- 

tal results on the case study of Android malware in Section 4.2 , 

and summarize the findings before discussing threats to validity in 

Section 4.4 . 

4.1. Research questions 

We consider the following research questions for assessing the 

efficiency of the proposed approach to enable better characteriza- 

tion of malicious apps. 

RQ-1: What is the distribution of malicious/benign apps over dif- 

ferent topics? 

With the first research question we aim to investigate the dis- 

tribution of malicious/benign apps over different topics. The dis- 

tribution of malicious/benign apps over different topics can influ- 

ence the effectiveness of topic-specific malware characterization. If 

a topic contains much more malware than benign apps (or much 

more benign apps than malwares), it indicates that topic-specific 

malware characterization is effective. On the contrary, if a topic 

contains almost equally malicious and benign apps, it indicates 

that topic-specific malware characterization is not useful. We use 

the proportion of malicious apps Proportion as the evaluation met- 

ric. Specifically, given a specific topic t , number of malicious apps 

in t is mal , and number of benign apps in t is ben, Proportion is 

defined as follows: 

P roportion = mal/ (mal + ben ) . 

RQ-2: Are topic-specific data flow signatures effective? 

We then investigate the effectiveness of topic-specific data flow 

signatures. To that end, we compare topic-specific data flow sig- 

natures with the overall data flow signature (i.e., the data flow 

signature derived by investigating benign apps and malicious apps 

without considering their respective association in topics). We use 

information gain ratio, which is introduced in Section 3.2.4 , as the 

evaluation metric. Note that for the overall data flow signature, the 

calculation of information gain ratio is based on all apps we in- 

vestigate without considering their different topics. Since a signa- 

ture contains many data flow patterns (each with an information 

gain ratio), we report the distributions of information gain ratio 

for each topic-specific signature, and use statistical tests to demon- 

strate whether topic-specific data flow signatures are substantially 

and statistically significantly better than the overall data flow sig- 

nature in terms of information gain ratio. 

RQ-3: What can we learn from topic-specific data flow signatures? 

In the last research question, we go further by making a more 

in-depth qualitative analysis on several topic-specific data flow sig- 

natures. We discuss the data flow patterns in several topic-specific 
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Fig. 3. Distribution of Apps in topics (ordered by number of apps). (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.) 

Table 4 
The top ten representative terms and corresponding assigned names for example 
topics. 

Assigned name Top-10 terms (After stemming) 

Body building Weight bodi help track lose calcul health easi reach 
Sport live Sport live footbal leagu world match manag interact varieti 
Puzzle game Game puzzl play fun brain match bubbl easi solv 
Weather forecast Weather clock forecast day current hour locat temperatur 

wind 
Protector Secur devic protect mobil safe phone android block data 
Reader Read book reader bibl free day write content digit 
News News latest inform access break sport world read offici 
Timer Screen touch set alarm button timer volum start turn 
Calendar Day time calendar daili week month import everi year 
Power management Batteri phone power speed memori manag save charg run 
Kid education Kid fun learn child educ help littl babi age 
App launcher Theme launcher design appli android phone open choos 

rate 
Cloud storage Manag file android zip cloud devic copi server storag 
Camera Photo camera effect share galleri add editor sticker creat 
Flash player Flash player free adob auto angri grand citi play 
Music player Music song listen player audio play equal artist album 
Social app Chat peopl date meet free singl profil send connect 
Wallpaper Wallpap live free screen home set beauti background menu 
Video player Video watch player movi play android content best music 
Navigator Travel navig traffic job rout avail map time trip 
Browser Browser brows android fast best speed dolphin histori 

search 
Network shopping Shop buy product price sell trade offer differ purchas 
Financial Card scan money code manag busi credit use expens 
Dictionary English word learn dictionari translat languag vocabulari 

pronunci use 
Screen locker Lock screen password unlock devic hide phone use set 

signatures. We aim to conclude several implications and better 

characterize malicious apps based on topic-specific signatures. 

All experiments for answering the above research questions 

were conducted on an Intel(R) Core(TM) T6570 with 2.10 GHz CPU 

and 4 GB RAM PC running Windows 7 (64-bit). 

4.2. Experiment results 

RQ-1: What is the distribution of malicious/benign apps over dif- 

ferent topics? 

As mentioned in Section 3.2.3 , we first use the adaptive LDA 

with GA to find an optimal number of topics k . Since GA is a ran- 

domized algorithm and as such it may return different results over 

different runs, we run GA 10 times to reduce the bias. As a result, 

the mean of k is 117.7, the median of k is 119 and the standard 

deviation of k is 7.31. We use the mean of k rounded up to the 

nearest integer (i.e., 118) as the number of topics to input to LDA. 

Table 4 presents 25 representative example topics of the LDA re- 

sult. We list the top 10 representative stemmed terms, and infer a 

summarizing name for each topic. From the table, we can see that 

our approach can cluster apps into distinct categories well. Each 

set of top-10 stemmed terms is related to a specific topic differ- 

ent from the rest. This result supports the feasibility of generating 

topic-specific signatures. 

Each topic includes a number of apps, some benign and others 

malicious. Fig. 3 shows the distribution of apps (green for benign 

and red for malicious) in the 118 topics. 

From Fig. 3 , we can find that malicious and benign apps are 

not equally distributed across topics. Some topics tend to con- 

tain more benign apps while others tend to contain more mali- 

cious apps. Specifically, among 118 topics, there are 38 topics that 

have Proportion over 80% or below 20%. For example, based on the 

dataset, “Flash Player” and “Wallpaper” apps include significantly 

more malware than benign apps (with Proportion of 87 and 62%), 

while apps for “Dictionary” and “Weather Forecast” are on the op- 

posite end of the spectrum (with Proportion of 12 and 12%). This 

suggests that, to some extent, malware writers favor a few top- 

ics of apps more and thus demonstrates the suitability of topic- 

specific malware analysis. 

Malicious and benign apps are not equally distributed over 

different topics and some topics tend to contain more benign 

apps while others tend to contain more malicious apps, which 

indicates the suitability of topic-specific malware analysis. 

RQ-2: Are topic-specific data flow signatures effective? 

To show the effectiveness of topic-specific data flow signatures, 

we compare topic-specific data flow signatures with the overall 

data flow signature based on information gain ratio. Figs. 4 –6 

present the distributions of information gain ratio for all topic- 

specific signatures and the overall signature. From the figures, we 

can see that all topic-specific signatures are above the overall sig- 

nature. For the average information gain ratio (of all the data flow 

patterns in one signature), topic-specific data flow signatures are 
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Fig. 4. Distribution of information gain ratios for all topic-specific signatures (Part1). 

Fig. 5. Distribution of information gain ratios for all topic-specific signatures (Part2). 

in the range of [0.02, 1], while the overall signature is only 0.008. 

Moreover, among the 118 topic-specific signatures, there are 7 sig- 

natures which contain at least one data flow patterns whose infor- 

mation gain ratio values achieve 1, which means these 7 signatures 

can correctly and totally distinguish malicious apps from benign 

ones of the corresponding topics. These findings suggest that topic- 

specific data flow signatures have better quality than the overall 

data flow signature and can help characterize malicious apps bet- 

ter. 

To better demonstrate the superiority of the topic-specific data 

flow signatures, we perform statistical tests by comparing all in- 

formation gain ratios (with each corresponding to a data flow pat- 

tern) in a topic-specific signature with those in the overall signa- 

ture. Note that we perform the statistical analysis in the topic-level 

rather than in the app-level; this is the case since we generate a 

signature for each topic instead of each app. In particular, we per- 

form the Wilcoxon rank sum test (with Benjamini–Hochberg Cor- 

rection) to compute the p -value, and also compute the Cliff’s delta. 

Wilcoxon rank sum test is often used to check if the difference 

in two data groups is statistically significant (which corresponds 

to a p-value of less than 0.05) or not. Cliff’s delta is often used 

to check if the difference in two data groups is substantial. The 

range of Cliff’s delta is in [ −1, 1], where −1 or 1 means all values 

in one group are smaller or larger than those of the other group, 

and 0 means the data in the two groups is similar. The mappings 

between Cliff’s delta scores and effectiveness levels are shown in 
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Fig. 6. Distribution of information gain ratios for all topic-specific signatures (Part3). 

Fig. 7. Distribution of p -values and Cliffs deltas for all topic-specific signatures compared to the overall signature. 

Table 5 
Mappings of Cliff’s delta values to their 
interpretations [37] . 

Cliff’s delta ( δ) Interpretation 

−1 < = δ < 0.147 Negligible 
0.146 < = δ < 0.33 Small 
0.33 < = δ < 0.474 Medium 
0.474 < = δ < = 1 Large 

Table 5 . By computing the p-value and Cliffs delta, the extent of 

which the topic-specific data flow signatures improves over the 

overall data flow signature can be more rigorously assessed. 

Fig. 7 presents the distributions of p -values and Cliffs deltas 

for all topic-specific signatures compared to the overall signature. 

From the figures, we can see that all p -values are less than 0.05 

and all Cliffs deltas are above 0.5 (which is large). Therefore, we 

can conclude that topic-specific data flow signatures are better 

than the overall data flow signature substantially and statistically 

significantly in terms of information gain ratio. 

The topic-specific data flow signatures are effective. Statistical 

tests have shown that all the topic-specific data flow signa- 

tures are better than the overall data flow signature substan- 

tially and statistically significantly in terms of information gain 

ratio. 

RQ-3: What can we learn from topic-specific data flow signatures? 

In total, the overall data flow signature contains 128 unique 

data flow patterns. On the contrary, the topic-specific data flow 

signatures have much less patterns. The smallest signature con- 

tains only 16 patterns, and the biggest signature contains no more 

than half of all the data flow patterns (i.e., 61). In addition, the 

topic-specific signatures contains an average of 34 patterns, which 

is about 1/4 of all the data flow patterns. 

Although the topic-specific signatures contain fewer data flow 

patterns, we assume their patterns are more discriminative since 

these patterns are restricted to a specific topic. In addition, a re- 

duced number of data flow patterns to inspect increases charac- 

terization efficiency by leading to a concise report. Therefore, we 

make a more in-depth qualitative analysis to investigate each data 
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Table 6 
Data flow patterns in the topic-specific signature for “Flash Player”. 

Data flow patterns Information gain ratio 

NETWORK_INFORMATION → NO_SENSITIVE_SINK 0.6369 
UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 0.4287 
NO_SENSITIVE_SOURCE → NETWORK 0.3516 
LOCATION_INFORMATION → NO_SENSITIVE_SINK 0.2616 
CALENDER_INFORMATION → NO_SENSITIVE_SINK 0.2127 
NO_SENSITIVE_SOURCE → FILE 0.2127 
CONTENT_RESOLVER → NO_SENSITIVE_SINK 0.2127 
DATABASE_INFORMATION → INTENT 0.1812 
NO_SENSITIVE_SOURCE → INTENT 0.14 4 4 
FILE_INFORMATION → NO_SENSITIVE_SINK 0.1320 
ACCOUNT_INFORMATION → NO_SENSITIVE_SINK 0.1320 

Table 7 
Data flow patterns in the topic-specific signature for “Wallpaper”. 

Data flow Information gain ratio 

UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 0.4106 
LOCATION_INFORMATION → NO_SENSITIVE_SINK 0.3129 
NETWORK_INFORMATION → NO_SENSITIVE_SINK 0.2622 
NO_SENSITIVE_SOURCE → NETWORK 0.1838 
ACCOUNT_INFORMATION → NO_SENSITIVE_SINK 0.1559 

Table 8 
Data flow patterns in the topic-specific signature for “Weather Forecast”. 

Data flow patterns Information gain ratio 

DATABASE_INFORMATION → FILE 0.2736 
NO_SENSITIVE_SOURCE → AUDIO 0.1539 
UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 0.1415 
UNIQUE_IDENTIFIER → LOG 0.1379 
NETWORK_INFORMATION → LOG 0.1369 
NO_SENSITIVE_SOURCE → NETWORK 0.1360 
NETWORK_INFORMATION → NO_SENSITIVE_SINK 0.1353 
UNIQUE_IDENTIFIER → INTENT 0.1308 

flow pattern in the topic-specific signatures. Due to space con- 

straints, we present analysis for three representative topics, namely 

“Flash Player”, “Wallpaper” and “Weather Forecast”. 

For the signature in “Flash Player” topic, there are totally 24 

distinct data flow patterns, 11 of which can gain at least 10% of 

the intrinsic information. For the signature in “Wallpaper” topic, 

there are totally 36 distinct data flow patterns, 5 of which can 

gain at least 10% of the intrinsic information. And for the signature 

in “Weather Forecast” topic, there are totally 53 distinct data flow 

patterns, 8 of which can gain at least 10% of the intrinsic informa- 

tion. Tables 6 –8 enumerate those data flow patterns for the three 

topic-specific signatures, respectively. From the tables, we can con- 

clude several points. 

First, different topic-specific signatures have different relevant 

data flow patterns. For example, 5 out of 8 patterns are exclusive 

for the topic “Weather Forecast”. Spreading different relevant pat- 

terns to different topics can much reduce the number of data flow 

patterns in a topic-specific signature and better characterize mal- 

wares. As a result, it is possible to immediately identify the mali- 

ciousness of an app by inspecting only the small number of rele- 

vant patterns instead of all patterns (such as 128 patterns in our 

dataset). 

Second, even the same data flow patterns have different 

capabilities for different topic-specific signatures. For example, 

the pattern UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 
is the most discriminative pattern for the topics “Flash Player”

and “Wallpaper”, but not for the topic “Weather Forecast”. The 

most discriminative pattern for the topic “Weather Forecast”, 

DATABASE_INFORMATION → FILE , does not even appear in 

the other two topics. 

Table 9 
The exclusive data flow patterns of one benign 
app (com.devexpert.weather) and one malicious app 
(VirusShare_aea02d6d5afbba7c0411b9a0f58b8256). 

App Exclusive data flow patterns 

Benign FILE_INFORMATION → INTENT 
FILE → NO_SENSITIVE_SINK 
NO_SENSITIVE_SOURCE → SYSTEM_SETTINGS 

Malicious LOCATION_INFORMATION → LOG 
DATABASE_INFORMATION → LOG 
NETWORK_INFORMATION → LOG 
UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 
CONTENT_RESOLVER → NO_SENSITIVE_SINK 
NO_SENSITIVE_SOURCE → FILE 
NO_SENSITIVE_SOURCE → NETWORK 

As a showcase of malware characterization, we also investigate 

two apps in “Weather Forecast” topic: com.devexpert.weather which 

is benign and VirusShare_aea02d6d5afbba7c0411b9a0f58b8256 

which is malicious. For the data flow information, the benign app 

has 9 sensitive data flow patterns and the malicious app has 13 

sensitive data flow patterns, among which they have 6 mutual pat- 

terns. We list the exclusive data flow patterns of the two apps in 

Table 9 . From the table, we can see that the 3 exclusive data flow 

patterns from the benign app seem quite normal. However, the 7 

exclusive data flow patterns from the malicious app are suspect. 

The first three of them are about leaking location, database and 

network information into log files, while another data flow exists 

for sending apparently non sensitive data (which may include log 

data) via the network. The combination may suggest to an analyst 

a malicious behavior that tracks and leaks user data. 

In summary, building topic-specific signatures can be seen as 

dimension reduction of features which can contribute to faster and 

clearer decision on malware classification, since the topic-specific 

signatures include fewer but more relevant data flow patterns. In- 

deed, every data flow pattern is a feature for learning. Following 

the signature information, one can select the data flow patterns 

that have big information gain ratio values as features for mal- 

ware classification, since they are the ones which better discrim- 

inate malicious apps from benign apps better. 

The topic-specific data flow signatures contain fewer but more 

relevant data flow patterns which can gain much more in- 

formation about differentiating malicious apps from benign 

ones. Therefore, the topic-specific data flow signatures can 

help characterize malicious apps better. 

4.3. Threats to validity 

Threats to internal validity relate to randomness and errors in 

our experiments. First, GA is a randomized algorithm and as such it 

may return different LDA configurations over different runs. There- 

fore, we run GA 10 times and use the average result as the final 

number of topics for LDA. Second, LDA is a probabilistic topic mod- 

els, which means that it may return different topics in different 

executions. The randomness can be reduced substantially when a 

sufficiently large number of Gibbs sampling iterations (i.e., m men- 

tioned in Section 2.2 ) is employed. We have tried various values of 

m and found 20 0 0 to be a proper value that can generate stable re- 

sults with acceptable running time. Setting m as 20 0 0, we run LDA 

10 times and we find that the differences are minimal. We also 

find that larger values of m have little influence to the results. In 

addition, we have double checked our implementations and all the 
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Table 10 
The top five representative terms and corresponding assigned 
names for example topics. 

Our topics Google Play topics 

Body building Health & fitness 
Sport live Sports 
Puzzle game Puzzle 
Weather forecast Weather 
Protector Tools 
Reader Tools 
News News & magazines 
Timer Tools 
Calendar Events 
Power management Tools 
Kid education Education 
App launcher Tools 
Cloud storage Tools 
Camera Photography 
Flash player Tools 
Music player Music& audio 
Social app Communication 
Wallpaper Art & design 
Video player Video players & editor 
Navigator Maps & navigation 
Browser Tools 
Network shopping Shopping 
Financial Finance 
Dictionary Books & reference 
Screen locker Tools 

experiment results. Hence, we believe there are minimal threats to 

internal validity. 

Threats to external validity relate to the generalizability of our 

results. We have evaluated our approach on 5303 apps, containing 

3691 benign apps and 1612 malicious apps. Although the number 

of apps is quite high, it is still not guaranteed that they are repre- 

sentative enough. In the future, we plan to reduce this threat fur- 

ther by analyzing more representative apps and ensure that each 

topic contain significant number of samples. 

4.4. Discussion 

We also compare the topics generated by our approach with 

the topics (i.e., categories) used by Google Play. Table 10 presents 

the 25 example topics generated by our approach and their corre- 

sponding Google Play topics. We can note several points. First, our 

topics and Google Play topics share common topics. For example, 

both Google Play and our topics contain “Puzzle Game”, “Naviga- 

tor”, “Video Player”, etc. Second, our topics are in a finer granular- 

ity compared to Google Play topics. For example, Google Play has 

a topic named “Tools”, in which it includes protectors, power man- 

agement tools, flash player, browser, etc. 

Unfortunately, we cannot compute information gain ratios using 

categories from Google Play. We crawl benign apps from Google 

Play and malicious apps from Best Apps Market (i.e., http://www. 

bestappsmarket.com/ ). We do so since most apps in Google Play 

are clean – a similar assumption was made in prior studies [ 38 , 

39 ] – and Google Play quickly deletes malicious apps. As a result, 

we do not have the Google Play categories of the malicious apps. 

5. Related work 

In this paper, we leverage an advanced topic model called adap- 

tive LDA with GA to perform topic-specific malware comprehen- 

sion. State-of-the-art works that relate to this one are mainly in 

two folds: malware identification and topic model based investiga- 

tion. 

5.1. Malware identification and detection 

The most related works to ours are the recent studies con- 

ducted by Gorla et al. [5] and Avdiienko et al. [6] . Gorla et al. 

propose an approach called CHABADA, which is dedicated to iden- 

tify malicious apps [5] through app descriptions. They first clus- 

ter different apps according to their descriptions, and then use 

anomaly analysis technique to identify outliers with respect to 

their API usage. However, they only consider the APIs that are 

governed by user permissions, which may consequently result in 

false negatives and false positives, as APIs are too coarse to rep- 

resent the apps’ behavior. Avdiienko et al. thus propose another 

approach called MUDFLOW to mitigate this limitation, which uses 

sensitive data flows rather than APIs to better exploit the infor- 

mation of apps’ API usage [6] . Those sensitive data flows are col- 

lected by MUDFLOW through a well-known static taint analysis 

tool named FlowDroid [20] . With the data flow information, MUD- 

FLOW improves the performance of malware identification by a 

large amount. However, unlike the implementation of CHABADA, 

they do not take apps’ descriptions into consideration. Therefore, in 

this paper, we take into account both the aforementioned features 

(descriptions and sensitive data flow information) to implement a 

topic-specific approach, mining topic-specific data flow signatures 

within an attempt to have a deeper insight into malicious apps. In- 

formation gain is further leveraged by our approach to differentiate 

malicious apps from benign apps. 

Aside from the two recent works highlighted above, there are 

also other studies related to malware identification and detec- 

tion [1,40–43] . As examples, Kirat and Vigna propose an automatic 

technique MALGENE for extracting analysis evasion signatures [40] . 

They leverage a combination of data mining and data flow anal- 

ysis techniques to automatically identify evasive behavior in the 

call events, as more and more malware can now be aware of the 

presence of the analysis environment (in order to evade detec- 

tion). Zhou et al. propose a permission-based behavioral footprint- 

ing scheme to detect known malware and a heuristics-based filter- 

ing scheme to detect unknown malware [41] . In the first scheme, 

they detect malicious apps based on the inherent Android per- 

missions and malware-specific behavioral footprints. In the second 

scheme, they first define suspicious behaviors from possibly mali- 

cious apps and then use them to detect suspect apps. Christodor- 

escu et al. present an automatic technique to mine specifications 

of malicious behavior [42] . They compare the execution behaviors 

of a known malware against those of a set of benign apps so that 

the malicious behaviors present in the malware but not in the be- 

nign apps can be mined. Li et al. investigate a new feature set for 

malware detection [43] . The feature set is based on the sensitive 

data-flows that involve Android inter-component communications. 

Allix et al. conduct an analysis of a large set of malware and be- 

nign applications from the Android ecosystem [1] . Their study has 

reported precious insights on the writing process of Android mal- 

ware and built a malware detection scheme based on these in- 

sights. 

5.2. Studies leveraging topic model 

The most related works to ours are the recent study by 

Panichella et al. [7] . Panichella et al. introduce a novel solution 

named LDA-GA to use topic models for software engineering tasks 

more effectively [7] . They use Genetic Algorithm (GA) to search for 

a near optimal configuration for Latent Dirichlet Allocation (LDA), 

which lead to better performances on different software engineer- 

ing tasks. In our paper, we use their algorithm as a sub step to 

determine a proper number of app categories. 

There are also a large number of software engineering studies 

that have leveraged topic model [44–54] to achieve their function- 

http://www.bestappsmarket.com/
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ality. For example, Nguyen et al. propose an automated approach 

called BugScout to help developers reduce buggy code locating ef- 

forts by narrowing the search space of buggy files [44] . They de- 

velop a specialized topic model to correlate bug reports and the 

corresponding buggy files via their shared topics. In a later work, 

Nguyen et al. introduce a novel approach called DBTM, which again 

leverages topic model, to detect duplicate bug reports [45] . Their 

approach that combines both information retrieval and topic mod- 

eling techniques have taken the advantages of both IR-based fea- 

tures and topic-based features. Lukins et al. present a static LDA- 

based technique for automatic bug localization [46] . Their study 

shows that the performance of the LDA-based technique is neither 

affected by the size of the software system nor by the stability of 

the source code base. 

6. Conclusion and future work 

We have proposed to mine topic-specific sensitive data flow 

signatures to improve malware characterization. Our approach first 

groups different apps into several clusters (i.e., topics) according to 

their descriptions using an advanced topic model. Then, we gen- 

erate topic-specific signatures by computing the information gain 

ratio for each data flow pattern seen in the apps from this topic. 

Empirical investigation with 3691 benign apps and 1612 malicious 

apps reveal that these signatures can indeed help better charac- 

terize malicious behavior. In future work, we plan to put signifi- 

cant effort to collect more datasets and further assess the power 

of topic-specific signatures for fine-grained malware identification. 

Replication package. The source code and datasets of our work 

are available in: “https://github.com/goddding/IST ”. 
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